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A universal quantum processor is a device that takes as input a (quantum) program, containing an
encoding of an arbitrary unitary gate, and a (quantum) data register, on which the encoded gate is applied.
While no perfect universal quantum processor can exist, approximate processors have been proposed in the
past two decades. A fundamental open question is how the size of the smallest quantum program scales
with the approximation error. Here we answer the question, by proving a bound on the size of the program
and designing a concrete protocol that attains the bound in the asymptotic limit. Our result is based on a
connection between optimal programming and the Heisenberg limit of quantum metrology, and establishes
an asymptotic equivalence between the tasks of programming, learning, and estimating unitary gates.
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Introduction.—A universal quantum processor is the
desideratum of quantum computing. Ideally, one would
hope to realize quantum computing in the same way as its
classical counterpart, i.e., by inserting data and programs,
both in the form of quantum states, into a universal
quantum computer. However, the no-programming
theorem [1] asserts that any universal quantum processor
must be approximate, or have a nonzero probability of
failure [1–3].
It has been shown that approximate universal processors

with a finite-size program register do exist [1,4–9]. There
one of the most important questions is to determine the
cost-accuracy trade-off or, more specifically, how the
program cost, i.e., the number cP of qubits required to
store the optimal program, scales with the desired accuracy
of implementation, quantified by an approximation error ϵ.
Over the past two decades, many efforts have been

dedicated to finding the optimal approximate universal
processor [4,5,8,9] (see also Table I). The state-of-the-art
result, [9], asserts that the optimal program cost cP for a
d-dimensional unitary quantum gate lies between clow ≔
½ð1 − ϵÞK�d − ð2=3Þ logd qubits and cupp ≔ d2 log ðK=ϵÞ
qubits, where K is a universal constant. Despite all efforts,
the precise value for cP remained largely unknown—
especially in the small error regime, where the ratio
cupp=clow diverges.
In this Letter, we close this gap by identifying the

optimal scaling of the program cost with the accuracy
and therefore solving a long-standing open problem of
optimal quantum programming. Specifically, our program

cost scales as ½ðd2 − 1Þ=2� log ð1=ϵÞ in the small ϵ regime,
which reduces the cost of the best existing protocol (see
cupp above) by half. The optimal scaling is achieved with a
gate learning protocol, where the program is prepared by
sending a quantum state through n instances of the gate to
learn it [14]. The gate information is later read out by
measuring the program. Our protocol achieves a diamond
norm error scaling of 1=n2—well known as the Heisenberg
limit of quantum metrology [15–18]. We thus prove the
asymptotic equivalence of quantum gate programming,
metrology, and learning.
Preliminaries.—We consider programming unitary gates

of a system with a d-dimensional Hilbert space H. The
gates, up to an irrelevant global phase, form the special
unitary group SUðdÞ. For a pure state jψi, we abbreviate its
density matrix jψihψ j by ψ. Similarly, Uð·Þ ≔ Uð·ÞU†

denotes a unitary channel.
We will use the big-Ω notation, the big-O notation, and

the big-Θ notation to characterize the asymptotic behavior
of functions. For two non-negative functions fðnÞ and gðnÞ,
we write fðnÞ ¼ Ω½gðnÞ� if there exists a constant c1 > 0 so
that fðnÞ ≥ c1gðnÞ for large enough n, fðnÞ ¼ O½gðnÞ� if
there exists a constant c2 > 0 so that fðnÞ ≤ c2gðnÞ for
large enough n, and fðnÞ ¼ Θ½gðnÞ� if fðnÞ ¼ Ω½gðnÞ� and
fðnÞ ¼ O½gðnÞ�. We will also abbreviate log2 by log.
Approximate universal processors.—A universal quan-

tum processor consists of two key elements: a family of
programs fψP;UgU∈SUðdÞ, which are quantum states in HP,
and the action of the processor C, which is a quantum
channel (i.e., a completely positive trace-preserving linear
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map) acting on the composite Hilbert space HS ⊗ HP of
the system and the program. Notice that all information on
U should come from the program, and C must be inde-
pendent of U. The program cost cP is defined as log2dP,
with the program dimension dP being the dimension
of SuppfψP;UgU∈SUðdÞ.
As shown in Fig. 1, to run any arbitrary unitary U on the

system, one selects the corresponding program ψP;U and
plugs it into the processor, resulting in the following
channel on the system:

EUð·Þ ≔ TrP½Cð· ⊗ ψP;UÞ�: ð1Þ

A pair ðC; fψP;UgU∈SUðdÞÞ is called an ϵ-universal proces-
sor, if

1

2
kU − EUk⋄ ≤ ϵ ∀ U ∈ SUðdÞ: ð2Þ

Here k · k⋄ denotes the diamond norm [19], which equals
the maximum trace distance between the outputs of the two
channels, maximized over all input states and over all
possible reference systems.
The no-programming theorem [1] rules out perfect (i.e.,

ϵ ¼ 0) universal processors with finite cost cP < ∞. This

impossibility result raised the question: “Given a desired
accuracy 1=ϵ, how big does the program need to be?” This
question can of course be subdivided into two, namely, to
find upper and lower bounds on the program cost cP. We
summarize the best known results in Table I. Here we are
providing both a new lower and a new upper bound, which
match in terms of their asymptotic dependence on 1=ϵ.
Lower bound on the program cost.—We first establish a

lower bound on the program cost. For this purpose, we
exploit an alternative proof of the no-programming
theorem, originally developed in the framework of general
probabilistic theories [20]. The idea is that the exact
implementation of a unitary gate requires the channel C
to leave the system and the program uncorrelated. Using
this fact, the program can be recycled, thereby generating
multiple copies of the desired unitary gate. The approxi-
mate version of this argument was first used by us to
determine the energy requirement of quantum processors
[21] and is further exploited here.
To approximate a unitary quantum gate U with good

precision, there should be almost no correlation between
the system and the program after we apply C. This means
that the complementary channel of EU, defined as
ĒρSð·Þ ≔ TrS½CðρS ⊗ ð·ÞÞ�, is almost independent of ρS. It
further suggests that, instead of discarding the program
after one usage, we can recycle it: we can invert the action
of ĒρS on the program state by a ðρSÞ-independent operation
and get back the original program. The program can be
further used, generating multiple uses of U at the cost of an
increased approximation error. Notice that the argument
does not hold for noisy or classical processes. For instance,
using a controlled unitary j0ih0j ⊗ I þ j1ih1j ⊗ σz and an
ancillary qubit ð1= ffiffiffi

2
p Þðj0i þ j1iÞ, one can (perfectly)

implement the channel ρ → ð1=2Þðρþ σzρσzÞ. However,
the system and the ancillary qubit become strongly
correlated after the implementation.
By the above argument, we can show (see [22] for

details) that an ϵ-universal processor for a single use of U
can be turned into a ð4m ffiffiffiffiffi

2ϵ
p Þ-universal processor for m

FIG. 1. An approximate universal quantum processor. An
approximate universal quantum processor executes a unitary
gate U on a system. It works by plugging a quantum state—
the program for U—into the processor, which performs a
quantum channel C that approximates U on the system.

TABLE I. Comparison of bounds on universal quantum gate programming. In the table, we compare our results on the programming
cost with the best previous results (summarized from Table I of Ref. [9]). In the vanishing error regime ϵ → 0, both the lower bound and
the upper bound are tighter than all previous results, for the first time closing the gap between the lower and upper bounds in this regime.
The cost is defined as the number of qubits in the program and the error is evaluated in terms of the diamond norm (2). K denotes a
universal constant.

Upper bounds Lower bounds

Previous works ½ð1 − ϵÞK�d − ð2=3Þ log d [9]
d2 log ðK=ϵÞ [9]

logðd2=εÞ [10]
4d2 log d=ϵ2 [8,11,12]

½ðdþ 1Þ=2� log ð1=dÞ þ ½ðd − 1Þ=2� log ð1=ϵÞ [13]

This work ½ðd2 − 1Þ=2� log ½Θðd3Þ=ϵ� α log ½Θðd−4Þ=ϵ� for any α < ðd2 − 1Þ=2 and sufficiently small ϵ
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uses of U for anym ≥ 1. This requires the original program
to contain enough information for programming up to
1=

ffiffiffi
ϵ

p
uses of U. This fact, in turn, implies a bound on its

minimum information content and therefore its size. This
ultimately leads to the following theorem, which can be
regarded as a quantitative version of the no-programming
theorem [1]:
Theorem 1.—(Approximate no-programming theorem).—

Consider any ϵ-universal processor with program cost cP. For
any (ϵ-independent) parameter δ > 0, the program cost is
lower bounded as

cP ≥ ð1 − δ − 4
ffiffiffiffiffi
2ϵ

p
Þðd2 − 1Þ log

�
δ

4
ffiffiffiffiffi
2ϵ

p ðd2 − 1Þ

�
− 1:

ð3Þ

This immediately implies the expression for the lower bound
stated in Table I. The key message from the above theorem is
that, for any α < ðd2 − 1Þ=2, the program dimension dP ¼
2cP satisfies

dP ¼ Ωð1=ϵαÞ: ð4Þ

Taking ϵ → 0 in Eq. (4), one gets dP → ∞, recovering the
original no-programming theorem [1].
Optimal approximate universal processor.—Next we

construct an approximate universal processor that achieves
the bound in Theorem 1. Our processor works in a measure-
and-operate (MO) fashion, as illustrated in Fig. 2. It
measures the input program ψP;U with a suitable positive
operator-valued measurement (POVM) fdÛMÛgÛ∈SUðdÞ,
where dÛ is the Haar measure. The measurement yields
an estimate Û of the gate U, and the processor performs the
corresponding gate on the system. Explicitly, our optimal
processor obeys the following procedure:

Protocol 1. An MO-universal processor.

1: (Generating the program.) Apply U⊗n to a suitable quantum
state jψPi.

2: Measure jψP;Ui ≔ U⊗njψPi with fdÛMÛgÛ∈SUðdÞ.
3: Apply Û to the state of the system, where Û is the
measurement outcome.

The program in Protocol 1 is prepared by applying n
parallel uses of U on a quantum state (called the probe state).
The performance of this processor is then determined jointly
by the choice of the probe state and the choice of the POVM
fdÛMÛgÛ∈SUðdÞ. It is known from quantum metrology
[16,17,37] that the performance of the measurement is
optimized using nonproduct probe states and POVMs. In
[22], we identify a probe state and a POVM which, when
incorporated into Protocol 1, yields an optimal processor
asymptotically achieving the ½ðd2 − 1Þ=2� logð1=ϵÞ scaling
bound of Theorem 1.

Theorem 2.—Consider the estimation of an unknown
unitary gate on a d-dimensional quantum system. When
n ≥ 2dðd − 1Þ uses of the gate are available, the diamond
norm error for the optimal estimation is bounded as

ϵ ≤ 2d
�
πðd − 1Þ2ð3d − 2Þ

d · n

�
2

: ð5Þ

The probe state has dimension bounded as

dP ≤
�

9n
3d − 2

�
d2−1

: ð6Þ

Reference [37] showed that the estimation of an arbitrary d-
dimensional unitary given n uses can be done with an error
scaling 1=n2. The error was measured by the entanglement
gate infidelity, which is upper bounded by 1 − ð1 − εÞ2.
Theorem 2 refines this result by not only achieving the 1=n2

scaling but also identifying an explicit expression of the
constant of proportionality. In addition, our result holds for
the more stringent error criterion ϵ, i.e., the diamond norm
error, and we also determine how the probe state dimension
scales with n.
Combining Eq. (5) with Eq. (6), we get
Corollary 3.—The program cost cP of Protocol 1 is

upper bounded as

cP ≤
�
d2 − 1

2

�
log

�
162π2ðd − 1Þ4

d · ϵ

�
: ð7Þ

It is obvious from the above corollary that

cP ≤
�
d2 − 1

2

�
log

�
162π2d3

ϵ

�
; ð8Þ

which matches Table I and achieves a quadratic reduction
compared to known results.

FIG. 2. A learning protocol for unitary gates. In the learning
phase, a probe state ψP, possibly entangled with a reference
system, is prepared. It is then sent through n parallel instances of
U, resulting in a program ψP;U . The program is later measured,
and the gate corresponding to the measurement outcome Û is
performed on the system.

PHYSICAL REVIEW LETTERS 125, 210501 (2020)

210501-3



Asymptotic equivalence of programming, metrology,
and learning.—From the previous discussion, we can see
that an optimal way of programming a unitary is actually to
let the processor learn and memorize it (see Fig. 2). The
task of learning a unitary U from n instances [14,38,39]
consists of a learning phase and an execution (or testing)
phase. In the learning phase, the protocol makes n (not
necessarily parallel) queries to U. In the execution phase,
the protocol emulates the learned unitary on an arbitrary
input state. Notice that the execution phase happens after
the learning phase; thus, the protocol should be able to store
the information of U.
A learning protocol induces a programmable processor

in the sense that the learning phase can be used to generate
a program. Nevertheless, one should keep in mind that
learning and programming are not equivalent. Indeed, in
the task of programming, the program does not have to be
generated by learning, i.e., by applying multiple instances
of U on a quantum state. As learning has this additional
constraint, its resource requirement is at least as stringent as
that of programming. Therefore, because Protocol 1 is an
optimal processor, it is also an optimal learning protocol.
The performance of optimal learning given n instances is
thus given by Theorem 1, achieved by unitary gate
metrology. In summary, for finite dimensional quantum
gates, the performances of programming, metrology, and
learning are asymptotically equal,

programming ≈metrology ≈ learning:

Quantum versus classical advantage.—One may wonder
if it is possible to simply use a classical program, e.g., to
write down the description of the gate on a tape. Here we
show, via a simple example, that our Protocol 1, which uses
a quantum program, beats the best processor that uses
classical programs in scaling.
Let us consider the case of programming a phase gate

Uθ ¼ j0ih0j þ e−iθj1ih1j, where θ ∈ ½0; 2πÞ is the
(unknown) phase, for it allows for explicit calculations.
Fixing the program dimension dP ≔ 2cP , the best classical
strategy is nothing but dividing the range ½0; 2πÞ into dP
equal-width intervals. The tag of the interval that contains θ
is used as the program, and the processor runs Uθ̂ with θ̂
being the middle point of the interval. Because
max jθ̂ − θj ¼ π=dP, the error of this approach is
ϵclassical ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1 − cosðπ=dPÞ�=2
p

≃ π=ð2dPÞ, which is
inversely proportional to the program dimension.
In contrast, we can employ our Protocol 1, where we use

the sine state [15]

jψi ¼
ffiffiffiffiffiffi
2

dP

s XdP−1
m¼0

sin
πðmþ 1=2Þ

dP
jmi ð9Þ

as the probe state and the covariant POVM
fðdθ̂=2πÞjηθ̂ihηθ̂j∶jηθ̂i ≔

PdP−1
m¼0 e−imθ̂jmigθ̂ as the meas-

urement. The error can be evaluated as

ϵquantum ≃
π2

2d2P
; ð10Þ

which is inversely proportional to the square of the program
dimension. In other words, the program dimension of a
processor with classical programs is quadratically larger
than that of our quantum processor. In the more complex
case of programming a d-dimensional unitary gate, the
classical strategy is to construct an ϵ mesh of the unitary
gates, which was employed by Ref. [9]. The program cost
was given in Table I as d2 logðK=ϵÞ, higher than twice the
cost of our quantum strategy in the small ϵ regime. This
proves the claimed quantum-over-classical advantage in
programming.
Conclusion and further discussions.—We identified the

optimal scaling of the program cost with accuracy in a
universal quantum processor. The optimal scaling can be
achieved with a measure-and-operate learning protocol.
With this finding, we showed the asymptotic equivalence
between programming, metrology, and learning.
In this work, we determined the optimal dependence of

the program size on the accuracy parameter ε. An interest-
ing extension would be to determine the optimal scaling
with the dimension of the target system d. Moreover, the
task we focused on is universal programming, which
requires the processor to work well for every gate of a
certain dimension. It is natural to expect that a smaller set of
gates would lead to a smaller program cost. Observe from
Eq. (8) that the prefactor ðd2 − 1Þ=2 is exactly one half the
number of real parameters determining a qudit unitary gate
(up to a global phase). We therefore conjecture a general
formula, valid for parametric families of quantum gates
with a continuous dependence on ν real parameters:

cP ∼
�
ν

2

�
log

�
Cν;d

ϵ

�
; ð11Þ

where Cν;d is a parameter, possibly dependent on ν and d
but independent of ϵ.
Another key reason for making this conjecture is that the

ultimate performances of quantum information processing
tasks share similar forms in the asymptotic limit of “many
copies.” In particular, one can consider the compression of
identically prepared quantum systems, e.g., states of the
form ρ⊗n with ρ unknown and n being large. It turns out
that the minimum cost of the memory, when requiring the
error to be vanishing for large n, is ðν=2Þ log n (qu)bits in
the leading order [40–45]. Here ν, the number of variable
real parameters, appears again. Further pursuit in this
direction could lead to the discovery of a universality rule,
which governs the behavior of optimal quantum devices in
the limit of macroscopically many copies.
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