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ABSTRACT
Free-space angular-chirp-enhanced delay (FACED) is an ultrafast laser-scanning technique that allows for high imaging speed at the scale
orders of magnitude greater than the current technologies. However, this speed advantage has only been restricted to bright-field and fluores-
cence imaging—limiting the variety of image contents and hindering its applicability in image-based bioassay, which increasingly demands
rich phenotypic readout at a large scale. Here, we present a new high-speed quantitative phase imaging (QPI) based on time-interleaved phase-
gradient FACED image detection. We further integrate this system with a microfluidic flow cytometer platform that enables synchronized
and co-registered single-cell QPI and fluorescence imaging at an imaging throughput of 77 000 cells/s with sub-cellular resolution. Combined
with deep learning, this platform empowers comprehensive image-based profiling of single-cell biophysical phenotypes that can offer not only
sufficient label-free power for cell-type classification but also cell-cycle phase tracking with high accuracy comparable to the gold-standard
fluorescence method. This platform further enables correlative, compartment-specific single-cell analysis of the spatially resolved biophysi-
cal profiles at the throughput inaccessible with existing QPI methods. The high imaging throughput and content given by this multimodal
FACED imaging system could open new opportunities in image-based single-cell analysis, especially systematic analysis that correlates the
biophysical and biochemical information of cells, and provide new mechanistic insights into biophysical heterogeneities in many biological
processes.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0054714

I. INTRODUCTION

Recent advances in optical microscopy have opened an increas-
ingly detailed window into visualizing and understanding how bio-
logical cells—the basic unit of biological systems—work and fail.
This ability has fueled a momentous shift in the use of microscopy
from qualitative biological examination to quantitative cellular
“fingerprinting” (or profiling) based on the information-rich cell
morphology (e.g., rare cell detection,1 identification of immune cell
subtypes,2 cell cycle analysis,3 etc.). Imaging-based profiling can
thus be regarded as a powerful alternative to the standard molec-
ular assays that delineate the functional cell states without costly,
time-consuming, and laborious workflow (e.g., sequencing proto-
cols). Among all imaging modalities, quantitative phase imaging

(QPI) is an emerging tool in basic biology and clinical research
because it allows for non-invasive quantification of high-resolution
biophysical properties of cells (e.g., cell size, shape, mass density,
and its subcellular distribution) derived from the quantitative phase
images. Otherwise inaccessible in the gold-standard fluorescence
microscopy,4 cellular biophysical properties (or phenotypes) are
proven to be effective to reconcile cellular heterogeneity and thus
be salient biomarkers (can even be more accurate than the fluores-
cence markers) for cancer,5 aging,6 and drug screening,7 to name a
few.

Going beyond, several approaches further incorporated flu-
orescence imaging with 2D (or even 3D) QPI to enable simul-
taneous readout of both molecular information specific to the
subcellular organelles/molecules (given by fluorescence contrast)
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and biophysical information (derived from QPI).8–12 However, it
remains restricted in adopting these integrated QPI systems in the
growing field of image-based profiling. It is mainly because these
platforms lack the imaging throughput (e.g., in the number of cells
per second) required to offer sufficient statistical power and estab-
lish faithful correlation and/or validation of biophysical phenotypes
with the foundational molecular knowledge.

Building upon our recently developed ultrafast imaging tech-
nique (at 10 MHz linescan rate) called free-space angular-chirp-
enhanced delay (FACED)13 imaging, here, we demonstrate a high-
throughput imaging flow cytometry (IFC) system that enables
multimodal single-cell QPI and fluorescence imaging at a highly
scalable imaging throughput up to almost 105 cells/s with sub-
cellular resolution. The defining feature of this system is the ultrafast
multiplexed readout of differential phase-contrast (DPC) encoded
in the line array of foci, which is generated through the concept of
“infinity-mirror.” Extending from our previous approach in time-
stretch imaging,14 we leverage the temporal discreteness of the foci
array in FACED to interleave different differential phase-contrast
measurements in time pixel-by-pixel. In this way, QPI can be
retrieved at high speed bypassing the interferometric measurements
and the complex phase retrieval computation.15 More importantly,
such an ultrafast QPI operation is synchronized with fluorescence
image capture. Hence, it allows us to capture QPI and fluorescence
images of the same cell simultaneously at high throughput.

In this work, we first present the theory of FACED-QPI based
on a wave-optics model, followed by the experimental character-
ization of the single-cell FACED image quality (in all the DPC,
QPI, and fluorescence image contrasts) and validation of the quan-
titative phase accuracy. We then demonstrate the utility of the
platform in conjunction with deep learning to perform label-free
cell-type classification and label-free cell-cycle progression track-
ing. We further investigate the correlation between the subcellu-
lar information obtained from QPI and fluorescence images and
seek to understand how the spatially resolved biophysical profiles
of cells respond to cell cycle progression. Hence, empowered by its
large-scale analytical power, FACED IFC could allow for system-
atic analysis on multi-scale single-cell properties (both biophysical
and biochemical) and, more importantly, on their largely underex-
plored inter-relationships. Such correlative, multi-scale single-cell
analysis, mostly uncharted in the current methods, would pro-
vide a more profound knowledge of biophysical phenotypic het-
erogeneities of single-cells and new mechanistic insights into many
biological processes.

II. MATERIALS AND METHODS
A. Multimodal FACED imaging

The multimodal FACED IFC platform comprises three mod-
ules (Fig. 1; see Fig. S3 of the supplementary material for

FIG. 1. Schematics of a multimodal FACED-IFC platform. (a) A ray-tracing diagram that describes the generation of the virtual source array by the mirror pair (with a
separation S and tilt angle α). The FACED mirror-pair transforms a line-focusing pulsed laser beam [focused by a cylindrical lens shown in (b)] into a set of beamlets.
Only four sources (color-coded) are shown for clarity. All beamlets follow different sets of multiple reflection paths and are then retroreflected along the identical paths. The
returning beamlets can be regarded as light emerging from an array of virtual pulsed sources. (b) The overall system consists of three main modules: FACED, QPI, and
fluorescence module. Because of the different path delays from different virtual sources, the beamlets generated by the FACED module form an array of spatially separated
and temporally delayed foci onto an intermediate conjugate plane of the virtual sources (see the inset in the FACED module). These foci are further projected through
intermediate optics of the systems onto the imaging plane of a microscope, forming an ultrafast line-scanning beam illuminated onto the flowing cells (see the inset at the top
right corner for a zoom-in view). The fluorescence linescan signals emitted from the flowing cells are collected by using a high-speed PMT in the fluorescence module. The
QPI module comprises a two-arm delay-line, which time-interleaves the two transmitted line-scan replicas, but with different differential phase-contrasts (DPCs) generated
by two knife-edges at the Fourier planes of the image plane (masks X and Y, respectively) (see Fig. 2 for the detailed working principle). The interleaved line scans are then
detected in real-time by using the high-speed photodetector. BS: beamsplitter. PMT: photomultiplier tube.
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detailed setup configuration), which are introduced in Subsections
II A 1–II A 3 in detail.

1. FACED module
FACED relies on the concept of “infinity mirror” that generates

an array of laser foci at the line-scan rate at least 10–100 times faster
than the existing galvo-mirror scanning methods. Simply composed
of two plane (static) mirrors (mirror separation S = 150 mm, mirror
length L = 200 mm, mirror angle tilt α < 1 mrad, and mirror reflec-
tivity >99.5% at 532 nm) and a cylindrical lens, a FACED module
transforms a pulsed laser beam into a set of beamlets, each of which
follows a unique multiple (zig-zig) light reflection path. The zig-zag
reflections are progressively denser and are eventually retroreflected
along the identical paths, but with different round trip time delays.
In essence, the returning beamlets from the mirror pair manifest
themselves as being emerged from a linear array of virtual pulsed
sources [Fig. 1(a)]. Note that the temporal and spatial densities of vir-
tual sources are reconfigurable by tuning the geometry of the mirror
pair and the input light cone.13 In this work, the number of virtual
sources used for imaging is chosen to be N = 50 and the tempo-
ral separation between adjacent virtual sources is 1 ns. These virtual
sources are projected through the intermediate optics onto the imag-
ing plane as an ultrafast all-optical scanning illumination/excitation
beam at a line-scan rate governed by the repetition rate of the mode-
lock laser source (1/T = 20 MHz). Detailed principle of FACED can
be referred to Ref. 13.

2. FACED-QPI module
a. Theory. Unlike the classical interferometric approaches that

rely on complex field measurements, the phase retrieval algorithm
used in this work is based on intensity-only measurements. The
working principle is generally based on the fact that local phase gra-
dient induced by the cells [∇⃗φ(x, y)] causes wavefront tilt or local
angle tilt θ⃗(x, y) for each spatiotemporally separated FACED focus
beam,

∇⃗φ(x, y) = 2π
λ

θ⃗(x, y). (1)

λ is the illumination wavelength. Such a light tilt on the image plane,
in turn, results in a transverse displacement of each FACED focus
beam on the Fourier plane. Suppose that one partially blocks the
light profile on the Fourier plane (e.g., by knife-edge) [Fig. 1(b)].
In that case, the resultant fractional intensity losses of each focus
(which can be measured separately in real-time) can then be com-
putationally linked to the phase-gradient and thus quantitative phase
(Fig. 2).

To further illustrate the underlying theory, we consider only
one of the FACED foci as the input illumination without loss of gen-
erality. Here, a knife-edge mask is placed at the Fourier plane of the
sample plane to half-block the light profile along the x-direction.
The light field Ek(xk, yk) on the knife-edge plane can be related to
the field at the sample plane, which is denoted as Es(xs, ys), by

Ek(xk, yk)∝
1 + sgn(xk)

2
F(Es(xs, ys)), (2)

where Es(xs, ys) is proportional to both the input field amplitude
profile A(xs, ys) and the phase profile φ(xs, ys) of the sample, i.e.,
Es(xs, ys) α A(xs, ys) exp[−jφ(xs, ys) ]. Note that (xs, ys) and (xk, yk)

FIG. 2. The workflow of simultaneous FACED-QPI and fluorescence image recon-
struction. The FACED foci {only four color-coded foci [the same as Fig. 1(a)] are
shown for clarity} illuminate the flowing cells to generate two image contrasts simul-
taneously. (Left) 1D fluorescence line-scan signals. (Right) 1D phase-gradient
line-scan signals. The 2D fluorescence image is reconstructed by digitally stack-
ing the 1D fluorescence line scans. On the other hand, the transmitted beamlets
encoded with the phase-gradient information of the cells are split into two replicas
in the two delay arms [see Fig. 1(b)]. Note that the local phase-gradient experi-
enced in each FACED beamlet is encoded as beamlet translation (both its direction
and magnitude) on the Fourier plane (see the arrows indicating the translation of
the four beamlets). By half-blocking the beam profiles at the Fourier planes on the
two arms along the horizontal (mask X) and vertical direction (mask Y), respec-
tively, the intensity loss of each beamlet is directly linked to the magnitude and
direction of the beam translation and thus phase gradient. Hence, the two arms
essentially generate two orthogonal DPC line scans [̂Ix(x, y) and Îy(x, y)], which
are time-interleaved focus-by-focus (i.e., pixel-by-pixel) and detected by using a
single-pixel photodetector. The linescan signals are demultiplexed by alternatively
selecting the Îx(x, y) and Îy(x, y) linescan signals. After 2D reconstruction of the
two DPC images (along x and y directions), QPI can be obtained by performing
complex Fourier integration on the two DPC images based on Eqs. (4) and (5).

are the coordinates on the sample plane and its Fourier plane,
respectively. sgn(xk) is the sign function along the x-direction rep-
resenting the knife-edge (mask X) (Fig. 2), and F is the operator of
2D spatial Fourier transform.

Subsequently, the light is captured by using the free-space
photodetector (PD) located at the conjugate plane of the sample
plane. Hence, the detected light field Ed(xd, yd) is proportional to
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F(Ek(xk, yk)), where (xd, yd) are the coordinates on the detector
plane. Based on the smooth phase approximation, the integrated
intensity at the detection plane can be evaluated as

Ix =∬ ∣Ed∣2dxddyd = C
∂φ
∂xs
+ B, (3)

where B and C are the constants related to the input field. Note that
the same derivation can be applied to the knife edge that half-blocks
the light profile in the y-direction (mask Y). Equation (3) asserts that
the phase-gradient information (along both the x- and y-directions)
of the phase object (i.e., cell) can be derived from the intensity-only
measurement in FACED-QPI. The measured intensity images from
Eq. (3) are essentially DPC images along the two orthogonal direc-
tions. The detailed derivation can be referred to the supplementary
material, Note 2.

In practice, the relationship between the DPC intensities and
the phase gradient can experimentally be quantified through simple
geometry that connects the DPC intensities and the local light tilt
angle θx(x, y) and θy(x, y) along the x- and y-directions,

[θx(x, y)
θy(x, y)] = −NAi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f −1
(

Îx(x, y) − 1
2

)

f −1
(

Îy(x, y) − 1
2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where f (Δx
r ) =

Îx(x,y)−1
2 and f (Δy

r ) =
Îy(x,y)−1

2 . f () is the function
connecting the intensity changes to the transverse displacement (Δx
and Δy along the x- and y-directions, respectively) of each FACED
beamlet on the Fourier plane as a consequence of the local phase
gradient on the sample plane. Detailed derivation of the function
f () can be referred to Note 3 of the supplementary material. NAi
is the numerical aperture of the illumination objective lens. Îx(x, y)
and Îy(x, y) are the normalized DPC images with a partial beam
block (masks X and Y in Fig. 2) along x and y directions, respec-
tively. To ensure high computation efficiency in the phase recon-
struction pipeline, the local light tilt angles in Eq. (4) are evaluated
through a lookup table constructed based on f () (see Note 3 of the
supplementary material).

Combining Eqs. (1) and (4), one can, in principle, inte-
grate ∇⃗φ(x, y) to obtain QPI, i.e., φ(x, y). Here, we apply com-
plex Fourier integration16 on a complex phase gradient, which is
defined as g(x, y) = ∂ϕ

∂xs
(x, y) + i ∂ϕ

∂ys
(x, y). Hence, φ(x, y) can be

evaluated as

φ(x, y) = CF ⋅ Im{F−1{NF ⋅F[g(x, y)]}},

where

NF =
⎧⎪⎪⎨⎪⎪⎩

FOV/[2πj ⋅ k(x, y)], k(x, y) ≠ 0

0, k(x, y) = 0,
(5)

where CF is the calibration factor for correcting the systematic phase
deviation arising from non-ideal system settings, e.g., optical aberra-
tion. Im is the imaginary part of a complex number, and F−1 is the
operator of inverse Fourier transform. NF is the normalization fac-
tor for quantifying the phase. FOV is the field of view of the image
determined by a grid target with known dimensions, and k(x, y) is
the spatial frequency. Note that as cells are generally transparent and
weakly scattering, absorption and scattering losses are thus ignored
in the phase retrieval algorithm. In practice, the noise in DPC images

[Îx(x, y), Îy(x, y)] is contributed by the laser intensity noise (mainly
shot noise) and possibly the detector noise, especially in high-speed
detection. These noise sources would eventually be translated to
the phase noise in the FACED-QPI (see Figs. S4a and S4b of the
supplementary material). By analyzing the background (cell-free)
region of each single-cell phase image, we quantified the phase
noise to be on the order of tens of mrad (see Fig. S4c of the
supplementary material), which has a negligible impact on image-
derived phenotyping and image analysis presented in this work.

b. QPI module and phase reconstruction pipeline. The criti-
cal attribute of FACED-QPI is its ultrafast phase retrieval oper-
ation. This is achieved by generating the two DPC images
[Îx(x, y), Îy(x, y)] of the same cell simultaneously in real-time
based on a time-interleaving detection approach. The significant
steps include the following: (1) Split the FACED pulsed beamlets
(which have already been transmitted through the cells) into two
paths by using a 50:50 beam splitter. (2) Place two knife-edge masks
(denoted as masks X and Y) near the Fourier planes of the image
plane along these two paths. As described earlier [Eq. (2)], the
masks block half of the light profiles along two orthogonal direc-
tions (Fig. 1). It thus results in the image line scans exhibiting
DPCs, i.e., mask X (or Y) creates DPC along the x-direction (or
y-direction). (3) Introduce an additional path-length delay in one
path for time-multiplexed detection of the DPC line scans. A similar
time-multiplexing scheme has been applied to time-stretch QPI.14

However, it requires the line-scan replicas to be completely sepa-
rated in time and thus compromises the line-scan rate (and imaging
speed). In contrast, leveraging the spatiotemporal discreteness of the
virtual sources, we temporally interleaved the subpulses of two DPC
line scans (each consists of N subpulses) (Fig. 2). Here, we set the
time delay between two light paths to be approximately half of the
temporal separation between adjacent FACED virtual sources, i.e.,
∼500 ps. This time-interleaving approach in FACED-QPI allows for
multiplexed DPC detection without sacrificing the line-scan rate. As
N = 50 virtual sources generated from the current FACED con-
figuration, a total of 2N = 100 subpulses were all detected in one
complete line scan (i.e., T = 50 ns), which consists of two temporally
interleaved DPC line scans. The multiplexed signals were detected
using a single photodetector (response time < 30 ps and bandwidth
> 10 GHz, Alphalas) and were then digitized by using a real-time
high-speed oscilloscope (20 GHz, 80 GS/s, Lecroy). (4) Digitally
demultiplex the composite line scan by alternately sampling the peak
amplitude of each FACED subpulse to reconstruct the line scan of
DPC images Îx(x, y) or Îy(x, y), respectively. Note that both Îx(x, y)
and Îy(x, y) are the normalized DPC images, which were obtained
by normalizing the raw line scans by the background scan. Here, the
background scan is referred to the averaged raw line scans of the
cell-free regions. Finally, QPI was reconstructed based on Eqs. (4)
and (5). In this work, the QPI reconstruction pipeline was performed
offline by using a consumer-grade computer. In order to streamline
this pipeline in real-time and at high throughput (10 000 cells/s), we
have recently demonstrated an online continuous image processing
workflow based on a high-performance computing platform using a
field programmable gate array.17,18

c. Phase calibration. A quantitative phase target (Benchmark
Technologies), which is a rectangular block with well-defined
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height (250 nm) and refractive index (1.52) (see Fig. S5a of the
supplementary material), was used for phase calibration. The image
of the target was captured in the FACED imaging system by translat-
ing the target along the slow axis using a motorized actuator (with a
step size of 0.5 μm). Figure S5b of the supplementary material shows
the average height profile (computed based on the calibrated phase
values) of the rectangular block, which is highly consistent with the
manufacturer’s specification, i.e., 250 nm.

3. Fluorescence imaging module
Simultaneously, with the QPI capture, the epi-fluorescence sig-

nals (from Vybrant DyeCycle orange, Invitrogen; peak emission
wavelength: 575 nm) emitted from the same set of FACED excita-
tion foci used for QPI were detected serially by using a high-speed
photomultiplier tube (PMT) (rise time = 0.57 ns, Hamamatsu) after
passing through a series of relay lenses and dichroic beam splitters
(see Fig. S3 of the supplementary material). Individual 1D fluores-
cence line scans were detected synchronously with the multiplexed
DPC line scan. The 2D fluorescence image of a single cell was recon-
structed by stacking the 1D line-scan data. The acquisition of the
DPC and fluorescence images was co-registered to the same cell
and was synchronously acquired by using a real-time high-speed
oscilloscope (20 GHz, 80 GS/s, Lecroy).

B. Neural network
1. Deep neural network-based cell-type classification

We first established a single-cell phenotypic profile consisting
of a total of 51 spatially resolved biophysical features derived from
each single-cell FACED-QPI. These features include the typical bulk
parameters, e.g., cell size, circularity, and dry mass density (DMD),
as well as the texture parameters, e.g., dry mass variance and other
higher-order-moment statistics (see Table S1 of the supplementary
material, Note 1, for detailed definition of each feature). The bio-
physical phenotypes of single cells were only extracted from cell
body region, which was defined by a binary mask (based on the
QPI) outlining the cell shape (see Table S2 of the supplementary
material, Note 1). Note that we followed the hierarchical profil-
ing strategy (from bulk to global and local texture) that has been
shown effective to capture the spatial characteristics of single cells
holistically.19 We next trained a deep neural network model to clas-
sify two breast cancer cell types (MDA-MB231 and MCF7), entirely
based on the input knowledge given by the single-cell biophysical
profiles. The neural network model is composed of three fully con-
nected hidden layers, each with 100, 50, and 25 nodes, respectively,
and connected with a rectified linear unit as activation functions.
The 51-dimensional biophysical profile (i.e., consisting of 51 fea-
tures), normalized based on the z-score, was used as the input of
the model. The softmax function was implemented at the output
layer, and the cross-entropy function was used as the loss function.
Tenfold validation was performed to avoid overfitting. To examine
the classification performance, a confusion matrix is generated to
show the accuracy of classification. A dataset with 8705 cells (4391
cells from MDA-MB231 and 4314 cells from MCF7) was employed,
and 90% of the dataset per cell line was used to train the classifi-
cation model, whereas the remaining batch was used as the test set
(repeated for ten times). The model was first trained with the train-
ing set for 300 epochs at a learning rate of 0.0001 with a mini-batch

size of 128. Python was employed to develop the classification model
in a consumer-grade computer with a CPU (6 cores, 12 threads;
4.00 GHz), a 64 GB RAM. The detailed network architecture can
be referred to the supplementary material, Fig. S6a.

2. Cell cycle analysis
In the cell-cycle prediction experiments, we used the QPI as

inputs to train and test a convolutional neural network (CNN)
based model to predict DNA content. The ground truth of the DNA
content is given by the DNA fluorescence dye labeled to the cells
(Vybrant DyeCycle orange, Invitrogen) and is thus read out from the
FACED fluorescence images. To train the model, half of the dataset
per cell line was used as a training dataset, and mean squared error
was used as a loss function with the Adam optimization algorithm.
The model was first trained with the training set for 300 epochs at
a learning rate of 0.000 001 and with a mini-batch size of 15. A test
set was then employed to examine the performance of the model.
The CNN-based regression model was composed of multiple 2D
convolution layers, batch normalization layers, and leaky rectified
linear units. At the output layer, a linear activation function was
used to predict the normalized fluorescent intensity of cells, which
was indicative of the cell cycle status. The detailed CNN architec-
ture can be referred to the supplementary material, Fig. S6b. We
also applied the Watson pragmatic curve-fitting on the fluorescence
(DNA content) histogram20 given by the FACED fluorescence image
data to estimate the probability distributions for the cells (both
MDA-MB231 and MCF7) belonging to the G1, S, and G2/M phases
of the cell cycle.

C. Microfluidic channel fabrication
The microfluidic channel [made of polydimethylsiloxane

(PDMS)] used in this work was designed to form an in-focus stream
of single cells under high-speed microfluidic flow (>2 m/s) based
on inertial focusing. The key fabrication steps are described as fol-
lows: First, a negative photoresist (SU-82025, MicroChem, US) was
poured onto a silicon wafer, and a spin coater (spinNXG-P1, Apex
Instruments Co., India) was used to coat the photoresist on the
wafer. After soft baking at 65 ○C for 3 min and then 95 ○C for 6 min
to remove the solvent, the wafer was cooled down under room tem-
perature. Then, a target computer-aided design (CAD) pattern was
transferred onto the photoresist by using a maskless soft lithography
machine (SF-100 XCEL, Intelligent Micro Patterning, LLC, US) with
exposure for 4 sec, followed by post-exposure bake at 65 ○C for 1 min
and then 95 ○C for 6 min for further polymerization. After that,
the SU-8 developer (MicroChem, US) was used for development
of photoresist for 5 min. After rinsing and drying the wafer with
isopropyl alcohol and pressurized air, respectively, the mixed solu-
tion of the PDMS precursor (SYLGARD® 184 Silicone Elastomer
kit, Dow Corning, US) and curing agent (with a mix ratio of 10:1)
was poured onto the wafer mold. The channel height of the imaging
section was controlled by placing a homemade acrylic block on the
wafer, followed by curing of the channel inside an oven operating
at 65 ○C for 2 h before demolding. By using a biopsy punch (Miltex
33-31 AA, Integra LifeSciences, US), two holes were then punched
on the inlet and outlet of the channel for insertion of plastic tubing
(BB31695-PE/2, Scientific Commodities, Inc., US). After bonding a
glass slide to the channel by using oxygen plasma (PDC-002, Harrick
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Plasma, US), the whole channel was baked inside an oven operating
at 65 ○C for 30 min for strengthening the bonding. Before carrying
out the experiment, plastic tubings were inserted into the punched
holes for the flow of the cell suspension into the channel. The chan-
nel dimensions at the imaging section were 30 μm in height and
60 μm in width.

D. Cell culture
The cancer cell lines used in this work, including two breast

cancer cell lines MDA-MB231 and MCF7, and one human leukemic
monocyte cell line, THP-1, were purchased from American Type
Culture Collection (ATCC). They were cultured in the tissue culture
flasks (surface area of 75 cm2) (TPP) and incubated under 37 ○C
and 5% CO2. For MDA-MB231, the full culture medium was ATCC
modified RPMI 1640 (Gibco) containing 10% fetal bovine serum
(FBS) (Gibco) and 1% antibiotic–antimycotic (Anti–Anti) (Gibco).
For MCF-7, the full culture medium was DMEM (Gibco) contain-
ing 10% FBS (Gibco) and 1% Anti–Anti (Gibco). For THP-1, the full
culture medium was the full medium for MDA-MB231 with 50 μl of
2-mercaptoethanol added for every 50 ml of medium. The cells were
subcultured 2 to 3 times per week according to the cell confluency
observed under a standard light microscope.

E. Cell preparation
For the experiments of cell-type classification and cell-cycle

progression study, ∼1 × 106 cells were extracted from each of the
breast cancer cell lines and suspended in 1 ml of 1X PBS. Next, 0.5 μl
of Vybrant DyeCycle orange stain (Invitrogen) was mixed with 4.5 μl
of 1X PBS for dilution, and 2 μl of the mixed solution is added to the
1 × 106 cells. Then, the cells are incubated at 37 ○C for 30 min. After-
ward, the full medium was added to the cell suspension such that
the total volume of 3 ml was obtained for the subsequent imaging
experiments.

III. RESULTS
A. Imaging performance of multimodal FACED IFC

We first demonstrated the general imaging capability of syn-
chronized single-cell quantitative phase and fluorescence FACED
image capture in the high-speed microfluidic flow configuration.
We employed three different cell types, which include human
leukemic monocyte (THP-1) and breast cancer cells (MDA-MB231
and MCF7) for this test (Fig. 3). Under the ultrafast imaging rate
(a line-scan rate of 20 MHz), this multimodal FACED IFC platform
enabled high-throughput image capture of individual fast-flowing
cells (∼77 000 cells/s), revealing multiple image contrasts with sub-
cellular resolution (i.e., the two DPCs, QPI, and fluorescence images)
simultaneously. Note that this imaging throughput is at least two
orders of magnitude higher than the existing QPI systems that also
combine with fluorescence imaging capability. Hence, such a high
throughput together with the subcellular image resolution critically
enables large-scale, information-rich single-cell image-based anal-
ysis that not only harnesses the bulk cellular features (e.g., cell size
and mass) but also further quantifies subcellular biophysical features
of single cells—the single-cell phenotypic profile inaccessible in the
current IFC systems.

B. Single-cell biophysical phenotyping
and classification of breast cancer cell types

We next sought to test if the single-cell biophysical pheno-
typic profiles generated by FACED-QPI could achieve the power
required for cell-type classification. Based on visual assessment of
the randomly selected single-cell DPC and quantitative phase images
[Fig. 4(a)], each cell type exhibited some degree of heterogene-
ity in cell size, shape, and phase distribution. However, no trivial
difference in cell morphologies between the two types was visu-
ally discerned. Nevertheless, the high-dimensional hierarchical bio-
physical profiles (normalized based on the z-score) extracted from

FIG. 3. Examples of different imaging contrasts captured by the multimodal FACED IFC platform: quantitative phase (φ) and fluorescence (Fluo) images. Three different
cell types were used in this demonstration: human leukemic monocyte (THP-1) and two different breast cancer cells (MDA-MB231 and MCF7). The scale bars represent
10 μm.
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FIG. 4. Label-free classification of breast cancer cell sub-types based on FACED-QPI. (a) Representative single-cell FACED images [left: Îx(x, y), middle: and Îy(x, y)
and right: QPI] of MDA-MB231 and MCF7 captured by using the multimodal FACED IFC platform. The scale bars represent 10 μm. (b) A UMAP plot (n = 4391 for MDA-
MB231 and n = 4314 for MCF7) was constructed based on the high-dimensional biophysical phenotypes (see the supplementary material, Note 1), and the two clusters,
which represent the two breast cancer cell sub-types, are distinguishable. (c) A sunburst chart showing the significance of the hierarchical biophysical phenotypic profile
in classification between MDA-MB231 and MCF7. (d) A confusion matrix of the neural-network-based classification model trained with the full set of biophysical features
extracted from the quantitative phase images of MDA-MB231 and MCF7.

the FACED-QPI allowed us to clearly distinguish the two popu-
lations, which are separable in the 2D cluster plot generated by
a dimensionality-reduction algorithm, called UMAP21 [Fig. 4(b)].
Based on the receiver operating characteristic analysis, we further
identified that features of phase (or dry mass density) texture are
among the top 10 features most responsible for distinguishing the
two cell types (e.g., phase entropy mean referred to as coarse tex-
ture, whereas phase fiber variance is the fiber texture) [Fig. 4(c);
see the fully annotated biophysical profile in the supplementary
material, Fig. S7]. In order to quantify the classification perfor-
mance, we used a full set of high-resolution single-cell biophysical
profiles to train a deep neural network model for classifying the two
breast cancer cell types. The overall classification accuracy is as high
as 90% [Fig. 4(d)].

C. Label-free cell-cycle progression tracking
The gold standard for identifying cell-cycle phases (G1, S, and

G2/M) is based on quantifying the fluorescence intensity given
by the DNA dye.22 Recent advancements in IFC have shown the
feasibility of using label-free single-cell bright-field and dark-field
images to predict DNA content and thus the cell cycle phases of
live cells.3 The underlying rationale is to maximize the informa-
tion content of cytometric analysis with a minimum number of
fluorescence labels bypassing the limitations due to multi-color flu-
orescence measurements, e.g., costly and laborious labeling proto-
cols and fluorescence spectral overlap (crosstalk). Going beyond,
here, we investigated if the large-scale single-cell quantitative phase
information extracted by FACED-QPI could provide sufficient sta-
tistical power to track the cell cycle progression, discern the key
cell-cycle phases, and analyze subcellular cell mass texture changes if
any.

Based on the co-registered quantitative phase and fluorescence
images of the same cells [Figs. 5(a) and 5(f)], we performed a
linear regression analysis and showed a high correlation between all
the biophysical phenotypes and the integrated fluorescence inten-
sity given by the DNA label (Spearman’s correlation r = 0.824 for
MDA-MB231 and r = 0.772 for MCF7) [Figs. 5(b) and 5(g)]. Using
a CNN-based regression model, we were also able to predict the
DNA content based on the FACED-QPI along with a high correla-
tion (Pearson’s correlation > 0.7 for both MDA-MB231 and MCF7)
with the true DNA content given by the fluorescence images (see the
supplementary material, Figs. S8a and S8b). To further analyze the
biophysical profiles, we identified that the bulk features (cell area,
volume, and dry mass) and the subcellular phase textures (reflected
by phase entropy radial distribution, phase fiber radial distribution,
and fit texture mean) consistently rank among the top in the correla-
tion with the integrated fluorescence intensity [Figs. 5(c) and 5(h)].
It is consistent with the fact that cell scales its size to cope with the
gain in dry mass during cell growth.23 In addition, re-organization of
subcellular components also occurs during cell cycle (e.g., actin and
microtubule depolymerization and chromatin condensation) that
leads to a change in subcellular dry mass density distribution.

Applying the Watson pragmatic fitting method,20 we also
showed that our FACED-QPI data could estimate the population
size in each cell cycle phase (i.e., G1, S, and G2/M) with good agree-
ments with the ground truth defined by the fluorescence DNA label
[Figs. 5(d) and 5(i)]. We note that multi-color fluorescence label-
ing could further provide an improved “ground truth”, which bet-
ter distinguishes different cell-cycle phases, especially the S-phase
(for example, three-color FUCCI labeling24). Plotting the high-
dimensional biophysical phenotypic data in a lower-dimensional
(i.e., 3D) space based on a method called PHATE,25 we also observed
a clear continuous trajectory progressing from G1 to S to G2/M
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FIG. 5. Label-free cell-cycle progression tracking using the multimodal FACED IFC platform. The analysis was performed on two different breast cancer types: (a)–(e)
MDA-MB231 and (f)–(j) MCF7. [(a) and (f)] Representative single-cell images (left: QPI; right: fluorescence) captured by using the multimodal FACED IFC platform. The
scale bars represent 10 μm. [(b) and (g)] Correlation between the biophysical phenotypes extracted from the FACED-QPI and integrated fluorescence intensity computed
from the FACED fluorescence images. A linear regression model was used to fit all the 51 biophysical phenotypes to the integrated fluorescence intensity, and thus, the
plots display the integral correlative relationship between the biophysical phenotypes and the fluorescence intensity. r represents the Spearman’s correlation coefficient.
[(c) and (h)] Ranking of correlation (based on Spearman’s correlation coefficient) between individual biophysical phenotype (top 6) and the integrated fluorescence intensity.
The bar colors, which denote the types of phenotypes, can be referred to the color scheme of Fig. 4(c). [(d) and (i)] Comparison between the predicted proportions of G1,
S, and G2/M phases with the ground truth defined by the fluorescence DNA label. [(e) and (j)] The PHATE 3D plots (n = 2724 for MDA-MB231 and n = 2763 for MCF7) are
constructed based on the high-dimensional biophysical phenotypes, and cell-cycle progression can be clearly visualized (the colors denote the three cell cycle phases). For
MDA-MB231 and MCF7, n = 1392, 681, 651 and n = 1793, 677, 293 for G1, S, and G2/M phases, respectively.

phase [Figs. 5(e) and 5(j)]. While the previous QPI work has pri-
marily focused on analyzing the variation of a handful of bulk
biophysical features (e.g., cell mass23) during cell growth, quantita-
tive analysis of predicting cell cycle stages and visualizing the pro-
gression [Figs. 5(e) and 5(j)] involving high-dimensional biophysical

profiles have remained challenging. It is arguably because of the lack
of the required combination of the QPI throughput and content.
These results suggest that FACED-QPI data could offer the statisti-
cal power needed for gaining the mechanistic understanding of cell
behaviors.

FIG. 6. Compartment-specific cell-cycle analysis. (a) An example of paired single-cell image (quantitative phase and fluorescence) showing the masked regions of nucleus
and cytoplasm. The scale bar represents 10 μm. (b) The distribution of normalized single-cell volume, projected mass, and projected mass density of both nucleus and
cytoplasm in MDA-MB231 and MCF7, respectively, across the three cell cycle phases, i.e., G1, S, and G2/M phase. ∣d∣ represents the Cliff’s delta value.
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D. Compartment-specific cell-cycle analysis
To further leverage the multimodal imaging capability, we cor-

related the QPI of cells with fluorescence images for analyzing the
biophysical characteristics of the two key sub-cellular compartments
separately during cell cycle. Specifically, we used the QPI and DNA-
labeled fluorescence image to determine the cell body and nucleus
region of each cell. Thus, we could define the binary masks enclos-
ing the nucleus and the cytoplasmic compartments in each single-
cell QPI [Fig. 6(a)]. Assuming these compartments in an ellipsoidal
shape as cells flowed in suspension,10 we could estimate the dry
mass (DM) of the compartments by integrating the dry mass den-
sity (DMD) within the corresponding ellipsoidal volumes (see the
supplementary material, Note 1). In this study, we focused on
the relative changes in volume, DM, and DMD, rather than their
absolute values during the cell cycle.

We observed that both the nucleus and cytoplasm grow in dry
mass (from G1, S to G2/M phase) and the increasing trends tightly
follow the increase in the nucleus/cytoplasm volume. This is con-
sistent with the cell growth in G1 and G2 phases and replication of
genetic material in the S phase. More interestingly, we found that the
DMD of both nucleus and cytoplasm is highly conserved across the
three cell cycle phases, i.e., G1, S, and G2/M [Fig. 6(b)]. Our effect
size analysis showed that there is no statistically significant differ-
ence (i.e., Cliff’s delta value ∣d∣ < 0.147) among the mass density of
cells in different cell cycle phases. The same observation applied to
two different types of breast cancer cells, MDA-MB231, and MCF-7
[Fig. 6(b)]. This coincides with the recent study23 that suggests an
underlying mechanism tightly controlling the change in both cell
size and cellular contents such that homeostasis of mass density is
achieved in both the nucleus and cytoplasm of cells.

IV. CONCLUDING REMARK
By leveraging an all-optical passive laser scanner based on

FACED, we have demonstrated a high-throughput QPI modal-
ity that achieves an ultrafast imaging line-scan rate beyond MHz
and preserves the subcellular resolution. Supported by our theoret-
ical framework and experimental validation, we showed that this
FACED-QPI method retrieves the quantitative phase through high-
speed multiplexed DPC captures. This multiplexing scheme is based
on precisely time-interleaving two line-scan replicas, which con-
tain two sets of orthogonal spatial phase gradient information. This
method enables ultrafast QPI at least 100 times faster than the avail-
able QPI methods that rely on camera technology for image capture.
We note that although the state-of-the-art high-speed camera can,
in principle, achieve an imaging speed at >100 000 fps, strong illu-
mination is generally required to combat the loss of sensitivity at
high speed. Thus, it may not be favorable for live-cell imaging. We
also note that a similar DPC-based QPI has recently been adopted
in time-stretch microscopy14 in our previous work and has success-
fully been employed as a high-throughput imaging flow cytometer
for cell-type classification2 and drug–response assay.19 Neverthe-
less, wide adoption of time-stretch-based QPI in cellular imaging
assay still remains limited. This is due to the fact that time-stretch-
based QPI has primarily been relying on fiber technology that does
not offer a sufficiently high dispersion-to-loss ratio, and thus high
image fidelity, for high-speed, high-resolution fluorescence imaging
in the visible spectrum. In contrast, by bypassing the use of fiber

and its limitation, here, we have demonstrated synchronized and
co-registered FACED-QPI and fluorescence imaging and applied
this multimodal system in IFC at an imaging throughput of 77 000
cells/s.

Specifically, we established the high-dimensional biophysical
profiles for individual cells extracted from FACED-QPI and ana-
lyzed them with the deep-learning pipelines. We have shown that
this deep-learning-assisted biophysical profiling not only shows suf-
ficient label-free statistical power to classify two cancer cell sub-
types but also predicts cell-cycle phases with high accuracy com-
parable to the gold-standard fluorescence method. Furthermore,
the co-registered subcellular information obtained from FACED-
QPI and fluorescence images allowed us to perform correlative,
compartment-specific (nucleus and cytoplasm in this study) anal-
ysis of the spatially resolved biophysical profiles during cell cycle
progression.

We note that the current platform can readily be extended to
multi-color fluorescence imaging combined with FACED-QPI (with
multiple and/or wavelength-tunable laser sources, as well as careful
design of fluorescence labeling panels). The single-cell biophysical
profiling strategy presented in this work can also be applicable and
extended to many existing deep learning pipelines,26,27 involving
supervised feature selection (e.g., Cell Profilers28) or unsupervized
latent feature generation (e.g., auto-encoders29).

The capability of simultaneously capturing QPI and fluores-
cence images of single cells at high throughput could open a new
paradigm to comprehensive image-based profiling of cellular phe-
notypes. It could result in a new repertoire of the single-cell library
for systematic understanding of the correlations between biophys-
ical and biochemical information of cells in response to different
stimulations or perturbation,30 e.g., screening of genetically altered
cells.31

SUPPLEMENTARY MATERIAL

See the supplementary material for the table of all extracted
biophysical phenotypes (including the corresponding equations),
detailed derivation of phase retrieval in FACED-QPI, full schematic
of the optical setup, results of phase calibration, measurement of
phase noise, architecture of the neural networks, significance of
every biophysical phenotype (fully annotated) in cell-type classi-
fication, and correlation between the predicated and actual DNA
content.
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