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Abstract  

Purpose: To jointly reconstruct highly undersampled multi-contrast 2D datasets 

through a low-rank Hankel tensor completion (MC-HTC) framework. 

Methods: MC-HTC is proposed to exploit the sharable information in multi-contrast 

datasets with respect to their highly correlated image structure, common spatial support, 

and shared coil sensitivity for joint reconstruction. This is achieved by firstly organizing 

multi-contrast k-space datasets into a single block-wise Hankel tensor. Subsequent low-

rank tensor approximation via higher-order singular value decomposition (HOSVD) 

utilizes the image structural correlation by considering different contrasts as virtual 

channels. Meanwhile, the HOSVD imposes common spatial support and shared coil 

sensitivity by treating data from different contrasts as from additional k-space kernels. 

The missing k-space data are then recovered by iteratively performing such low-rank 

approximation and enforcing data consistency. This joint reconstruction framework 

was evaluated using multi-contrast multi-channel 2D human brain datasets (T1W, T2W, 

FLAIR, and T1W-IR) of identical image geometry with random and uniform 

undersampling schemes.  

Results: The proposed method offered high acceleration, exhibiting significantly less 

residual errors when compared with both single-contrast SAKE and multi-contrast J-

LORAKS low-rank reconstruction. Furthermore, MC-HTC was applied uniquely to 

Cartesian uniform undersampling by incorporating a novel complementary k-space 

sampling strategy where the phase-encoding direction among different contrasts is 

orthogonally alternated. 

Conclusion: The proposed MC-HTC approach presents an effective tensor completion 

framework to jointly reconstruct highly undersampled multi-contrast 2D datasets 

without coil sensitivity calibration.  

  



 

 

Introduction 

Multi-contrast MRI has been routinely used in clinical settings for its capability of 

providing differential diagnostic information. At present, clinical MR session often 

acquires independent datasets of distinct contrast at the same slice location with various 

pulse sequences and parameter settings. However, such multiple and independent scans 

are time-consuming and increase the susceptibility to motion, especially with high 

spatial resolution and whole-brain coverage. Therefore, accelerating the multi-contrast 

data acquisition is highly desired. 

Parallel imaging, which utilizes multiple receiver elements, has been commonly 

implemented to accelerate data acquisition beyond the Nyquist sampling rate. 

Conventional parallel imaging techniques1-3 apply the encoding capability of receiving 

coils to reconstruct partially acquired data, thus requiring the coil sensitivity 

information for reconstruction. However, obtaining the coil sensitivity information 

either from calibration scan1 or autocalibrating signals (ACS)2 prolongs the acquisition 

time while the accuracy of such calibration data can be contaminated by motion, 

causing artifacts in reconstructed images4. Low-rank reconstruction has been recently 

proposed as the calibration-free alternative that avoids separate coil calibration 

procedures. These methods (such as SAKE, P-LORAKS, and ALOHA)5-7  form the 

entire k-space data into a structured low-rank matrix to recover missing samples, which 

can inherently explore the underlying data relations from multi-channel acquisition and 

limited spatial support8,9. Although conventional parallel imaging and low-rank 

reconstruction enable fast imaging, the utilization of coil sensitivity and/or limited 

spatial support in single-contrast dataset alone may not be sufficient to achieve very 

high acceleration due to severe image artifacts and noise amplification. 

Multi-contrast MR datasets share identical coil sensitivity10 and possess highly 

correlated image structure11 if acquired with identical geometry. Utilizing such sharable 

information in image reconstruction has been attempted to reduce residual artifacts and 

noise amplification. For example, shared coil sensitivity among multi-contrast images 

has been jointly estimated in parallel imaging by histogram entropy method10 or 

through nonlinear inversion reconstruction12. However, these methods do not consider 

redundant structural information that is uniquely embedded in multi-contrast datasets. 



 

 

To further exploit this information redundancy, parallel imaging has been combined 

with compressed sensing reconstruction13,14 for additional regularizations on similar or 

consistent structural edges across different contrasts15-23. Additionally, the highly 

correlated anatomical structure among multi-contrast images ensures strong image 

content similarity. This image structural correlation has been explored as locally low-

rank constraint24, demonstrating applications in parameter mapping25, dynamic 

imaging26, and multi-contrast images denoising27. Recently, the higher-order tensor 

modeling has been adopted into image reconstruction for its advanced property such as 

the higher data compression ratio over matrix modeling28,29. For instance, an image-

space locally low-rank approach30, which forms a denoising tensor through block-

matching of multi-contrast images, has been proposed. However, these image-space 

locally low-rank methods still require auto-calibration data, which can be vulnerable to 

inter-contrast inconsistency (e.g., caused by inter-scan motion).  

Alternatively, calibrationless reconstruction has been expanded to utilize the sharable 

information in k-space that provides the first general application for multiple contrasts 

acquisitions31. This approach has considered k-space datasets from different contrasts 

as virtual channels32,33 and then jointly reconstructed by GRAPPA (JVC-GRAPPA)2,31 

or low-rank matrix completion method (J-LORAKS)8,31. Additionally, a novel low-

rank reconstruction method (HTC)34 using the tensor expression for multi-channel k-

space data has been shown to outperform conventional low-rank matrix completion, 

demonstrating the feasibility and potential of applying tensor modeling in k-space for 

reconstruction. 

In this study, we propose to jointly reconstruct highly undersampled multi-contrast 2D 

k-space datasets through a novel block-wise Hankel tensor completion framework 

(MC-HTC). By combining the virtual channel concept for joint reconstruction31, the 

proposed framework further provides a higher-order tensorial representation for multi-

contrast datasets with the capability to take advantage of their highly correlated image 

structure, common spatial support, and shared coil sensitivity, which can lead to less 

residual errors especially at high acceleration. Moreover, MC-HTC can further 

incorporate a novel complementary sampling strategy where the phase-encoding 

direction among different contrasts is orthogonally alternated. While existing joint 

reconstruction methods23,31,35 have demonstrated increased sampling incoherency by 



 

 

using complementary undersampling patterns in multi-contrast data acquisition, MC-

HTC with the proposed complementary sampling strategy can be applied even to 

uniform undersampling. 

 

Theory 

In the proposed MC-HTC framework, multi-contrast joint reconstruction is formulated 

as a low-rank tensor completion problem. This is achieved by structuring multi-contrast 

k-space data to a 3rd-order block-wise Hankel tensor (termed as a multi-contrast tensor 

in this study). Subsequent tensor decomposition and low-rank approximation serve to 

exploit sharable information for reconstruction, including highly correlated image 

structure, common spatial support, and shared coil sensitivity that resides naturally in 

multi-contrast datasets acquired with identical geometry.  

Multilinear Low-rankness of Structured Multi-Contrast Tensor 

In traditional auto-calibrating parallel imaging reconstruction2,3,36, multi-channel k-

space data exhibit strong linear relations that can be derived from calibration data and 

used for estimating missing k-space samples. Such linear relations generally arise from 

coil sensitivity modulation and limited spatial support of multi-channel MR images37,38, 

which can be implicitly exploited in low-rank calibrationless reconstruction. Typically, 

the undersampled multi-channel k-space data has been organized as from different 

channels or kernels in a block-wise Hankel matrix to formulate calibrationless parallel 

imaging reconstruction as low-rank matrix completion. For further exploiting data 

relations across different contrasts, the block-wise Hankel matrices derived from 

individual contrasts can be concatenated into a larger matrix and then forced to be low-

rank in J-LORAKS reconstruction31. Motivated by this virtual channel strategy and our 

recent HTC method34, multi-contrast multi-channel k-space datasets can be formed into 

a 3rd-order tensor with multi-channel vectorized blocks across the entire k-space or 

from different contrasts aligned in kernel or contrast dimensions, respectively, as shown 

in Figure 1. Compared to the block-wise Hankel matrix from single-contrast MR data, 

the constructed tensor would potentially exhibit stronger multilinear low-rankness due 

to sharable information in multi-contrast datasets of identical geometry. The underlying 



 

 

principle is to search a low-rank tensorial expression of multi-contrast k-space datasets 

(denoted as 𝑋𝑋) to estimate the missing k-space samples. Therefore, joint reconstruction 

can be formulated as a constrained minimization problem. Here, 𝑌𝑌  is the acquired 

multi-contrast data and 𝐷𝐷 corresponds to the sampling pattern. 𝑃𝑃 denotes the operator 

that constructs multi-contrast tensor (denoted as 𝛤𝛤) from multi-channel multi-contrast 

k-space data. || · ||𝐹𝐹2  denotes the Frobenius norm to guarantee data fidelity. 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛤𝛤) 

𝑠𝑠. 𝑡𝑡.    𝛤𝛤 = 𝑃𝑃𝑃𝑃,   ǁ𝐷𝐷𝐷𝐷 − 𝑌𝑌ǁ𝐹𝐹2 < 𝜀𝜀 

 

[1] 

To capture the underlying data relations with low-rank approximation, this study 

performs the higher-order singular value decomposition (HOSVD)39 (also known as 

Tucker decomposition40,41) to analyze the multilinear subspace of multi-contrast tensor. 

This type of decomposition derives a core tensor 𝑆𝑆 together with n-mode (n = 1, 2, and 

3) unitary matrices 𝑈𝑈(𝑛𝑛). Hence, the reconstruction problem in Equation [1] can be 

reformulated as following with the targeted rank of multi-contrast tensor empirically 

selected beforehand. Here, 𝑃𝑃−1 represents the pseudo-inverse operator that converts the 

tensor back to k-space datasets with each sample obtained by averaging its 

corresponding elements in multi-contrast tensor. The multilinear rank restricts unitary 

matrices 𝑈𝑈(1), 𝑈𝑈(2), and 𝑈𝑈(3) to their first 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 column vectors that span the 

signal subspaces corresponding to n-mode (n = 1, 2, and 3) matrix unfolding39 of multi-

contrast tensor, respectively.  

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝛤𝛤

 ǁ𝐷𝐷𝑃𝑃−1𝛤𝛤 − 𝑌𝑌ǁ𝐹𝐹2  

𝑠𝑠. 𝑡𝑡.    𝛤𝛤 = 𝑆𝑆 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3)  

 

[2] 

Note that two important characteristics are embedded in this joint reconstruction. First, 

low-rank features within individual contrast data are incorporated by forming the 

channel and kernel dimensions of multi-contrast tensor based on conventional low-rank 

methods5,6. Second, common low-rank features (sharable information) corresponding 

to each dimension of the multi-contrast tensor are decomposed separately into different 

modes of unitary matrices. These two characteristics would provide more accurate and 

complementary data relations for reconstructing highly undersampled multi-contrast 



 

 

datasets. 

Exploiting Highly Correlated Image Structure  

As shown in Figure 2, the HOSVD in this study is conducted by sequentially applying 

the singular value decomposition to n-mode matrix unfolding (denoted as 𝛤𝛤(𝑛𝑛)) of the 

multi-contrast tensor42. Specifically, the 1-mode unitary matrix is derived by a two-step 

procedure. The contrast dimension with arbitrary Ncon contrasts is stacked along the 

channel dimension with arbitrary Nch channels to form the 1-mode matrix unfolding 

𝛤𝛤(1) with total Ncon × Nch channels, followed by SVD to compute 𝑈𝑈(1).  

 𝛤𝛤(𝑛𝑛) =  𝑈𝑈(𝑛𝑛)𝛴𝛴(𝑛𝑛)𝑉𝑉(𝑛𝑛)𝐻𝐻 [3] 

Underlying this unfolding is to jointly reconstruct the datasets by regarding different 

contrast as virtual channels. Note that these virtual channels exhibit strong image 

structural correlation due to the same slice geometry and field-of-view in multi-contrast 

data acquisition. From this perspective, enforcing the low-rankness of 𝛤𝛤(1) inherently 

exploits image structural correlation, which can also be interpreted as fulfilling the 

smoothness of coil sensitivity across virtual channels in low-rank reconstruction5,6,38. 

Similar strategy has been implemented in the J-LORAKS31 method for reconstructing 

multi-contrast datasets. In theory, reconstruction with virtual channel strategy alone is 

equivalent to a degenerated Tucker1 model43 of HOSVD in this tensor modeling by 

assuming both 𝑈𝑈(2) and 𝑈𝑈(3) in Equation [2] to be the identity matrix. Importantly, the 

2-mode matrix unfolding of the tensor should also be inherently rank-deficient 

(Supporting Information Figure S1) due to common spatial support and shared coil 

sensitivity among contrasts and incorporated in this study for more accurate low-rank 

approximation. 

Exploiting Common Spatial Support and Shared Coil Sensitivity  

As illustrated in Figure 2, the 2-mode unitary matrix 𝑈𝑈(2)  is obtained similarly by 

unfolding the contrast dimension with Ncon contrasts into the kernel dimension with Nk 

kernels, resulting in total Ncon × Nk kernels in the 2-mode matrix unfolding 𝛤𝛤(2). This 

unfolding operation can be interpreted as generating “virtual kernels” by further using 



 

 

the k-space data from different contrasts when compared to the single-contrast low-

rank matrix completion method (P-LORAKS and SAKE)5,6. While the null subspace 

of the block-wise Hankel matrix can capture the constraint of limited spatial support, 

promoting low-rankness to 𝛤𝛤(2) with virtual kernels would generalize common spatial 

support constraint for all contrasts. Furthermore, different contrast data acquired from 

the same receiver coils are also aligned across the channel dimension as indicated in 

Figure 2. For this consideration, virtual kernels would also share coil sensitivity 

information by simultaneously identifying a common signal subspace of 𝛤𝛤(2)  and 

forcing all vectorized kernels to lie in that low-dimensional subspace. This is 

conceptually similar to the ESPIRiT method44 that derives the signal subspace from 

data blocks within the auto-calibration region to estimate coil sensitivity maps. 

Additionally, the undersampling patterns are required to be sufficiently incoherent to 

identify data relations that existed among different k-space kernels for low-rank 

reconstruction. Note that virtual kernels derived from different contrasts are capable to 

possess complementary undersampling patterns that can significantly increase 

incoherency, especially for uniform undersampling. 

In this study, 𝛤𝛤(3) formed by unfolding channel and kernel dimensions of the tensor is 

determined to be full-rank without any nullspace vector (Supporting Information Figure 

S1). This implies the distinct contrast information and the low-rank tensor 

approximation problem in Equation [2] can be further simplified by ignoring the 3-

mode unfolding. 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝛤𝛤

 ǁ𝐷𝐷𝑃𝑃−1𝛤𝛤 − 𝑌𝑌ǁ𝐹𝐹2  

𝑠𝑠. 𝑡𝑡.    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛤𝛤) = (𝑟𝑟1,  𝑟𝑟2,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐)  

 

[4] 

where Ncon represents the number of contrasts (4 in this study) to be jointly 

reconstructed. The simplified Tucker2 model43 can also be solved efficiently via 

alternating direction method of multipliers (ADMM)45. Although 𝛤𝛤(3) in this study is 

not exploited for simplicity, data relations corresponding to the contrast dimension of 

the tensor would potentially lead to the low-rankness in other applications like 𝑇𝑇2 and 

𝑇𝑇2∗ parameter mapping31,46. 

  



 

 

Methods 

Multi-Contrast Hankel Tensor Completion Framework  

For implementing previously described joint multi-contrast MR reconstruction, the 

MC-HTC framework proceeds iteratively until convergence as follows (Figure 1):  

Multi-contrast tensor construction: Similar to conventional low-rank matrix 

completion methods5-7, multi-channel vectorized blocks are selected by sliding a 

window across the entire k-space and from different contrasts31, then spanned along 

additional kernel and contrast dimensions, respectively, forming a 3rd-order multi-

contrast tensor Γ. 

Multilinear low-rank tensor approximation: The multi-contrast tensor manifests strong 

low-rankness and thus can be compressed by sequentially applying different modes of 

tensor unfolding together with truncated matrix SVD42 that restricting the decomposed 

unitary matrices to be their first 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 column vectors. After that, the multilinear 

multiplication39 of  𝑈𝑈(1) , 𝑈𝑈(2) , 𝑈𝑈(3) and 𝑆𝑆  is performed to regenerate the low-rank 

approximated multi-contrast tensor.  

Consistencies projection: To find out the solution of the defined constrained 

optimization problem, the projection-onto-sets algorithm has been implemented that 

directly projects the low-rank approximated data to the least-square solution for each 

iteration. This procedure requires the conversion of the tensor back to sets of k-space 

kernels which simultaneously imposes the consistency of block-wise Hankel structure 

and enforces strict data consistency.    

Data Acquisition and Retrospective Undersampling 

Reconstruction performance was evaluated by using the raw 2D Cartesian brain 

datasets, collected on a 3T scanner (Philips Healthcare, Best, Netherland) using an 8-

channel head coil. Fully sampled datasets of four typical MRI contrasts were acquired 

with identical locations. For T1-weighted (T1W) acquisition, 2D fast field echo (FFE) 

was used with TE/TR = 4/519 ms, and flip angle = 80°. For T2-weighted (T2W), fluid-

attenuated inversion recovery (FLAIR), and T1-weighted inversion recovery (T1W-IR) 



 

 

acquisitions, 2D fast spin echo (FSE) was used with TE/TR = 86/3000 ms, TE/TI/TR 

= 135/2500/8000 ms, and TE/TI/TR = 20/800/2000 ms, respectively. Other imaging 

parameters were acquisition matrix size = 300 × 300, image matrix 200 × 200 by 

cropping, image FOV = 240 × 240 mm2, and slice gap/thickness = 1/4 mm for all 

datasets.  

Multi-contrast k-space data were retrospectively undersampled with several 

undersampling schemes. By discarding some phase-encoding lines according to the 

acceleration factor (R = 4), 1D random undersampling patterns were independently 

generated for each contrast. The proposed MC-HTC was performed on single (T1W or 

T2W), two (T1W and T2W), three (T1W, T2W, and FLAIR), and four (T1W, T2W, 

FLAIR, and T1W-IR) contrasts to examine reconstruction with the increased contrast 

number. Typical calibrationless 2D Poisson-disc undersampling patterns (R = 8) were 

also independently generated for each contrast to evaluate reconstruction. To further 

demonstrate the potential of MC-HTC, the Cartesian uniform 1D undersampling 

patterns (R = 4) were applied with alternated phase-encoding directions among 

different contrasts. The MC-HTC was performed on five different slices using the 

aforementioned 1D and 2D undersampling schemes with acceleration factors from 3 to 

5 and 6 to 9, respectively.   

Reconstruction for multi-contrast datasets with simulated rigid inter-scan motion was 

also conducted. For T2W, FLAIR, and T1W-IR datasets, images were manually 

displaced along the frequency-encoding, phase-encoding, and both directions, 

respectively, with displacement set to 2 or 4 pixels (corresponding to 2.4mm or 4.8mm). 

The results were compared to both single-contrast SAKE5 and multi-contrast J-

LORAKS31 reconstruction. For J-LORAKS, the ‘S’-version of non-convex P-

LORAKS method6 was performed preliminarily for each contrast data to generate an 

initial reconstruction as suggested47. The rank values for MC-HTC, J-LORAKS, and 

SAKE were empirically optimized to guarantee the optimal performance (Supporting 

Information Table S1). The reconstruction was terminated with the same criterion of 

updating tolerance that ensures the convergence in all methods. To assess image quality, 

residual error maps were derived by subtracting reconstructed images channel-by-

channel from fully sampled references and then sum-of-square combined. To examine 

the error distributions, the histograms were also calculated for the 1D random 



 

 

undersampling scheme. The quantitative assessment was also performed for all 

undersampling schemes by measuring the normalized root-mean-square errors 

(NRMSE)20 within the object region. 

 

Results 

Figure 3 illustrates the performance of MC-HTC and J-LORAKS reconstruction with 

increased number of contrasts using 1D random undersampling patterns. Note that MC-

HTC and J-LORAKS applications for individual T1W data became conventional 

single-contrast reconstruction, leading to severe aliasing and noise-like residual errors. 

MC-HTC joint reconstruction with two contrasts substantially reduced aliasing, 

producing relatively clear image details with less residual errors compared to that in J-

LORAKS results. With three or four contrasts reconstructed jointly, image structural 

details were almost fully recovered in MC-HTC and no apparent leakage was observed 

among contrasts.  

Comparisons to J-LORAKS reconstruction with 1D random undersampling patterns are 

shown in Figure 4. MC-HTC produced high-quality images with clear details for all 

contrasts and yielded nearly 30% improvement in terms of NRMSE. As illustrated in 

brightened error maps, the noise-like residuals were effectively suppressed in MC-HTC 

results, especially for the FLAIR image which has relatively low SNR.  

Figure 5 further depicts the reconstruction errors for MC-HTC, J-LORAKS, and single-

contrast SAKE reconstruction with 1D random undersampling patterns. The large 

residual errors related to aliasing artifacts were significantly reduced through MC-HTC. 

Apart from aliasing, SAKE and J-LORAKS also showed noticeable noise-like residuals 

(indicated by the majority of errors) associated with the vulnerability of noise at high 

acceleration, which is effectively mitigated by MC-HTC reconstruction.   

Figure 6 shows the typical performance of MC-MTC joint reconstruction with 2D 

Poisson-disc undersampling patterns at high acceleration (R = 8). MC-HTC provided 

better image quality for all contrasts with noise-like artifacts effectively suppressed 

when compared to J-LORAKS results.  



 

 

Figure 7 demonstrates the applicability of MC-HTC joint reconstruction to the 

completely uniform undersampling patterns while alternating the phase-encoding 

direction among contrasts. Low-rank J-LORAKS reconstruction could not handle such 

highly coherent undersampling patterns here, yet MC-HTC yielded high-quality images 

with levels of aliasing and noise-like errors comparable to those in Figure 4.  

Figure 8 summarizes the overall performances in terms of averaged NRMSEs in five 

different slices. MC-HTC joint reconstruction consistently outperformed SAKE and J-

LORAKS methods with all aforementioned undersampling patterns, especially at high 

acceleration factors. 

Figure 9 demonstrates the tolerance of MC-HTC to rigid inter-scan motion. As shown 

in error maps, J-LORAKS reconstruction is more sensitive to such simulated in-plane 

motion with NRMSE increased by nearly 0.02 from 2-pixel to 4-pixel displacement. 

Meanwhile, MC-HTC reconstruction increased NRMSE by only 0.007, which was 

negligible. With 4-pixel corresponding to 4.8mm displacement, both SAKE and J-

LORAKS reconstruction suffered from severe residual errors, whereas MC-HTC still 

produced promising T1W images with preserved structural details and edges. 

 

Discussion 

This study presents a calibrationless joint reconstruction framework to exploit the 

sharable information in highly undersampled multi-contrast datasets. The proposed 

MC-HTC framework constructs the datasets into a higher-order block-wise Hankel 

tensor and enforces its multilinear low-rankness via HOSVD. Specifically, the tensor 

decomposition treats different contrasts as from virtual k-space channels31 to provide 

the low-rank constraint on highly correlated image structure while imposing common 

spatial support and shared coil sensitivity by treating different contrast data as from 

virtual k-space kernels. This approach can achieve higher acceleration and outperforms 

both the single-contrast SAKE and multi-contrast J-LORAKS methods. Moreover, this 

joint reconstruction approach is capable to take advantage of the sampling incoherency 

created by orthogonally alternating the phase-encoding direction among contrasts.   



 

 

Utilizing Multi-Contrast Sharable Information for High Acceleration  

In conventional parallel imaging and low-rank techniques, the noise amplification 

undermines the accuracy of data estimation that inherently limits the achievable 

acceleration factor. In this study, joint reconstruction demonstrates the effectiveness of 

reducing noise-like residuals for all contrasts and enables the acceleration beyond what 

single-contrast SAKE or multi-contrast J-LORAKS reconstruction can offer (see 

Figure 5 and Supporting Information Figure S2). Such improvement over SAKE arises 

in part from the exploitation of image structural correlation among virtual channels, 

which have been demonstrated by the J-LORAKS method. Random noise is 

uncorrelated across different contrasts and will be suppressed by enforcing the low-

rankness. Although the SNR improvement through virtual contrast channels was not 

directly comparable to that achieved by real channels, the reduction of noise-like 

residual was still significant with the increasing number of contrasts jointly 

reconstructed (Figure 3 and Supporting Information Figure S3). 

Moreover, the data-driven low-rank approximation can become inaccurate at high 

acceleration and incur obvious aliasing. Our proposed joint reconstruction exploits 

linear relations shared among different virtual k-space kernels that can be interpreted 

as providing common spatial support constraint for all contrasts, leading to substantially 

reduced aliasing artifacts (Figure 5 and Supporting Information Figure S2). The feature 

of common convolutional relations has also been utilized in conventional parallel 

imaging that adjacent slices48 can share the same sets of convolutional kernels. In MC-

HTC joint reconstruction, the improved k-space estimation also partially arises from 

sharing coil sensitivity information among aligned channels (Figure 2). To demonstrate 

the effectiveness of sharing coil sensitivity information, we deliberately introduced 

severe inconsistency of coil sensitivity among T1W and other contrasts by swapping 2 

channels of T1W data before forming the structured low-rank tensor (Supporting 

Information Figure S4). In MC-HTC, this swapping caused misalignment of channels, 

leading to artifacts to the reconstructed T1W image within the region where existed 

severe coil sensitivity mismatch. Note that the image quality of MC-HTC results for 

the other contrasts (T2W, FLAIR, and T1W-IR) was still promising with only slightly 

increased artifacts, suggesting that the proposed reconstruction method may tolerate the 

minor mismatch of coil sensitivity among contrasts in practice. 



 

 

Comparing with Existing Multi-Contrast Reconstruction Approaches 

Several recent multi-contrast reconstruction approaches22,23,49 have utilized image 

structural correlation based on compressed sensing and made improvements over 

single-contrast reconstruction. In contrast, the proposed MC-HTC exploits the low-rank 

characteristic of multi-contrast tensor for reconstruction without requiring calibration 

or additional prior information. Moreover, the low-rankness enforced in MC-HTC only 

identifies common linear relations of k-space samples to recover missing data, thus it 

is expected to be more resilient to slight inter-scan motion compared to those with 

strong modeling assumptions on sparsity patterns or locations of image structure22,23. 

In general, low-rank and compressed sensing reconstruction are two categories of 

methods, and MC-HTC can be extended to incorporate spatial regularity50 for further 

improvements. 

In MC-HTC, the virtual channel concept utilized by the 1-mode unfolding is essentially 

the same as adopted from J-LORAKS reconstruction. However, J-LORAKS requires 

proper initialization by reconstructing the central k-space subregion or individual 

reconstruction of each contrast for acceleration31,47. Such initializations were motivated 

by the fact that the matrix concatenated with virtual channels has a much larger signal 

subspace, making joint reconstruction hard to converge. Due to identical coil sensitivity 

and spatial support, the 2-mode matrix unfolding has the rank close to that for the 

single-contrast reconstruction (Supporting Information Figure S1). Sequentially 

enforcing low-rankness for 1-/2- mode matrix unfolding can accelerate the convergence 

and avoid manual initialization. Note that J-LORAKS is also more sensitive to noise as 

suggested by the reconstructed FLAIR images with relatively low-SNR (Figure 4 and 

6). 

More importantly, virtual kernels derived from different contrasts can have orthogonal 

k-space undersampling patterns, which makes MC-HTC applicable to uniformly 

undersampled data (Figure 7). As revealed in some early studies51,52, the structured low-

rank matrix completion problem is ill-conditioned with extremely coherent uniform 

undersampling patterns and may reach the local minimum without a good initialization 

or additional prior information. However, by incorporating complementary 

undersampling patterns, the coherency of artifacts can be mitigated as revealed by some 

compressed sensing reconstruction approaches13,14,23. In this study, we have further 



 

 

enhanced the complementary sampling strategy by orthogonally alternating the phase-

encoding directions among contrasts, forming ‘pseudo-2D’ sampling patterns in multi-

contrast data acquisition. The effects of pseudo-2D undersampling were demonstrated 

by the obvious leakage of artifacts from other contrasts for the first few iterations in 

MC-HTC reconstruction (Supporting Information Figure S5) and the estimated 2D 

common spatial support (Supporting Information Figure S6). As a result, MC-HTC 

reconstruction with this novel complementary uniform sampling can converge stably 

with different types of initializations, such as zeros, additive white Gaussian noise, or 

ill-conditioned single-contrast reconstruction (Supporting Information Figure S7). 

MC-HTC is expected to apply for scenarios where acquiring calibration data is 

inefficient or error-prone as in abdominal imaging, or uniform undersampling is desired 

or a must as in popular SENSE and echo planar imaging (EPI) acquisitions29,53. For 

anisotropic FOV, the spacings of acquired k-space samples need to be alternated 

simultaneously with the readout and phase-encoding directions to maintain the desired 

spatial resolution that may lead to increased phase-encoding steps. Note that severe 

inter-contrast inconsistency can be induced by alternating the phase-encoding direction 

(e.g., mismatch of geometric distortion in echo-planar imaging), which may 

significantly undermine the joint reconstruction. However, as revealed in some early 

studies, the mismatch of geometric distortion and inter-scan motion caused by 

alternating the phase-encoding direction can be corrected or substantially mitigated54,55. 

Additionally, our proposed MC-HTC can still outperform SAKE and J-LORAKS 

reconstruction in the presence of minor inter-scan motion (Figure 9), suggesting its 

robustness in practice. 

Generalization and Extension of MC-HTC Framework 

Note that the proposed MC-HTC in this study is not a direct 4th-order extension of 

HTC34. This earlier approach treats different channels as an independent dimension, 

which can further enhance the improvements but inevitably increase complexity and 

computational burden in a prohibitive manner. In the present MC-HTC approach, 

formulating multi-contrast reconstruction as an efficient 3rd-order low-rank tensor 

completion problem can synergistically explore highly correlated image structure, 

common spatial support, and shared coil sensitivity that provides a good tradeoff 



 

 

between complexity and performance. Owing to the exploitation of such multi-contrast 

sharable information, the proposed MC-HTC framework can also be generalized to 

other applications, such as perfusion imaging or multi-echo imaging. Similar to MC-

HTC, a higher-order Hankel tensor with frame or echo dimension can be constructed 

accordingly. Note that 3-mode matrix unfolding of the tensor may also be low-rank in 

these potential applications and can be incorporated to further improve the 

reconstruction. Moreover, the formulation of joint reconstruction can easily 

accommodate additional regularizations such as the phase constraint56. One example is 

that multi-contrast tensor can be constructed by concatenating the “S matrix” in J-

LORAKS method6,31 that provides the smoothly varied phase constraint of each 

contrast data and extends the application for partial Fourier acquisition. 

Reconstruction Parameters and Computational Times 

The performance of the proposed method depends on several reconstruction parameters, 

including the kernel size, iteration number, and target rank. Similar to single-contrast 

low-rank approaches5,8, increasing the kernel size can lead to a slight improvement of 

reconstruction at the expense of computation. Using a personal desktop (4-core i5-6500 

and 16GB RAM), the proposed method required about 30, 20, and 40 minutes per slice 

to converge for all four contrasts (8-channel datasets) with 1D random, 2D random, and 

1D uniform undersampling patterns, respectively. The computational speed can also be 

accelerated by incorporating recent advances for efficient low-rank approximation57,58. 

The iteration number and target rank were empirically determined to guarantee optimal 

performance in this study. Generally, the 2-mode rank of the multi-contrast tensor 

depends on spatial support, coil sensitivity, and the size of the sliding window for tensor 

construction. Its selection should be similar to that in conventional single-contrast 

approaches5,6. Note that the multilinear rank (1- and 3-mode unfolding) would also rely 

on the number of jointly reconstructed contrasts and the similarity/correlation of image 

contents among contrasts. Automatic parameter selection is valuable for practical 

implementation and deserves investigation in future studies. 

 



 

 

Conclusion 

This study presents a novel calibrationless joint reconstruction framework, MC-HTC, 

for highly undersampled multi-contrast 2D datasets. This low-rank tensor completion 

approach exploits highly correlated anatomical structure, common spatial support, and 

shared coil sensitivity, leading to significantly less residual errors at high acceleration. 

In practice, the MC-HTC approach can be readily combined with the undersampling 

pattern variations among contrasts to further reduce residual errors or increase 

acceleration.  
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Figure Captions 

Figure 1. Diagram of the proposed MC-HTC framework. The multi-contrast k-space 

data can be constructed into a block-wise Hankel tensor, with the multi-channel 

vectorized blocks across the entire k-space or from different contrasts aligned in kernel 

or contrast dimensions, respectively. The inherent low-rankness of such constructed 

tensor is then explored by multilinear low-rank approximation via HOSVD, which 

restricts the decomposed unitary matrices to be first 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 column vectors. The 

missing k-space samples are iteratively updated by enforcing the low-rankness, while 

repeatedly promoting the structural and data consistencies by regenerating k-space data 

from the multi-contrast tensor. 

Figure 2. Illustration of HOSVD to multi-contrast tensor. The unitary matrices can be 

derived by a two-step procedure. Specifically, for the 1-mode matrix unfolding, 

different contrasts are regarded as from virtual channels and then matrix SVD exploits 

data relations among all channels. Similarly, virtual kernels from different contrasts are 

concatenated in the 2-mode matrix unfolding, enabling common data relations among 

all kernels to be exploited. The 3-mode unfolding is determined to be full-rank and thus 

not considered for simplicity.  

Figure 3. Reconstruction with 1-, 2-, 3-, and 4-contrast 8-channel brain datasets using 

1D random undersampling patterns (R = 4). MC-HTC and J-LORAKS applications for 

the T1W contrast dataset are equivalent to conventional single-contrast reconstruction, 

which produced obvious residual errors. Substantial reduction of aliasing artifacts can 

be observed in the joint reconstruction of T1W and T2W datasets and noise-like 

residuals were obviously suppressed for 3-, and 4-contrast jointly reconstructed 

compared to J-LORAKS. The error maps were displayed with enhanced brightness (×7) 

and corresponding NRMSE were shown.    

Figure 4. Comparison to J-LORAKS reconstruction for T1W, T2W, FLAIR, and T1W-

IR 8-channel datasets. The retrospective 1D random undersampling (R = 4) was 

performed independently for each contrast, which follows 1D Poisson-disc patterns. 



 

 

The residual error maps were brightened (×7) for evaluating the performance of 

reconstruction and corresponding NRMSE were shown.   

Figure 5. Histograms of residual error map corresponding to MC-HTC, J-LORAKS, 

and SAKE reconstruction using 1D random undersampling patterns (R = 4). MC-HTC 

joint reconstruction substantially reduced residual aliasing and noise amplification.     

Figure 6. Joint reconstruction for T1W, T2W, FLAIR, and T1W-IR 8-channel datasets 

with 2D random undersampling patterns (R = 8). In this scheme, undersampling 

artifacts mainly appeared as noise-like residuals and were more effectively eliminated 

through MC-HTC. 

Figure 7. Joint reconstruction for T1W, T2W, FLAIR, and T1W-IR 8-channel datasets 

using uniform undersampling patterns (R = 4) with the phase-encoding direction 

orthogonally alternated among contrasts. J-LORAKS reconstruction failed to remove 

extremely coherent aliasing, whereas MC-HTC still produced high-quality images.  

Figure 8. NRMSE (averaged across 5 consecutive slices) for the reconstruction of 8-

channel data undersampled with different undersampling patterns and acceleration 

factors ranging from 3 to 9. For both 1D/2D random undersampling, the lines 

represented reconstruction through MC-HTC (solid), J-LORAKS (dashed), and SAKE 

(dotted), respectively. For uniform undersampling, only MC-HTC was displayed (dash-

dotted).  

Figure 9. Evaluations of MC-HTC, J-LORAKS, and SAKE reconstruction of multi-

contrast datasets with simulated rigid inter-scan motion. Only reconstructed T1W 

images were shown. (A) Reconstruction with 2-pixel displacement (corresponding to 

2.4mm). (B) Reconstruction with 4-pixel displacement (corresponding to 4.8mm). 
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