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Abstract

Purpose: To jointly reconstruct highly undersampled multi-contrast 2D datasets

through a low-rank Hankel tensor completion (MC-HTC) framework.

Methods: MC-HTC is proposed to exploit the sharable information in multi-contrast
datasets with respect to their highly correlated image structure, common spatial support,
and shared coil sensitivity for joint reconstruction. This is achieved by firstly organizing
multi-contrast k-space datasets into a single block-wise Hankel tensor. Subsequent low-
rank tensor approximation via higher-order singular value decomposition (HOSVD)
utilizes the image structural correlation by considering different contrasts as virtual
channels. Meanwhile, the HOSVD imposes common spatial support and shared coil
sensitivity by treating data from different contrasts as from additional k-space kernels.
The missing k-space data are then recovered by iteratively performing such low-rank
approximation and enforcing data consistency. This joint reconstruction framework
was evaluated using multi-contrast multi-channel 2D human brain datasets (T1W, T2W,
FLAIR, and T1W-IR) of identical image geometry with random and uniform

undersampling schemes.

Results: The proposed method offered high acceleration, exhibiting significantly less
residual errors when compared with both single-contrast SAKE and multi-contrast J-
LORAKS low-rank reconstruction. Furthermore, MC-HTC was applied uniquely to
Cartesian uniform undersampling by incorporating a novel complementary k-space
sampling strategy where the phase-encoding direction among different contrasts is

orthogonally alternated.

Conclusion: The proposed MC-HTC approach presents an effective tensor completion
framework to jointly reconstruct highly undersampled multi-contrast 2D datasets

without coil sensitivity calibration.



Introduction

Multi-contrast MRI has been routinely used in clinical settings for its capability of
providing differential diagnostic information. At present, clinical MR session often
acquires independent datasets of distinct contrast at the same slice location with various
pulse sequences and parameter settings. However, such multiple and independent scans
are time-consuming and increase the susceptibility to motion, especially with high
spatial resolution and whole-brain coverage. Therefore, accelerating the multi-contrast

data acquisition is highly desired.

Parallel imaging, which utilizes multiple receiver elements, has been commonly
implemented to accelerate data acquisition beyond the Nyquist sampling rate.
Conventional parallel imaging techniques'- apply the encoding capability of receiving
coils to reconstruct partially acquired data, thus requiring the coil sensitivity
information for reconstruction. However, obtaining the coil sensitivity information
either from calibration scan' or autocalibrating signals (ACS)? prolongs the acquisition
time while the accuracy of such calibration data can be contaminated by motion,
causing artifacts in reconstructed images*. Low-rank reconstruction has been recently
proposed as the calibration-free alternative that avoids separate coil calibration
procedures. These methods (such as SAKE, P-LORAKS, and ALOHA)>’ form the
entire k-space data into a structured low-rank matrix to recover missing samples, which
can inherently explore the underlying data relations from multi-channel acquisition and
limited spatial support®’. Although conventional parallel imaging and low-rank
reconstruction enable fast imaging, the utilization of coil sensitivity and/or limited
spatial support in single-contrast dataset alone may not be sufficient to achieve very

high acceleration due to severe image artifacts and noise amplification.

Multi-contrast MR datasets share identical coil sensitivity!® and possess highly
correlated image structure!! if acquired with identical geometry. Utilizing such sharable
information in image reconstruction has been attempted to reduce residual artifacts and
noise amplification. For example, shared coil sensitivity among multi-contrast images
has been jointly estimated in parallel imaging by histogram entropy method'® or
through nonlinear inversion reconstruction'?. However, these methods do not consider

redundant structural information that is uniquely embedded in multi-contrast datasets.



To further exploit this information redundancy, parallel imaging has been combined
with compressed sensing reconstruction'*!* for additional regularizations on similar or
consistent structural edges across different contrasts'>?*. Additionally, the highly
correlated anatomical structure among multi-contrast images ensures strong image
content similarity. This image structural correlation has been explored as locally low-
rank constraint’, demonstrating applications in parameter mapping”, dynamic
imaging®®, and multi-contrast images denoising?’. Recently, the higher-order tensor
modeling has been adopted into image reconstruction for its advanced property such as
the higher data compression ratio over matrix modeling®®*. For instance, an image-
space locally low-rank approach®®, which forms a denoising tensor through block-
matching of multi-contrast images, has been proposed. However, these image-space
locally low-rank methods still require auto-calibration data, which can be vulnerable to

inter-contrast inconsistency (e.g., caused by inter-scan motion).

Alternatively, calibrationless reconstruction has been expanded to utilize the sharable
information in k-space that provides the first general application for multiple contrasts
acquisitions®!. This approach has considered k-space datasets from different contrasts
as virtual channels®**? and then jointly reconstructed by GRAPPA (JVC-GRAPPA)>*!
or low-rank matrix completion method (J-LORAKS)33!. Additionally, a novel low-
rank reconstruction method (HTC)** using the tensor expression for multi-channel k-
space data has been shown to outperform conventional low-rank matrix completion,
demonstrating the feasibility and potential of applying tensor modeling in k-space for

reconstruction.

In this study, we propose to jointly reconstruct highly undersampled multi-contrast 2D
k-space datasets through a novel block-wise Hankel tensor completion framework
(MC-HTC). By combining the virtual channel concept for joint reconstruction®', the
proposed framework further provides a higher-order tensorial representation for multi-
contrast datasets with the capability to take advantage of their highly correlated image
structure, common spatial support, and shared coil sensitivity, which can lead to less
residual errors especially at high acceleration. Moreover, MC-HTC can further
incorporate a novel complementary sampling strategy where the phase-encoding
direction among different contrasts is orthogonally alternated. While existing joint

reconstruction methods®**!> have demonstrated increased sampling incoherency by



using complementary undersampling patterns in multi-contrast data acquisition, MC-
HTC with the proposed complementary sampling strategy can be applied even to

uniform undersampling.

Theory

In the proposed MC-HTC framework, multi-contrast joint reconstruction is formulated
as a low-rank tensor completion problem. This is achieved by structuring multi-contrast
k-space data to a 3rd-order block-wise Hankel tensor (termed as a multi-contrast tensor
in this study). Subsequent tensor decomposition and low-rank approximation serve to
exploit sharable information for reconstruction, including highly correlated image
structure, common spatial support, and shared coil sensitivity that resides naturally in

multi-contrast datasets acquired with identical geometry.

Multilinear Low-rankness of Structured Multi-Contrast Tensor

2336 multi-channel k-

In traditional auto-calibrating parallel imaging reconstruction
space data exhibit strong linear relations that can be derived from calibration data and
used for estimating missing k-space samples. Such linear relations generally arise from
coil sensitivity modulation and limited spatial support of multi-channel MR images®’-*%,
which can be implicitly exploited in low-rank calibrationless reconstruction. Typically,
the undersampled multi-channel k-space data has been organized as from different
channels or kernels in a block-wise Hankel matrix to formulate calibrationless parallel
imaging reconstruction as low-rank matrix completion. For further exploiting data
relations across different contrasts, the block-wise Hankel matrices derived from
individual contrasts can be concatenated into a larger matrix and then forced to be low-
rank in J-LORAKS reconstruction®!. Motivated by this virtual channel strategy and our
recent HTC method**, multi-contrast multi-channel k-space datasets can be formed into
a 3rd-order tensor with multi-channel vectorized blocks across the entire k-space or
from different contrasts aligned in kernel or contrast dimensions, respectively, as shown
in Figure 1. Compared to the block-wise Hankel matrix from single-contrast MR data,

the constructed tensor would potentially exhibit stronger multilinear low-rankness due

to sharable information in multi-contrast datasets of identical geometry. The underlying



principle is to search a low-rank tensorial expression of multi-contrast k-space datasets
(denoted as X) to estimate the missing k-space samples. Therefore, joint reconstruction
can be formulated as a constrained minimization problem. Here, Y is the acquired
multi-contrast data and D corresponds to the sampling pattern. P denotes the operator
that constructs multi-contrast tensor (denoted as I') from multi-channel multi-contrast

k-space data. || - ||2 denotes the Frobenius norm to guarantee data fidelity.

minimize rank(I")

s.t. T=PX, IDX—-YI2<c¢ [1]

To capture the underlying data relations with low-rank approximation, this study
performs the higher-order singular value decomposition (HOSVD)* (also known as
Tucker decomposition*®*!) to analyze the multilinear subspace of multi-contrast tensor.
This type of decomposition derives a core tensor S together with n-mode (n =1, 2, and
3) unitary matrices U™ . Hence, the reconstruction problem in Equation [1] can be
reformulated as following with the targeted rank of multi-contrast tensor empirically
selected beforehand. Here, P~ represents the pseudo-inverse operator that converts the
tensor back to k-space datasets with each sample obtained by averaging its
corresponding elements in multi-contrast tensor. The multilinear rank restricts unitary
matrices UV, U®, and U® to their first 7y, 1, and 3 column vectors that span the
signal subspaces corresponding to n-mode (n = 1, 2, and 3) matrix unfolding®” of multi-

contrast tensor, respectively.

argmin IDP™I — Y%
r

s;t. T=Sx, UM x, U@ x, UG [2]

Note that two important characteristics are embedded in this joint reconstruction. First,
low-rank features within individual contrast data are incorporated by forming the
channel and kernel dimensions of multi-contrast tensor based on conventional low-rank
methods®®. Second, common low-rank features (sharable information) corresponding
to each dimension of the multi-contrast tensor are decomposed separately into different
modes of unitary matrices. These two characteristics would provide more accurate and

complementary data relations for reconstructing highly undersampled multi-contrast



datasets.

Exploiting Highly Correlated Image Structure

As shown in Figure 2, the HOSVD in this study is conducted by sequentially applying

the singular value decomposition to n-mode matrix unfolding (denoted as I{;) of the

multi-contrast tensor*?. Specifically, the 1-mode unitary matrix is derived by a two-step
procedure. The contrast dimension with arbitrary M., contrasts is stacked along the

channel dimension with arbitrary N, channels to form the 1-mode matrix unfolding

Iy with total Neon X Nen channels, followed by SVD to compute U @,
[tmy = UMz@y®" [3]

Underlying this unfolding is to jointly reconstruct the datasets by regarding different
contrast as virtual channels. Note that these virtual channels exhibit strong image
structural correlation due to the same slice geometry and field-of-view in multi-contrast

data acquisition. From this perspective, enforcing the low-rankness of Ity inherently

exploits image structural correlation, which can also be interpreted as fulfilling the
smoothness of coil sensitivity across virtual channels in low-rank reconstruction>3%,
Similar strategy has been implemented in the J-LORAKS?! method for reconstructing
multi-contrast datasets. In theory, reconstruction with virtual channel strategy alone is
equivalent to a degenerated Tuckerl model** of HOSVD in this tensor modeling by
assuming both U® and U® in Equation [2] to be the identity matrix. Importantly, the
2-mode matrix unfolding of the tensor should also be inherently rank-deficient
(Supporting Information Figure S1) due to common spatial support and shared coil

sensitivity among contrasts and incorporated in this study for more accurate low-rank

approximation.

Exploiting Common Spatial Support and Shared Coil Sensitivity

As illustrated in Figure 2, the 2-mode unitary matrix U® is obtained similarly by
unfolding the contrast dimension with N.., contrasts into the kernel dimension with N

kernels, resulting in total Neon X Ny kernels in the 2-mode matrix unfolding I{,y. This

unfolding operation can be interpreted as generating “virtual kernels” by further using



the k-space data from different contrasts when compared to the single-contrast low-
rank matrix completion method (P-LORAKS and SAKE)>®. While the null subspace
of the block-wise Hankel matrix can capture the constraint of limited spatial support,

promoting low-rankness to I{,) with virtual kernels would generalize common spatial

support constraint for all contrasts. Furthermore, different contrast data acquired from
the same receiver coils are also aligned across the channel dimension as indicated in
Figure 2. For this consideration, virtual kernels would also share coil sensitivity
information by simultaneously identifying a common signal subspace of [{,) and
forcing all vectorized kernels to lie in that low-dimensional subspace. This is
conceptually similar to the ESPIRiT method** that derives the signal subspace from
data blocks within the auto-calibration region to estimate coil sensitivity maps.
Additionally, the undersampling patterns are required to be sufficiently incoherent to
identify data relations that existed among different k-space kernels for low-rank
reconstruction. Note that virtual kernels derived from different contrasts are capable to
possess complementary undersampling patterns that can significantly increase

incoherency, especially for uniform undersampling.

In this study, I{3y formed by unfolding channel and kernel dimensions of the tensor is
determined to be full-rank without any nullspace vector (Supporting Information Figure
S1). This implies the distinct contrast information and the low-rank tensor
approximation problem in Equation [2] can be further simplified by ignoring the 3-

mode unfolding.

argmin IDP~I — Y%
r

s.t. rank(I') = (ry, 12, Neon) [4]

where Ncon represents the number of contrasts (4 in this study) to be jointly
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reconstructed. The simplified Tucker2 model™ can also be solved efficiently via

alternating direction method of multipliers (ADMM)*®. Although I{3) in this study is
not exploited for simplicity, data relations corresponding to the contrast dimension of
the tensor would potentially lead to the low-rankness in other applications like T, and

T, parameter mapping’'*°.



Methods

Multi-Contrast Hankel Tensor Completion Framework

For implementing previously described joint multi-contrast MR reconstruction, the

MC-HTC framework proceeds iteratively until convergence as follows (Figure 1):

Multi-contrast tensor construction: Similar to conventional low-rank matrix
completion methods®’, multi-channel vectorized blocks are selected by sliding a
window across the entire k-space and from different contrasts®!, then spanned along
additional kernel and contrast dimensions, respectively, forming a 3rd-order multi-

contrast tensor /.

Multilinear low-rank tensor approximation: The multi-contrast tensor manifests strong
low-rankness and thus can be compressed by sequentially applying different modes of
tensor unfolding together with truncated matrix SVD*? that restricting the decomposed
unitary matrices to be their first r;, 15, and 3 column vectors. After that, the multilinear
multiplication’® of UM, U®  U®and S is performed to regenerate the low-rank

approximated multi-contrast tensor.

Consistencies projection: To find out the solution of the defined constrained
optimization problem, the projection-onto-sets algorithm has been implemented that
directly projects the low-rank approximated data to the least-square solution for each
iteration. This procedure requires the conversion of the tensor back to sets of k-space
kernels which simultaneously imposes the consistency of block-wise Hankel structure

and enforces strict data consistency.

Data Acquisition and Retrospective Undersampling

Reconstruction performance was evaluated by using the raw 2D Cartesian brain
datasets, collected on a 3T scanner (Philips Healthcare, Best, Netherland) using an 8-
channel head coil. Fully sampled datasets of four typical MRI contrasts were acquired
with identical locations. For T1-weighted (T1W) acquisition, 2D fast field echo (FFE)
was used with TE/TR =4/519 ms, and flip angle = 80°. For T2-weighted (T2W), fluid-

attenuated inversion recovery (FLAIR), and T1-weighted inversion recovery (T1W-IR)



acquisitions, 2D fast spin echo (FSE) was used with TE/TR = 86/3000 ms, TE/TI/TR
= 135/2500/8000 ms, and TE/TT/TR = 20/800/2000 ms, respectively. Other imaging
parameters were acquisition matrix size = 300 X 300, image matrix 200 X 200 by
cropping, image FOV = 240 x 240 mm?, and slice gap/thickness = 1/4 mm for all

datasets.

Multi-contrast k-space data were retrospectively undersampled with several
undersampling schemes. By discarding some phase-encoding lines according to the
acceleration factor (R = 4), 1D random undersampling patterns were independently
generated for each contrast. The proposed MC-HTC was performed on single (T1W or
T2W), two (T1W and T2W), three (T1W, T2W, and FLAIR), and four (T1W, T2W,
FLAIR, and T1W-IR) contrasts to examine reconstruction with the increased contrast
number. Typical calibrationless 2D Poisson-disc undersampling patterns (R = 8) were
also independently generated for each contrast to evaluate reconstruction. To further
demonstrate the potential of MC-HTC, the Cartesian uniform 1D undersampling
patterns (R = 4) were applied with alternated phase-encoding directions among
different contrasts. The MC-HTC was performed on five different slices using the
aforementioned 1D and 2D undersampling schemes with acceleration factors from 3 to

5 and 6 to 9, respectively.

Reconstruction for multi-contrast datasets with simulated rigid inter-scan motion was
also conducted. For T2W, FLAIR, and TIW-IR datasets, images were manually
displaced along the frequency-encoding, phase-encoding, and both directions,

respectively, with displacement set to 2 or 4 pixels (corresponding to 2.4mm or 4.8mm).

The results were compared to both single-contrast SAKE® and multi-contrast J-
LORAKS?! reconstruction. For J-LORAKS, the ‘S’-version of non-convex P-
LORAKS method® was performed preliminarily for each contrast data to generate an
initial reconstruction as suggested*’. The rank values for MC-HTC, J-LORAKS, and
SAKE were empirically optimized to guarantee the optimal performance (Supporting
Information Table S1). The reconstruction was terminated with the same criterion of
updating tolerance that ensures the convergence in all methods. To assess image quality,
residual error maps were derived by subtracting reconstructed images channel-by-
channel from fully sampled references and then sum-of-square combined. To examine

the error distributions, the histograms were also calculated for the 1D random



undersampling scheme. The quantitative assessment was also performed for all
undersampling schemes by measuring the normalized root-mean-square errors

(NRMSE)*° within the object region.

Results

Figure 3 illustrates the performance of MC-HTC and J-LORAKS reconstruction with
increased number of contrasts using 1D random undersampling patterns. Note that MC-
HTC and J-LORAKS applications for individual TIW data became conventional
single-contrast reconstruction, leading to severe aliasing and noise-like residual errors.
MC-HTC joint reconstruction with two contrasts substantially reduced aliasing,
producing relatively clear image details with less residual errors compared to that in J-
LORAKS results. With three or four contrasts reconstructed jointly, image structural
details were almost fully recovered in MC-HTC and no apparent leakage was observed

among contrasts.

Comparisons to J-LORAKS reconstruction with 1D random undersampling patterns are
shown in Figure 4. MC-HTC produced high-quality images with clear details for all
contrasts and yielded nearly 30% improvement in terms of NRMSE. As illustrated in
brightened error maps, the noise-like residuals were effectively suppressed in MC-HTC

results, especially for the FLAIR image which has relatively low SNR.

Figure 5 further depicts the reconstruction errors for MC-HTC, J-LORAKS, and single-
contrast SAKE reconstruction with 1D random undersampling patterns. The large
residual errors related to aliasing artifacts were significantly reduced through MC-HTC.
Apart from aliasing, SAKE and J-LORAKS also showed noticeable noise-like residuals
(indicated by the majority of errors) associated with the vulnerability of noise at high

acceleration, which is effectively mitigated by MC-HTC reconstruction.

Figure 6 shows the typical performance of MC-MTC joint reconstruction with 2D
Poisson-disc undersampling patterns at high acceleration (R = 8). MC-HTC provided
better image quality for all contrasts with noise-like artifacts effectively suppressed

when compared to J-LORAKS results.



Figure 7 demonstrates the applicability of MC-HTC joint reconstruction to the
completely uniform undersampling patterns while alternating the phase-encoding
direction among contrasts. Low-rank J-LORAKS reconstruction could not handle such
highly coherent undersampling patterns here, yet MC-HTC yielded high-quality images

with levels of aliasing and noise-like errors comparable to those in Figure 4.

Figure 8 summarizes the overall performances in terms of averaged NRMSEs in five
different slices. MC-HTC joint reconstruction consistently outperformed SAKE and J-
LORAKS methods with all aforementioned undersampling patterns, especially at high

acceleration factors.

Figure 9 demonstrates the tolerance of MC-HTC to rigid inter-scan motion. As shown
in error maps, J-LORAKS reconstruction is more sensitive to such simulated in-plane
motion with NRMSE increased by nearly 0.02 from 2-pixel to 4-pixel displacement.
Meanwhile, MC-HTC reconstruction increased NRMSE by only 0.007, which was
negligible. With 4-pixel corresponding to 4.8mm displacement, both SAKE and J-
LORAKS reconstruction suffered from severe residual errors, whereas MC-HTC still

produced promising T1W images with preserved structural details and edges.

Discussion

This study presents a calibrationless joint reconstruction framework to exploit the
sharable information in highly undersampled multi-contrast datasets. The proposed
MC-HTC framework constructs the datasets into a higher-order block-wise Hankel
tensor and enforces its multilinear low-rankness via HOSVD. Specifically, the tensor
decomposition treats different contrasts as from virtual k-space channels®! to provide
the low-rank constraint on highly correlated image structure while imposing common
spatial support and shared coil sensitivity by treating different contrast data as from
virtual k-space kernels. This approach can achieve higher acceleration and outperforms
both the single-contrast SAKE and multi-contrast J-LORAKS methods. Moreover, this
joint reconstruction approach is capable to take advantage of the sampling incoherency

created by orthogonally alternating the phase-encoding direction among contrasts.



Utilizing Multi-Contrast Sharable Information for High Acceleration

In conventional parallel imaging and low-rank techniques, the noise amplification
undermines the accuracy of data estimation that inherently limits the achievable
acceleration factor. In this study, joint reconstruction demonstrates the effectiveness of
reducing noise-like residuals for all contrasts and enables the acceleration beyond what
single-contrast SAKE or multi-contrast J-LORAKS reconstruction can offer (see
Figure 5 and Supporting Information Figure S2). Such improvement over SAKE arises
in part from the exploitation of image structural correlation among virtual channels,
which have been demonstrated by the J-LORAKS method. Random noise is
uncorrelated across different contrasts and will be suppressed by enforcing the low-
rankness. Although the SNR improvement through virtual contrast channels was not
directly comparable to that achieved by real channels, the reduction of noise-like
residual was still significant with the increasing number of contrasts jointly

reconstructed (Figure 3 and Supporting Information Figure S3).

Moreover, the data-driven low-rank approximation can become inaccurate at high
acceleration and incur obvious aliasing. Our proposed joint reconstruction exploits
linear relations shared among different virtual k-space kernels that can be interpreted
as providing common spatial support constraint for all contrasts, leading to substantially
reduced aliasing artifacts (Figure 5 and Supporting Information Figure S2). The feature
of common convolutional relations has also been utilized in conventional parallel
imaging that adjacent slices* can share the same sets of convolutional kernels. In MC-
HTC joint reconstruction, the improved k-space estimation also partially arises from
sharing coil sensitivity information among aligned channels (Figure 2). To demonstrate
the effectiveness of sharing coil sensitivity information, we deliberately introduced
severe inconsistency of coil sensitivity among T1W and other contrasts by swapping 2
channels of TIW data before forming the structured low-rank tensor (Supporting
Information Figure S4). In MC-HTC, this swapping caused misalignment of channels,
leading to artifacts to the reconstructed T1W image within the region where existed
severe coil sensitivity mismatch. Note that the image quality of MC-HTC results for
the other contrasts (T2W, FLAIR, and T1W-IR) was still promising with only slightly
increased artifacts, suggesting that the proposed reconstruction method may tolerate the

minor mismatch of coil sensitivity among contrasts in practice.



Comparing with Existing Multi-Contrast Reconstruction Approaches

Several recent multi-contrast reconstruction approaches**?**° have utilized image
structural correlation based on compressed sensing and made improvements over
single-contrast reconstruction. In contrast, the proposed MC-HTC exploits the low-rank
characteristic of multi-contrast tensor for reconstruction without requiring calibration
or additional prior information. Moreover, the low-rankness enforced in MC-HTC only
identifies common linear relations of k-space samples to recover missing data, thus it
is expected to be more resilient to slight inter-scan motion compared to those with
strong modeling assumptions on sparsity patterns or locations of image structure’>%,
In general, low-rank and compressed sensing reconstruction are two categories of

methods, and MC-HTC can be extended to incorporate spatial regularity®® for further

improvements.

In MC-HTC, the virtual channel concept utilized by the 1-mode unfolding is essentially
the same as adopted from J-LORAKS reconstruction. However, J-LORAKS requires
proper initialization by reconstructing the central k-space subregion or individual
reconstruction of each contrast for acceleration®'*’. Such initializations were motivated
by the fact that the matrix concatenated with virtual channels has a much larger signal
subspace, making joint reconstruction hard to converge. Due to identical coil sensitivity
and spatial support, the 2-mode matrix unfolding has the rank close to that for the
single-contrast reconstruction (Supporting Information Figure S1). Sequentially
enforcing low-rankness for 1-/2- mode matrix unfolding can accelerate the convergence
and avoid manual initialization. Note that J-LORAKS is also more sensitive to noise as
suggested by the reconstructed FLAIR images with relatively low-SNR (Figure 4 and
6).

More importantly, virtual kernels derived from different contrasts can have orthogonal
k-space undersampling patterns, which makes MC-HTC applicable to uniformly
undersampled data (Figure 7). As revealed in some early studies®'~?, the structured low-
rank matrix completion problem is ill-conditioned with extremely coherent uniform
undersampling patterns and may reach the local minimum without a good initialization
or additional prior information. However, by incorporating complementary
undersampling patterns, the coherency of artifacts can be mitigated as revealed by some

compressed sensing reconstruction approaches'*!'*?*, In this study, we have further



enhanced the complementary sampling strategy by orthogonally alternating the phase-
encoding directions among contrasts, forming ‘pseudo-2D’ sampling patterns in multi-
contrast data acquisition. The effects of pseudo-2D undersampling were demonstrated
by the obvious leakage of artifacts from other contrasts for the first few iterations in
MC-HTC reconstruction (Supporting Information Figure S5) and the estimated 2D
common spatial support (Supporting Information Figure S6). As a result, MC-HTC
reconstruction with this novel complementary uniform sampling can converge stably
with different types of initializations, such as zeros, additive white Gaussian noise, or

ill-conditioned single-contrast reconstruction (Supporting Information Figure S7).

MC-HTC is expected to apply for scenarios where acquiring calibration data is
inefficient or error-prone as in abdominal imaging, or uniform undersampling is desired
or a must as in popular SENSE and echo planar imaging (EPI) acquisitions*>*. For
anisotropic FOV, the spacings of acquired k-space samples need to be alternated
simultaneously with the readout and phase-encoding directions to maintain the desired
spatial resolution that may lead to increased phase-encoding steps. Note that severe
inter-contrast inconsistency can be induced by alternating the phase-encoding direction
(e.g., mismatch of geometric distortion in echo-planar imaging), which may
significantly undermine the joint reconstruction. However, as revealed in some early
studies, the mismatch of geometric distortion and inter-scan motion caused by
alternating the phase-encoding direction can be corrected or substantially mitigated®*>°.
Additionally, our proposed MC-HTC can still outperform SAKE and J-LORAKS
reconstruction in the presence of minor inter-scan motion (Figure 9), suggesting its

robustness in practice.

Generalization and Extension of MC-HTC Framework

Note that the proposed MC-HTC in this study is not a direct 4th-order extension of
HTC?*. This earlier approach treats different channels as an independent dimension,
which can further enhance the improvements but inevitably increase complexity and
computational burden in a prohibitive manner. In the present MC-HTC approach,
formulating multi-contrast reconstruction as an efficient 3rd-order low-rank tensor
completion problem can synergistically explore highly correlated image structure,

common spatial support, and shared coil sensitivity that provides a good tradeoff



between complexity and performance. Owing to the exploitation of such multi-contrast
sharable information, the proposed MC-HTC framework can also be generalized to
other applications, such as perfusion imaging or multi-echo imaging. Similar to MC-
HTC, a higher-order Hankel tensor with frame or echo dimension can be constructed
accordingly. Note that 3-mode matrix unfolding of the tensor may also be low-rank in
these potential applications and can be incorporated to further improve the
reconstruction. Moreover, the formulation of joint reconstruction can easily

t°°. One example is

accommodate additional regularizations such as the phase constrain
that multi-contrast tensor can be constructed by concatenating the “S matrix” in J-
LORAKS method®?! that provides the smoothly varied phase constraint of each

contrast data and extends the application for partial Fourier acquisition.

Reconstruction Parameters and Computational Times

The performance of the proposed method depends on several reconstruction parameters,
including the kernel size, iteration number, and target rank. Similar to single-contrast
low-rank approaches®®, increasing the kernel size can lead to a slight improvement of
reconstruction at the expense of computation. Using a personal desktop (4-core i5-6500
and 16GB RAM), the proposed method required about 30, 20, and 40 minutes per slice
to converge for all four contrasts (8-channel datasets) with 1D random, 2D random, and
1D uniform undersampling patterns, respectively. The computational speed can also be
accelerated by incorporating recent advances for efficient low-rank approximation®’-%,
The iteration number and target rank were empirically determined to guarantee optimal
performance in this study. Generally, the 2-mode rank of the multi-contrast tensor
depends on spatial support, coil sensitivity, and the size of the sliding window for tensor
construction. Its selection should be similar to that in conventional single-contrast
approaches™®. Note that the multilinear rank (1- and 3-mode unfolding) would also rely
on the number of jointly reconstructed contrasts and the similarity/correlation of image
contents among contrasts. Automatic parameter selection is valuable for practical

implementation and deserves investigation in future studies.



Conclusion

This study presents a novel calibrationless joint reconstruction framework, MC-HTC,
for highly undersampled multi-contrast 2D datasets. This low-rank tensor completion
approach exploits highly correlated anatomical structure, common spatial support, and
shared coil sensitivity, leading to significantly less residual errors at high acceleration.
In practice, the MC-HTC approach can be readily combined with the undersampling
pattern variations among contrasts to further reduce residual errors or increase

acceleration.
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Figure Captions

Figure 1. Diagram of the proposed MC-HTC framework. The multi-contrast k-space
data can be constructed into a block-wise Hankel tensor, with the multi-channel
vectorized blocks across the entire k-space or from different contrasts aligned in kernel
or contrast dimensions, respectively. The inherent low-rankness of such constructed
tensor is then explored by multilinear low-rank approximation via HOSVD, which
restricts the decomposed unitary matrices to be first 1y, 5, and 13 column vectors. The
missing k-space samples are iteratively updated by enforcing the low-rankness, while
repeatedly promoting the structural and data consistencies by regenerating k-space data

from the multi-contrast tensor.

Figure 2. Illustration of HOSVD to multi-contrast tensor. The unitary matrices can be
derived by a two-step procedure. Specifically, for the 1-mode matrix unfolding,
different contrasts are regarded as from virtual channels and then matrix SVD exploits
data relations among all channels. Similarly, virtual kernels from different contrasts are
concatenated in the 2-mode matrix unfolding, enabling common data relations among
all kernels to be exploited. The 3-mode unfolding is determined to be full-rank and thus

not considered for simplicity.

Figure 3. Reconstruction with 1-, 2-, 3-, and 4-contrast 8-channel brain datasets using
1D random undersampling patterns (R = 4). MC-HTC and J-LORAKS applications for
the TIW contrast dataset are equivalent to conventional single-contrast reconstruction,
which produced obvious residual errors. Substantial reduction of aliasing artifacts can
be observed in the joint reconstruction of TIW and T2W datasets and noise-like
residuals were obviously suppressed for 3-, and 4-contrast jointly reconstructed
compared to J-LORAKS. The error maps were displayed with enhanced brightness (x7)

and corresponding NRMSE were shown.

Figure 4. Comparison to J-LORAKS reconstruction for TIW, T2W, FLAIR, and TIW-
IR 8-channel datasets. The retrospective 1D random undersampling (R = 4) was

performed independently for each contrast, which follows 1D Poisson-disc patterns.



The residual error maps were brightened (x7) for evaluating the performance of

reconstruction and corresponding NRMSE were shown.

Figure 5. Histograms of residual error map corresponding to MC-HTC, J-LORAKS,
and SAKE reconstruction using 1D random undersampling patterns (R = 4). MC-HTC

joint reconstruction substantially reduced residual aliasing and noise amplification.

Figure 6. Joint reconstruction for TIW, T2W, FLAIR, and TIW-IR 8-channel datasets
with 2D random undersampling patterns (R = 8). In this scheme, undersampling

artifacts mainly appeared as noise-like residuals and were more effectively eliminated

through MC-HTC.

Figure 7. Joint reconstruction for TIW, T2W, FLAIR, and TIW-IR 8-channel datasets
using uniform undersampling patterns (R = 4) with the phase-encoding direction
orthogonally alternated among contrasts. J-LORAKS reconstruction failed to remove

extremely coherent aliasing, whereas MC-HTC still produced high-quality images.

Figure 8. NRMSE (averaged across 5 consecutive slices) for the reconstruction of 8-
channel data undersampled with different undersampling patterns and acceleration
factors ranging from 3 to 9. For both 1D/2D random undersampling, the lines
represented reconstruction through MC-HTC (solid), J-ILORAKS (dashed), and SAKE
(dotted), respectively. For uniform undersampling, only MC-HTC was displayed (dash-
dotted).

Figure 9. Evaluations of MC-HTC, J-LORAKS, and SAKE reconstruction of multi-
contrast datasets with simulated rigid inter-scan motion. Only reconstructed T1W
images were shown. (A) Reconstruction with 2-pixel displacement (corresponding to

2.4mm). (B) Reconstruction with 4-pixel displacement (corresponding to 4.8mm).



Vectorization

Block-wise
Hankel structure

000" - 600000000,
+:000" +*000000000

Figure 1

1

--000- --000000000| PO| 1°

h

oo

ol
|- ©00---000000000| PO| }°

Ch]|

Ch8

Chl]

ChS|

Chl

Ch§

Chl

Contrast

Channel
Ch8||

Kernel

Tensor
Construction

r o Unacquired
2 © O Acquired
s s B O Approximated
sle el =(lS
/— 3118
SIHSIlHS H S Channel
Enforce Hankel Structure 2 B B BRI E
and Data Consistency B %
olfleolloll:I[lS
< silsitsllelle
SIS |k Kernel
. 5 118
e 3 e : Contrast
o(flofle
L/
r'=5x,00x,0® x,u®
Core tensor
) Multi-contrast Tensor
Iterations Low-Rank (1) . .
A imation 1-mode unitary matrix
pproxima U® : 2-mode unitary matrix
U® : 3-mode unitary matrix

000000000

-.000--

--@00- - - 000000000
--000: --000000000

SVD

—>v

Channel

1-mode unfolding: Treating different
contrast entries as from virtual channels

Figure 2

—

Higher-Order Singular
Value Decomposition

U(l)

<>

U®G),
* U@

Restricting to first ry, 1, and r3 column vectors

U,
u® .

1-mode unitary matrix
2-mode unitary matrix

HOSVD

U@ Q
SVD
7 v 4 7
Chl Ch]| Chl| Chl]
N (O =
Kernel Contrast Aligned channels

2-mode unfolding: Treating different
contrast entries as from virtual kernels



Rel'elente T1W TIW £ TIW +T2W + FLAIR  T1W + T2W + FLAIR + IR
= ==

7.87% 7.01% 5.60%

J-LORAKS
Reference / TIW + T2W TIW + T2W + FLAIR  T1W + T2W + FLAIR + IR

10.62% 10.17% 9.78% 9.04%)

Figure 3
1D Poisson-disc Reconstructed images Error (x 7)
Undersampling Reference MC-HTC J-LORAKS MC-HTC J-LORAKS

il |||

|

Figure 4



TIW 2W
15 r Noise amplification 151 Noise amplification
suppression [__IMc-HTC suppression [_IMC-HTC
H p! P 5 [_1JI-LORAKS < [_JJ-LORAKS
A [ISAKE [ ISAKE
1ot 10
) )
s s
=1 =
8 Residual aliasing 3 Residual aliasing
& ’ reduction &2 reduction
5t 5
\ \hta.
- -
7’ ~~ A ~~
"‘-...
0 0
0 0.05 0.1 0.15 0 0.05 0.1 0.15
Residual errors Residual errors
FLAIR , . IR
20 .\I . lificati 15 rNoise amplification
Noise ampli '1cat1on [ IMC-HTC suppression [ IMC-HTC
suppression [ 1-LORAKS «—> [_1J-LORAKS
sk aEe [ISAKE [ ISAKE
10
) | g s
g 10r Residual aliasing 3 \ i Residual aliasing
& K reduction S n reduction
5 N
5t N
0 - 0
0 0.1 0.2 03 0 0.05 0.1 0.15
Residual errors Residual errors
Figure 5
2D Poisson-disc Reconstructed images Error (x 7)
Undersampling Reference MC-HTC J-LORAKS MC-HTC J-LORAKS

6.72%




1D Uniform Reconstructed images Error (x 7)

Undersampling Reference MC-HTC J-LORAKS MC-HTC J-LORAKS

Figure 7

TIW T2W
6 n —F—MC-HTC(Random Undersampling) 25 ¢ —F—MC-HTC(Random Undersampling)
7| -1 -J-LORAKS(Random Undersampling) P ~| - 1 -J-LORAKS(Random Undersampling)
...... SAKFE(Random Undersampling) «wJ--SAKE(Random Undersampling) I
| =-J-=MC-HTC(Uniform Undersampling) | =+3-= MC-HTC(Uniform Undersampling)

adjacent slices) / %

5

Averaged NRMSE (5 adjacent slices) / %

Averaged NRMSE (

0 : A i A ; 0
3 4 5 6 7 8 9 3 + 5 6 7 8 9
Acceleration factor Acceleration factor

FLAIR TIW-IR
40 ¢ —I—M('-] ITC(Random Undersampling) —I—ML'-]I‘I‘('[Rundum Undersampling)
= I - J-LORAKS(Random Undersampling) - § -J-LORAKS(Random Undersampling)
I SAKE(Random Undersampling) I SAKE(Random Undersampling) I
=-f--MC-HTC(Uniform Undersampling) | =-}-MC-HTC(Uniform Undersampling)

adjacent slices) / %

5

ed NRMSE (5 adjacent slices) / %

ed NRMSE (

£
g
wn

1D : 2D

ID : 2D

3 4 5 6 7 8 9 4 5 6 7 8 9
Acceleration factor Acceleration factor

Avera,
Avera

w

Figure 8



(A) 2-Pixel Displacement (2.4mm)

Reference

il 12.09%
(B) 4-Pixel Displacement (4.8mm)

Reference
e

34
% |

BN

K54 11.56%

Figure 9



	Abstract
	Introduction
	Theory
	Multilinear Low-rankness of Structured Multi-Contrast Tensor
	Exploiting Highly Correlated Image Structure
	Exploiting Common Spatial Support and Shared Coil Sensitivity

	Methods
	Multi-Contrast Hankel Tensor Completion Framework
	Data Acquisition and Retrospective Undersampling

	Results
	Discussion
	Utilizing Multi-Contrast Sharable Information for High Acceleration
	Comparing with Existing Multi-Contrast Reconstruction Approaches
	Generalization and Extension of MC-HTC Framework
	Reconstruction Parameters and Computational Times

	Conclusion
	Acknowledgments
	Reference
	Figure Captions

