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Abstract
The observation and detection of the microplastic pollutants generated by industrial
manufacturing require the use of precise optical systems. Digital holography is well suited for this
task because of its non-contact and non-invasive detection features and the ability to generate
information-rich holograms. However, traditional digital holography usually requires
post-processing steps, which is time-consuming and may not achieve the final object detection
performance. In this work, we develop a deep learning-based holographic classification method,
which computes directly on the raw holographic data to extract quantitative information of the
microplastic pollutants so as to classify them according to the extent of the pollution. We further
show that our method can generalize to the classification task of other micro-objects through
cross-dataset validation. Without bulky optical devices, our system can be further developed into a
portable microplastics detection system, with wide applicability in the monitoring of microplastic
particle pollution in the ecological environment.

1. Introduction

Microplastic particulate pollution generated by industrial manufacturing has become a serious
environmental problem [1–3]. These plastic particles with a diameter of less than 5 mm have been detected
in different places of the world in recent years, including both terrestrial and marine environment. In some
industrial processes such as industrial pharmaceuticals, medical wastes such as disposable syringes and
catheters will be generated, which contain polyethylene plastics [4]. Inadequate degradation of such medical
waste will also lead to the accumulation of microplastic pollutants. Since the outbreak of COVID-19, a large
amount of plastic waste has been generated, which further aggravates the pollution due to microplastic
particles. The textile industry is also considered to be a major source of fiber microplastics pollutants, with
synthetic fibers in the waste water of textile washing [5]. At the same time, microplastic particles have been
reported to be much higher in areas where vehicle manufacturing, large packaging companies and office
furniture companies are concentrated, compared with non-industrial areas [6]. Microplastic particles can
also come from the degradation of large plastics, waste from landfills or incinerators, and emissions from
transportation and industry [7]. The continuous accumulation of microplastic pollutants results in serious
environmental problems, such as concentration of microplastics in the ocean [3] and soil [4], the death of
marine animals [8], etc.

Normally, microplastics are mixed with other particles in the ecological environment, such as gravel and
soil particles, microalgae, bubbles, leaf fragments and large plastic waste [8], obfuscating some of their
features. Consequently, it is difficult to accurately detect and show the quantitative information of
microplastics without expensive optical instrumentation or complicated image processing technologies.
Conventional approaches to detect and count microplastic particles normally consist of the following steps:
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(1) micro-object sample collection from the ecological environment; (2) sample preparation and handling by
biochemical or physical methods [8, 9]; (3) image capturing with optical systems; (4) image pre-processing,
manual image examination and sample classification. The latter two steps in particular require expert
knowledge, and are time-consuming in general.

Several research groups have explored the optical detection and identification of microplastic particles.
Bianco et al used the support vector machine to extract the characteristics of microplastics and classify
them [10]. Takahashi et al combined integrated holography with Raman spectroscopy to identify the
microplastics [11]. Compared with conventional 2D images, holograms recorded by the digital holography
system contain abundant phase information of the objects [12, 13] which provide the possibility for further
image classification. Moreover, with the advent of deep learning, digital holography can automatically
improve [14, 15], analyze [16] and classify images by using data training models [17]. However, most of the
current classification and identification methods based on digital holography require relatively complex
sample pretreatment, image reconstruction, denoising and other steps [18], which increase the complexity of
related work and reduce the efficiency of microplastic particle classification.

In this study, we propose a holographic image classification system, which combines deep learning to
automatically detect the microplastic particles and classify the images according to their quantitative
information, so as to monitor microplastic particle pollution. We first introduce the detailed structure of
holographic-classifier convolutional neural network (HC-CNN) layer by layer. Then, we comprehensively
evaluate the performance of the network in the classification of microplastic particles, including its ability to
extract the features from holographic images, the accuracy, precision and the efficiency of the classification.
We also provide details of the HC-CNN training to avoid network overfitting and keep it stable. The
classification performance is compared with other leading methods, and the generalization of HC-CNN is
evaluated on other cross-dataset tests.

Our main contributions can be summarized as follows:

• We propose a deep learning-based digital in-line holography classification system for automatic detection
and classification of the microplastic pollutants.

• The tasks of automatic classification for microplastic particles are accomplished directly based on the raw
holograms without extra image pre-processing steps, such as denoising and reconstruction. The system
yields good performance in classification accuracy, time consumption, network robustness and across-
model generalization.

• We construct a well-labelled hologram dataset and make it publicly available, which fills the gap of open
source and well-labeled hologram data in this field.

• The automatic classification ofmicroplastic particles based on our system provides a powerful tool for envir-
onmental protection organizations and institutions to control microplastic particles pollution.

2. Related work

There are two main approaches for the classification of microplastic particles. One is manual sample
screening combined with biological and chemical detection [8, 9]. The other is automatic detection based on
imaging and spectroscopy [10, 11, 19, 20]. Because the former often involves several hours or even days of
sample staining, precipitation, filtration and other processes, optical imaging methods, such as Raman
spectroscopy [11], Fourier infrared spectroscopy [21], environmental scanning electron microscopy [9],
digital holography [12], etc, have become the focus of researchers in recent years because of their ability to
achieve non-contact rapid imaging and object classification. Among them, holographic images have
abundant phase information and image features that can be extracted, which is beneficial to improve the
accuracy of microplastics classification. Based on the advantages of holographic technology, our laboratory
has made a lot of research and exploration in image reconstruction [22], autofocusing [23] and resolution
improvement [24] in the field of digital holography.

One way to achieve digital hologram classification of microplastic particles is by manual feature
extraction and then classification based on machine learning such as support vector machines [10, 25]. On
the other hand, our method leverages a deep learning network to provide better feature extraction and
higher classification efficiency, paving the way for real-time classification of microplastics particle and
microplastic pollution monitoring. Compared with other deep learning detection method such as that
proposed by Wu et al [26], our method does not require image autofocusing and reconstruction, which
simplifies the processing steps and can achieve quick detection.

The work reported here builds upon our previous publications on the detection and classification of
microplastic particles [20, 27, 28]. In [20], we focus on the classification task with a small and imbalanced
dataset. We develop deep transfer learning to enhance the feature extraction capability of the CompNet,
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which is a specially designed network for small dataset classification. Then, in [27], a generative adversarial
network is used for an effective holographic image augmentation and dataset expansion. Both methods
tackle the situation with a small dataset and insufficient image labeling, which is different from the training
and classification of the well-labeled larger dataset in the present work. The data augmentation by transfer
learning [20] and generative adversarial network [27] not only cannot guarantee that augmented images
contain valid features, but also consume additional computing resources and slow down the classification
speed when dealing with well-labeled datasets. The detailed classification performance comparisons will be
shown in detail in section 4.

On the other hand, this work can be considered as a further extension of that presented in [28]. The
detection and classification of microplastic particles are handled by using a specially designed HC-CNN
based on a single raw hologram without image pre-processing steps, such as denoising and reconstruction. In
addition, here we introduce the network structure and training process of HC-CNN, which is specially
designed for the characteristics of microplastic particle holographic images, and comprehensively evaluate
the classification performance of this network on various aspects such as accuracy, precision, and recall rate.
This paper provides a detailed explanation for the classification method of microplastic particles based on
digital holography.

3. Holographic classificationmethod with deep learning

A high-level overview of the holographic classification method is shown in figure 1. Firstly, the raw images
are captured by the digital in-line holography system, which is shown in figure 1(a). Secondly, these data are
well labelled and built into a dataset. Thirdly, this dataset is feed into the specially designed HC-CNN for the
model training. And finally, this model is utilized for the microplastic particles classification and monitoring.

3.1. Lensless digital in-line holography system with a low coherence light source
As shown in figure 1(a), the optical system is a lensless digital in-line holography system with an LED
(440 nm wavelength and 24 nm bandwidth), a complementary metal oxide semiconductor (CMOS) camera
(Mako-507b, 2464(H)× 2056(V), 3.45 µm pixel size) and a sample slide. LEDs consume less energy and are
smaller and lighter than laser light sources. We use LED as the illumination, because it will be more suitable
for installation in portable devices. The detailed experimental configurations are as follows: the distance
between the LED light source and the imaging surface of the CMOS camera is 18.5 cm, and the sample slide
is placed 2.5 cm away from the imaging surface. This experimental setup places the camera on the image
plane of the system, thus building a unit amplification optical system. The detectable range of the system is
about 100 µm to 5mm.

Mathematically, the optical wave with the object information has a complex amplitude, denoted by:

Eo(x,y) = Ao(x,y)exp(−jϕo(x,y)), (1)

where Ao is the amplitude of the object wave and the ϕo is the phase. The reference wave has a similar format
as the object wave, which can be written as:

Er(x,y) = Ar(x,y)exp(−jϕr(x,y)), (2)

where Ar and ϕr are the amplitude and phase of the reference wave, respectively. During imaging, the
reference wave and the object wave travel along the same optical path after being emitted by the LED and
form an interference pattern, or a hologram, in the imaging plane. The CMOS camera records the intensity
of the hologram, given by [12]:

I(x,y) = |Eo(x,y)+ Er(x,y)|2

=|Eo(x,y)|2 + |Er(x,y)|2 + Eo(x,y)E
∗
r (x,y)+ E∗o (x,y)Er(x,y), (3)

where ∗ denotes complex conjugation. It is worth noting that |Eo(x,y)|2 and |Er(x,y)|2 are the zero-order
terms, which contribute to the background of the hologram. The interference terms Eo(x,y)E∗r (x,y) and
E∗o (x,y)Er(x,y) are complex. Therefore, holograms contain more information, which require more complex
processing for full feature extraction.

Compared with other traditional optical holography systems [12], such as off-axis digital holography and
optical scanning holography, our system does not need bulky optical devices. In addition, the presence of
optical devices, such as the microscope objective, beam splitter cube and lenses, may introduce the
aberrations [29] including wavefront curvature, spherical aberration, chromatic aberration and astigmatism
in mobile use, which will dramatically reduce the image resolution and affect the image quality. In order to
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Figure 1. Schematic for the proposed holographic classification method: (a) Digital in-line holography system layout (a is an LED;
b is the sample slide; c is the imaging plane of the CMOS camera). The partially coherent light emitted by the LED passes through
the sample slide and generates a hologram, which is recorded by a CMOS camera. (b) Dataset preparation and processing. The
holograms are labeled according to the number of microplastic particles and augmented by rotation and mirroring. (c) HC-CNN
training process. The HC-CNN network is fully trained with the labeled dataset. (d) The classification result is coded with
one-hot expression. The classification performance is evaluated on the test set. (e) Detailed structure of the HC-CNN network.
The front layers with convolution layers and max-pooling layers are used for depth holographic feature extraction, and the back
layers with flatten, dense and softmax layers are used to reduce the number parameters to achieve classification.

ensure a stable imaging performance, we put the CMOS camera as close to the sample as possible, and
remove the microscope objective and external lenses. Furthermore, because the reference light and object
light travel along the same optical path, the influence of the external jitter can be counteracted.

3.2. Holographic-classifier convolutional neural network
The HC-CNN network is specially designed for the task of microplastic particle classification considering the
following characteristics of the dataset:

(a) Holograms contain richer information than digital images, so it is necessary tomake full use of the features
by a deeper feature extraction network structure.

(b) The number of category of the hologram dataset is relatively few. A light network structure and appro-
priate network parameters are needed to avoid network over-fitting.

(c) In order to achieve the goal of real-time detection, the convergence time of the network needs to be rel-
atively short.

As shown in figure 1(e), to fully extract the abundant phase information features, we use more
convolution layers in the upper part of the network. At the same time, to avoid over-fitting of the network,
the Max-pooling layer is appended to the convolution layers. To realize the real-time classification and speed
up the training process, batch normalization layer is utilized in the network. In addition, considering the
number of classes in the dataset is relatively small, the dense function is used to drop the excess parameters.
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Table 1. Distribution of the dataset in terms of the number of microplastic particles (MP) in the hologram.

Class Number of holograms

1 MP 272
2 MP 99
2 MP 104
4 MP 40
≥5 MP 32
None 49
Total 596

The final possibility of each class is coded with the expression of one-hotO(c), which is defined as:

O(c) =

{
1 if c is the predicted class,

0 for all other classes,
(4)

where integer c ∈ [1,C] for a given number of classes C. The final possibility of each class is calculated by a
softmax function.

In addition, we have found that the abundant features contained in the hologram may not be fully
extracted. In order to achieve better parameter and feature matching, we consider various loss functions to
assist the training of the network on the hologram dataset without increasing the parameters of the network.
Inspired by the work of Demirkaya et al [30] on the role of loss functions in multiclass classification
problems, we introduce over-parameterization into the network training on hologram dataset and use the
correct-class quadratic loss LCCQL as the loss function, given by:

LCCQL =
1

2C

C∑
c=1

(
∥O(c)−G(c)∥22 +α∥1−G(c)∥22

)
, (5)

where G(c) is the corresponding label and α is the weight parameter used to adjust the influence of the
correct class on the guidance of the network training process.

3.3. Sample selection and preparation
Polyethyelene (PE), polystyrene (PS), low-density polyethylene (LDPE) and high-density polyethylene
(HDPE) are the main types of microplastic particles in the world [8] and they are chosen as the detection
samples in our experiment. Some industrial processes, such as air-blasting system, may produce a large
quantity of PS [6]. Besides, polyhydroxyalkanoate (PHA), one of the new thermoplastic pollutants, is also
selected as another detection sample of our experiment. The sample size ranges from 90 to 450µm. In order
to simulate the in situmicroplastic detection environment, the experimental samples are made of standard
microplastic particles mixed with gravel, large plastic fragments, soil particles and leaf fragments. The sample
making and mixing process is completed by a professional. Detailed information of the standard microplastic
particles we used for our experiments are: HDPE (Sigma-Aldrich #427 985); LDPE (Sigma-Aldrich #428 043);
PP (Sigma-Aldrich #427 888); PS (Millipore Sigma GF63567030); PHA (Millipore Sigma GF53774545).

3.4. Dataset preparation and labelling
We have built a well-labelled hologram dataset for network training and microplastics classification. We also
select several sample holograms for each class from the dataset and show them in figure 2(a). Two zoom-in
sample holograms are provided in figures 2(b) and (c) to show the contents of the hologram in more detail.
The microplastic is marked as ‘MP’ and the other impurity particles are marked as ‘dust particles’, which have
more irregular morphological characteristics compared to the microplastics. The images are labeled
according to the preset setting of the corresponding sample at the time of sample making and loading. The
class distribution of the dataset is shown in table 1.

Data augmentation is used to enlarge the dataset for better training of the network. With 0◦, 90◦, 180◦

and 270◦ rotations and horizontal mirroring, the final dataset is augmented eight-fold to 4768 images. Then,
the dataset is divided into a training set, a validation set, and a test set with a ratio approximately of 8:1:1. To
ensure the impartiality and objectivity of the test, the images in the test do not appear in the training and
validation.

The network structure is implemented by TensorFlow and the training process is accelerated by NVDIA
TITAN V GPU with a 1455MHz core frequency. We use the Adam optimizer [31] to update the gradient
with a learning rate of 0.0001. In the LCCQL, we set α= (

√
C− 1− 1), with the logic that the correct-class
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Figure 2. Sample images in the open source dataset. The dataset contains holographic images labeled with the number of
microplastics. It can be accessed at github. (a) Labeled raw holograms of different classes. (b) Zoomed in hologram
(corresponding to the orange-frame sample image) labeled with microplastics (MP) and dust particles. (c) Zoom-in hologram
(corresponding to blue-frame sample image) labeled with MPs.

quadratic loss will automatically assign a weight of α+ 1 on the correct class and give a weight of C− 1 to all
other classes. The square-root operation is used to reduce the linearity of the function.

4. Results and discussion

To demonstrate the power of HC-CNN on hologram classification, we show the feature maps of a randomly
selected sample image in figure 3, which are extracted by each convolutional layer of the neural network in
sequence. In addition, we use EDA (exploratory data analysis) [32] to reduce the dimension of each feature
map and convert them to a two-dimensional space, showing with t-distributed stochastic neighbor
embedding (t-SNE) plots [33] in figure 4. This is a nonlinear dimensionality reduction tool to show the
feature distribution in a 2D or a 3D space. From figures 3(b)–(k), as the number of convolution layer
increases, the feature areas in the original hologram become smaller, and the features are effectively
extracted. Moreover, figure 4, feature points are more segregated and are easier to classify in (k) than in (a),
which is consistent with the results of the corresponding feature maps.

6
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Figure 3. Feature maps of a randomly selected sample image. (a) A sample image randomly chosen from the training set. (b)–(k)
Feature maps of each layer extracted by HC-CNN. Exploratory data analysis is used to reduce the dimension of each feature map
and convert them to a two-dimensional space.

To assess the performance of HC-CNN during the training process more visually, the accuracy and loss of
the training set and the validation set with respect to the number of iterations are plotted in figure 5. The
validation loss dramatically decreases after about 20 iterations, while the accuracy of the validation set
improves quickly. Therefore, the network starts to converge effectively after about 20 iterations. From about
100–130 iterations (region I), both accuracy and loss values of the validation set become more stable. In this
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Figure 4. The t-distributed stochastic neighbor embedding (t-SNE) plots corresponding to each layer in figure 3. (a) t-SNE plot of
the sample image in figure 3(a). (b)–(k) t-SNE plots of the sample image after the classification of each layer.

region, the network is well trained and suitable for classification. However, in region II, the data cannot be
accurately classified due to the over-fitting of the network, and there are some fluctuations with both
accuracy and loss curves. The network may behave worse in this region. On the whole, when the number of
iterations of the network is properly controlled to be in region I, the HC-CNN network can show a stable
classification performance for microplastic holograms.

In order to compare the performance of HC-CNN network in microplastics classification more
objectively, we select other leading methods, namely, multilayer perceptron (MLP) [34], visual geometry
group network-16 (VGG-16) [35], CNN, and ResNet [36], and conducted classification tests under the same
conditions. For a fair comparison, the parameters of the above-mentioned networks are well adjusted to
obtain the best performance. They are evaluated in terms of accuracy (A), precision (P) and recall rate (R),
which are calculated by:

A=
XTP +XTN

H
, (6)
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Figure 5. The training curves of HC-CNN in terms of accuracy (A) and the correct-class quadratic loss (LCCQL). In region I, the
network shows a stable classification performance, while in region II, the values of both accuracy and loss function have more
fluctuations.

P =
XTP

XTP +XFP
, (7)

R=
XTP

XTP +XFN
, (8)

where XTP represents the HC-CNN output results correctly predicting the well-classified samples, XTN

represents the output correctly predicting the misclassified samples, XFP represents the output incorrectly
predicting the well-classified samples, and XFN represents the output results incorrectly predicting the
misclassified samples. H is the size of the test set. To evaluate the performance of the classification in some
cases where the accuracy and precision cannot be successfully applied, we also use the harmonic mean of P
andR, called F1-score (F1), to measure the accuracy of the classification, which is expressed as:

F1 =
2×P ×R
P +R

. (9)

In addition, the decision time (TD) is measured to assess the computational resources required for
classification, which is the sum of the network training time on the training set and the time for the test set
classification. The network robustness test is carried out by evaluating 15 repeated independent experiments.

In order to quantitatively compare the performance among different algorithms, we tabulate the values of
A, P ,R, F1 and TD in table 2. The results of each method are the mean values of fifteen independent
experiments. They indicate that HC-CNN network has the highest accuracy, precision, recall rate and
F1-score and it also has the smallest variance, demonstrating good robustness of our approach. In spite of the
ResNet network showing a close performance with HC-CNN, it takes three times longer than that of the
HC-CNN network. HC-CNN network contains more lightweight feature extraction structure, which
effectively reduces the time needed for feature extraction and saves computing resources. In addition, though
MLP network costs less time than HC-CNN, its accuracy is significantly lower for there is no convolutional
layer to accurately extract the features from holograms. We also compare the performance of the methods
proposed in our two previous studies [27] and [20] in table 2. Although they have comparable performance
as HC-CNN, the decision time (TD) required is far beyond that of the HC-CNN model due to the additional
data augmentation. We therefore can conclude that, compared to other tested networks, HC-CNN is an
accurate and fast network for microplastics classification, which increases the possibility of further being
implemented on a portable device and used for real-time microplastic pollution monitoring.

In order to further analyze the performance of the multi-class classifier quantitatively, we calculate the
normalized confusion matrix of the HC-CNN network. As shown in figure 6, with the unbalanced dataset
(shown in table 1), the network has good classification performance on the class of 1, 2, 3, 4 and≥ 5 MP,
while having only a 17% error rate in the class of 0 MP. This shows that our network is less susceptible to the
small and unbalance-distributed dataset.

To evaluate the generalization ability of HC-CNN, we perform the cross dataset validations on an open
source hologram data (Wave Glider [37]). It includes 9140 raw holographic images of hemiaulus cells
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Table 2. Classification performances of MLP [34], VGG-16 [35], CNN, CompNet [20], ResNet [36], Zhu et al [27] and HC-CNN.A, P ,
R and F1 are defined in equations (6)–(9). TD is measured in hour.

Methods A P R F1 TD

MLP [34] 0.6974 0.5376 0.6370 0.6198 0.2500
VGG-16 [35] 0.8524 0.7890 0.7873 0.7737 1.0833
CNN 0.9403 0.9349 0.8897 0.9014 0.6000
CompNet [20] 0.9421 0.9433 0.8901 0.9133 1.2125
ResNet [36] 0.9459 0.9518 0.8863 0.9049 1.0183
Zhu et al [27] 0.9695 0.9755 0.9545 0.9499 1.2325
HC-CNN 0.9701 0.9761 0.9595 0.9520 0.3833

Figure 6. The multi-class classification performance is evaluated quantitatively on the normalized confusion matrix of HC-CNN.

Figure 7. Sample images of the open source hologram dataset Wave Glider [37]. The generalization ability of HC-CNN is
evaluated with the cross-dataset validation experiment on Wave Glider.

labelled with cell counts and recorded by LISST-Holo Submersible Digital Holographic Camera in 2015. The
sample images of Wave Glider are shown in figure 7.

For a fair comparison, we resize the images fromWave Glider to 128× 128 pixels, which is the same as
our own dataset, and re-train all the networks separately. All the training parameters, such as the learning
rate, are the same as the training of our own dataset before. The classification accuracies of different
networks on Wave Glider are showed in table 3. Compared with other leading methods, HC-CNN also shows
higher accuracy on this dataset, which verifies the effectiveness and generalization of HC-CNN on
micro-object classifications.
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Table 3. Cross dataset validation of MLP [34], VGG-16 [35], CNN, CompNet [20], ResNet [36], method proposed in [27] and HC-CNN
on Wave Glider [37].

Methods A P R F1

MLP [34] 0.7674 0.7322 0.7178 0.7022
VGG-16 [35] 0.8399 0.8124 0.7923 0.7856
CNN 0.8901 0.8844 0.8395 0.8462
CompNet [20] 0.9421 0.9321 0.9059 0.9124
ResNet [36] 0.9019 0.8977 0.8759 0.9033
Zhu et al [27] 0.9133 0.9035 0.8876 0.8793
HC-CNN 0.9235 0.9211 0.9135 0.9125

5. Conclusion

In this work, we propose a deep learning-enabled lensless digital in-line holography system to automatically
detect and classify the microplastic particles directly based on the raw holograms. The performance of this
system is experimentally evaluated by training the HC-CNN both on our own hologram dataset and an open
source dataset. The experimental results show that our method has good performance in terms of the
classification accuracy, network robustness, time efficiency and the generalization ability to other
micro-objects.

Future work can be carried out to classify and identify the types of microplastics, since the current
classification is only based on their number. In order to better simulate the real environment of underwater
microplastic particles, the types of particles in the samples can be more diverse, such as including microalgae
and bubbles.

Due to the low complexity of the devices used in this experiment, it can be further developed to be a
portable real-time microplastic particle detection device in future experiments. Environmental researchers
can use it to monitor microplastic pollutants generated during industrial manufacturing. In addition to
microplastic pollutants, our proposed method can also be used for the classification of other micro-objects,
such as the particulate pollution (PM2.5) monitoring or micro-defects detection on an integrated circuit.
Additionally, our work is a good example that combines the typical optical system with artificial intelligence
technologies to improve the imaging performance, which offers an attractive direction for the development
of other optical systems, such as light field microscopy [38] and hyperspectral imaging [39].

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/ymzhu19eee/dataset_microplastics.

Acknowledgment

The work is supported in part by the Research Grants Council of Hong Kong (GRF 17201818, 17200019), the
University of Hong Kong Interdisciplinary KE Project Fund (KE-ID-2018/19-17) and Environment and
Conservation Fund (ECF Project 109/2019).

ORCID iDs

Yanmin Zhu https://orcid.org/0000-0002-3968-5372
Chok Hang Yeung  https://orcid.org/0000-0003-2448-5965
Edmund Y Lam  https://orcid.org/0000-0001-6268-950X

References

[1] Thompson R C et al 2004 Lost at sea: where is all the plastic? Science 304 838
[2] Rillig M C and Lehmann A 2020 Microplastic in terrestrial ecosystems Science 368 1430–1
[3] do Sul J A I and Costa M F 2014 The present and future of microplastic pollution in the marine environment Environ. Pollut.

185 352–64
[4] Hale R C, Seeley M E, La Guardia M J, Mai L and Zeng E Y 2020 A global perspective on microplastics J. Geophys. Res.: Oceans

125 e2018JC014719
[5] Deng H, Wei R, Luo W, Hu L, Li B, Di Y and Shi H 2020 Microplastic pollution in water and sediment in a textile industrial area

Environ. Pollut. 258 113658
[6] Mani T, Hauk A, Walter U and Burkhardt-Holm P 2015 Microplastics profile along the Rhine River Sci. Rep. 5 1–7

11

https://github.com/ymzhu19eee/dataset_microplastics
https://github.com/ymzhu19eee/dataset_microplastics
https://orcid.org/0000-0002-3968-5372
https://orcid.org/0000-0002-3968-5372
https://orcid.org/0000-0003-2448-5965
https://orcid.org/0000-0003-2448-5965
https://orcid.org/0000-0001-6268-950X
https://orcid.org/0000-0001-6268-950X
https://doi.org/10.1126/science.1094559
https://doi.org/10.1126/science.1094559
https://doi.org/10.1126/science.abb5979
https://doi.org/10.1126/science.abb5979
https://doi.org/10.1016/j.envpol.2013.10.036
https://doi.org/10.1016/j.envpol.2013.10.036
https://doi.org/10.1029/2018JC014719
https://doi.org/10.1029/2018JC014719
https://doi.org/10.1016/j.envpol.2019.113658
https://doi.org/10.1016/j.envpol.2019.113658
https://doi.org/10.1038/srep17988
https://doi.org/10.1038/srep17988


J. Phys. Photonics 3 (2021) 024013 Y Zhu et al

[7] Chen G, Feng Q and Wang J 2020 Mini-review of microplastics in the atmosphere and their risks to humans Sci. Total Environ.
703 135504

[8] Silva A B, Bastos A S, Justino C I, da Costa J P, Duarte A C and Rocha-Santos T A 2018 Microplastics in the environment:
challenges in analytical chemistry—a review Anal. Chim. Acta 1017 1–19

[9] Zarfl C 2019 Promising techniques and open challenges for microplastic identification and quantification in environmental
matrices Anal. Bioanal. Chem. 411 3743–56
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