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Bulk-hinge correspondence and three-dimensional quantum anomalous Hall effect
in second-order topological insulators
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The chiral hinge modes are the key feature of a second-order topological insulator in three dimensions.
Here we propose a quadrupole index in combination of a slab Chern number in the bulk to characterize the
flowing pattern of chiral hinge modes along the hinges at the intersection of the surfaces of a sample. We further
utilize the topological field theory to present a picture of three-dimensional quantum anomalous Hall effect as
a consequence of chiral hinge modes. The two bulk topological invariants can be measured in electric transport
and magneto-optical experiments. In this way we establish the bulk-hinge correspondence in a three-dimensional
second-order topological insulator.
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I. INTRODUCTION

The bulk-boundary correspondence lies at the heart of
topological states of matter and topological materials [1–4]. It
bridges the topology of bulk band structures and the physical
observables near the boundary. In the quantum Hall effect
and quantum anomalous Hall effect (QAHE), the quantized
Hall conductance is associated with the TKNN number of the
band structure and the number of the edge modes of electrons
around the boundary [5–8]. In a topological insulator, a Z2

index in the bulk is associated with the number of the gap-
less Dirac cones of the surface electrons [9–11]. This reflects
intrinsic attributes of the topological phenomena. A recent
advance in the field of topological materials is the discovery of
higher-order topological insulators [12–20]. A second-order
topological insulator in three dimensions refers to an insu-
lator with one-dimensional the chiral hinge modes (CHMs)
localized on the hinges at the intersection of adjacent side
surfaces [15–27]. Over the past few years, a great of efforts
have been made to explore the possible relation of the bulk
bands and existence of hinge modes as an extension of the
bulk-boundary correspondence, such as effective mass anal-
ysis [18–23], the symmetry indicator [28–36], and spectral
flow analysis [37]. All the approaches have their own merits.
However, CHMs in a second-order topological insulator may
display various flowing patterns as illustrated in Fig. 1. It lacks
a systematic method to provide a comprehensive description
of diverse flowing patterns. Also it is desirable to learn which
observable in the bulk is associated with the CHMs.
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In the present work, we address the bulk-hinge corre-
spondence and three-dimensional (3D) QAHE as a physical
consequence of the CHMs in a second-order topological
insulator. We start with a minimal four-band model to re-
veal different flowing patterns of CHMs. It is found that a
quadrupole index is associated with the flowing direction of
four hinge modes of the system along one direction and a slab
quantized Hall conductance reveals the formation of a closed
loop of the CHMs. We further demonstrate the correspondent
connection of the CHMs to the quadrupole index and the slab
Chern number by means of topological field theory. Finally
we propose to utilize magneto-optical Faraday and Kerr ef-
fects to detect these topological invariants.

II. MODEL HAMILTONIAN AND SYMMETRY ANALYSIS

We start with a minimal four-band Hamiltonian,

H = H0 +
3∑

i=1

Vi, (1)

which consists of four parts (Appendix A). The primary part
is

H0 =h̄σx[v⊥(kxsx + kysy) + vzkzsz]

+ [
m0 + m⊥

(
k2

x + k2
y

)+ mzk
2
z

]
σzs0, (2)

where kx, ky, kz are the wave vectors, and mi and vi are the
model parameters. We consider the basis functions (|+ ↑〉,
|+ ↓〉, |− ↑〉, |− ↓〉) with ± being the parity eigenvalues and
↑ (↓) denoting the spin-up (-down) state, thus si and σ i

(i = x, y, z) are the Pauli matrices and s0 and σ0 the identity
matrices acting in spin and orbital space, respectively. The
point group of H0 is D4h, which can be generated by a fourfold
rotation Rz

4 around z axis, a twofold rotation Rx
2 around x axis

and the spatial inversion I. H0 possesses the time reversal
symmetry T = isyK(T 2 = −1, and K is complex conjugate)
and belongs to the symplectic symmetry class AII. Here we
focus on the case of both m0m⊥ < 0 and m0mz < 0 such that
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FIG. 1. Illustration of selected patterns of chiral hinge modes
and their projection in a second-order topological insulator in three
dimensions. (a) 3D antiferromagnetic quantum anomalous Hall in-
sulator: A double-loop pattern with the quadrupole indices �xy =
−�zx = 1 and �yz = 0 and the slab Chern number nx = ny = nz =
0. (b) 3D rotoinversion quantum anomalous Hall insulator: A single-
loop pattern with �xy = 1 and �yz = �zx = 0 and nx = ny = 0
and nz = −1. (c) 3D inversion quantum anomalous Hall insulator:
A single-loop pattern with �xy = �yz = �zx = 0 and nx = ny =
−nz = 1.

H0 describes a 3D strong topological insulator with gapless
Dirac cone of the surface states at all surfaces [4,38]. H0 also
respects the global chiral symmetry C = σys0, i.e., {C,H0} =
0. Including the crystalline symmetries, the total point sym-
metry group is G0 = D4h × {1, T ,P, C} with the particle-hole
symmetry P ≡ CT −1 [39]. As shown below all the terms in H
preserve P , it is more convenient to rewrite G0 as G0 = G̃0 ×
{1,P} with the magnetic group G̃0 = D4h × {1, T } = D4h ⊕
T D4h (or 4/mm1′). The three additional terms breaks different
symmetries, respectively. V1 = c(k2

x − k2
y )σys0 breaks both T

and Rz
4 individually, but respects their combination Rz

4T .
V2 = dσys0 is an antiferromagnetic term which breaks both
T and I, but respects the combination IT . V3 =∑i=x,y,z bisi

is the magnetic Zeeman interaction or ferromagnetic term
which breaks T but preserves I. The group G̃0 is a Heesch-
Schubnikov magnetic group of type II; the inclusion of any the
term in Vi breaks time reversal symmetry and several spatial
symmetries and reduces it to a magnetic group of type III. In
general, the reduced magnetic point group can be expressed as
[39] G̃i = N ⊕ T (G − N ), where G is subgroup of D4h and N
is a halving subgroup of G. Combination of the three terms Vi

may generate higher-order topological phases with different
symmetries (Appendix B).

(i) 3D chiral higher-order topological insulator (CHOTI):
HCHOTI = H0 + V1. The presence of V1 reduces the magnetic
group to G̃ ′ = D2d ⊕ T (D4h − D2d ). The term opens an gap
with opposite sign for the surface states on the neighboring
surfaces parallel to z axis and the CHMs may be localized
at their intersections. The CHMs are protected by the com-
bination of fourfold rotational symmetry and time-reversal
symmetry Rz

4T . The surface states on the bottom (001̄) and
top (001) surface remain gapless.

(ii) 3D antiferromagnetic quantum anomalous Hall insu-
lator (QAHI): HAQAHI = H0 + V1 + V2. The inclusion of V2

in the Hamiltonian of CHOTI further reduces the magnetic
group to G̃1 = D2 ⊕ T (D2h − D2). The V2 term anticommutes
with the linear terms h̄v⊥(kxσxsx + kyσxsy) along x and y di-
rections. Thus, it acts as the mass terms and gap out the surface
states on (001) and (001̄) while being projected onto the x-y
surface. Since V2 commutes with the mass term σys0 for the

surface states parallel with the z axis induced by V1, it only
modifies its value and has no influence on the four hinge states
along the z direction. When all the surface states are gapped
out and the Fermi level is located in the surface band gap,
the electrons can only propagate unidirectionally along the
hinges shared by adjacent side surfaces due to time reversal
symmetry breaking. The presence of the antiunitary symmetry
IT imposes the strong restriction that there must be another
hinge state propagating in the same direction on its spatial
inversion if one CHMs propagates along any hinge. Thus, the
CHMs may form two closed loops on the surfaces (100) and
(1̄00) as shown in Fig. 1(a). The relative sign between c in V1

and d in V2 will determine which surface the two hinge mode
loops locate around.

(iii) 3D rotoinversion QAHI: HRQAHI = H0 + V1 + V3

with V3 = bzsz. The inclusion of V3 with magnetic field in z
direction reduces the magnetic group to G̃2 = S4 ⊕ T (D2d −
S4). The ferromagnetic term bzsz behaves similar to the anti-
ferromagnetic term V2 but open gaps with different signs for
the surface Dirac electrons of the 3D CHOTI on the (001)
and (001̄) surfaces. As a consequence, the chiral hinge modes
of 3D rotoinversion QAHI will exhibit a distinctly different
pattern compared with 3D antiferromagnetic QAHI. The pres-
ence of the improper rotation symmetry S4 = IRz

4 protects
a single-loop CHMs wriggling around the bulk as shown in
Fig. 1(b). The relative sign between b and c determines the
wriggling way of the single-loop CHMs.

(iv) 3D inversion QAHI: HIQAHI = H0 + V3 with V3 =
b
∑

i=x,y,z si. Only in the presence of V3 that magnetic field
points to (111) direction, i.e., bx = by = bz = b, the magnetic
point group is G̃3 = Ci ⊕ T (C2h − Ci ). Due to the presence of
the inversion symmetry I, the CHMs at the inversion symmet-
ric hinges are propagating in the opposite directions, and form
a closed loop as shown in Fig. 1(c).

Here, we only take several higher-order topological phases
with distinct flowing patterns of the hinge currents as ex-
amples to illustrate the bulk-hinge correspondence. All the
possible patterns of hinge currents can be constructed by the
strategy in Appendix C and the relationship between different
patterns and the topological invariants are also checked.

III. THE QUADRUPOLE INDEX

To characterize the topological hinge modes, we introduce
a quadrupole index as topological invariant. There are the
CHMs along four hinges in the z direction in the case of
Figs. 1(a) and 1(b). The energy dispersions of the four hinge
modes connect the conduction and valence bands, and cross
at kz = 0 (see Fig. 4 in Appendix A). For a specific kz, H(kz )
can be viewed as a 2D system in the x-y plane and there
are four corner states. The existence of corner states can be
characterized by the quadrupole moment [40–43],

qxy(kz ) = 1

2π
Im log

[
det[U †

kz
QxyUkz ]

√
det Q†

xy
]
, (3)

where the matrix Ukz is constructed by the occupied lowest
energy states, Qxy = e2π ir̂x r̂y/LxLy , r̂α are the position operators,
and Lα are the lengths of the system in the α direction.
For the occupied states, we have H(kz )Ukz = Ukz Eocc(kz ),
with Eocc(kz ) = diag[ε1(kz ), ε2(kz ), ...εNocc (kz )]. εn and |un

kz
〉
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are the energy eigenvalue and eigenstate, H(kz )|un
kz
〉 =

εn(kz )|un
kz
〉. Ukz is constructed by the occupied states Ukz =

(|u1
kz
〉, ...|uNocc

kz
〉), which has dimension of Ntot × Nocc. Ntot =

Lx × Ly × Norb denotes the dimension of total Hilbert space
with Norb being the “orbitals” per site and Nocc denotes the
number of occupied bands. We hence build the the projection
operator into the occupied energy bands Pocc = UU † and we
also have relation U †U = 1Nocc×Nocc . The determinant can be
reformed as

det
[
U †

kz
QUkz

] = det
[
1Nocc×Nocc + U †

kz
(Q − 1)Ukz

]
(4)

Since the Hilbert space of the Hamiltonian (occupied and
unoccupied energy bands included) at each kz is complete, we
have the relation VkzV

†
kz

+ UkzU
†
kz

= 1 where we denote Vkz as
the eigenstates for unoccupied band. By using the Sylvester’s
determinant identity, we have

det
[
U †

kz
QUkz

] = det
[
V †

kz
Q†Vkz

]
det[Q]. (5)

We then focus on the anti-symmetries (e.g., the chiral symme-
try C or particle-hole symmetry P) because these symmetries
will relate the occupied states to the unoccupied states which
is essential in the quantization of the quadrupole moment [42].
Under the antisymmetry Oa, the Hamiltonian obeys

OaH(kz )O−1
a = −H(χkz ), (6)

with χ = −1 denotes the operation Oa will inverse the mo-
mentum kz and χ = +1 means that Oa keeps kz unchanged.
Following the same procedure in Ref. [42], it is found that an
antisymmetry Oa leaves xy plane invariant OaH(kz )O−1

a =
−H(−kz ) which will impose a constraint on the quadrupole
moment qxy(kz ): qxy(kz ) + qxy(−kz ) = 0 or 1. At two high
symmetry points 	z = 0 or π , the symmetry is restored,
OaH(	z )O−1

a = −H(	z ), and qxy(	z ) must be quantized
to 0 or 1

2 . Nonzero quantized qxy(	z ) indicates the system
topologically nontrivial and the existence of four zero-energy
corner states in the reduced 2D subspace. For example, if
qxy(kz = 0) = 1/2, then qxy(±π ) = 0 or 1. In this case, there
exist CHMs which compensate for the difference of the corner
charges. Thus, we can introduce a quadrupole index,

�xy =
∫ 2π

0
dkz∂kz qxy(kz ), (7)

to characterize the existence and the flowing direction of four
CHMs. For antiferromagnetic QAHI in Fig. 1(a), we have
�xy = −�zx = 1 and �yz = 0, which are protected by the
combination of chiral symmetry and the mirror symmetry
CMα and the combination of chiral symmetry and the time
reversal symmetry CT . For rotoinversion QAHI in Fig. 1(b),
we have �xy = 1 and �yz = �zx = 0. The quadrupole index
along the z direction is protected only by CT and along the x
(y) is protected by both CMx(y) and CT . For inversion QAHI
in Fig. 1(c), �xy = �yz = �zx = 0.

IV. THE SLAB CHERN NUMBER

The slab Chern number is another topological invariant as
the quadrupole index alone are not enough to characterize
the diversity of the flowing pattern of the CHMs. Consider
a slab geometry of the sample with a finite thickness Lz

with the periodic boundary condition along the x and y di-
rection. Denote the Bloch eigenstates by |un(k⊥, z)〉 are the
Bloch eigenstates, H(k⊥, z)|un(k⊥, z)〉 = εn(k⊥)|un(k⊥, z)〉
with k⊥ = (kx, ky) and the index n for the bands. The
space-resolved Berry connection is given by Aα;n,n′ (k⊥, z) =
−i〈un(k⊥, z)|∂α|un′ (k⊥, z)〉 for the two occupied bands n, n′.
In this way we define the slab Hall conductance and its rela-
tion to a slab Chern number nz [36],

σ slab
xy =

∫ Lz

0
dzσxy(z) = nz

e2

h
, (8)

where σxy(z) = e2

2πh

∫
d2k⊥Tr[Fxy(k⊥, z)] and

Fαβ (k) = ∂αAβ (k) − ∂βAα (k) + i[Aα (k),Aβ (k)] (9)

is the non-Abelian Berry curvature in terms of Aα;n,n′ (k⊥, z).
Because of the periodicity of the Berry connection in the first
Brillouin zone, it can be proved that the slab Chern number nz

is quantized if the filled bands has a band gap to the excited
states for a band insulator. According to the bulk-boundary
correspondence [8], each nonzero Chern number is associated
with the closed loop of chiral edge state. In Fig. 1(a), for
antiferromagnetic QAHI we have nx = ny = nz = 0, while
two quadrupole indices are not vanishing �xy = −�zx = 1.
The system in a slab geometry (the open boundary condition
is imposed in the y direction) is analog to the quantum spin
Hall insulator except the the two counter-propagating hinges
modes are localized on the opposite sides. Experimentally, the
quantized anomalous Hall effect can be measured by using the
surface-sensitive method [44]. In Fig. 1(b), for rotoinversion
QAHI we have nz = −1 and nx = ny = 0. There is a closed
loop of chiral edge mode around the z axis. Combined with
the nonzero quadrupole index �xy = 1. there are four CHMs
along the four hinges along the z axis, the two indices can
determine that a single-loop of CHMs that wriggles around the
bulk. QAHE can be detected through a global quantum Hall
measurement probing the whole sample due to the nonzero nz.
In Fig. 1(c), for inversion QAHI we have nx = ny = −nz = 1.
There is a single loop of chiral edge mode around each axis.
Because of the zero quadrupole indices around the three axes,
there is no four CHMs along one direction. It exhibits a single
CHM traversing half of its hinges, which can be projected out
a single closed loop in the direction of x, y, and z. The QAHE
can be observed for three directions due to the nonvanishing
slab Chern numbers.

V. 3D QUANTUM ANOMALOUS HALL EFFECT

The CHMs can be further understood in the framework of
topological field theory with an effective action [45],

S =
∫

d3rdt

[
1

8π

(
εE2 − 1

μ
B2

)
+ θ (r, t )e2

4π2h̄c
E · B

]
, (10)

where E and B are the electromagnetic fields, and ε and μ

are the dielectric constant and magnetic permeability, respec-
tively. θ (r, t ) is known as the axion angle [46]. The product
E · B is odd under the time reversal or spatial inversion, θ has
to be 0 (modulo 2π ) for a trivial insulator and the vacuum and
π for a topological insulator with respect to the symmetries
[47,48]. In the quadratic order of electric and magnetic fields,
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besides the Maxwell term, the θ term may give rise to the
topologically magnetoelectric effect that an electric field can
induce a magnetic field and vice verse [45,49–53]. By taking
the functional derivative of θ term with respect to a gauge
field, the induced electric current density depends on the spa-
tial and temporal gradients of the θ -field [45,46],

jθ (r, t ) = e2

2πh
[∂tθ (r, t )B − ∇θ (r, t ) × E]. (11)

The first term depends on the temporal gradient of the θ -field
and is proportional to magnetic field, i.e., the so-called chiral
magnetic field, and vanishes in a static limit. The second term
depends spatial gradient of the θ field and is perpendicular to
the electric field, i.e., the anomalous Hall effect. Thus, there
will be surface anomalous Hall effect at the interface between
two regions with different θ values and no Hall response will
exist in the bulk as θ takes a constant value θb [54,55].

The value of θb is given by the three-dimensional integration of the Chern-Simons 3-form over momentum space [56,57],

θb

2π
=
∫

d3k

16π2
εαβγ tr

[
Fαβ (k)Aγ (k) − i

3
[Aα (k),Aβ (k)]Aγ (k)

]
. (12)

Consider a Bloch Hamiltonian H(k) which is invariant under O, the eigenstates of H(k) at k and DOk must be related by a
gauge transformation, where DO is an operator transforming k to DOk in momentum space with the Jacobian matrix as Jab =
∂ (DOk)b/∂ka. We can prove that only those symmetries with Jacobian determinant det J = −1 will quantize the axion angle.
There are two types symmetries satisfying this condition: the improper rotational symmetries and the combined symmetries
from time reversal symmetry and the proper rotation symmetry, which will put the following constraints on axion angle θb,
respectively,

2
θb

2π
=
∫

d3k

24π2
εαβγ tr[(U ∗(k)∂αU T (k))(U ∗(k)∂βU T (k))(U ∗(k)∂γU T (k))], (13)

and

2
θb

2π
=
∫

d3k

24π2
εαβγ tr[(U (k)∂αU †(k))(U (k)∂βU †(k))(U (k)∂γU †(k))]. (14)

∗ and T represents the complex conjugate and transpose, respectively, and U (k) is the unitary transformation matrix acting on
the space of occupied bands, O|un(k)〉 =∑m Unm(k)|um(DOk)〉 with n as the occupied band index. U (k) is periodic in kx, ky,
and kz, and thus defines a map from a 3-torus to the space of Nocc × Nocc unitary matrices. Such maps are classified by an integer
topological invariant or winding number which is given by the righthand side of the above equations, 2 θb

2π
∈ Z. If U (k) ∈ U (1),

then the terms in the brackets can be interchanged, considering the antisymmetric form of the winding number, the axion angle
θb always trivially vanishes.

Therefore to yield a nontrivial axion angle, the occupied bands need to be degenerate such that the gauge transformation
U (k) becomes non-Abelian. (i) For 3D antiferromagnetic QAHI (b = 0, c �= 0, and d �= 0), the all five 4 × 4 matrices in H
anticommute. The eigenvalues for two valance bands are easily obtained as

εv
±(k) = −

√
p(k)2 + M(k)2 + [d + c

(
k2

x − k2
y

)]2
, (15)

where M(k) = m0 + m⊥(k2
x + k2

y ) + mzk2
z and p(k) = (v⊥kx, v⊥ky, vzkz ). The two bands are doubly degenerate for the whole

Brillouin zone which is guaranteed by the combined symmetry T I (with (IT )2 = −1). (ii) For the3D rotoinversion QAHI
(b = (0, 0, bz ), c �= 0 and d = 0), the eigenvalues for two valance bands are

εv
±(k) = −

√
b2

z + p(k)2 + M(k)2 ± 2
√

b2
z

[
v2

z k2
z + M(k)2 + c2

(
k2

x − k2
y

)2]
. (16)

The band degeneracy occurs only for topological nontrivial case and at the four momenta (±
√

− m0
2m⊥

,±
√

− m0
2m⊥

). (iii) For the3D

inversion QAHI (b = (bx, by, bz ) and c = d = 0), the eigenvalues for two valance bands are explicitly written as

εv
±(k) = −

√
b2 + p(k)2 + M(k)2 ± 2

√
[b · p(k)]2 + b2M(k)2. (17)

The band degeneracy occurs at the momenta which satisfy
both the conditions M(k) = 0 and b · p(k) = 0. The first con-
dition requires band topology is nontrivial (m0m⊥, m0mz <

0), and restricts the momenta to a 2D ellipsoidal momentum
surface. The second condition further restrict the momenta
to the line nodes perpendicular to the vector b. For the
case (i), the axion angle is not quantized and can take any
value. For the cases (ii) and (iii), the axion angle are quan-

tized and nontrivial. While for topological trivial insulators
(m0m⊥, m0mz > 0), the band degeneracy is removed for all
the Brillouin zone the axion angle must trivially vanish
in this situation. We want to emphasize the band degen-
eracy for these two cases is not due to the symmetry but
the band topology. Therefore, the band degeneracy is nec-
essary but not sufficient for the quantized nontrivial axion
angle.
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In addition to the inversion or time-reversal symmetry, θb

will be quantized with improper rotation symmetries or a
combination of time-reversal symmetry and proper rotation
symmetries [58]. From Eq. (11), the layer-resolved Hall con-
ductivities in the xy plane is associated with the gradient of θ ,
σxy(z) = e2

2πh∂zθ (z). Thus, the slab Hall conductance Eq. (8)
is given by the difference of the θ values of bottom and top
vacuum,

σ slab
xy =

∫ ∞

−∞
dzσxy(z) = e2

h

θT − θB

2π
, (18)

which is integerquantized independent of the θ value of the
bulk. The gradient ∇θ (r) is no vanishing at the interface be-
tween the two homogeneous materials with different θ values.
Thus, the surface Hall conductances for the top and bottom
interfaces are given by

σ T
xy = e2

h

θT − θb

2π
,

σ B
xy = e2

h

θb − θB

2π
. (19)

Apparently, the total slab Hall conductance is given by the
summation of surface Hall conductances σ slab

xy = σ T
xy + σ B

xy.

Since the θ value for the top and bottom vacuum can only
take the values θT/B = 2πnT/B with nT/B being integer, for
later convenience, we introduce the difference of the θ values
between the top/bottom vacuum and the bulk of the material
as

2π ñT/B
z = 2πnT/B

z − θb. (20)

As a result, the surface Hall conductance for the top and
bottom interfaces can be expressed as σ T

xy = e2

h ñT
z and σ B

xy =
− e2

h ñB
z , respectively.

VI. RELATION BETWEEN THE θ TERM AND THE
CHIRAL HINGE MODES

The current carried by the CHMs can be evaluated from
the spatial dependent θ , and each chiral hinge channel carries
one conductance quantum (e2/h). We calculate the current
through a 2D section disk (D) encircling a hinge normal
to the plane as illustrated in Fig. 2(a), I = ∫∫D dS · jθ . The
electric field is determined by the gradient of a scalar po-
tential, E = −∇�(r), and we choose the boundary of the
disk as an equipotential line �e. By utilizing Stokes theorem,
I = e2

2πh

∮
C ds · ∇θ (r)�(r). Thus, there is no current or equiv-

alently gapless conducting channel on the hinge when θ (r) in
the two vacuum areas takes the same value n1 = n2. If they are
different n1 �= n2, then there will be a branch cut separating
the two vacuums where θ (r) is singular. In this situation, the
contour integral gives the number of the conducting channels,

I

��e2/h
= n2 − n1 = ñ2 − ñ1, (21)

which is the winding number of the field θ (r). �� = �e −
�in denotes the potential difference between the outer contour
Cout and the inner contour Cint. In other words, the gapless
hinge mode tracks the singularity of the θ term and vice versa.
We also want to emphasize that, even when θ in the bulk is

FIG. 2. (a) Schematic view of the hinge current. The planar
surfaces of the topological insulator are characterized by integers
n1 and n2, describing the integer change of the θ value nearby the
surfaces. (b) Schematic view of θ -term as a function of the angle
ϕ for topologically nontrivial and trivial cases. (c, d) Plots of the
layer-resolved Hall response σαβ (rγ ) and panels (e, f) are plots of
the θ -angle as function of the layer index for antiferromagnetic and
rotoinversion quantum anomalous Hall insulator, respectively, from
a layer-resolved Kubo formula in a slab geometry for 10 layers.

not quantized, the above argument for the gapless chiral hinge
channel is still valid.

As show in Figs. 2(c)–2(f), we plot the layer-resolved Hall
responses σαβ (rγ ) (εαβγ = 1) and the integrated value for
θ (rγ ) as a function of the layer index for three directions. In
numerical evaluation, we consider a slab geometry with the
periodic boundary in the αβ plane and open boundary con-
dition in rγ direction. The layer resolved Hall response only
distributes near the slab surfaces where θ changes and quickly
drops to zero as the position moves into the bulk where θ takes
constant value. For antiferromagnetic QAHI in Figs. 2(c) and
2(e), the magnetic point group G̃1 will put a constraint on the
Hall response that the layer-resolved Hall conductivity takes
the opposite values for the slab center. Thus, the slab Chern
numbers vanish for three directions. Due to the presence of
the mass term d , the axion angle will deviate form the quan-
tized value π , for example, θb/2π � −0.59 in Fig. 2(e). It
is also consistent with the symmetry analysis that there is no
such symmetry to guarantee the quantization θb in G̃1. As a
consequence, the surface Hall conductance σ B

xy for the bottom
interface and σ T

xy for the top interface are not half quantized in
sharp contrast to the axion insulators. However, the summa-
tion of the surface Hall conductance of the adjacent surface
must be quantized since σ i

zx + σ
j

zy = e2

h (ni
y − n j

x ) with i, j =
T, B, indicates whether the hinge mode at the intersection
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FIG. 3. (a) Schematic illustration of the measurement of Kerr and
Faraday angle. Incident linearly polarized light becomes elliptically
polarized after transmission (Faraday effect) and reflection (Kerr
effect), with polarization angles as θF and θK , respectively. (b) The
reflectivity R as a function of the slab thickness Lz along z direction
in the units of half of photon wavelength λb/2 for suspended single
loop case with ε = 10 and μ = 1.

of two surfaces exists or not. For rotoinversion QAHI in
Fig. 2(d), the symmetry G̃2 constrains that the layer-resolved
Hall conductivities for z direction are symmetric about the
slab center, while for x and y directions are antisymmetric
about the slab center. The layer-resolved Hall conductivities
in xz plane and yz plane are also related to each other by the
S4 symmetry. Furthermore, as shown in Fig. 2(f), θb will be
quantized due to the presence of improper rotation symmetry
S4 and a combination of time-reversal and the diagonal mirror
symmetry T Mx+y. As a result, the surface Hall conductance
are half-quantized for three directions. More detailed discus-
sion symmetry constraints on Hall response can be found in
Appendix D. In this way, we establish the relation between
the the CHMs and the two physical invariants,

σ slab
αβ = εαβγ

e2

h

(
ñT

γ − ñB
γ

)
, (22)

�αβ = δñT
β −ñB

β ,0δñT
α −ñB

α ,0

(
ñT

α − ñT
β

)
, (23)

with εαβγ = 1.

VII. MAGNETO-OPTICAL EFFECT AS A DETECTION
OF TOPOLOGICAL INVARIANTS

We propose an optical experiment to directly measure
this phenomenon independent of material details as shown in
Fig. 3(a). Consider a normally incident linearly x-polarized
light with frequency ω propagating along the z direction
through the sample Ein = Ein exp[i(k0z − ωt )]x̂ with k0 =
ω/c. Er and Et are the reflected and transmitted electric
field, respectively. Their values at the interface between two
materials are related to the incident field Ein by the 2 × 2

reflection and transmission tensors, and can be solved by
matching the electrodynamic boundary conditions. The Kerr
and Faraday angles are defined by the tan θK = −Ey

r /Ex
r and

tan θF = Ey
t /Ex

t , respectively [49,50]. When the chemical po-
tential is located within the surface gap Eg and h̄ω � Eg,
the magnetic fields at the interface of the two materials are
discontinuous due to the presence of surface Hall current. The
reflection and transmission tensors for a slab can be obtained
by composing the single-interface scattering matrices for top
and bottom surfaces. For simplicity we only consider a free-
standing sample, the influence of a substrate do not change
our conclusion qualitatively. The reflectivity R ≡ |Er |2/|Et |2
will depend on the relative magnitude of the slab thickness
and the wavelength (λb = 2πc

ω
√

εμ
) inside the bulk. As shown in

Fig. 3(b), when the slab thickness contains an integer multiple
of half wavelength Lz = Nλb/2 with an integer N (the reso-
nance condition), R reaches the minima. At the resonance, the
reflectivity can be obtained as

R′ =
[
α
(
ñT

z − ñB
z

)]2
1 + [α(ñT

z − ñB
z

)]2 . (24)

If the slab Chern number vanishes ñT
z = ñB

z �= 0, then the light
can propagate through the sample without reflection and the
transmitted light is still linearly polarized in x direction. In this
situation, the Faraday angle θ ′

F = 0. If the slab Chern number
does not vanish, then the Faraday angle θ ′

F will be quantized
in integer multiples of the fine structure constant α ≡ 1

4πε0

e2

h̄c
[51],

tan θ ′
F = α

(
ñT

z − ñB
z

)
, (25)

which is universal and independent of the specific value of θb.
As α ≈ 1/137, θ ′

F ≈ α(ñT
z − ñB

z ). The slab Hall conductance
Eq. (22) can thus be expressed in terms of the fundamental
constants and the experimentally measurable quantity

σ slab
xy = e2

αh
tan θ ′

F = e2

h

(
ñT

z − ñB
z

)
. (26)

For the Kerr angle, we have

cot θ ′
K = α

(
ñT

z − ñB
z

)
, (27)

For the slab Chern number that is not so large, θ ′
K =

tan−1[1/α(ñT
z − ñB

z )] ≈ π
2 − α(ñT

z − ñB
z ), the polarization of

the reflected light will exhibit a full-quarter rotation relative
to the incident light [51]. To determine ñT

z and ñB
z for top and

bottom surface, we also need to use the results at reflectivity
maxima when Lz = (N + 1

2 )λb/2.
The corresponding reflectivity is

R′′ = 1 −
4 ε̃

μ̃(
ε̃
μ̃

)2 + 2 ε̃
μ̃

[
1 − (2α)2ñT

z ñB
z

]+ [1 + (2αñT
z

)2][
1 + (2αñB

z

)2] , (28)

with ε̃ and μ̃ being the relative permittivity and permeability
for the material, respectively. For relative small slab Chern

number R′′ ≈ ( ε̃
μ̃

− 1)2/( ε̃
μ̃

+ 1)2 is only determined by the
material constants. The corresponding Kerr θ ′′

K and Faraday
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angles θ ′′
F can be obtained as

tan θ ′′
K

=
2
{

ε̃
μ̃

2α
(− ñB

z

)− 2αñT
z

[
1+(2αñB

z

)2]}
−( ε̃

μ̃

)2 − 2 ε̃
μ̃

2αñT
z 2αñB

z +[1 − (2αñT
z

)2][
1 + (2αñB

z

)2] ,
(29)

tan θ ′′
F = 2α

(
ñT

z − ñB
z

)
1 + ε̃

μ̃
+ 2αñT

z 2αñB
z

. (30)

By canceling the explicit dependence on the materials
properties ε̃ and μ̃, the measured Faraday angle θ ′′

F and Kerr
angle θ ′′

K give a relation (see Appendix E)

tan(θ ′′
K + θ ′′

F )

(
1 − tan θ ′

F

tan θ ′′
F

)
= α

(
ñT

z + ñB
z

)
. (31)

Using the two relations in Eqs. (25) and (31), we can deter-
mine the values of ñT

z and ñB
z as

ñT
z = 1

2α

[
tan(θ ′′

K + θ ′′
F )

(
1 − tan θ ′

F

tan θ ′′
F

)
+ tan θ ′

F

]
, (32)

ñB
z = 1

2α

[
tan(θ ′′

K + θ ′′
F )

(
1 − tan θ ′

F

tan θ ′′
F

)
− tan θ ′

F

]
. (33)

Similarly, ñT/B
x and ñT/B

y can be determined by the magneto-
optical Faraday and Kerr measurements in the samples of thin
films normal to other two crystallographic axes. Armed with
all ñT/B

α (α = x, y, z), one can determine the values of all the
quadrupole indices [Eq. (23)] and the slab Chern numbers
[Eq. (22)], and figure out the flowing pattern of chiral hinge
currents [Eq. (21)].

VIII. CONCLUSION

In a 3D second-order topological insulator, the CHMs
circulate along the hinges of a sample and lead to the 3D
quantum anomalous Hall effect. The quadrupole index and
the slab Chern numbers are introduced to characterize the
flowing pattern of the CHMs. The nonzero slab Chern num-
bers determine the formation of the close path of the CHMs
while the quadrupole index indicates the existence of CHMs
along the four parallel hinges of a sample. The two topo-
logical invariants can be determined by the magneto-optical
Faraday and Kerr measurements. The relation between the
two topological invariants and the flowing pattern of the chiral
hinge states reflects the bulk-boundary correspondence in 3D
second-order topological insulators.
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APPENDIX A: MODEL HAMILTONIAN,
BAND STRUCTURE, AND THE WINDING

OF QUADRUPOLE MOMENTS

To facilitate numerical calculations, we map the continuous
Hamiltonian model in the main text on a square lattice in the
tight binding approximation, ki → 1

a sin kia and k2
i → 2

a2 (1 −
cos kia) for i = x, y, z. The lattice constant a = 1 is chosen as
the same for three directions. 1

2 (iv⊥σxsi − 2m⊥σzs0 ∓ 2cσis0)
are the hopping matrices connecting the nearest neighbor sites
along x, y direction, respectively, and 1

2 (ivzσxsz − 2mzσzs0) is
the matrix connecting the next nearest neighbor sites along
two directions in the x-y plane, which encode the hopping
between degrees of freedom between two sites. (m0 + 4m⊥ +
2mz )σzs0 + dσys0 +∑i=x,y,z bisi are the on-site energies. In
this representation, the Hamiltonian in momentum space is

H(k) = H0(k) +
∑

i=1,2,3

Vi(k), (A1)

with

H0(k) =h̄σx[v⊥(sin kxsx + sin kysy) + vz sin kzsz]

+ [m0 + 2m⊥(2 − cos kx − cos ky)

+ 2mz(1 − cos kz )]σzs0,

V1(k) = − 2c(cos kx − cos ky)σys0,

V2(k) =dσys0, V3(k) =
∑

i=x,y,z

bisi.

In the Hamiltonian Eq. (A1), H0 describes a 3D quantum spin
Hall insulator. Throughout this work, we choose the parame-
ters

vz = v⊥ = 1, mz = m⊥ = −0.5, m0 = 0.5,

to realize the topological nontrivial phase. To illustrate the
differences of the hinge states between distinct higher-order
topological phases, we calculate the band structure in a
quasi-1D geometry along three different directions for the
antiferromagnetic QAHI and the rotoinversion QAHI. To for-
mulate these two cases, we need to add additional terms to the
model of 3D quantum spin Hall system H0.

(i) To realize the rotoinversion QAHI, we include both V1

and V3 and use the parameters

c = 1, bz = 0.3, bx = 0, by = 0.

In Figs. 4(a)–4(c), we show the band structures in the bar
geometry along three directions. We can find two 1D chiral
modes in x and y directions in the energy gap of the surface
states which are singly degenerated with oppositely chiral
modes localized on the neighboring two hinges. The rod bands
along z direction exhibit four chiral modes which are doubly
degenerated and localized at four hinges with the same chiral
modes on opposing sides. In Figs. 5(a)–5(c), we show the
quadrupole moments for the two-dimensional subspace as
functions of the momentum in the third direction. Only the
quadrupole moment along the z direction exhibits a nontrivial
winding number which is consistent with the band calcula-
tions in Figs. 4(a)–4(c).
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FIG. 4. The band structure of the rotoinversion QAHI and the antiferromagnetic QAHI in three directions. Panels (a–c) are the band
structures of the 40 lowest bands along three directions of the rotoinversion QAHI. We use the parameters c = 1 and bz = 0.3, bx = 0, by = 0.
Panels (d–f) are band structures of the antiferromagnetic QAHI along three directions. We use the parameters d = 0.2, c = 1. The parameters
in H0 are same for two cases: vz = v⊥ = 1, mz = m⊥ = −0.5, m0 = 0.5.

(ii) To realize the antiferromagnetic QAHI, we include
both V1 and V2 and use the parameters

d = 0.2, c = 1.

In Figs. 4(d)–4(f), we show the band structures in the bar
geometry along three directions. We can only find the chiral
modes along y and z directions in the band gap. The in-gap
chiral modes for two directions are all doubly degenerated
and localized at four hinges. It is further confirmed by the
winding of the quadrupole moments in Figs. 5(d)–5(f) that
the quadrupole moments along both the y and z directions
exhibit nontrivial winding. Only directions with four chiral
hinge modes exhibit nontrivial winding number in quadrupole
moments. In order to fully characterize the pattern of the hinge
states, we also need to introduce the slab Chern number as
discussed in the main text.

APPENDIX B: SYMMETRY OF THE HAMILTONIAN

The group G̃0 of Eq. (1) in the main text is a Heesch-
Schubnikov magnetic group of type II; the inclusion of any
term in Vi=1,2,3 breaks time reversal symmetry and several
spatial symmetries and reduces it to a magnetic group of
type III (G̃ ′, G̃i=1,2,3 in the main text). In general, the reduced

magnetic point group can be expressed as [39]

G̃i = N ⊕ T (G − N ),

where G is a subgroup of D4h and N is a halving subgroup of
G. The subgroups of D4h has the following relations:

D4h ⊃
⎧⎨⎩

D2d ⊃ S4 �⇒ G̃ ′, G̃2,

D2h ⊃ D2 �⇒ G̃1,

C2h ⊃ Ci �⇒ G̃3,

from which the reduced magnetic point group can be gen-
erated. The group G̃ = D4h ⊕ T D4h are given explicitly in
Table I and the symmetry breaking due to the inclusion of
Vi=1,2,3 is also presented.

APPENDIX C: HINGE STATE PATTERN
AS COLORING THE FACE

Identifying all possible chiral hinge patterns on a cuboid
geometry is equivalent to find all the distinct ways that a
six-sided cuboid can be painted by using two different colors
(each face in one color). The hinge currents can be viewed
to flow along the boundary of different colored faces. Two
colored cubics are not distinct if they are only up to a rotation.
We list all distinct colored cuboid patterns in the Fig. 6. The
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FIG. 5. The winding of quadrupole moments for the rotoinversion QAHI (a–c) and the antiferromagnetic QAHI (d–f) along three
directions. The parameters are the same as described in the caption of Fig. 4.

first line in Fig. 6 lists all the distinct patterns that one of the
faces is painted gray and all others white. The second line lists
the patterns that two faces are gray and all others white. And
the third line lists the patterns that three faces are gray.

All this results can be uniquely determined by the quadru-
ple index and slab Chern number in Table II.

APPENDIX D: SYMMETRY CONSTRAINTS
ON HALL RESPONSE

The Bloch Hamiltonian H(ξ) respects the symmetry
O, i.e., OH(ξ)O−1 = H(DOξ), where ξ = (kα, kβ, rγ ) with
α, β, γ representing three orthogonal directions. As shown
in the second column of Table I, the unitary symmetry Ou =
U is a unitary matrix that acts on the internal degrees of
freedom of the unit cell. The antiunitary symmetry Oa can
be written as Oa = UK, where U is a unitary operator and
K is the complex conjugate operator. Due to the symmetry,
the eigenstates of H(ξ) at ξ and DOξ can be related by a
gauge transformation. Explicitly, we can write the relations,
H(DOξ)O|un(ξ)〉 = OH(ξ)|un(ξ)〉 = εn(ξ)O|un(ξ)〉, for any
eigenstate |un(ξ)〉 of H(ξ) with eigenvalue εn(ξ) (the eigen-
value only depends on the momentum components). Thus,
O|un(ξ)〉 is an eigenstate of H(DOξ) with the same en-
ergy. We can thus expand O|un(ξ)〉 by the states at DOξ,

O|un(ξ)〉 =∑m Bn,m(ξ)|um(DOξ)〉 with Bn,m(ξ) are the ma-
trix elements of a unitary transformation acting on the space of
the occupied bands. From which one can verify, for an antiu-
nitary symmetry operator Oa and unitary symmetry operator
Ou, the Berry curvature satisfies

Fαβ (ξ) = −JOa
αδ JOa

βζ B(ξ)FT
δζ

(
DOaξ

)
B†(ξ),

Fαβ (ξ) = JOu
αδ JOu

βζ B∗(ξ)Fδζ

(
DOuξ

)
BT (ξ),

respectively, with JO
αβ = ∂ (DOk)β/∂kα . From Eq. (8) in the

main text, the layered-resolved Hall responses have the fol-
lowing relations:

σαβ (rγ ) = −JOa
αδ JOa

βζ σδζ

[(
DOaξ

)
χ

]
,

σαβ (rγ ) = JOu
αδ JOu

βζ σδζ

[(
DOuξ

)
χ

]
, (D1)

where δ, ζ , χ are another three orthogonal directions. The
constraints on the Hall response due to the certain symmetry
for three different higher-order topological phases are pre-
sented in Table III.

033177-9



BO FU, ZI-ANG HU, AND SHUN-QING SHEN PHYSICAL REVIEW RESEARCH 3, 033177 (2021)

TABLE I. Symmetry of the Hamiltonian H0(kx, ky, kz ), on lines: time-reversal antiunitary symmetry (T ), chiral antisymmetry (C = PT ),
particle-hole antiunitary antisymmetry (P), fourfold rotation (around z axis, Rz

4), twofold rotation (around j axis, R j
2), inversion symmetry

(I), fourfold improper rotation (around z axis, S4), mirror reflection (M j the mirror plane is normal to j axis), and the antiunitary symmetries
(the combination of time reversal symmetry T with the above spatial symmetries). For each symmetry, the operator of transformation is given
in the second column and the momentum is transformed according to the third column. The forth column: the Jacobian of the transformation.
The last five columns indicate which symmetry is further broken with the inclusion of Vi=1,2,3,.

Symmetries Operators DO (kx, ky, kz ) det J dσys0 c(k2
x − k2

y )σys0 bzsz bxsx bysy

T isyK (−kx, −ky,−kz ) −1 χ χ χ χ χ

C σy (kx, ky, kz ) 1 χ χ χ χ χ

P = CT −1 −iσysyK (−kx, −ky,−kz ) −1
√ √ √ √ √

Rz
4(Rz−1

4 )
√

2
2 (s0 + isz ) (ky, −kx, kz ) 1

√
χ

√
χ χ

Rz
2 isz (−kx,−ky, kz ) 1

√ √ √
χ χ

Rx
2(Ry

2) isx (kx,−ky, −kz ) 1
√ √

χ
√

(χ ) χ (
√

)

Rx+y
2 (Rx−y

2 )
√

2
2 i(sx + sy ) (ky, kx, −kz ) 1

√
χ χ χ χ

I σz (−kx, −ky,−kz ) −1 χ χ
√ √ √

S4(S−1
4 )

√
2

2 σz(s0 + isz ) (−ky, kx, −kz ) −1 χ
√ √

χ χ

Mz iσzsz (kx, ky, −kz ) −1 χ χ
√

χ χ

Mx (My ) iσzsx (−kx, ky, kz ) −1 χ χ χ
√

(χ ) χ (
√

)

Mx+y(Mx−y )
√

2
2 iσz(sx + sy ) (−ky,−kx, kz ) −1 χ

√
χ χ χ

T Rz
4(Rz−1

4 )
√

2
2 i(sy + sx )K (−ky, kx, −kz ) −1 χ

√
χ

√ √
T Rz

2 isxK (kx, ky, −kz ) −1 χ χ χ
√ √

T Rx
2(Ry

2) −iszK (−kx, ky, kz ) −1 χ χ
√

χ (
√

)
√

(χ )

T Rx+y
2 (Rx−y

2 ) −
√

2
2 (s0 + isz )K (−ky,−kx, kz ) −1 χ

√ √ √ √
T I σzisyK (kx, ky, kz ) 1

√ √
χ χ χ

T S4(S−1
4 )

√
2

2 iσz(sy + sx )K (ky, −kx, kz ) 1
√

χ χ
√ √

T Mz iσzsxK (−kx,−ky, kz ) 1
√ √

χ
√ √

T Mx (My ) −iσzszK (kx,−ky, −kz ) 1
√ √ √

χ (
√

)
√

(χ )

T Mx+y(Mx−y ) −
√

2
2 (s0 + isz )σzK (ky, kx, −kz ) 1

√
χ

√ √ √

FIG. 6. All possible patterns of chiral hinge modes as the bound-
ary of colored face on a cubic.

APPENDIX E: MAGNETO-OPTICAL FARADAY
AND KERR EFFECTS

In the main text we propose an optical experiment to
measure the topological invariants. We consider a suspended
sample with a slab geometry of thickness Lz. A similar ap-
proach was considered in Ref. [50], but for the sake of
completeness, we present the detailed derivations here. We
first solve the reflection and transmission coefficients for the
interface between two materials. Consider a light wave prop-
agating along the z direction through two materials, labeled
by i and j with dielectric constant and magnetic perme-
ability as εi, μi and ε j , μ j , respectively. The interface is

TABLE II. The corresponding quadrupole index and slab Chern
number of all pattern in Fig. 6.

1 2 3 4 5

nx 0 0 0 0 −1
ny 0 0 1 1 1
nz 1 0 1 0 1
Δx 0 −1 0 0 0
Δy 0 1 0 1 0
Δz 0 0 0 0 0
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TABLE III. The constraints on the Hall response due to the certain symmetry for three cases discussed in the main text according to
Eqs. (D1). The symmetry constraints on the Hall response for each reduced magnetic point group are listed in the last line for each topological
phase.

D2 ⊕ T (D2h − D2) Antiferromagnetic QAHI

Rz
2 σxz(y) = −σxz(−y), σyz(x) = −σyz(−x)

Rx
2 σxy(z) = −σxy(−z), σxz(y) = −σxz(−y)

T I σxy(z) = −σxy(−z), σxz(y) = −σxz(−y), σyz(x) = −σyz(−x)
T Mz σxy(z) = −σxy(−z)
T Mx σyz(x) = −σyz(−x)
G̃1 σxy(z) = −σxy(−z), σxz(y) = −σxz(−y), σyz(x) = −σyz(−x)

S4 ⊕ T (D2d − S4) Rotoinversion QAHI

Rz
2 σxz(y) = −σxz(−y), σyz(x) = −σyz(−x)

S4 σxy(z) = −σyx (−z), σxz(y) = σyz(x), σyz(x) = −σxz(−y)
T Rx+y

2 σxy(z) = −σyx (−z), σxz(y) = σyz(x), σyz(x) = σxz(y)
T Mx σyz(x) = −σyz(−x)
G̃2 σxz(y) = −σxz(−y) = σyz(x) = −σyz(−x), σxy(z) = σxy(−z)

Ci ⊕ T (C2h − Ci ) Inversion QAHI

I σxy(z) = σxy(−z), σzx (y) = σzx (−y), σyz(x) = σyz(−x)
T Rx+y

2 σxy(z) = −σyx (−z), σyz(x) = σxz(y), σzx (y) = σzy(x)
T Mx+y σxy(z) = −σyx (z), σyz(x) = σxz(−y), σzx (y) = σzy(−x)
G̃3 σxy(z) = σxy(−z), σzx (y) = σzx (−y) = σzy(x) = σzy(−x)

located at z = z0. The electric field in the medium i can be
written as

Ei = eikizEt
i + e−ikizEr

i , (E1)

where Er(t )
i = [Er(t )

ix , Er(t )
iy ]T denote reflected (transmitted)

components of the electric fields in the medium i, ki =
ω
c

√
εiμi is the wave vector. The magnetic field is given by

Faraday’s law,

Hi =
√

εi

μi
(−iτy)

{
eikizEt

i − e−ikizEr
i

}
, (E2)

where τy = [0 −i
i 0 ] is the Pauli matrix acting on xy space. The

incoming and outgoing fields at the interface are related by the
S matrix: [

Ei
r

E j
t

]
=
[

r t′
t r′

][
Ei

t

E j
r

]
, (E3)

where r, r′ and t, t′ are all 2 × 2 reflection and transmission
tensors. The electric field Eq. (E1) and magnetic field Eq. (E2)

in the medium i written in terms of the reflected and transmit-
ted components of electric field is[

Ei

Hi

]
=
[

eikiz e−ikiz√
εi
μi

eikiz(−iτy) −
√

εi
μi

e−ikiz(−iτy)

][
Et

i
Et

j

]
. (E4)

Now consider the interface conditions for the electromagnetic
fields, the electric field is continuous across the interface

(Ei − E j )|z=z0 = 0, (E5)

and the magnetic field will be discontinuous across the inter-
face due to the presence of the surface current

−iτy(H j − Hi )|z=z0 = 4πJi|z=z0 , (E6)

with the surface current density

Ji|z=z0 = σ iEi|z=z0 ,

where σ is the 2 × 2 conductivity tensor. The electromagnetic
boundary conditions Eqs. (E5) and (E6) can be recast into the
matrix form,

([
Ei

Hi

]
−
[

E j

H j

])∣∣∣∣∣
z=z0

= −4π

[
0 0

iτyσ ieikiz0 iτyσ ie−ikiz0

][
Et

i
Et

j

]∣∣∣∣∣
z=z0

.

Using Eq. (E4) and comparing with Eq. (E3), we directly obtain

r = e2ikiz0

[
εi
μi

− (√ ε j

μ j
+ 4πσxx

)2 − (4πσxy
)2]

τ0 −
√

εi
μi

8πσxyiτy(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)2 + (4πσxy)2

,

t = ei(ki−k j )z0

2
√

εi
μi

(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)
τ0 −

√
εi
μi

8πσxyiτy(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)2 + (4πσxy)2

,
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r′ = e−2ik j z0

[ ε j

μ j
− (√ εi

μi
+ 4πσxx

)2 − (4πσxy
)2]

τ0 −
√

ε j

μ j
8πσxyiτy(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)2 + (4πσxy)2

,

t′ =
2
√

ε j

μ j

(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)
τ0 − iτy

√
ε j

μ j
8πσxy(√ ε j

μ j
+
√

εi
μi

+ 4πσxx
)2 + (4πσxy)2

. (E7)

Thus, r′ is related to r by making the replacement ki → −k j

and interchanging εi/μi and ε j/μ j and t′ can be obtained from
t by interchanging εi/μi and ε j/μ j . The reflection (r(′)

S ) and
transmission tensor (t(′)

S ) for a slab can be composed from the
single-interface scattering matrices r(′)

T,B and t(′)
T,B for the top

and bottom surfaces. We assume the two interfaces between
the vacuum and the sample are at z = 0 and z = Lz, respec-
tively. The vacuum outside the sample has ε0 = μ0 = 1. The
electric fields at the top and bottom interface have the follow-
ing relations: [

ET
r

EI
t

]
=
[

rT t′
T

tT r′
T

][
ET

t

EI
r

]
,

[
EI

r

EB
t

]
=
[

rB t′
B

tB r′
B

][
EI

t

EB
r

]
,

where EI
t and EI

r are the transmitted and reflected components
of the electric fields in the sample, respectively. We also have[

ET
r

EB
t

]
=
[

rS t′
S

tS r′
S

][
ET

t

EB
r

]
.

Then we can obtain the reflection and transmission tensor for
the slab

rS =rT + t′
T rB(1 − r′

T rB)−1tT ,

tS =tB(1 − r′
T rB)−1tT ,

t′
S =t′

T (1 − rBr′
T )−1t′

B,

r′
S =r′

B + tBr′
T (1 − rBr′

T )−1t′
B.

For an incident light linearly polarized in the x direction

Ein = Einx̂.

The reflectivity is defined as

R ≡ |Er |2
|Ein|2 = |rxxEin|2 + |rxyEin|2

|Ein|2 = |rxx|2 + |rxy|2,

and the Kerr and Faraday angles are defined by

tan θK = −Ey
r

Ex
r

= − ryxEin

rxxEin
= − ryx

rxx
= rxy

rxx
,

and

tan θF = Ey
t

Ex
t

= tyxEin

txxEin
= tyx

txx
= − txy

txx
,

respectively. The reflectivity R depends on the relative mag-
nitude of the slab thickness and the wavelength inside the
bulk. For the cavity resonance condition kLz = Nπ is satisfied
where k = √

εμω/c is the wave number in the slab film and
N is an integer, we have

{
rmin

S,xx

rmin
S,xy

}
= 1

4 ε0
μ0

+ [4π
(
σ T

xy + σ B
xy

)]2
⎧⎨⎩ −[4π

(
σ T

xy + σ B
xy

)]2
−
√

ε0
μ0

8π
(
σ T

xy + σ B
xy

)
⎫⎬⎭

and

{
tmin
S,xx

tmin
S,xy

}
=

e−ik0Lz

√
ε0
μ0

4 ε0
μ0

+ [4π
(
σ T

xy + σ B
xy

)]2
{

−4
√

ε0
μ0

8π
(
σ T

xy + σ B
xy

)},

with k0 = ω/c is the vacuum wave vector. The corresponding
Kerr θ ′

K and Faraday angles θ ′
F can thus be obtained,

tan θ ′
K = cot θ ′

F =
2
√

ε0
μ0

4π
(
σ T

xy + σ B
xy

) . (E8)

At the reflectivity maxima kLz = (N + 1
2 )π , we have

{
rmax

S,xx

rmax
S,xy

}
= 1(

ε
μ

)2 + 2 ε
μ

(
ε0
μ0

− 4πσ T
xy4πσ B

xy

)+ [ ε0
μ0

+ (4πσ T
xy

)2][ ε0
μ0

+ (4πσ B
xy

)2]
×
{−( ε

μ

)2 + 2 ε
μ

4πσ T
xy4πσ B

xy + [ ε0
μ0

− (4πσ T
xy

)2][ ε0
μ0

+ (4πσ B
xy

)2]
−2
√

ε0
μ0

{− ε
μ

4πσ B
xy + 4πσ T

xy

[
ε0
μ0

+ (4πσ B
xy

)2]} }
and {

tmax
S,xx

tmax
S,xy

}
= e−ik0Lz(

ε
μ

)2 + 2 ε
μ

(
ε0
μ0

− 4πσ T
xy4πσ B

xy

)+ [ ε0
μ0

+ (4πσ T
xy

)2][ ε0
μ0

+ (4πσ B
xy

)2]
⎧⎨⎩2i

√
ε
μ

√
ε0
μ0

(
ε
μ

+ ε0
μ0

− 4πσ T
xy4πσ B

xy

)
−2i
√

ε
μ

ε0
μ0

4π
(
σ T

xy + σ B
xy

)
⎫⎬⎭.
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The corresponding Kerr θ ′′
K and Faraday angles θ ′′

F can be obtained as

tan θ ′′
K =

2
√

ε0
μ0

{
ε
μ

4πσ B
xy − 4πσ T

xy

[
ε0
μ0

+ (4πσ B
xy

)2]}
−( ε

μ

)2 + 2 ε
μ

4πσ T
xy4πσ B

xy + [ ε0
μ0

− (4πσ T
xy

)2][ ε0
μ0

+ (4πσ B
xy

)2] ,
tan θ ′′

F =
√

ε0
μ0

4π
(
σ T

xy + σ B
xy

)
ε
μ

+ ε0
μ0

− 4πσ T
xy4πσ B

xy

. (E9)

From the results Eqs. (E8) and (E9), we can obtain Eqs. (6) and (7) in the main text.
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