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Background

Single-cell RNA-sequencing (scRNA-seq) has rapidly become the key technology to
disentangle transcriptional heterogeneity in cell populations. Over the last 5 years,
scRNA-seq has been successfully applied both to identify discrete cell states or subpopu-
lations in normal or diseased tissues, e.g. [1, 2], and to infer continuous stages in cellular
processes, e.g. pseudo-time [3] and cell differentiation [4]. More recently, scRNA-seq has
further been applied to multi-sample designs with different donors, tissues, diseases or
treatments. These experiments enable the discovery of cell type specific marker genes [5]
or key pathways that are associated with the meta labels [2].

Beyond gene-level information, RNA processing within a gene also holds rich infor-
mation for both categorical cell states and continuous cell differentiation. A key RNA
processing step is splicing, where a precursor mRNA (pre-mRNA or unspliced RNA) is
spliced by removing intronic, non-coding regions, resulting in mature mRNA (or spliced
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RNA). Alternative splicing of exons further extends the molecular feature space, greatly
contributing to cellular heterogeneity. A variety of studies have found that the abundance
of splicing isoforms enables the identification of cell states [6] or disease conditions [7].
Additionally, the intrinsic kinetics of splicing provide a footprint of cellular dynamics dur-
ing cell differentiation, which has motivated the recent flourishing of RNA velocity studies
[8, 9] and time-series scRNA-seq on metabolically labelled nascent RNAs [10-13].

Despite the fundamental role of RNA splicing, stochasticity in splicing is much less
understood than that of gene-level expression, primarily due to the technical difficulties
in recovering splicing information from scRNA-seq data. First, scRNA-seq data is highly
sparse, particularly for droplet-based protocols including the popular 10x Genomics plat-
form. This high sparsity, along with minimal initial molecule counts, leads to very high
technical noise in scRNA-seq data, e.g. seemingly mono-isoform pattern [14], hence
requiring careful statistical modelling. Second, splicing adds new layers of complexity to
scRNA-seq analyses, and the requirements to quantify relative abundances of isoforms
from indirect observations of fragment counts creates considerable computational diffi-
culties. For all these reasons, the level of heterogeneity in splicing between different cells
has been difficult to quantify. Perhaps more importantly, the identification of single-cell
level splicing phenotypes, including alternative splicing events associated with a disease
or genetic changes and genes with variable unspliced ratios across cell population, has
been largely unfeasible, hindering an understanding of the role of splicing changes and
aberrations in cellular state.

In this work, we study ratio of spliced vs unspliced RNAs and that of two alternative
splicing isoforms (e.g. exon inclusion and exclusion) in a unified way, interchangeably
termed as splicing ratio. Here, we address these above computational issues by directly
incorporating the association of splicing phenotypes within the splicing quantification
task itself. We introduce BRIE2, a Bayesian hierarchical model that predicts the splicing
ratio from a set of features associated with cell-type/state, as well as with the specific splic-
ing event to be quantified. This enables us to robustly identify genes or splicing events that
are associated with each cell level feature, while controlling and quantifying in a Bayesian
manner the uncertainty from the noise and sparsity of the data. We show on simulated
and real data sets that BRIE2 yields better quantification of splicing ratios and more effec-
tive detection of differential splicing between groups of cells, compared to state-of-the-art
competitors. Additionally, by treating unspliced intronic as a form of alternative splicing,
BRIE2 allows us to quantify differential transcriptional kinetics between cell types, thus
providing us with an efficient way to select biologically relevant features for RNA-velocity
analyses. We show on a number of examples that this procedure leads to more consistent
and interpretable visualisations of biological process dynamics.

Results and discussion

Model description

An unavoidable difficulty in splicing quantification from short-read protocols derives
from the fundamental ambiguity of the data, as the vast majority of reads cannot be unam-
biguously assigned to a single isoform. This problem is compounded in scRNA-seq by the
generally low number of reads, which frequently results in no unambiguous reads being
mapped to a specific isoform. Therefore, using bulk-based methods or directly comput-
ing ratios of read counts assigned to specific isoforms is unlikely to effectively quantify
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Fig. 1 lllustration of BRIE2. a Reads are counted into isoform 1, isoform 2 or ambiguous groups according to
its alignment identity, which constitutes a cell-by-gene-by-3 tensor. b The posterior distribution of isoform
proportion PSl is defined by combining the likelihood from read counts and informative prior predicted by
cell-level covariates and/or gene sequence features. € A logit-normal variational posterior and
coefficients on covariates are optimised to approximate the exact posterior, where the evidence lower
bound (ELBO) gain between including and excluding a certain cell feature set can be leveraged to select
splicing phenotypes. d The selected differential splicing events or differential momentum genes on RNA
velocity can be used as markers for downstream analysis, and the estimated PSI can be used for dimension
reduction to enhance cell type/ state identification

the percentage of spliced-in (PSI) quantity for the majority of events in a given cell'. Our
earlier work, BRIE [15] (from now on BRIE1), resolved this issue by regressing (suitably
transformed) PSI values on sequence features through a Bayesian regression approach,
therefore using genomic sequences to regularise and inform splicing predictions. This
enables BRIE1 to transfer information across genes, identifying sequence features that are
highly predictive of splicing efficacy in a particular cell and providing a principled trade-
off between imputation and data-driven estimation. However, because sequence features
are normally the same between individual cells, BRIE1 is not particularly well suited to
quantify differential splicing across cell types and needs generally to be run independently
on different cells, which can result in a significant computational burden.

BRIE2 starts again from a latent regression framework, but innovates over BRIE1 in two
important ways: first of all, it augments the set of regressor features to include cell-specific
features such as cell-type/developmental stage (Fig. 1, Additional file 1: Figure S1, and
Methods). This enables us to statistically associate cell-level features with PSI-values asso-
ciated with specific splicing events, thus defining quantitatively splicing as a single-cell
level intermediate phenotype, but it considerably increases the complexity of the model
(as data from all cells needs to be analysed jointly). Second, to cope with the added com-
plexity, BRIE2 is formulated as a variational discriminative model, thus enabling the use
of advanced software (Tensorflow) and hardware (GPUs) and leading to orders of mag-
nitudes in computational acceleration (> 1000 speed-ups; see Additional file 1: Figure S2
and Methods).

INotice also that using only unambiguous reads can significantly bias estimation for very low coverage levels; see
Additional file 1: Figure S3 for the impact of using ambiguous reads on the PSI likelihood.
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Table 1 The different usage modes of BRIE2

Features Purpose
Mode0 None Pure quantification with posterior
Mode1 Gene features (genomic sequences, etc) Imputation-enabled quantification
Mode2-quant Unity cell features (i.e. intercept) Quantification with aggregated prior
Mode2-diff Cell features (condition, pseudo-time, etc) Differential splicing detection

To recapitulate BRIE2’s operational capabilities, we report here the three major modes
in which it can operate (see Table 1):

Mode O  In pure quantification mode, BRIE2 can simply perform quantification of exon
inclusion ratios based on the available scRNA-seq reads, without using any
auxiliary features. In this modality, BRIE2 is closely related to classical PSI
quantification methods for bulk RNA-seq such as MISO [16], but with a
different prior distribution (logit-normal centred on 0.5);

Mode 1  BRIE2 provides a much faster implementation of BRIE1, using sequence-based
features associated with the event to regularise the estimation of PSI values and
impute missing data;

Mode 2  BRIE2 can regress (logit transformed) PSI values against cell-level features,
enabling the association of splicing phenotypes with cell types or with
continuously varying cell features such as developmental time. Two specific
examples of this mode are of particular relevance. The first one is to have a
constant (unity) cell feature: in this case, the event-specific effect term will
provide an adaptive prior over PSI which is informed by the splicing levels of
the specific event across all cells. This mode (termed Mode 2-quant) is useful
for regularised estimates of PSI values in a homogeneous cell population.
Instead, differential quantification is obtained when using an indicator variable
of cell type as a cell level feature: in this modality (Mode 2-diff), the
event-specific effect term quantifies the effect of cell type on splicing variability
for the specific event.

N.B., multiple modes can, in principle, be enabled at the same time, e.g. using simultane-
ously gene-level and cell-level features (combining modes 1 and 2-quant).

Benchmarking BRIE2 on simulated data

BRIE1 was comprehensively benchmarked for its accuracy in identifying splicing ratios
[15] against a variety of methods including Census [17], Cufflinks [18], and Kallisto [19].
BRIE2 also offers excellent quantification capabilities (see Additional file 1: Figure S4 for
a comparison of BRIE1 with BRIE2 Mode 1 on estimating splicing percentages on real
data). The quality of PSI estimates is considerably enhanced by the use of a unity fea-
ture (Mode 2-quant), as opposed to simple quantification (Mode 0), particularly for low
coverage levels (see Additional file 1: Figure S5).

BRIE2’s main conceptual innovation is the availability of Mode 2-diff to associate splic-
ing events with cell-level features. BRIE2 detects genes with differential PSI values by
performing Bayesian model selection (see the “Methods” section) using the ELBO gain
as a surrogate for Bayes factors. To assess its performance, we compare BRIE2 to two
well-used methods for differential splicing detection in bulk RNA-seq, rMATS [20] and
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Fig. 2 Evaluation of BRIE2 on detection of differential alternative splicing with simulated data. a Mean PSI of
cells in condition 1 (x-axis) and condition 2 (y-axis), where 400 out of for 2248 events are differential
alternative splicing (DAS, coloured in orange). The effect size level L2 means effect size at logit scale is 2. b
Precision-recall curve for detecting the DAS from simulated single-cell RNA-seq reads by BRIE2, rMATS and
MAJIQ. The effect size is L2, as shown in a. Black circles on the curve denote cutoff of ELBO_gain > 3 for
BRIE2 or [delta_PSTI| > 0.2 for IMATS and MAJIQ. Similar to a and b, more simulations and results are
shown with effect size level L3 (¢, d) and L5 (e, f), respectively

MAJIQ [21]. BRIE2 returns excellent performance in both sensitivity and specificity;
Fig. 2 shows precision-recall (PR) curves at three signal-to-noise ratios (magnitude of the
effects) (see Additional file 1: Figure S6 for analogous ROC curves). At all levels, BRIE2
reports significantly better performance than either of the two competitors, demonstrat-
ing the efficacy of BRIE2 as a tool for detecting splicing changes across different cell

typesz.

BRIE2 discovers hundreds of differential splicing events associated with multiple sclerosis

Next, we applied BRIE2 to analyse alternative splicing in multiple sclerosis, a neuro-
logical autoimmune disease. Falcdo et al. have generated 2208 mouse cells using the
SMART-seq2 protocol, with an equal number of cases (Experimental Autoimmune
Encephalomyelitis, EAE mice) and controls [7]. Here, we analysed 3780 exon-skipping
events that satisfied the quality control, e.g. more than 30 cells with unique reads, across
1876 cells that have more than 3,000 total reads on the above events (the “Methods”

section).

We first applied BRIE2 to quantify PSI using Mode 2-quant in Table 1. Note that the
cell type information is not included for this initial PSI quantification. We collected this
information in a PST matrix (with dimensions number of cells times number of events)
and performed a principal component analysis on it. We found that the PST top principal
components have strong cell-type specificity (see Fig. 3a, b for the first PC). This cell-type

2Note, here we used the difference of estimated mean PSI in two conditions (i.e. delta_PSI) as indicators for both rMATS

and MAJIQ, because the reported p values perform significantly worse, especially for rMATS (Additional file 1:
Figure S7). This lower effectiveness of statistical significance may be due to the high sparsity of read counts in
scRNA-seq data.

Page 5 of 15



Huang and Sanguinetti Genome Biology (2021) 22:251 Page 6 of 15

Cell type Psi_PC1
a } ® Ctrl b
4 EAE 2.0
pn 15
obg:
2 & 2 0
g -l < .
5 ; 2
v et 0.5
5| P f - .
(G] REREY X MiGH [C] 0.0
P &?g‘
RS MOL =L 50t Sy -0.5
-1.0
GEX_UMAP1 GEX_UMAP1
C PP AS2 d 057
1401
<
3 1201 0.4
L
= 100
[ ™ 0.3 |
%) f
2 801 . ‘
2 d1bpAS3 S )
£ 60 App.AS3 1dh3b Qo 0.2
® H 7 d?dhdl =0 %
) Anxagy Dock10 AS3 A
o 40 pr207 nmpazhl Scarbl
9 to 2 0.14
w 201 o co.
° % e © o &y
o1 T ‘ T T T T ° 0.04 T -
-10 -5 0 5 10 ‘(\ e o \% 2\ <
: P Jo c‘ P o
cell_coeff: effect size on logit(Psi) el co?(‘g\o\/ o~ VNG\ \(’\%0"(’ OVC?’\]\,"‘('\\\F"C%

Fig. 3 Differential splicing events on multiple sclerosis. a UMAP visualisation of gene-level expression,
annotated with cell types and EAE state. b UMAP coloured by the first principal component based on PSI
matrix, which suggests that PSI PC has a global impact on cell types. € Volcano plot between ELBO_gain
and effect size on logit(PSI) for detecting differential splicing between EAE and control cells by BRIE2. d Violin
plot on example gene Mbp (the exon3) for estimated PSI between EAE and control in each cell type. Note,
the PSl values in b and d are quantified by only using a unity cell feature for aggregation, but not the EAE
state label. EAE, Experimental Autoimmune Encephalomyelitis

specificity of PST PCs does not appear to be confounded by changes in gene expression
(see Additional file 1: Figure S8).

Additionally, we found that the top 20 PSI PCs can accurately predict the cell type
(Additional file 1: Figure S9a) and are reasonably predictive of disease state (AUC = 0.76,
Additional file 1: Figure S9b) on the most numerous cell type MOL. While using gene
expression yields a considerably better prediction of disease state (AUC = 0.95, Additional
file 1: Figure S9b), using jointly splicing and expression covariates leads to a further (slight)
improvement (AUC = 0.96, Additional file 1: Figure S9b), indicating that some additional
independent information is conveyed by splicing variables.

Running BRIE2 in Mode 2-diff, using disease state as a cell-level feature, detects 352
differential splicing events across 335 genes with ELBO_gain>4 that are associated with
disease condition (Fig. 3¢, Additional file 1: Figure S10-11). Particularly, the myelin genes
Mbp (ELBO_gain=67.4; Fig. 3d) and Pdgfa (ELBO_gain=12.8) are both identified as dif-
ferential splicing events, which was highlighted in the original study [7] by using BRIE1.
These events often have relatively few unambiguous reads and complex distributions of
PSI values (see Additional file 1: Figure S10 and S11), including bimodality and long-
tailed distributions. This level of variability in cell-level PST values would make it difficult
to adopt bulk-based strategies for differential splicing quantification (for example, by
pseudo-bulking cells according to disease state).
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Differential momentum genes improve RNA velocity analyses

Global RNA-processing efficiency has recently been used to define the concept of RNA
velocity associated with an individual cell [8, 9], which is rapidly becoming a major tool
to study the dynamics of cellular processes at the single-cell level. The concept of RNA
velocity is based on quantifying splicing kinetics by comparing the number of reads com-
ing from pre-mRNA (unspliced) and mRNA, associating to each gene in each cell an
RNA-processing speed which is then combined (and projected using any visualisation
tool) to quantitate the dynamics of cellular processes at the molecular level. Implicitly,
this is equivalent to treating spliced and unspliced RNAs as two different RNA conditions
(equivalent as isoforms here).

Standard RNA velocity analyses are fully unsupervised, thus discarding available anno-
tations during the (frequently crucial) step of selecting genes for velocity estimates.
Instead, we propose to use BRIE2 to detect genes that have differential splicing ratios
(spliced vs unspliced) associated with cell-level covariates, thus providing a biologically
informed approach for selecting features to compute RNA velocities that are associated
with cell transitions. We term these genes as differential momentum genes (DMQG), as the
differential splicing ratio implies a departure from the equilibrium between splicing and
degradation rates (i.e. steady-state), likely due to changes in synthesis rate associated with
changes in cell type. Therefore, the DMGs reflect the differential transcriptional activities
between cell groups or states.

To see the impact of using DMGs in RNA-velocity analyses, we re-analysed the data set
of mouse Dentate Gyrus neurogenesis, introduced in [9], which well illustrates the impact
of gene selection on cell transition inference. We used BRIE2 in Mode 2-diff to detect
cell type-specific DMGs by using each cell type as the testing covariate and accounted for
differences in coverage between cells by using gene detection rate as an additional cell-
level covariate. We, therefore, examine the effect of using BRIE2 as a pre-selection step in
velocity analyses, applying the same downstream modelling to DMGs and default genes
selected by the package scVelo [9]. The stochastic model is used here for illustrating that
the differentiation direction can be corrected by using informative genes.

In Fig. 4a-b, we compare the cell differentiation paths inferred from RNA velocity based
on the 634 genes selected by the package scVelo [9] and the 297 DMGs selected by BRIE2
(ELBO_gain>5 in any cell type), both selected out of the initial 3000 quality-pass genes.
While the overall picture is broadly in agreement, DMGs obtained from BRIE2 (Fig. 4b)
highlighted a more obvious direction from oligodendrocyte precursor cells (OPCs) to
myelinating oligodendrocytes (OLs) compared to scVelo either with its stochastic model
(Fig. 4a) or dynamical model (Fig. 2 in [9]). Interestingly, this trajectory is not improved by
using the differential kinetic gene sets detected by scVelo nor the differentially expressed
genes detected edgeR (Additional file 1: Figure S12), while BRIE2’s performance is robust
to the threshold choice of ELBO_gain (Additional file 1: Figure S13; read counts for top
genes in Additional file 1: Figure S14). This observation remains even if zooming into the
subset with only 103 OPC and OL cells (Additional file 1: Figure S15 and S16). We dwell
here on the qualitative aspects of this comparison and their biological interpretation, but a
fully quantitative assessment is provided in terms of cross-boundary correctness in Addi-
tional file 1: Table S1, showing a marked improvement in using DMGs compared to other
selection criteria.
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Fig. 4 Differential momentum genes for RNA velocity. a, b Cell differentiation in neurogenesis inferred from
RNA velocity by scVelo with different gene sets: a scVelo detected gene set requiring positive correlation
between unspliced and spliced RNAs, and b BRIE2 detected gene set that have differential spliced ratio in
one cell type vs all others, which are termed as differential momentum genes. ¢, d State transitions of
excitatory neurons inferred from RNA velocity with different methods: € Dynamo using metabolic labelling
information measured by scNT-seq. d scVelo using total RNAs on 201 differential momentum genes detected
by BRIE2. The colour denotes the time since stimulations: 0 (blue), 15 (orange), 30 (green), 60 (red), and 120
(purple) minutes

Furthermore, we examined how the selection of DMGs improve the inference of
cell state transition in time-series of neuronal scRNA-seq data generated by scNT-seq
[13]. scNT-seq is a recently proposed technique where nascent RNAs are metaboli-
cally labelled, effectively providing a measurement of the age of a transcript. Using the
information of metabolic labelling provides an effective ground truth and enables a con-
sistent visualisation where cell transitions are strongly aligned with the time direction [22]
(Fig. 4c). In the original paper, it was observed that such transitions are difficult to obtain
only using the total RNAs; our own experimentation confirms that scVelo struggles to
identify the right direction in the early stage of stimulation (i.e. 0 to 15 or 30min; Addi-
tional file 1: Figure S17-S18 for different settings; Additional file 1: Table S1). Applying
BRIE2 to detect DMGs by using the stimulation time as testing covariate, we found 421
DMGs significantly associated with time (ELBO_gain>5; Additional file 1: Figure S19-
$20), with 201 genes overlapped with the top 2000 highly variable genes selected by
scVelo. By projecting the RNA velocity on these 201 DMGs, the cell transitions are largely
corrected to the expected direction along the time (Fig. 4d; Additional file 1: Table S1).
This pattern remains even if varying the cut-off at ELBO_gain>7 for more stringent or
ELBO_gain>3 for or more lenient DMGs (Additional file 1: Figure S21).

Taken together, these observations highlight the importance of feature selection when
visualising cell transitions: in this light, DMGs detected by BRIE2 are likely to return
more biologically informative angles, thanks to its detection of genes with differential
transcriptional kinetics via the use of annotations.
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Conclusion

Splicing is a fundamental step in gene expression in higher eukaryotes and has the poten-
tial to represent an important intermediate phenotype in single-cell experiments. BRIE2
provides an effective and computationally efficient approach to link such intermediate
phenotypes to cell-level covariates. Our results showed that BRIE2 identifies hundreds of
splicing events linked to multiple sclerosis and that inclusion of splicing events leads to
improved cell-type classification on this translationally relevant data set.

While quantification of splicing events is certainly biologically important, it is likely to
only be possible using technologies that sample evenly the transcriptome. Recent years,
instead, have seen the increasing popularity of technologies that can upscale the num-
ber of cells assayed by sequencing only parts of the transcriptome (typically, the regions
immediately preceding the polyA tail). Despite this enrichment, many such data sets still
present a substantial number of intronic reads (presumably due to the abundance of repet-
itive A sequences within introns) which can be used to measure changes in RNA kinetics
(so-called RNA velocity) and therefore provide a more accurate description of transitional
cell states in large data sets. Our results showed that, in the presence of cell annotations,
BRIE2 can be a useful tool to select relevant genes (differential momentum genes) which
provide a smoother and more interpretable description of cell transitions within RNA
velocity studies. The importance of selecting trajectory-informed genes for RNA velocity
is also evidenced in another recent study [23].

Finally, while we believe BRIE2 to be a useful addition to the scRNA-seq analysis toolkit,
it does have its limitations. The first one is intrinsic to the technology: quantification of
alternative splicing can only, in general, be achieved with whole transcriptome sequencing
technologies, ruling out popular approaches based on unique molecule identifier (UMI)
and 3’ enrichment via polyA trapping. Secondly, BRIE2 focuses only on exon-skipping
events, ruling out more complex architectural changes, or de-novo discovery of splicing
variants. This is in contrast with many bulk methods, which are designed specifically to
capture such complex events. While in principle application of similar ideas to scRNA-
seq could lead to methods to detect such complex/de-novo events even in single cells, we
suspect that such methods will only become effective when single-cell technologies will
start providing less sparse data.

Methods
Modelling of splicing isoform abundance
In this study, we jointly analyse N splicing events across M cells, focusing on two specific
splicing events, for example, exon-skipping (SE) or genes with spliced vs unspliced RNAs
(for the RNA-velocity part). For a splicing event g in a cell ¢, we use V¥, to denote the
fraction of a certain isoform; for conventional reasons, it refers to the isoform with exon-
inclusion in SE event. Without loss of generality, we define the BRIE2 model on SE event
here but it is applicable to any other two-isoform event.

In order to scale up the analysis across a large number of cells, reads aligned to a splicing
gene are not modelled individually but rather aggregated into three groups depending on
their isoform identity:

e groupl: reads from isoforml explicitly, e.g. on the junction between exonl and exon2;

e group2: reads from isoform2 explicitly, e.g. on the junction between exonl and exon3;
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e group3: reads with ambiguous identity e.g. within exon3.

Thus, from the aligned reads file we could extract the count vector s.; =[5¢,g,1,Sc,¢,2 S¢,¢,3]
for these three groups, with n1c; = Y 11 53 Scgk as the total count. In addition, for each
splicing event g we can pre-define the effective length /g j £, i.e. the (effective or corrected)
number of positions in isoform / that can generate read being located in the region of
read group k. This gene-specific 2-by-3 length matrix Lg; can be defined from the exon
structures encoded in the gene annotation, and the read counts are proportional to the
effective lengths.

Given the total read counts 7., and its according effective length matrix Lg, we can
computed the likelihood of V., (or equivalently its transformation z.; := logit(¥g))
for observing the three-group reads counts s.; as a multinomial distribution, whose
proportion vector p, is coded by V¢, and the effective length matrix L as follows,

P(Scglzeg) = p(Scglncg Vg Lg) = Multinomial(scglncg, Pc,g)
) + (1 - I (1)
Pegk = 1pc,g g,1,k ( 1ﬂc,g) 12,k ,k €1,2,3.
ZtEI,Z,S I//c,glg,l,t + (1 - wc,g)l 2.t

By definition, we have /g1 2 = lg21 = 0 and [y 13 = [y 2,3 for any splicing event g. Assuming

conditional independence, we obtain the joint likelihood for all N splicing events in M
cells by taking their product as follows,

M N
p$12) = [T [ Geelzee)-

c=1g=1

Bayesian regression on splicing

In the BRIE2 model (see graphical representation in Additional file 1: Figure S1), we aim
to identify the regulatory factors of splicing from both gene level features x (e.g. splice site
motif) and/or cell level features y (e.g. cell type) via a generalised linear model. Specifi-

cally, we assume that the z., := 1ogit(¥,,) is alinear combination of x and y as follows,

Zeg = 0l % + 9. By + g @)
The model can be approximated deterministically by taking €., := 0, assuming all uncer-
tainty comes from the regression weights. On the other hand, we could introduce €,; ~
N(0, O'g2) to account for gene-specific over-dispersion, which is particularly important for
the potential phenomenon of mono-isoform in single cells.
Considering the overdispersion setting, we have a predictive distribution for z.,, as
follows

P(eglote, By 0g) = N (zeglor, x4 + 3. By 07),s (3)

which can be treated as an informative prior on z (and accordingly giving rise to a logit-
normal distribution for /).

Bayesian inference in BRIE2

Besides estimating the parameters for the regression model in Eq. (3), it is often of high
interest to approximate the posterior distribution of the isoform abundance W or its
logit transformation Z. Therefore, it is crucial to keep Z as an auxiliary variable instead
of marginalising it out. By taking the product of the likelihood distribution defined in



Huang and Sanguinetti Genome Biology (2021) 22:251 Page 11 of 15

Eq. (1) and the predicted prior in Eq. (3), we could have the joint distribution to which the
posterior distribution p(Z|S, A, B, ¢) is proportional as follows,

p(ZIS,A,B,0)  p(Z,S, A, B,a) = p(S|Z)p(Z|A, B, o). (4)

This posterior is intractable and it also has hype-parameters to optimize. In the BRIEI,
we used an approximate algorithm to alternately optimize the parameters and sampling
the posterior with Metropolis-Hastings algorithm [15]. Here, instead we are using a vari-
ational inference to approximate the posterior. Namely, we introduce a fully factorised
distribution (mean-field) as a variational posterior, and we assume it is Gaussian, the same
form as the predicted prior distribution in Eq. (3):

M N

a2\, 8) = [ [ [NV @egltteg: 82 (5)

c=1g=1
Then, the inference becomes an optimisation problem for minimising the Kullback-

Leibler (KL) divergence between the exact Eq. (4) and variational posteriors Eq. (5),
KL(q(Z|p, 8)|Ip(Z]S, A, B, 0))
= E[logq(Z|n, 8] —E[logp(Z|S, A, B, 0)] (6)
= E[logq(Z|p,8)] —E[logp(Z|A, B, 0)] —E[log p(S|Z)] +logp(S).

As the logp(S) is a constant term, minimising the KL divergence is equivalent to
maximising the evidence lower bound (ELBO)

ELBO(q) = —E[logq(Z|u, )] +E[log p(Z|A, B,a)] +E[log p(S|Z)]
= —KL(q(Z|r, 8)||p(Z|A, B,0)) + E[log p(S|2)],

where E[ -] denotes expectation over variational distribution g(Z) as a shortcut. The first

7)

part in ELBO is the KL divergence between the posterior and prior distribution on Z,
which could be calculated analytically. The second term E[log p(S|Z)] in ELBO (Eq. (7))
is difficult to calculate due to the intrinsic mixture of two isoforms in the base likelihood
Eq (1). Therefore, a cheap (but unbiased) Monte Carlo estimate [24] is introduced by
sampling R samples of Z following its posterior distribution g(Z):

R N M

Eyz)llogp(S1Z)] = Z log p(81Z") = Z D logpseglzi) (8)

r=1 g=1 c=1
In practice, R = 3 samples are sufficient to give good estimates and are used by default.
Given the expression of ELBO, we use a (stochastic) gradient descent algorithm, e.g.
Adam by default [25], to achieve the maximum of ELBO. Here, we use the TensorFlow
platform to obtain an automated derivation of the gradient. Also, the re-parametrisation
trick [24] for the gradient is fully supported for Gaussian distribution in TensorFlow.

Detecting differential splicing events or differential momentum genes

BRIE2 (Mode 2-diff), in a unified way, allows to detection of differential alternative splic-
ing events or differential momentum genes that are significant associated with one or
multiple cell-level covariates. Notice that, since Mode 2 does not use sequence level fea-
tures, different events will be independent under the model, therefore allowing model
comparison on an event by event basis. This task is equivalently to select Model 1 (M)
with significant effects (non-zero coefficient) versus Model 0 (M) with no effects (zero
coefficient) for given cell feature(s) on a per event/gene basis. Therefore, BRIE2 will be
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run twice respectively for M, with all provided cell features and M with leaving the can-
didate feature(s) out. For each event/gene g, we have the exact posteriors via the complete
distributions péo) and pfgl), as follows,

M
Mo ZP‘éO) = l_[P(Sc,g|Zc,g)N(Zc,g|yc,t -0+ y;— ﬂg’t_, O'gz)

c=1
M )

My :Pén = l_[P(Sc,g|Zc,g)N(Zc,g|yc,t : ﬂg,t + y;— ﬂg,t—rag)

c=1

where ¢~ denotes all cell features except feature ¢£. Then, we can run BRIE2 twice and
obtain the optimised variational posteriors 21‘5,0) and Q‘él), respectively. Then, we compare
the relevant evidence lower bounds ELBO; and ELBOg, and obtain an ELBO_gain for
event (or gene) g as follows,

ELBO_gain, = ELBO(3{";p{") — ELBO(G\"; p{")), (10)

which approximates the empirical Bayes factor.

When testing events with alternative splicing associated with multiple sclerosis, we used
the mouse strain, EAE state and intercept as covariates in M and left EAE state out in
M. When testing genes with splicing ratio associated to cell type, each time we include
the proportion of detected genes, intercept, and one of 14 cell types as covariates in M
and left the cell type out in M. This test has been performed with OPC and OL as
candidate cell type individually.

Simulations

Simulations were performed to evaluate the quantification of v (Additional file 1:
Figure S5) and detection of splicing events that are significantly associated with cell-level
features (main Fig. 2 and Additional file 1: Figure S5-7). In both situations, we used an
experimental data set with 130 cells and 2,248 splicing events [26] as seed data (see below).

Here, we generated the yy value with two steps. First, we quantified the i from the
experimental seed data with 5 principal components as cell covariates. Then, we calcu-
lated the mean z = 1logit(y) for each event across cells at 6.5 days, and their standard
deviations (see Additional file 1: Figure S23). Then this observed PSI profile (averaged
for one condition) will be used as a seed profile. We further generated the z profiles
for the 130 cells through a Gaussian distribution by using the observed mean z and a
fixed variance = 1, which well represents the experimental observations (Additional file 1:
Figure $23). Second, we randomly but equally split the 130 cells into two conditions. We
further randomly selected 400 out of 2248 events as true differential alternative splic-
ing (DAS) events, where we randomly plus or minus a fixed effect at size 5 to obtain an
updated zZ/ = z + 5 for the 65 cells in condition 2. We repeated with different effect size
levels n at 2, 3, or 5 (see Fig. 2).

By using the same total read count of each event and cell as the seed data, we multiplied
the simulated ¥ to obtain the reads per kilobase (RPK) values for each isoform, which will
be used as input for a sequencing read simulator Spanki [27]. Based on these generated
reads, BRIE2 (with or without cell features), rMATS (v4.1.1), MAJIQ (v2.2) are performed
to quantify PSI and detect the DAS between the two conditions.
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Data processing and gene filtering

For benchmarking BRIE2, we used 130 mouse embryonic cells at day 6.5 (80 cells) and
day 7.75 (50 cells) that were generated [26] with SMART-seq2 protocol [28]. This data
set has also been used as an illustration data set in BRIE1 [29]. Here, we used HISAT
v2.2.0 [30] to align the reads to mouse genome GRCm38.p6, combined with ERCC92
spike RNAs. Then, brie-count command line in BRIE v2.0.3 with all default parameters
was used to count the reads aligned to each of the 8253 alternative splicing events, which
was extracted from GENCODE vM24 by using briekit at lenient thresholds.

The same processing except removing ERCC92 reference was applied to another
SMART-seq2 data set on 2,208 mouse cells in the topic of multiple sclerosis [7], where
BRIE2 was used to detect differential alternative splicing between disease and control
cells. Here and in general, where detecting differential splicing and only cell-level features
are applicable, we filtered out clearly less informative genes. By default in brie-quant, we
filter out events with (1) less than 50 total reads or 10 unique reads across all cells, or (2)
less than 30 cells with unique reads, or (3) the fraction of unique reads on minor isoform
less than 0.001.

For RNA velocity analysis, a data set on dentate gyrus development was used, which was
generated [31] with droplet protocol with 10x Genomics platform. The cell type annota-
tion, UMAP visualisation coordinates, and processed count matrices for both spliced and
unspliced RNAs across 2930 cells and 13,913 genes were downloaded from the tutorial in
scVelo [9]. Only the top 3000 highly variable genes with a minimum of 30 shared counts
were used as suggested by scVelo. For detecting differential momentum genes, we only
kept genes that were detected with at least one read in > 15% of the cells. ScVelo v0.2.1
downloaded from PyPI is in use.

Additionally, an scNT-seq data set on excitatory neurons were obtained from the orig-
inal paper [13]. This processed data set has 3066 quality controlled cells and 44,021
genes. It also has UMAP visualisation coordinates, time annotation and layers of spliced,
unspliced, and new RNAs. Therefore, no pre-processing is needed on this data set.
The RNA velocity inference by Dynamo (v0.95.2.dev142+9¢30240) is based on the same
scripts provided in the original paper [13]. When running the scVelo dynamical model,
we select genes with at least 30 shared counts and either top 2000 highly variable genes
(Fig. 4d, Additional file 1: Figure S17a and S18-S21) or top 8000 highly variable genes
though with only 4880 genes pass the requirement (Additional file 1: Figure S17b).

Quantitative metric for assessing RNA velocity

To evaluate the correctness of estimated cell transition from RNA velocity, we adopted the
score of cross-boundary correctness proposed in [32]. Briefly, it measures the averaged
cosine score between the velocity vector and delta expression vector of two groups of cells
with known transition direction (from group A to B), as follows,

1 Ve - (X — Xc)

; ) I S
e € CoN NN = Vel - Ixe = xe]

CBDir(c) =

where cell ¢ is from group A, N (c) denotes the neighbour cells of ¢, and ¢ € Cg means a
cell from group B. The v, and x —x, respectively denote the velocity and delta expression
vectors (usually in a reduced dimensionality space, UMAP is used here).
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