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Abstract: This study intended to (1) investigate the pedestrian injury severity involved in traffic 
crashes; and (2) address the heterogeneity issue at signalized intersections. To achieve the 
objectives, Bayesian binary and ordinal quantile regression models were proposed to address the 
pedestrian injury severity at signalized intersections. The suitability of the proposed methods 
was illustrated with the Hong Kong dataset from 2008 to 2012 and 376 signalized intersections 
involving 2090 pedestrian-related crashes are selected. It’s found that age, injury location, 
pedestrian special circumstance, pedestrian contributory and presence of Tram/LRT stops and 
right turning pocket are significant variables. The results indicated that both Bayesian binary and 
ordinal quantile regression models not only provide a more comprehensive and in-depth 
understanding of the relationship between pedestrian injury severity and the explanatory 
variables, but highlight the heterogeneity issue for the data collected at different locations and 
different times without many assumptions. The goodness-of-fit of the proposed models 
outperforms existing mean models, while the Bayesian binary quantile model provides a better 
fit than the Bayesian quantile regression for ordinal model. The results can benefit the pedestrian 
facilities improvement/management and guide a much safer pedestrian environment. 

Keywords: Pedestrian Injury Severity; Bayesian Binary Quantile Regression; Bayesian Quantile 
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Background and Motivation 

Each year about 1.24 million people are killed by traffic crashes, and more than one fifth of these 
deaths occur among pedestrians all over the world, while in some countries or areas the proportion 
reaches as high as two thirds. Among these, millions of people are injured in traffic-related crashes 
while walking. As reported from the Annual Traffic Census, Hong Kong Transport Department in 
2017, although the total pedestrian casualties have been reduced during the past ten years, 
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pedestrian traffic fatalities are on the rise, increasing by about 10 percent each year, and account 
for about 15 percent of all motor vehicle deaths. 

Among the pedestrian casualties, intersections accounts for major proportions instead of mid-block 
segments (Xu et al., 2016a), thus the good design and capacity of the intersection is an important 
component of preventing traffic injuries and improving pedestrian safety. Usually a well-designed 
intersection can help increase the traffic capacity and travel speed, while decreasing the traffic 
conflicts and the pedestrian injuries. Moreover, most of pedestrian injuries can be controlled and 
prevented by considering the pedestrian facilities and influencing factors, so it is of significance 
to identify them and utilize them in practice, especially at well-designed signalized intersections. 
Therefore, the intention of this study is to identify the influencing factors of pedestrian injury 
severity at different signalized intersections so as to control the predictable and preventable risks 
to pedestrians. 

Various approaches and perspectives (Savolainen, et al. 2011; Mannering and Bhat, 2014) have 
been proposed to evaluate the roadway safety in recent years. For the pedestrian-related crashes,  
different methods, such as on-site investigation, mathematical modeling, simulation, etc., have 
been employed to evaluate the pedestrian injury severity. Among all these, econometric modeling 
approaches, which specifically focus on the analysis of injury severity from the perspective of 
overall safety and its economic implications, reveals considerable promise. Currently, most of the 
studies about pedestrian injury severity (Zajac and Ivan, 2003; Sze and Wong, 2007; Kim et al., 
2008; Eluru et al. 2008; Clifton et al., 2009; Kim et al., 2010; Mohamed et al., 2013; Sasidharan 
and Menendez, 2014; Yasmin et al; 2014; Xu et al., 2016b; Bhat et al., 2017; Prato et al., 2018; 
Zhao et al., 2019) belong to mean regression, in which the model assumptions cannot be easily 
extended to non-central locations and do not always complement the nature real-world data, 
especially in the case of homoscedasticity (Qin, 2012). A more appropriate and more complete 
view is required to capture the distributional properties with a broader spectrum than only mean 
and variance. Quantile regression (QR), a very different method from mean regression, provides a 
more in-depth understanding of the relationship between the outcome and the explanatory 
variables.  

QR, initially proposed by Koenker and Bassett (1978), has attracted increasing attention in various 
fields, such as sociology, economics, finance, medical science, etc. (Qin, 2012; Wang et al., 2016; 
Koenker, 2017). Quantile regression is a powerful tool, more thoroughly than the mean regression, 
for comparing various aspects (location, scale, and shape) of any kind of distribution of the 
outcome across different covariate patterns (Orsini and Bottai, 2011).The main advantage of 
quantile regression is that it does not require the data to follow a specific distribution, but provide 
multiple variations from several regression curves for different percentage points of the 
distribution. This would reveal different effects at different quantiles of the response variable. 
Furthermore, quantile regression is more robust against outliers because the estimation results may 
be less sensitive to outliers and multi-modality (Liu et al., 2013).  More importantly, quantile 
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regression can address the heterogeneity issue for the data collected from different sources at 
different locations and different times without many assumptions (Qin et al. 2010; Qin and Reyes, 
2011; Qin, 2012), which is beneficial to deal with the unobserved factors at different signalized 
intersections more accurately.  
 
During the past thirty years, QR has been utilized in various fields and areas(Qin et al. 2010; Qin 
and Reyes, 2011; Qin, 2012; Wu et al., 2014; Washington et al., 2014), whereas the application in 
transportation field remains sparse, and one of high-related studies is by Xu et al., (2018). The 
initial study by Hewson (2008) proposed the potential role of quantile regression for modeling the 
speed data, and demonstrated the potential benefits of using quantile regression methods, which 
provided more interest than the conditional mean regression approaches. From the view point of 
discrete variables, Qin et al. (2010) determined crash-prone locations with quantile regression. The 
flexibility of estimating trends at different quantiles was provided, and the data with heterogeneity 
issue was handled. The results indicated that quantile regression can offer a sensible and much 
more refined subset of risk-prone locations. Continuously, Qin and Reyes (2011) and Qin (2012) 
analyzed crash frequencies with quantile regression. The heterogeneous crash data were addressed, 
and a complete view of how the covariates affected the responsible variable from the full range of 
the distribution was provided, which benefits for the data with heavy tails, heteroscedasticity and 
multi-modality. The findings suggest that quantile regression estimates can be more informative 
than conditional mean regression. Similar study by Wu et al. (2014) investigated crash data using 
quantile regression for counts. The results displayed more detailed information on the marginal 
effect of covariates change across the conditional distribution of the response variable, and 
revealed more robust and accurate predictions on crash counts. From the perspective of railway 
transportation mode, Liu et al. (2013) analyzed the train derailment severity using zero-truncated 
negative binomial regression and quantile regression, and provided insights for train derailment 
severity under various operational conditions and by different accident causes. By identifying 
accident blackspots in a transportation network, Washington et al. (2014) employed quantile 
regression to model equivalent property damage only (PDO) crashes. The proposed method 
provided covariate effects on various quantiles of the population and performed better than 
traditional Negative Binomial (NB) model. 

However, when some outcome variables take on non-continuous values, the conventional QR may 
be inadequate. Manski (1975) presented the general semi-parametric binary quantile regression 
estimator, and Kordas (2006) explored the binary quantile regression models and verified that the 
approach can lead to a much richer view of how covariates influence the response variable. 
Nevertheless, the traditional frequentist approach to binary quantile regression has difficulty 
optimizing the regression parameters and the confidence intervals around the estimates are 
problematic. To overcome the drawbacks, a Bayesian approach to binary quantile regression was 
proposed to handle it appropriately. Yu and Moyeed (2001) presented the general Bayesian 
quantile regression employing a likelihood function based on the asymmetric Laplace distribution 
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(ALD), and demonstrated ALD is an effective way for modeling Bayesian quantile regression. 
Specifically, Benoit and Van den Poel (2012) developed a Bayesian binary quantile regression 
based on ALD, and the applicability was examined with Monte Carlo experiments. Then Benoit 
et al. (2013) extended to Bayesian lasso binary quantile regression and other fields. Miguéis et al. 
(2013) applied Bayesian binary quantile regression to evaluate credit risk and demonstrated that 
the methodology can be an important tool for credit companies in making decision about credit 
scoring; Lavín et al. (2016) used Bayesian quantile binary regression approach to estimate 
payments for environmental services, and Mollica and Petrella (2017) analyzed the Bachelor-
Master transition phenomenon with the Bayesian binary quantile regression, whereas Rahaman 
(2016) introduced a Bayesian estimation method for quantile regression in univariate ordinal 
models. All the studies characterize the non-continuous features with the Bayesian quantile 
regression models, which provides the foundation for pedestrian injury severity analysis. 

In sum, the attempt of quantile regression for binary and ordinal models within the Bayesian 
framework to analyze pedestrian injury severity is a pioneer study. Thus, the objective of this study 
is to investigate the severity of pedestrian injury at signalized intersections, as well as addressing 
the heterogeneity due to unobserved factors at different signalized intersections. 

Data Description 

The dataset was integrated from the Traffic Accident Database System (TRADS) with the geo-
database of the Traffic Information System (TIS) maintained by the Hong Kong Department of 
Transport from 2008 to 2012. As described in detail by Sze and Wong (2007), three components 
from TRADS were included: the crash environment, casualty injuries, and vehicle involvement 
profiles. All three were converted into a geo-database and displayed in ArcGIS. 

To investigate the factors that contribute to pedestrian injury severity, 376 signalized intersections 
were selected from three areas, Hong Kong Island, Kowloon, and New Territory, involving 2,090 
pedestrian-related crashes as shown in Figure 1. In Hong Kong, injury severity is divided into three 
levels: fatal, serious injury, and slight injury. As required by TRADS, the number of pedestrians 
who sustained fatal injuries could be merged in the dataset (i.e. fatal cases accounted for only 
6.8%), and as the two adjacent injury categories were quite similar, merging the fatal and serious 
injury categories was not expected to substantially affect the inferences. Consequently, in binary 
quantile regression model the dependent variable in the proposed model was a dichotomous injury 
outcome, in which the response of interest referred to killed and serious injury (i.e. KSI), and slight 
injury was treated as the contrast; For the quantile regression in ordinal model,  the injury severity 
is ordered as 1 for slight injury, 2 for KSI. 

To identify the factors that influence pedestrian injury severity and accommodate the unobserved 
heterogeneity issue among signalized intersections, the dataset was integrated according to the 
unique intersection IDs in the Arc GIS following the time series from 2008 to 2012, which reflects 
the demographic characteristics of the pedestrian and traffic characteristics, environmental features, 
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and geometric design data. The variables included are displayed in Table 1, in which the upper 
part indicates the proportions of categorical variables and the lower part provides the descriptive 
statistics of the continuous variables. 

 

Figure 1 Selected Signalized Intersections in Hong Kong 

Table 1 Summary of the parameters in the pedestrian injury model 

Factor Attribute Count(proportion) 
Year 2008 479(22.9%) 
 2009 438(20.9%) 
 2010 420(20.1%) 
 2011 384(18.4%) 
 2012 369(17.7%) 
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Injury severity Killed or severe injury 586(28.0%) 
 Slight injury 1504(72.0%) 
   
Sex Male(1) 1091(52.2%) 
 Female(0) 999(47.8%) 

 
Age (years) Under 15(1) 183(8.7%) 
 15–65(2) 1504(71.9%) 
 Above 65(3) 403(19.4%) 

 
Injury location Head injury(2) 641(30.7%) 
 Others(1) 1449(69.3%) 
   
Pedestrian location On the crossing(2) 570(27.3%) 
 Within 15m of the 

crossing(3) 
1306(62.5%) 

 Others(1) 214(10.2%) 
   
Pedestrian action Crossing road or junction(2) 1116(53.4%) 
 Walking along footpath(3) 184(8.8%) 
 Others(1) 790(37.8%) 
   
Pedestrian special circumstance Overcrowded footpath(2) 300(14.4%) 
 Obstructed footpath(3) 245(11.7%) 
 Others(4) 915(43.8%) 
 None(1) 630(30.1%) 

 
Pedestrian contributory Heedless crossing(2) 417(20.0%) 
 Inattentive(3) 250(12.0%) 
 Others(4) 698(33.4%) 
 None(1) 725(34.6%) 
   
Day of week Weekday (Monday-

Friday)(1) 
1553(74.3%) 

 Weekend(Saturday-
Sunday)(0) 

537(25.7%) 

   
Time of day 7:00–9:59AM(1) 295(14.1%) 
 10:00AM–3:59PM(2) 751(35.9%) 
 4:00–6:59PM(3) 452(21.6%) 
 7:00PM–6:59AM(4) 592(28.4%) 
   
Speed limit Below 50km/h(1) 30(1.4%) 
 50km/h(2) 2041(97.7%) 
 Above 50km/h(3) 19(0.9%) 
   
Traffic aids Poor aids(0) 205(9.8%) 
 Normal(1) 1885(90.2%) 
   
Traffic congestion Severe congestion(2) 375(17.9%) 
 Moderate congestion(3) 505(24.2%) 
 No congestion(1) 1210(57.9%) 
   
Obstruction At or near obstruction(0) 388(18.6%) 
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 No obstruction nearby(1) 1702(81.4%) 
   
Junction type T-junction(2) 819(39.2%) 
 Y-junction(3) 34(1.6%) 
 Cross-roads(4) 347(16.6%) 
 Others(1) 890(42.6%) 
   
Road type Single-way carriageway(1) 951(45.5%) 
 Two-way carriageway(2) 543(26.0%) 
 Multi-/dual carriageway(3) 596(28.5%) 
   
Environmental contributory Pedestrian negligence(2) 25(1.2%) 
 Other factors(3) 47(2.2%) 
 None(1) 2018(96.6%) 
   
Weather Clear(2) 1927(92.2%) 
 Dull(3) 108(5.2%) 
 Fog/mist(4) 38(1.8%) 
 Strong wind and unknown(1) 17(0.8%) 
   
Rain Not raining(2) 1821(87.1%) 
 Light rain(3) 215(10.3%) 
 Heavy rain(4) 43(2.1%) 
 Unknown(1) 11(0.5%) 
   
Natural light Daylight(1) 1443(69.0%) 
 Dawn/dusk(2) 65(3.1%) 
 Dark(3) 582(27.9%) 
   
Street light Good(2) 850(40.7%) 
 Poor(3) 12(0.6%) 
 Obscured and others(1) 1228(58.7%) 
   
Road surface Wet(2) 282(13.5%) 
 Dry(3) 1800(86.1%) 
 Unknown(1) 8(0.4%) 
   
Crossing facility Traffic signal(2) 846(40.5%) 
 Others(3) 1148(54.9%) 
 None(1) 96(4.6%) 
   
Presence of tram/LRT stops Yes(1) 272(13.0%) 

 No(0) 1818(87.0%) 

   
Presence of bus stops Yes(1) 723(34.6%) 

 No(0) 1367(65.4%) 

   
Presence of right turning pocket Yes(1) 218(10.4%) 

 No(0) 1872(89.6%) 
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 Range Mean S.D. 
Geometric design   
   Number of approaches Min:1; Max:4 3.04 0.79 
   Number of approach lanes Min:1; Max:20 7.73 3.57 
   Number of traffic streams Min:1; Max:12 4.55 2.04 
  Average lane width (m) Min:2.47; Max:6.85 3.41 0.49 
  Number of pedestrian streams Min: 0; Max: 10 3.25 1.83 
  Number of conflict points Min: 0; Max:46 11.36 7.93 
  Number of conflict locations Min: 0; Max:46 10.24 7.43 
Signal phasing scheme   
   Cycle time Min:30; Max: 150 103.46 19.69 
   Number of stages Min:1; Max:5 2.80 0.91 
    

Note: The numbers in brackets represent the codification system in the dataset when input into the software. 

TRADS provide the following variables: the injury characteristics include the time, date, year, 
severity levels, and injury location; the crash environment involves speed limit, traffic aids, 
traffic congestion, obstruction, junction/road type, weather, light conditions, road surface, 
crossing facility, presence of tram/LRT stops, and bus stops, geometric design and signal phasing 
scheme; TIS gives the  pedestrian features as the main variables, including the gender, age, 
location, action, special circumstance, contributory and the number of pedestrian streams.  

Methodology 

In this study, although pedestrian injury severity can be considered as binary variable (slight 
injury or KSI (killed and serious injury), the responses in such a case still have the ordinal 
meaning (1 for slight injury, 2 for KSI), so when the dependent variable is discrete and outcomes 
still have the inherent binary or ordinal features, both binary quantile regression model and 
quantile regression in ordinal model are proposed to find out whether the pedestrian injury 
severity is better reflected in binary or ordinal features. 

Binary Quantile Regression Model 

Let y = (y1, y2,⋯ yn)  be the vector of the observed binary pedestrian injury severity, and 
propose the binary quantile regression model originally from Manski (1975) with an arbitrary 
quantile level )1,0(∈p : 

]0[ *≥=
iyi Iy                                                                             (1) 

ipii xy εβ +=*                                                                        (2) 

where EI denotes the indicator function of the event E, ix is the vector of explanatory variables, 

pβ  is the vector of regression coefficients, iε  is a random error and i=1,…, n. The quantile 

regression model for quantitative responses can be described as: 
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pixy xpQ
pii

ββ =)(,*                                                               (3) 

where )(,* ⋅
pii xyQ β represents the conditional quantile function *

iy . If p=0.5, )5.0(yQ is the 

conditional median, the value that splits the conditional distribution of the outcome variable into 
two parts with equal probability. 

In the Bayesian framework, the inference is relied on the asymmetric Laplace distribution (ALD), 
and by using the data augmentation method, quantile regression modeling for the continuous 
responses can be extended for the treatment of binary response variables (Benoit and Van den 
Poel, 2017; Mollica and Petrella,2017).  

The conventional estimates, also called frequentist pβ̂ , for the quantile regression model can be 

expressed as the following optimization problem: 

∑ −=
=

n

i
piipp xy

1

* )(minargˆ βρβ                                                   (4) 

where pρ  is called loss function. It can be found out that the p-th regression quantile coincides 

with the maximum likelihood estimate under independent ALD for the unobserved error terms, 
which is needed for the specification of the likelihood in the Bayesian framework. To implement 
the Bayesian inference, the adoption of Exponential-Gaussian mixture representation of the ALD 
can be considered as a convenient option. Particularly, let the error iε follows a skewed ALD, 
i.e. ),1,0(~ kALDiε where the location, scale and skewness parameters represent 0, 1, and k, 
respectively. 

Given the likelihood based on ALD, the posterior distribution is proportional to the product of 
the likelihood and the prior distribution of the parameters. Since the joint posterior distribution 
does not have a known tractable form, Markov Chain Monte Carlo (MCMC) method is required 
for posterior inferences. In this study, Gibbs sampling is employed so that the ALD is represented 
in terms of location-scale mixture of normal-exponential distribution, i.e. 

iiii ww µτθε +=                                                                   (5) 

where iw and iµ  are mutually independent, )1(~ Expwi  , )1,0(~ Niµ , and )(⋅Exp and )(⋅N  represent 
the Exponential and Gaussian distribution respectively. The constants (θ ,τ ) are defined as the 
followings: 

)1(
21

pp
p

−
−

=θ
 
and  )1(

22

pp −
=τ  

After substitution into Equation (2), it can be expressed as: 
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iiipii wwxy µτθβ ++=*
                                                     (6) 

which implies that ),(~,, 2*
iipipiii wwxNxwy τθββ + , so Equation (6) expands the likelihood 

specification into a hierarchical structure, which is to transfer the normal linear model framework 
into the quantile regression approach (Mollica and Petrella, 2017). In the discrete case, the 
observed binary data y with both the vectors ),...,( **

1
*

nyyy = and ),...( 1 nwww = can be augmented 
and the complete-data likelihood can be described as follows: 

),(),,())1((),,( *
]0[1 ]0[

*
** piipiiiyi

n

i yipc xwfxwyfIyIywyL
i

βββ <
=

≥∏ −+=               (7) 

The model estimation can be conducted in R package bayesQR developed by Benoit and Van 
den Poel (2017). More details about the Bayesian binary quantile regression can be referred to 
Benoit and Van den Poel (2017), and Mollica and Petrella (2017). 

Quantile Regression in Ordinal Model 

The quantile regression in ordinal model can be represented with a continuous latent random 
variable iz  as follows: 

ipi i
xz εβ += '

                                                           (8) 

where ix denotes a k×1 vector of covariates, pβ denotes k×1 vector of unknown parameters at 

the pth quantile, iε  follows an ALD, and i=1…n, in which n denotes the number of observations. 
Here the variable iz  is unobserved and concerned with the observed discrete response iy , which 
has J categories or outcomes, through the cut-point vector pγ  as follows: 

jyz ijpijp =⇒≤<− ,1, γγ                                                                       (9) 

where −∞=0,pγ  and ∞=Jp,γ  . Here 1,pγ  is set to 0, which anchors the location of the distribution 

required for parameter identification (Rahman, 2016). For the data vector  y = (y1, y2,⋯ yn)′, 
the likelihood for the model can be described as the function of unknown parameters ( pβ , pγ ) as 

follows: 

∏ −−−∏∏ =∏ ==
=

=
−

==

=

=

n

i

jyI
pijpALpijp

J

j
AL

n

i

jyI
p

J

j
pipp

ii xFxFjyPyf
1

)('
1,

'
,

11

)(

1
)]()([),();,( βγβγγβγβ

 (10)
 

where )(•ALF represents the cumulative distribution function of an AL distribution and )( jyI i =

is an indicator function equal to 1 if jyi = and 0 otherwise. 
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Similar to binary quantile regression, the Bayesian method of estimating quantile regression in 
ordinal model employs the latent variable of Equation (8) combined with Equation (6), so the pth 
quantile regression in ordinal model can be described as: 

iiipii wwxz
i

µτθβ ++= '
                                                     (11) 

where iw and iµ  are the same meaning as in binary quantile regression model, and here the latent 

variable follows ),(~, 2'
iipipi wwxNwz

i
τθββ + with the convenient properties of normal 

distribution in the estimation procedure. In this study, the estimation is conducted with a simpler 
algorithm that relies on Gibbs sampling.  More estimation methods can be referred to Rahman 
(2016). 

For model comparison, as provided by many other studies under the Bayesian (Haque et al., 
2010; Zeng and Huang, 2014; Xu et al., 2016a; Zeng et al. 2017), the Deviance Information 
Criterion (DIC) is used to compare the models abovementioned: 

DD pDpDDIC +=+= 2)(θ                                             (12) 

where )(θD is the deviance evaluated at θ , the posterior mean of the parameter of interest, Dp  
is the effective number of parameter in the model, and D is the posterior mean of the deviance 
statistic )(θD . The lower the DIC, the better the model fits. Generally speaking, differences in 
DIC of more than 10 definitely rule out the model with the higher DIC; differences between 5 
and 10 are considered substantial, while the difference less than 5 indicates that the models are 
not statistically different. 

Results  

By applying R package and Stata 15 respectively, both quantile and mean regression parameters 
are estimated using Bayesian approach to calculate the fitted probabilities for each variable. 
Before estimating the regression models, the correlation test was conducted to avoid the 
multicollinearity issues. There are numerous methods that can be used to deal with 
multicollinearity, among which the Variance Inflation Factor (VIF) is a popular choice (Miguéis 
et al., 2013). It is generally considered that a strong multicollinearity may exist when a value of 
VIF is greater than 10, and this can cause projection bias. By applying R package, values of VIF 
can be calculated. Most variables have a VIF ranging from 1.02 to 5.13 and this is within the 
acceptable range. However, the VIF for the number of conflict points and conflict locations are 20.5 
and 21.6 respectively, which are greater than 10, hence multicollinearity is a considered issue 
between those two variables.  

By the correlation test, the linear coefficient obtained for them is 0.969, and this indicates that 
there is indeed a collinearity issue between them. Similarly, a high correlation existed between 
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the time of day and natural light and street light, implying that those three variables should not 
be included together in the model. In addition, weather, rain, and road surface; the number of 
approaches, approach lanes, and traffic streams; and the number of pedestrian streams, conflict 
points, and conflict locations, respectively, were all correlated. Obstruction and traffic aids were 
also highly correlated, indicating that only one of the two should be included in the model.  After 
the variables were put into the software, the insignificant variables were removed step by step in 
terms of critical values of 95% confidence interval. Other variables didn’t show up in the results 
because they are not significant for the pedestrian injury severity. 

To analyze the regression parameters, 95% Bayesian credible interval (BCI) from the marginal 
posterior distributions of each parameter is estimated, i.e. a 95% BCI contains the true parameter 
value with ~95% certainty. If the 95% BCI of the posterior mean does not include 0, it implies 
that this effect is statistically significant at the 95% level. Table 2 and Table 3 give the estimation 
results for both models from 12,500 iterations after a burn-in of 2,500 iterations.  Shown from 
Table 2, most variables are significant at 95% BCI for both models, except that obstruction and 
presence of bus stops are significant for binary regression model while presence of right turning 
pocket is significant for binary quantile regression model. Furthermore, the DIC values at the 
25th, 50th, 75th, 90th, 95th quantile in the binary quantile regression model are much smaller than 
that in the binary regression model, which indicates that binary quantile regression model is 
better fit than binary regression model. Amongst the quantile models, the 75th quantile model 
provides the best fit. 

Similarly, in Table 3 the significant variables are the same as in Table 2, and DIC values of 
quantile models are smaller than that of ordinal probit model.  Moreover, the 75th quantile model 
provides the best fit, which is correct since the distribution of the continuous variable z is skewed 
and so is the ALD for p=0.75. 

From vertical perspective of Table 2 and Table 3, in comparison with the two mean models, the 
DICs of Bayesian binary probit and ordinal probit models are almost equal to each other, 
indicating that two models are comparable and there is difference about whether the pedestrian 
injury severity levels are considered either as binary or ordinal. On the other hand, both Bayesian 
binary and ordinal quantile regression models are comparable to each other from DIC values, 
and both the 75th quantile models provide the best fit among all. However, the DIC values in 
Bayesian binary quantile model are smaller than those in ordinal one, implying that Bayesian 
binary quantile models fits better, and performs better for pedestrian injury severity.  
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Table 2 Estimation Results for Bayesian binary quantile and mean regression models 

Variable Binary quantile estimates (95% BCI) Binary Probit 
(95% BCI) 

0.25 0.50 0.75 0.90 0.95 

Age -0.799*                        

(-1.082,-0.524) 
-0.848*             

(-1.135,-0.566) 
-1.397*             

(-1.883,-0.921) 
-2.868*            

(-4.007,-1.724) 
-5.263*                

(-7.432, -3.114) 
-0.323*           

(-0.438,-0.209) 

Injury location -1.970*                        

(-2.317,-1.630) 
-1.871*             

(-2.177,-1.571) 
-3.347*                        

(-3.882,-2.829) 
-8.039*             

(-9.374,-6.748) 
-15.590*                        

(-18.139,-12.978) 
-0.821*           

(-0.949,-0.694) 

Pedestrian special circumstance -0.290*               
(-0.407,0.180) 

-0.272*              
(-0.390, -0.158) 

-0.458*             
(-0.667,-0.258) 

-1.032*            
(-1.575,-0.504) 

-1.853*                
(-2.779,-0.857) 

 -0.120*          
(-0.171,-0.697) 

Pedestrian contributory -0.234*               
(-0.352,-0.119) 

-0.251*              
(-0.373,-0.131) 

-0.404*              
(-0.614,-0.193 ) 

-0.861*            
(-1.353,-0.344) 

-1.496*                  
(-2.525,-0.493) 

-0.101*           
(-0.152,-0.052) 

Obstruction      0.247* 
(0.089,0.406) 

Presence of tram/LRT stops -0.748*               
(-1.194,-0.317) 

-0.831*             
(-1.240,-0.414) 

-1.301 *            
(-1.973, -0.590) 

-2.518*            
(-4.014,-1.005) 

-4.753*                
(-7.673,-1.899) 

-0.289*           
(-0.485,-0.091) 

Presence of bus stops      -0.141*           
(-0.285,-0.001) 

Presence of right turning pocket -0.501*               
(-0.974,-0.042) 

-0.531*             
(-0.993,-0.058) 

-0.937*             
(-1.679,-0.162) 

-2.283*            
(-4.083,-0.330) 

-4.363*                
(-7.834,-0.470) 

 

Intercept 2.848*  
(2.118,3.616) 

4.513* 
(3.707,5.371) 

9.829* 
(8.383,11.432) 

24.280* 
(21.114, 27.73) 

45.310*  
(39.843,50.818) 

1.645*  
(1.441,1.848) 

No. of observation  2090   2090 

DIC           2062.346 2045.360 2036.859 2053.850 2056.389 2210.567 
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Table 3 Estimation Results for Bayesian ordinal quantile regression and ordinal probit models 

Variable Ordinal quantile estimates (95% BCI) Ordinal 
Probit (95% 

BCI) 0.25 0.50 0.75 0.90 0.95 

Age 0.778*                        

(0.534, 1.092) 
0.839*             

(0.568,1.253) 
1.379*             

(0.912,1.388) 
2.638*            

(1.235,4.070) 
5.043*                

(3.041,7.276) 
0.329*           

(0.218,0.439) 

Injury location 1.937*                        

(1.643,2.348) 
1.834*             

(1.580, 2.189) 
3.343*                        

(2.289,3.828,) 
8.004*             

(6.748,9.374) 
15.072*                        

(12.134,18.989) 
0.823*           

(0.715,0.934) 

Pedestrian special circumstance 0.283*               
(0.178,0.482) 

0.272*              
(0.153,0.358) 

0.453*             
(0.253, 0.676,) 

1.027*            
(0.537,1.598) 

1.842*                
(0.837,2.783) 

0.116*          
(0.066,0.164) 

Pedestrian contributory 0.234*               
(0.123, 0.386) 

0.216*              
(0.123,0.381) 

0.410*              
(0.139, 0.641,) 

0.873*            
(0.336,1.367) 

1.473*                  
(0.487,2.436) 

0.104*           
(0.052,0.153) 

Obstruction      -0.257*           
(-0.422,-0.092) 

Presence of tram/LRT stops 0.775*               
(0.308,1.176) 

0.825*             
(0.456,1.432) 

1.300 *            
(0.593,1.937) 

2.504*            
(1.014,4.083) 

4.435*                
(1.808,7.738) 

0.286*           
(0.117,0.481) 

Presence of bus stops      0.141*           
(0.026,0.260) 

Presence of right turning pocket 0.550*               
(0.046, 0.987) 

0.586*             
(0.052,0.989) 

0.935*             
(0.152,1.683) 

2.227*            
(0.362,4.095) 

4.328*                
(0.483,7.497) 

 

𝛔𝛔(𝐒𝐒𝐒𝐒𝐒𝐒.𝐃𝐃𝐃𝐃𝐃𝐃. ) 4.804*  (0.060) 3.452* (0.043) 1.282* (0.015) 3.287* (0.041) 4.319*  (0.058) 1.650* (0.099) 

No. of observation  2090   2090 

DIC           2064.736 2053.421 2045.593 2057.546 2058.354 2209.518 
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Consequently, the results of Bayesian binary quantile regression model in Table 2 will be 
enumerated. The variables pedestrian action, traffic aids, number of conflict points, and presence 
of turning pocket are neglected from the table because their credible intervals overlap the value 
of zero on several quantile levels. Hence, these variables are not statistically significant for the 
analysis. The casualty age, injury location, pedestrian special circumstance, pedestrian 
contributory, presence of tram/LRT stops and presence of right turning pocket are significant 
variables. As can been seen from Table 2, the coefficients of significant variables are reduced 
from 25th to 95th, implying that the trend of injury severity is going worse. Each variable’s 
variation can be reflected from Figure 2. 

Figure 2 gives the estimates (dotted lines) and the 95 percent confidence bands (shaded gray 
areas) for the regression coefficients associated with the significant variables for a dense set of 
quantiles, whereas the mean regression models can’t reflect the variables visually. The horizontal 
line at zero is marked for reference. The figure depicts the information shown numerically in 
Table 2 for five quantiles and extends it to a larger set of quantiles. The confidence bands allow 
visual inspection of the import of the sampling error. 
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Figure 2 Regression parameters 

Discussions 

Shown from Table 2 and Table 3, the closer examination of the magnitude of the estimated 
coefficients reveals some similarities and differences between quantiles. First, the similarity is 
that all the influencing variables are of significance and the coefficients are reduced from low 
quantile to high quantile, that is to say, the impact of all the variables may not be even, and some 
are more likely to influence pedestrian injury severity in the low tails than in the high tails. This 
indicates that certain influencing factors would lead to the specific injury severity trend and need 
to paid more attention. Secondly, the difference is that significant variables may reveal different 
impacts on injury severity at different percentiles; e.g., the injury location is significant all 
through the quantiles, while obstruction is only significant at mean regression models. This 
implies that from the variables considered in the model, 95% confidence interval may be not 
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suitable for quantile regression models; thus next step 97% or 99% confidence interval may 
reveal different patterns. 

The variable casualty age (cas_age) shows that the impact is higher in the extreme high quantiles 
than in the middle and low quantiles, especially after 80th quantile. It can be inferred that 
pedestrians whose age is over 65 are more vulnerable to serious severity compared to younger 
pedestrians ( the category under 15 is the base), due to their weakness in the field of physiological 
conditions, perception of safety, and reaction in hazardous situations. The finding is in line with 
the studies by Pour-Rouholamin and Zhou (2016), and Xu et al. (2016a). 

The variable injury location (locatn_inj) has the similar trend on the severity of pedestrian 
injuries as the age, i.e. the impact is extremely higher in the high quantiles than in the middle 
and low quantiles. It is interesting to note that the effect is downward after 60th quantile 
significantly. This indicates that there is a clear correlation between the severity of pedestrian 
injuries and the injury location, and it can be inferred that head injuries can easily cause severe 
injuries compared to other locations. This is in line with the actual situation and results in Xu et 
al. (2016a).  

As for the variable pedestrian special circumstance (ped_circum), it can be seen from Figure 1 that 
the variable has a higher impact in the high quantiles and after 60th  quantile the effect begin to 
be downward obviously, indicating that pedestrian special circumstance in addition to 
overcrowded and obstructed footpath, other circumstances can easily contribute to severe 
injuries. Because at signalized intersections, there exists a variety of unknown situations, such 
as driving through the red light, bicyclists going on the rampage, drunk drivers, etc., all of these 
may cause more severe injuries, especially in Hong Kong due to the narrow streets and crowded 
traffic.     

Regarding the variable pedestrian contributory (cas_contri), the tendency is more evident for high 
quantiles by considering the category none as the base. When it comes to the 60th quantile, the 
effect begins to be downward. This implies that people who are inattentive or heedless when 
crossing the road can easily suffer from severe injuries.  

Concerning the variable the presence of tram/LRT stops (tramlrl), it is obvious that the impact is 
higher in the extreme high quantiles than in the low and middle quantiles, implying that the 
presentence of a tram or LRT stops facilities can easily lead to serious traffic injuries. Since most 
of the tram stops are located in the center of arterials in Hong Kong, the interactions and conflicts 
between the passengers and vehicles are increased, thus generating more potential probabilities 
of injury severity, which is consistent with Xu et al. (2016a). Hence, in practice it is suggested 
to design more alternative facilities connecting the tram/LRT stops with the pedestrianisation. 

Different from Xu et al. (2016a), the variable presence of right turning pocket (rttnpkt) is 
statistically significant and its impact is higher in the high quantiles than in the low and middle 



18 

 

quantiles and after 60th quantile the effect is downward. This indicates that whether there exists 
right turning pocket or not makes a difference in pedestrian injuries. Compared to absence of 
right turning pocket, the presentence of right turning pocket are more likely to be related to 
severe pedestrian injuries when the conflict between turning vehicles and the pedestrians occur. 

According to the results obtained, from an empirical point of view, for the pedestrian over the 
age 65, certain facilities or devices, e.g. barriers, underpass or overpass, and refuge island where 
necessary, should be set up to help them cross the intersections safely, whether the injury location, 
special circumstances or inattentive or heedless all should be paid more attention with flashing 
sign or electronic screens; more alternative facilities should be designed to connect the tram/LRT 
stops and pedestrianisation; the presence of right turning pocket increases the pedestrian injury 
severity, thus one way of increasing the safety is to optimize the signal phase to avoid the conflict 
between right turning and the corresponding pedestrians so that the pedestrian injury severity 
levels may be reduced. 

To measure the performance of the Bayesian binary quantile regression model proposed, we 
compute the receiver operating characteristic curve (ROC) and analyze the area under that curve 
(AUC) (Miguéis et al., 2013). An AUC value close to 1 indicates that the model has perfect 
discrimination, while an AUC value close to 0.5 means that the model has poor discrimination. 
Figure 3 depicts the ROC and AUC obtained in this study. It can be seen that the AUC value is 
0.737. This value is dramatically greater than the null-model benchmark of 0.5, implying that 
our model performs well in terms of discrimination. 

 

Figure 3 Sensitivity Analysis Result 

 

Conclusions 
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A variety of studies have concerned the pedestrian safety problem at signalized intersections, but 
quantile regression model has not been widely employed. In this paper we proposed binary and 
ordinal quantile regression models within Bayesian framework to address the pedestrian injury 
severity at signalized intersections. This method permits to highlight the heterogeneity issue due 
to unobserved factors for the data collected at different locations (376 intersections) and different 
times (5 years) without many assumptions by QR model. From the Bayesian point of view, the 
inference is addressed in a straightforward manner without depending on the asymptotic 
properties and computational demanding methods. Moreover, the Bayesian framework allows 
for an easy derivation of the posterior credible intervals, which provides a clear measure of the 
uncertainty related to the estimates. The suitability of the method is illustrated with the Hong 
Kong dataset from 2008 to 2012.  

This study adds to the pedestrian injury severity in three aspects. First, by introducing the QR 
into pedestrian injury severity analysis at the first attempt, both Bayesian binary and ordinal 
quantile regression models can reveal a more comprehensive and in-depth understanding of the 
relationship between the outcome and the explanatory variables. Second, the heterogeneity issue 
due to unobserved factors is addressed at different locations and different times without many 
assumptions, which avoids the complicated modeling process. Finally, the goodness-of-fit of the 
proposed models outperforms existing mean models, while the Bayesian binary quantile model 
provides a better fit than the Bayesian ordinal quantile regression model, both of which provide 
additional significant variables that are missed with other mean models such as conventional 
binary probit and ordinal probit regression models. 

One concern is that if the killed proportion is separated from KSI, i.e. ordinal models is extended 
to three levels, whether the Bayesian ordinal quantile regression model reveals the same or 
different results needs further verification, which may better reflect the pedestrian injury severity. 
An extension of the present pedestrian injury severity problem could be dealt with by multilevel 
structure combing with QR model within Bayesian framework, in this way the spatial 
heterogeneity can be addressed (Fan et al., 2019), which is our next-step work. Additionally, the 
time series data in this study were not actually utilized to accommodate the temporal instability 
issue (Mannering, 2018) of pedestrian injuries. After the spatial and temporal issues are 
integrated, this will broaden the scope of pedestrian injury severity at signalized intersections as 
well as arterials or corridors, and can guide a much safer pedestrian environment. 
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