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Abstract—In modern distributed cyber-physical systems (CPS), information fusion often plays a key role in automate and self-adaptive
decision making process. However, given the heterogeneous and distributed nature of modern CPSs, it is a great challenge to operate
CPSs with the compromised data integrity and unreliable communication links. In this paper, we study the distributed state estimation
problem under the false data injection attack (FDIA) with probabilistic communication networks. We propose an integrated ”detection +
fusion” solution, which is based on the Kullback-Leibler divergences (KLD) between local posteriors and therefore does not require the
exchange of raw sensor data. For the FDIA detection step, the KLDs are used to cluster nodes in the probability space and to partition
the space into secure and insecure subspaces. By approximating the distribution of the KLDs with a general χ2 distribution and
calculating its tail probability, we provide an analysis of the detection error rate. For the information fusion step, we discuss the potential
risk of double counting the shared prior information in the KLD-based consensus formulation method. We show that if the local
posteriors are updated from the shared prior, the increased number of neighbouring nodes will lead to the diminished information gain.
To overcome this problem, we propose a near-optimal distributed information fusion solution with properly weighted prior and data
likelihood. Finally, we present simulation results for the integrated solution. We discuss the impact of network connectivity on the
empirical detection error rate and the accuracy of state estimation.

Index Terms—Distributed cyber-physical system, information fusion, false data injection attack, Kullback-Leibler divergence
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1 INTRODUCTION

Information fusion is a technique of combining informa-
tion from multiple sources, in order to enhance the system’s
knowledge about the physical world [1], [2]. In a typical
design of distributed cyber-physical systems (CPSs), tasks
such as control and optimization are solved. Information
fusion serves as a stepping stone for intelligent and au-
tonomous decision making, and therefore has a great impact
on the system’s quality of service (QoS). As the sensing
and communication technologies become ubiquitous today,
information fusion has been widely applied in distributed
CPSs, such as power grids management [3], vehicular sens-
ing networks [4], [5], smart buildings or cities [6], and
health-care applications using body area sensors [7].

However, CPSs operated over distributed networks are
under increasing risk of various attacks [8], [9]. From the
perspective of information fusion, the availability and the
integrity of information are of the greatest concern. Un-
fortunately both properties can be imperilled in an ad-
versarial environment: the availability of information can
be compromised by the denial-of-service (DoS) attacks on
the network layer, such as jamming attacks on the wire-
less channels, which reduce the probability of successful
information transmission; the integrity of information can
be undermined by the false data injection attack (FDIA),
which is a type of deception attacks implemented by hi-
jacking vulnerable nodes and manipulating their sensors’
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data. Considering the threat of the FDIA and unreliable
communication links, it is especially challenging to perform
secure information fusion in distributed CPSs operated over
distributed networks. First, as the system offloads com-
putations and decision making tasks to individual nodes,
only the local and neighbours’ information are available for
the FDIA detector. Second, the distributed and probabilistic
communication poses difficulties to the dissemination of
raw sensor measurements, such as the heavy signalling
messages for data caching and synchronization. Therefore,
it is preferable for the distributed CPS to exchange the latest
processed information which encapsulates historical data,
instead of disseminating raw sensor measurements.

Studies have been dedicated to designing secure and
robust information fusion solutions for CPSs. However,
majority of the existing solutions are based on the as-
sumption that the local filtering residuals can be accessed
in a centralized manner via the communication network
with a deterministic topology [10]–[13]. In many real-world
systems (such as a network of autonomous vehicles), the
information is exchanged in a distributed manner and the
network topology is time-variant [5]. Thus an important
task for distributed CPSs is to detect FDIA and carry out
secure information fusion, when local information are ex-
changed with neighbours via probabilistic communications.

In this paper, we study the problem of secure informa-
tion fusion in distributed CPSs. Specifically, the problem
is formulated as a distributed state estimation problem
with FDIA and probabilistic communications. The local
information are exchanged between neighbouring nodes
in the mobile network with a time-variant topology. We
propose an integrated solution to detect the FDIA and
perform information fusion, based on the Kullback-Leibler
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divergences (KLDs) between local posterior distributions
[14]. The proposed solution consists of three sequential
steps, which are executed in an iterative manner: 1) Local
Bayesian filtering (LBF), which updates the local posterior
with the latest sensor measurements; 2) KLD-based FDIA
detection, which performs hierarchical clustering of local
posteriors based on the average symmetrised KLDs matrix;
3) KLD-based consensus formulation, which dynamically
weights the shared priors and local data likelihoods. By
carrying out both theoretical analysis and numerical simu-
lations, we validate the KLD-based detection and consensus
formulation methods, and provide interesting insights and
interpretations in terms of information geometry. Finally the
proposed solution is demonstrated with an application of
spatial-temporal signal monitoring, using a mobile sensor
network. The performance of the proposed solution is ex-
amined under different levels of network connectivity.

The contributions of this paper are summarized as the
following.
• We proposed an integrated ”detection + fusion” solution

for the distributed state estimation problem with prob-
abilistic communications. The solution does not require
dissemination or synchronization of raw sensor measure-
ments, and can be implemented in mobile networks with
dynamic typologies;

• We design a novel KLD-based FDIA detector. The aver-
age symmetrised KLDs between local posteriors can be
approximated with general χ2 distributions. We present
an theoretical analysis of the detection error rate based on
the tail probabilities of the symmetrised KLDs.

• We present a KLD-based consensus formulation, where
the shared priors and local data likelihoods are dynam-
ically weighted in order to avoid double counting the
shared information. This method significantly reduces the
performance gap between the near-optimal distributed
solution and the optimal centralized solution.

The paper is organized as the following. In Section 2, we
review the literature related to distributed estimation under
FDIA. In Section 3, we present the system model and an
overview of the proposed solution. The FDIA detetor design
and its performance analysis are presented in Section 4. The
information fusion algorithm is presented in Section 5. In
Section 6, we provide simulation results and discussions to
verify the proposed solution. Finally, we conclude this paper
and discuss future work in Section 7.

2 RELATED WORK

As the risk of cyber-physical attacks increases significantly
in the modern society, significant research effort has been
dedicated to improve the robustness of CPSs under various
types of attacks. In [8], the authors reviewed the general
problem of secure control in CPSs, and concluded that
robust state estimation method is one of the important
components for survivable CPSs. The performance of de-
tectors and estimators, such as the Kalman filter, has been
studied under the packet drop and FDIA [10], [15]. The
smart and feasible strategies of both defence and attack
have been investigated, relying on the centralised χ2 test of
the measurement residual or the Kalman filter’s prediction
residual [11]. Yan et al. presented a protection mechanism

for consensus-based spectrum sensing with outlier detec-
tion, when the system is under covert adaptive data injec-
tion attacks [16]. More recently, the distributed detection
and secure estimation problem was studied in [17], [18].
The distributed FDIA detection under jamming attack was
studied very recently in [18], where the system consisted
of decoupled sensing and processing networks. Machine
learning detection methods gain increasing attentions too.
For example, a neural network based detection method
against FDI attacks was presented in [13]. Nevertheless, the
problem of secure information fusion in distributed CPSs
with probabilistic communications is yet to be investigated.

In parallel, the distributed information fusion in net-
worked systems has been investigated intensively [19]. The
development of distributed Kalman-consensus filters has
enabled information fusion based on local and neighbours’
estimates [20], [21]. As reported by the authors in [20], the
algorithms based on all-to-all communications are infeasible
for large networks. Therefore it is reasonable to focus on
the consensus filtering methods which only require com-
munication between neighbours. Another advantage of the
consensus-based methods is that, they are naturally robust
to the probabilistic communication networks as well as
the false data: the error covariance matrices are utilized to
quantify the uncertainty of local posteriors and hence to
weight their contributions to the final estimation result.

The KLD-based anomaly detection and information fu-
sion methods have attracted increasing attentions recently.
Mathematically, the KLD between two probability density
functions (PDFs) pi(x) and pj(x) of the random variable x
is given by

DKL(pi || pj) =
∫
pi(x) ln

pi(x)

pj(x)
dx,

which has several meaningful interpretations. In Bayesian
filtering, the KLD between a prior and a posterior measures
the information gain of observing the sensor data [22]. In
information geometry, the KLD measures the difference
between two PDFs in a space of functions [23]. In the fol-
lowing we review related work about KLD-based detection
and information fusion, and discuss the difference between
existing methods and the proposed solution.

KLD-based false data detection

The KLD has been used as a metric of differences between
distributions of normal and false data in many probabilistic
detection problems [24]–[27]. In [12], the authors investi-
gated the FDI detection problem for power grid systems.
A centralized detector is able to access the historical data
collected from the network and compare the distributions
of current variations and the distributions of historical
variations. In [28], the authors studied the fault detection
problem using KLDs between healthy and test data. In
[29], the author studied the multi-sensor fusion and fault
detection problem. The authors used the KLDs between the
data distributions obtained from the prediction step and the
correction step to detect and isolate the fault. More recently,
Guo et al. studied the FDIA from the attacker’s point of
view [30]. The authors define the KLD between the distri-
butions of secure and modified measurement innovation as
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(a) Models of sensing, filtering and FDI at-
tacks

(b) Distributed communication (c) An overview of the proposed solution

Fig. 1. An illustration of the system model and an overview of the proposed solution: (a) The sensing and filtering models of the secure case and the
corrupted case. (b) The distributed and probabilistic communication. (c) The proposed solution consists of local Bayesian filtering, FDI detection,
and consensus formulation.

a measure of the stealthiness of an attack scheme. However,
few of previous KLD-based detectors are designed for fully
distributed and mobile networks with probabilistic com-
munication links. And most of the previous detectors are
based on the sample KLDs, which is a random variable
itself [31] and therefore not reliable as a metric for the
detection. A more reliable detector shall utilize the different
statistical properties of the sample KLDs between secure
data distributions and KLDs between secure and false data
distributions. In this paper, we design a FDIA detector
based on the average symmetrised KLD matrix, which is an
empirical estimation of the first cumulant of the distribution
of the symmetrised KLDs.

KLD-based information fusion
On the other hand, given a set of posterior distributions
of the system’s states, the KLDs between those posteriors
can be used to generate a consensus distribution. The KLD-
based consensus filtering method was first studied by Bat-
tistelli et al. [32]. The authors defined the consensus as the
probability distribution which minimizes the average KLD
to neighbours’ local posteriors, and provided the proof of
guaranteed stability for such filtering method. The KLD-
based fusion method has been applied for the multi-object
estimation and multi-target density problem [33], [34]. More
recently, in [35], the KLD-based consensus filtering is inte-
grated with the hybrid Bernoulli random set filtering for
secure state estimation for CPSs, when the clustered sensors
and fusion nodes are under various attacks. Nevertheless,
the prior information can be shared by a subset of the
network, and therefore enlarges the performance gap be-
tween the centralized optimal solution and the distributed
solution. It is unclear that how the double-counting prior
information problem shall be avoided in those previous
studies. In this work we will address the problem of double-
counting prior information by dynamically weighting the
shared priors and local data likelihoods.

3 SYSTEM MODEL

In this section, we present the state-space model for the dy-
namic process and the distributed network. We also present
the models for probabilistic communications and false data
injection attacks. In the end, we give a overview of the
proposed solution.

3.1 System dynamics and distributed sensing
Consider a discrete linear time-invariant (LTI) system mon-
itored by a distributed network of N nodes. The state space
model of the dynamic and the distributed sensing network
is

xt = Axt−1 +wt, (1)
yi,t =Hixt + ei,t, (2)

where in the dynamic equation (1), xt ∈ RM is the multi-
dimensional system states,A is the system dynamic matrix,
and wt ∼ N (0,Σw) is the stochastic input process at
time t; in the distributed sensing equation (2), yi,t is the
measurement of node i at time t,Hi is the sensing matrix of
node i, and ei,t ∼ i.i.d N (0, σ2

eI) is the measurement noise.
As it is pointed out in [20], the sensing matrix Hi

are generally different across the network for different
nodes, meaning that each node is monitoring different sub-
dimensions of the states vector xt. For example, when xt
is a spatial-temporal signal and the network is a vehicular
network, each node in the network is measuring the sig-
nal at different locations. Nevertheless, the measurements
between different sensors are correlated. For example, the
covariance matrix Σw describes the spatial covariances of
the stochastic process wt. In case of a disconnected network
and therefore information fusion cannot be performed, node
i produces a local posterior pi(xt) solely based on yi,t.
This is implemented by a local Bayesian filter on node
i. The upper block of Figure 1(a) illustrates the model of
distributed sensing and the local Bayesian filter.

3.2 Probabilistic communications
The communication links of the distributed network at
time t is modelled with an undirected random graph
Gt = (V, Et), where V = {1, . . . , N} is the set of nodes
and Et is the set of edges which change according to t. For
nodes {i, j} ∈ V , the probability of establishing a commu-
nication link between i and j is Pr(i, j) depends on the
locations of the nodes. In wireless communication, Pr(i, j)
is a function of the distance between i and j and the channel
conditions. We adopt an exponentially decaying function,
which depends on the distance between a pair of nodes, to
model the probability of establishing a communication link
between i and j:

Pr(i, j) = exp(−λ||si − sj ||2), (3)
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Fig. 2. An illustration of the asynchronous communication. At node
i, the communication and the information fusion layers are running
concurrently. When an information fusion task Tc0 is executing, newly
received local posteriors (p1, p2, p3) are stored in the memory. When Tc1
starts, the information fusion task takes the information in the memory as
the input, and broadcast its output to neighboring nodes. The execution
time of a information fusion task depends on the batch size of received
local posteriors.

where si and sj are the coordinates of nodes i and j
respectively, and λ is the decay rate. Under poor radio prop-
agation condition, the decay rate λ is large and therefore
Pr(i, j) is degraded for i and j. If the communication link
(i, j) is successfully established at time t, node j is node
i’s neighbour, j ∈ Nt(i), and vice versa. At time t, node
i has the access to local posteriors of itself and from its
neighbours:

pi(xt) and {pj(xt) | j ∈ Nt(i)}.

Considering the time-variant network topology and the
probabilistic communications, the information are shared in
an asynchronized manner between neighbouring nodes. In
the network, a node processes the incoming information
and share its latest estimate of the system states via broad-
casting messages to its neighboring nodes. For example,
as illustrated in Figure 2, node i received local posteriors
({p1, p2, p3}) from its neighbors at different moments, while
node i’s previous iteration of information fusion is still
executing. Those newly received messages are stored in the
memory and will be used in the next iteration of information
fusion. Therefore, the execution time of the information
fusion task depends on the batch size of received local
posteriors.

3.3 The attack model

Next we present the FDIA model. Assuming that the at-
tacker is able to hijack node j and manipulate its measure-
ments by exploring the system’s vulnerabilities, the integrity
of information from node j is compromised.

Definition 1 (False Data Injection Attack). The distributed
sensing equation under the FDI attack is

y′j,t =Hjxt + ej,t + vj,t, (4)

where vj,t is the injected false data with configurable level of
variance σ2

v .

An illustration of the FDI attack model is shown in
the lower block of Figure 1(a), where vj,t is injected into
the sensor’s local measurement which then becomes the
input of the local Bayesian filter. For centralized systems,

especially the electrical power grids, intensive research
effort has been dedicated to constructing a smart attack
sequence {vj,t | t = 0, . . . , T}. We refer readers to [36]
for a comprehensive review. The most common idea is
to design the attack sequence such that it can bypass the
χ2 hypothesis test based on the measurement residual or
the Kalman prediction residual [10], [11]. However, in the
distributed CPS, it is infeasible for attackers to have global
access to raw measurement data or local Bayesian filters’
gains. Therefore it remains as a research question of how
to smartly construct false data sequences which can bypass
the distributed detection. Although it is not the focus of this
study, we will briefly discuss this question based on our
proposed FDIA detector in the next section.

3.4 An overview of the solution

At time t, node i is in possession of three information
elements: the information fusion result from previous time
step p+i (xt−1); the local measurements yi,t; and, in case
of Nt(i) 6= ∅, the local posteriors from its neighbours
{pj(xt) | j ∈ Nt(i)}. The goal is to produce a combined
estimate of current system states p+i (xt). The proposed so-
lution consists of three sequential steps which are executed
in an on-line manner: (a) local Bayesian filtering, (b) FDI
detection, and (c) consensus formulation. An overview of
the proposed solution is illustrated in Figure 1(c).

Based on the previous information fusion result
p+i (xt−1) and the dynamic model (1), a local predictive dis-
tribution p−i (xt) ∼ N (µ−i,t,Σ

−
i,t) is given by the Chapman-

Kolmogorov equation

p−i (xt) =

∫
p(xt | xt−1)p+i (xt−1)dxt; (5)

and the local posterior is

pi(xt) =
p(yi,t | xt)p−i (xt)∫
p(yi,t | xt)p−i (xt)dxt

. (6)

For the linear Gaussian dynamic system described in equa-
tions (1) and (2), the local filtering mean and covariance are
given by the closed-form solution (Kalman filter). For non-
linear dynamic system, the filtering mean and covariance
can be estimated using the sequential Monte Carlo (SMC)
methods, such as the particle filter [37]. In case of the current
neighbour set of node i is an empty set, the local posterior
will be used as the estimate of the current system states xt.
That is, if Nt(i) = ∅, p+i (xt) = pi(xt) ∼ N (µi,t,Σi,t).

Assuming Nt(i) 6= ∅. At time t, node i receives the
local posteriors {pj(xt) | j ∈ Nt(i)}. Using the proposed
FDIA detector in Section 4, node i then identifies the secure
subset of neighbours N∗t (i) ⊆ Nt(i). Thereafter, node i
combines the local posteriors from its secure neighbours and
produced an updated estimate p+i (xt), using the KLD-based
fusion method in Section 5.

4 FDIA DETECTION AND ANALYSIS

In this section, we design the FDIA detector for distributed
CPSs operated over probabilistic communication networks.
We also present a performance analysis for the proposed
FDIA detector.
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(a) The geometric interpretation (b) An average SKLD matrix (c) A dendrogram of clusters

Fig. 3. An illustrative example of FDIA detection with hierarchical clustering, using the average symmetrised KLD matrix. In this example, nodes
{1, 2, 3} are under FDIA. The matrix is built locally at node 9 at t = 500. The dendrogram shows the detection result at node 9.

(a) σ2
v/σ

2
e = 5 dB (b) σ2

v/σ
2
e = 10 dB (c) σ2

v/σ
2
e = 15 dB

Fig. 4. The empirical distribution density of symmetrised KLDs. In each sub figure, two distributions are visualized: the distribution of symmetrised
KLD between secure local posteriors; and the distribution of symmetrised KLDs between a secure posterior and a local posterior under FDIA. The
mean values of the distributions of symmetrised KLDs are marked by the vertical lines.

4.1 KLD-based FDI detection

Assuming Nt(i) 6= ∅, at time t, node i receives the local
posteriors {pj(xt) | j ∈ Nt(i)}. The goal is to identify local
posteriors which are produced by nodes under FDIA.

In the information geometry theory, the local posteriors
of node i and its neighbours can be viewed as points in
a manifold of probability distributions. In this regard, the
problem of detecting the FDIA can be intuitively interpreted
as the problem of finding a boundary of the sub-manifold
which consists of the secure local posteriors. See Figure 3(a)
for an illustration. A node is identified as under the FDIA
if it produces a local posterior which locates outside of the
boundary. Therefore, it is crucial to define a metric which
measures the distance between a pair of local posteriors, and
then find a proper threshold of the distance which defines
the decision boundary. The divergence between a pair of
local posteriors, pi(xt) and pj(xt), can be measured by the
KLD,DKL(pi || pj), which equals zero if and only if pi(xt) =
pj(xt). By constructing the matrix of symmetrised KLDs,
the FDIA can be detected by applying the clustering-based
detection techniques [38].

Nevertheless, there are two difficulties for identifying
the FDIA by clustering directly based on the symmetrised
KLDs. First, due to probabilistic communications and the
time-variant set of neighbours Nt(i), it is likely that node i
only evaluates the symmetrised KLD between a small num-
ber of local posteriors at time t. Second, the local posterior
produced by the local Bayesian filter is dependent of the

Algorithm 1 The KLD-based FDI detector
1: for all i ∈ V at time t = 0 do
2: initiate Di,t=0;
3: end for
4: for all i ∈ V at time t do
5: input pi(xt) and {pj(xt) | j ∈ Nt(i)}
6: for all (j, j′) ∈ Nt(i) do
7: Increase the counter cj,j′ by 1;
8: if cj,j′ = 1 then
9: Di,t(j, j

′) = DSKL(pj || pj′);
10: else
11: Update Di,t(j, j

′) with Equation (7);
12: end if
13: end for
14: Hierarchical classification based on Di,t;
15: return The set of secure neighbours N∗t (i);
16: end for

measurement yi,t, which is a random variable, hence the
symmetrised KLD matrix evaluated at time t is a random
matrix. The clustering method based on the elements of the
random symmetrised KLD matrix is unreliable.

In light of the above discussion, we design a FDIA
detector based on the average symmetrised KLD. To begin
with, node i initiates a N × N average symmetrised KLD
matrix, denoted as Di,t=0. At time t, node i updates the
elements Di,t(i, j) = Di,t(j, i) for node j ∈ Nt(i) with
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the average symmetrised KLD. The elements of the average
symmetrised KLD matrix can be evaluated in an on-line
manner

Di,t(i, j) =Di,t−1(i, j) +
DSKL(pi || pj)−Di,t−1(i, j)

Ni,j
,

(7)
where Ni,j is the counter value of node j being the neigh-
bour of node i since the beginning of time. Similarly, the
elements Di,t(j, j

′) = Di,t(j
′, j) can be updated for the

pair of nodes (j, j′) ∈ Nt(i). As the time evolves, each node
constructs the average symmetrised KLD matrix for the
network. Finally, the hierarchical clustering and the decision
boundary are applied to the latest average symmetrised
KLD matrix. The KLD-based FDIA detector is summarized
in Algorithm 1.

Figure 3(b) shows an example of the average sym-
metrised KLD matrix built by node 9 in a N = 9 network
at t = 500, with σ2

v/σ
2
e = 10 dB. Node i detects the

FDIA by using the average symmetrised KLD matrix as the
distance matrix for hierarchical clustering and cutting the
distance tree at the decision boundary α. An example of the
distance tree is shown in Figure 3(c), which is a dendrogram
constructed based on the matrix of Figure 3(b).

4.2 Performance analysis
In this subsection, we present a performance analysis for the
KLD-based FDIA detector. Since the decision rule is based
on the average symmetrised KLD matrix, we are interested
in the statistical properties of the symmetrised KLD between
a pair of local posteriors: for example, the distribution of
symmetrised KLDs and the its tail probability. To proceed
with our analysis, we make the following assumptions
without loss of generality: first, the network of nodes are sta-
bilized in locations where their local sensor measurements
have uniform information gains (Kalman gains); second, the
network of nodes share the same prior distribution.

In our linear Gaussian system, the KLD between a pair
of local posteriors, pi(xt) and pj(xt), is given by

DKL(pi || pj) =
1

2
[Tr(Σ−1j,tΣi,t)−M + ln(

|Σj,t|
|Σi,t|

)︸ ︷︷ ︸
deterministic

+ (µj,t − µi,t)>Σ−1j,t (µj,t − µi,t)︸ ︷︷ ︸
a quadratic form of random variables

],

(8)

where Σj,t = Σi,t due to the assumptions of the uniform
Kalman gains and the shared prior. Therefore, the constant
part of (8) is equal to zero, and DKL(pi || pj) = DKL(pj || pi)
in this special case.

The distribution of DKL(pi || pj) is therefore determined
by the distribution of the quadratic form

(µj,t − µi,t)>Σ−1j,t (µj,t − µi,t), (9)

where Σ−1j,t is a symmetric positive definite matrix by the
definition of covariance matrices, and (µj,t − µi,t) is a M -
dimensional multivariate Gaussian variable. It is a famous
problem in mathematical statistics to study the distribution
of the quadratic form of Gaussian variables with symmetric
and non-negative definite coefficient matrices. Based on [39]
and [40], the distribution of such a quadratic form can be

approximated with a general χ2 distribution (see Figure
4). We derive the fist cumulant (the mean value) of the
symmetrised KLDs between a pair of secure local posteriors
in the following.

Lemma 1. Assume the equal Kalman gains GKF of the sensor
measurements, and the shared prior distribution N (µ0,Σ0), the
distribution of symmetrised KLD between a pair of secure local
posteriors, pi(xt) and pj(xt), can be approximated with a general
χ2 distribution with the kth cumulant [40],

ck = Tr
(
(Σ0Σ(i,j))

k
)
+kµ>(i,j)(Σ0Σ(i,j))

k−1Σ0µ(i,j), (10)

where

µ(i,j) = GKF(Hj,t −Hi,t)(E[xt]− µ0), (11)

and

Σ(i,j) = GKF[(Hj,t −Hi,t)Σw(Hj,t −Hi,t)
> + 2σ2

eI]G
>
KF.

(12)

Proof. Consider the quadratic form in (8),

(µj,t − µi,t)>Σ−10 (µj,t − µi,t), (13)

where (µj,t − µi,t) ∼ N (µ(i,j),Σ(i,j)), and Σ−10 is a sym-
metric positive definite covariance matrix. Given the uni-
form Kalman gains GKF and the shared prior distribution
N (µ0,Σ0), the mean of (µj,t − µi,t) is

µ(i,j) = E[µj,t − µi,t]
= E[GKF(yj,t −Hj,tµ0)−GKF(yi,t −Hi,tµ0)].

(14)

Plug in the linear measurement equation in (2), we have

µ(i,j) = E[µj,t − µi,t]
= GKF(Hj,t −Hi,t){E[xt + ej,t − ei,t]− µ0},
= GKF(Hj,t −Hi,t){E[xt]− µ0}

(15)

If the priorN (µ0,Σ0) is produced by an unbiased estimator
of xt, for instance, a decentralized Kalman filter without
interference from false data, the residual {E[xt]−µ0} equals
to zero and the random variable (µj,t − µi,t) has therefore
zero mean.

The covariance of (µj,t − µi,t), Σ(i,j), is given by

E[(µj,t − µi,t − µ(i,j))(µj,t − µi,t − µ(i,j))
>]

=GKF(Hj,t −Hi,t){E[(ej,t − ei,t)(ej,t − ei,t)>]
+ E[(xt − E[xt])(xt − E[xt])>]}(Hj,t −Hi,t)

>G>KF

=GKF[(Hj,t −Hi,t)Σw(Hj,t −Hi,t) + 2σ2
eI]
>G>KF,

(16)

where σ2
eI is the variance of noise, and Σw is the conditional

variance of xt given xt−1 is fixed. Given the mean and the
covariance of the Gaussian random variable (µj,t − µi,t),
the kth cumulant of the quadratic form is given by

ck = Tr
(
(Σ0Σ(i,j))

k
)
+kµ>(i,j)(Σ0Σ(i,j))

k−1Σ0µ(i,j). (17)

After approximating the distribution of the symmetrised
KLDs with a general χ2 distribution, we are able to approx-
imate the probability

Pr
(
(µj,t − µi,t)>Σ−1j,t (µj,t − µi,t) > α

)
(18)
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with the tail probability Pr
(
χ2
l (δ) > α

)
. The parameters

{l, δ} of the general χ2 distribution can be determined
according to the cumulants ck derived previously. Following
the similar technique, we can also approximate the dis-
tribution of symmetrised KLDs between the secure local
posterior and the local posterior under FDIA, and calculate
its tail probabilities.

In light of the above analysis, we remark the following
properties of the KLD-based FDIA detector. First, we give
a statistical explanation of the average symmetrised KLD
matrix.

Remark 1. At time t, sensor i possesses an average symmetrised
KLD matrixDi,t. Its elementDi,t(j, j

′) is an empirical estimate
of the first cumulant of the distribution of symmetrised KLDs
between local posteriors from the pair of nodes (j, j′).

The reliability of the average symmetrised KLD matrix,
however, largely depends on the connectivity of the net-
work. For a strongly connected network, each sensor has
more opportunities to exchange information with the rest
of the network and produce a better empirical estimation
of the first cumulant; for a weakly connected network, the
empirical estimation is based on only a small number of
sample KLDs and therefore not reliable. The FDIA detector
based on an unreliable average symmetrised KLD matrix
leads to high detection error rate.

Another key factor of designing the KLD-based FDIA
detector is the configuration of decision boundary α.

Remark 2. Let c1 be the maximum first cumulant of the sym-
metrised KLD between posteriors produced by a pair of secure
nodes, and c′1 be the minimum first cumulant of the symmetrised
KLD between posteriors from a secure node and a node under
FDIA. The detector is able to identify the FDIA if c1 < c′1 if the
decision boundary α satisfies the condition

c1 < α < c′1. (19)

In the early stage of the iterative FDIA detection proce-
dure (Algorithm 1), the reliability of average symmetrised
KLD matrices {Di,t | i ∈ V} can be unsatisfying, which will
lead to high detection error rate. We provide an analysis of
the error rate in the next result.

Theorem 1. For secure node i at time t, the expected FDIA
detection error rate Pe is given by

Pe =
1

|Nt(i)|
{
∑

j∈N∗t (i)

∏
j′∈{N∗t (i)\j}

Pr
(
Di,t(j, j

′) > α
)

+
∑

j∈{Nt(i)\N∗t (i)}

∏
j′∈N∗t (i)

[1− Pr
(
Di,t(j, j

′) > α
)
]}.

(20)

Proof. For a secure node i at time t, letNt(i) be its neighbour
nodes and N∗t (i) ⊆ Nt(i) is the set of secure neighbour
nodes. The expected FDI detection error rate is defined as

expected number of errors
number of neighbours

,

where the number of neighbours, |Nt(i)|, depends on the
size of the network and the channel condition described in
(3); and the expected number of errors consists of two types

of errors, type 1 and type 2 errors. For a node j ∈ Nt(i),
there are two possible miss-detection scenarios:
• Type 1 error: j is secure, but detected as under FDIA.

In this scenario, the minimum distance between j and
j′ ∈ {N∗t (i) \ j} is larger than the decision boundary α,

Pe,type 1(j) = Pr
(

min
j′∈{N∗t (i)\j}

Di,t(j, j
′) > α

)
=

∏
j′∈{N∗t (i)\j}

Pr
(
Di,t(j, j

′) > α
)
,

(21)

and the expected number of type 1 errors is given by∑
j∈N∗t (i)

Ptype 1(j). (22)

• Type 2 error: j is under FDIA, but detected as secure.
In this scenario, the minimum distance between j and
j′ ∈ {N∗t (i) \ j} is smaller than the decision boundary
α,

Pe,type 2(j) = Pr
(

min
j′∈N∗t (i)

Di,t(j, j
′) < α

)
= 1− Pr

(
min

j′∈N∗t (i)
Di,t(j, j

′) > α
)

= 1−
∏

j′∈N∗t (i)

Pr
(
Di,t(j, j

′) > α
) (23)

and the expected number of type 2 errors is given by∑
j∈{Nt(i)\N∗t (i)}

Ptype 2(j). (24)

To conclude, the expected detection error rate is given by

Pe =

∑
j∈N∗t (i) Ptype 1(j) +

∑
j∈{Nt(i)\N∗t (i)} Ptype 2(j)

|Nt(i)|
.

(25)

As mentioned previously, the reliability of the average
symmetrised KLD matrix plays a key role in determining
the performance of the FDIA detector. The performance of
the detector can be improved by enhancing the commu-
nication channel condition, which will be demonstrated in
Section 6.

5 KLD-BASED INFORMATION FUSION

After identifying the secure neighbours N∗t (i) ⊆ Nt(i),
node i proceeds to formulate a consensus distribution based
on the secure local posteriors.

Let {pj(xt) | j ∈ N∗t (i)} be the set of secure local
posteriors which can be accessed by node i. The consensus
distribution p+i (xt) is defined as the following.

Definition 2. For node i, given its local posterior pi(xt) and
its secure neighbours’ local posteriors {pj(xt) | j ∈ N∗t (i)}, the
consensus is defined as

p+i , argmin
q

πiDKL(q||pi) +
∑

j∈N∗t (i)

πjDKL(q || pj), (26)

where πi and πj , j ∈ N∗t (i), are associated weights with the
summation equals to one.

The equation (26) defines that the consensus distribu-
tion minimizes the weighted average KLD to pi(xt) and
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{pj(xt) | j ∈ N∗t (i)}. In the minimization problem, the
loss function consists of two parts: the first element is the
KLD between the consensus distribution and node i’s local
posterior; the second element is the summation of KLDs
between the consensus distribution and the local posteriors
from node i’s secure neighbours. It is insightful to point out
that the KLD minimization problem can be related to other
existing works. In Bayesian inference, the minimization is
similar to the general belief updating framework proposed
in [41], where the summation of KLDs is selected as the
loss function. From the multi-agent system’s perspective,
the minimization yields a consensus on the local filtering
distributions [32].

Similar to the result in [32], the solution of the KLD
minimization problem (26) is reported here.

Theorem 2 (KLD-based consensus information fusion). For
node i (i ∈ V), given the local posteriors pi(xt) and {pj(xt) | j ∈
N∗t (i)}, the solution of the KLD minimization problem in (26) is

p+i (xt) =
pi(xt)

πi
∏
j∈N∗t (i) pj(xt)

πj∫
pi(xt)πi

∏
j∈N∗t (i) pj(xt)

πjdxt
. (27)

Furthermore, for Gaussian variables, the result in Theo-
rem 2 can be simplified to

p+i (xt) = pi(xt)
πi

∏
j∈N∗t (i)

pj(xt)
πj ∼ N (µ+

i,t,Σ
+
i,t), (28)

where the mean and covariance are obtained by convex
combinations of means and covariances of local posteriors,

(Σ+
i,t)
−1 = πiΣ

−1
i,t +

∑
j∈N∗t (i)

πjΣ
−1
j,t , (29)

(Σ+
i,t)
−1µ+

i,t = πiΣ
−1
i,t µi,t +

∑
j∈N∗t (i)

πjΣ
−1
j,tµj,t, (30)

which can be computed in a recursive manner. The above
solution has the similar form as the method of Fisher
information matrix (FIM) weighted averaged of maximum
likelihood estimations [42]. Indeed, both methods pursue
the optimal combination of estimates.

5.1 Dynamic weighting of local posteriors
Another challenging question emerges from the dynamic
topology in a mobile network poses: how to assign proper
weights for the local posterior and the secure neighbours’
estimates? That is, for each node i, we need to deter-
mine πi and πj , j ∈ N∗t (i), under the condition of
πi +

∑
j∈N∗t (i) πj = 1.

In the mobile network, each node has a time-variant
degree (number of connections to other nodes). The high
degree a node has, the more information sources it holds.
The local posterior from a highly connected node is built
based on more estimates from its secure neighbours (i.e.,
secure information source), and shall be assigned with a
higher weights, comparing to the local posterior from a
secure neighbour with lower degree. To address this issue,
for each node, we design an auxiliary message sent together
with its local posterior to the neighbour nodes. The message
contains an integer number which indicates how many se-
cure information sources contributes to the node’s previous
consensus distribution.

Remark 3. For node i, the number of secure information sources
contributes to its previous consensus p+i (xt−1) is |N∗t−1(i)| (see
Theorem 2). Since the local posterior pi(xt) is updated based on
p+i (xt−1) via the local Bayesian filter (6), |N∗t−1(i)| is also an
indicator of the informativeness of pi(xt).

Therefore, for node i at time t, besides the local pos-
teriors from itself and its secure neighbours {pi(xt)} ∪
{{pj(xt) | j ∈ N∗t (i)}}, it also possesses the indicators
|N∗t−1(i)| and |N∗t−1(j)|, ∀j ∈ N∗t (i). Given those indicators,
we design the weights

πti =
|N∗t−1(i)|

|N∗t−1(i)|+
∑
j∈N∗t (i) |N

∗
t−1(j)|

, (31)

πtj =
|N∗t−1(j)|

|N∗t−1(i)|+
∑
j∈N∗t (i) |N

∗
t−1(j)|

, (32)

for the local posteriors from node i itself and its secure
neighbours j ∈ N∗t (i). Note that πti and πtj are time-variant,
due to the dynamic topology of the mobile network and
therefore the set of secure neighbours N∗t (i). Finally, the
dynamic weights are used in formulating the consensus in
Theorem 2.

5.2 The shared prior in formulating consensus
Although that the consensus-based information fusion is
intuitive and has shown its efficiency in studies such as [32].
There is a hidden risk of double-counting the information
from the same prior, which has not been properly addressed
in previous studies. In this section, we present analytic
results which reveal the double-counted prior information,
and provide a method to mitigate this problem.

Consider a simple example illustrated in Figure 5. In the
case of 5(a), two nodes started from the same prior p0(xt)
and then each obtain a local measurement (y1,t or y2,t). The
local Bayesian update gives

p1(xt) ∝p0(xt)p(y1,t | xt), (33)
p2(xt) ∝p0(xt)p(y2,t | xt). (34)

Given the same degrees of two nodes, the local posteriors
from a node itself and its neighbour are weighted uniformly.
The consensuses reached by both nodes are

p+1 (xt) = p+2 (xt) ∝ p0(xt)p(y1,t | xt)
1
2 p(y2,t | xt)

1
2 . (35)

Comparing to the case of centralized Bayesian update in
Figure 5(b), where the updated estimate is

p(xt) ∝ p0(xt)p(y1,t,y2,t | xt) (36)

we see that not only the likelihood p(y1,t,y2,t | xt)
from the data are approximated by the composition
p(y1,t | xt)p(y2,t | xt), but also down weighted by 1

2 . In
other words, in the consensus formulated by Theorem 2,
the information from the prior is relatively over weighted,
comparing to the optimal Bayesian update. Formally, in the
following proposition, we reveal the problem of double-
counting information from the prior, when formulating
consensus.

Lemma 2. In a strongly connected network with the same shared
prior, when the size of network increases to infinity, the consensus
reached by the network converges to the prior.
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(a)

(b)

Fig. 5. An illustrative example of double-counting the information from
the same prior, using the consensus-based fusion in Theorem 2. In 5(a),
the same prior used in local Bayesian updates are over-weighted in the
consensus, when compare to the centralized Bayesian updated in 5(b).

Proof. Consider a strongly connected network of sizeN , and
the same prior p0(xt) is shared by all nodes. The consensus
formulated by node i in the network is given by

p+i (xt) ∝ p0(xt)
∏

j∈{1,...,N}

p(yj,t | xt)
1
N , (37)

where 1/N is the uniform weight for local posteriors. When
N → ∞, the weights on the composite likelihoods from
data goes zero. Therefore,

lim
N→∞

p+i (xt) = p0(xt). (38)

From the above analysis, we understand that there will
be a gap of estimation accuracy (for example, mean square
error (MSE)) between the optimal centralized Bayesian up-
date and the distributed consensus formulation, even when
the network is strongly connected. And the gap will become
bigger when the size of network increases. This gap comes
from two factors: 1, double-counting the information from
the same prior; 2, the approximation of full likelihood with
the composite likelihood. While the gap caused by the
second factor is an inevitable and small (given the spatial-
temporal data) price to pay for distributed systems; the gap
due to the first factor is the major concern and shall be
eliminated if possible. In the next, we present methods for
properly weighting the prior.

5.3 Dynamic weighting of data likelihood and prior

Based on the previous discussion, when the network is
sharing the same prior, each node need to down weight the
prior and increase the weight for the likelihood of the latest
local measurement, in order to eliminate the double-counted
information from the same prior in the consensus.

Considering the illustrative example in Figure 5 again,
if both nodes increase the weights for their local data like-
lihoods by 2 (the number of secure neighbours plus a node
itself), the local Bayesian update gives

p′1(xt) ∝p0(xt)p(y1,t | xt)2, (39)

p′2(xt) ∝p0(xt)p(y2,t | xt)2. (40)

Algorithm 2 Secure Information Fusion
1: for all i ∈ V at time t do
2: input p+i (xt−1) and yi,t
3: Compute p−i (xt) using p+i (xt−1);
4: Compute pi(xt) using p−i (xt) and yi,t;

// Local Bayesian Filtering
5: if Nt(i) = ∅ then
6: p+i (xt) = pi(xt);
7: else
8: Obtain N∗t (i) by calling Algorithm 1.

// FDIA detection
9: if N∗t (i) = ∅ then

10: p+i (xt) = pi(xt);
11: else
12: Compute p+i (xt) using (43);

// Consensus formulation with dynamic weights
13: end if
14: end if
15: return p+i (xt);
16: end for

Remark 4. For the linear Gaussian system in (1) and (2), the
increased weights on local data likelihood is effectively equivalent
to the increased Kalman gain. Although the local Bayesian update
and the Kalman gains are optimal in the case of an isolated node,
they are not optimal if the local posterior will be used in the
further consensus formulation. Therefore, in order to eliminate
double-counting the same prior, we want to increase the Kalman
gain, such that the local posterior are more responsive to the local
measurement.

Thereafter, the consensus formulated at each node is

p′+1 (xt) = p′+2 (xt) ∝ p0(xt)p(y1,t | xt)p(y2,t | xt), (41)

which is an approximation of the centralized Bayesian
update with the composite likelihood and the properly
weighted prior. Formally, we present the following method
for distributed consensus formulation without double-
counting the information from the same prior.

Theorem 3 (Consensus with Properly Weighted Data and
Prior). Assume the network of size N is sharing the same prior
p0(xt) and strongly connected. For node i (i ∈ V), the local
Bayesian update with the increased weight on data is given by

p′i(xt) ∝ p0(xt)p(yi,t | xt)N , (42)

and the consensus formulated by node i is

p+i (xt) ∝ p0(xt)
∏

j∈{1,...,N}

p(yj,t | xt), (43)

which is an approximation of the centralized Bayesian update with
the properly weighted data and prior.

The proof of the above results naturally follows our
previous analysis and therefore omitted here.

Nevertheless, a problem rises from the mobility of the
network is that, the network is not always strongly con-
nected and therefore does not share the same prior. Even
when the network started with the same initial prior p0(x0)
at time t = 0, after a few steps, due to their different
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(a) Trajectories (b) The variance map of node 3 (c) Convergence of FDI detec-
tion

(d) Distribution of estimation er-
rors

Fig. 6. The case of FDI + high probability of connections (λ = 0.01). The secure and corrupted nodes are marked with black dots and red crosses,
respectively.

(a) Trajectories (b) The variance map of node 3 (c) Convergence of FDI detec-
tion

(d) Distribution of estimation er-
rors

Fig. 7. The case of FDI + low probability of connections (λ = 0.1). The secure and corrupted nodes are marked with black dots and red crosses,
respectively.

paths and neighbour sets, the priors used in local Bayesian
updates diverge and become intractable.

To address this issue, we propose the following solution
for dynamically weighting the data and prior. Note that
although the number of secure neighbours differs from node
to node and varies according to the time, but in the long run,
each node has its average number of neighbours (degree),
especially when the mobile network stabilize at locations
with maximum information gains (illustrated by the exam-
ples and simulations in following sections). Therefore, we
use the average degree of a node as the increased weight for
its local data likelihood,

p(yi,t | xt)1+βE[|N
∗
t (i)|], (44)

where E[|N∗t (i)|] is the time-averaged number of secure
neighbours for node i up to the current time t, and 0 ≤ β ≤
1 is the linear coefficient which can be tuned based on the
topology of the network. For the linear measurement equa-
tion in (2), yi,t is an affine transformation of xt. In this case,
increasing the weight of the data likelihood is equivalent to
shrinking yi,t’s variance (HiΣ

−
i,tH

>
i +Σei

) by 1
1+βE[|N∗t (i)|]

,
or increasing the Kalman gain by 1 + βE[|N∗t (i)|].

In summary, for node i, given the previous information
fusion result p+i (xt) and the latest measurements yi,t, the
integrated secure information fusion solution is presented
in Algorithm 2.

6 SIMULATION

In this section, we present an application of the proposed
solution for monitoring the spatial-temporal signals in a
distributed vehicular sensor network. An example of such
scenario is monitoring the dynamic of air and sound pollu-
tion in urban environment with sensors based on unmanned
ground or aerial vehicular systems [43].

Consider a two-dimensional space spanned by a set
of coordinates {sm = (s1m, s

2
m) | s1m ∈ {1 . . . 30}, s2m ∈

{1 . . . 30}}, and xt ∈ RM as the vectorized target spatial-
temporal signal, where M = 302 = 900. The temporal
dynamic of xt is modelled by the linear equation of (1),
where A = 0.9IM is a diagonal matrix. The spatial dy-
namic of xt is encoded in the covariance function of the
input wt: cov(wsm,t,ws′m,t

) = α2 exp(
−||sm−s′m||2

θ2 ), which
indicates that the spatial covariance decreases exponentially
according to the Euclidean distance. In this example, the
hyper-parameters are set to α = 0.1 and θ = 0.01.

A networked vehicular sensing system of N nodes is de-
ployed in the field to continuously monitor xt, with proba-
bilistic communication channels between each pair of nodes
in the network. The communication successful rate de-
creases exponentially according to the Euclidean spatial dis-
tance between a pair of nodes (rate = exp(−λ||sm−s′m||2)),
where λ is the decay rate representing the connectivity of
networks. The number of nodes under FDI attacks is fixed
to one third of the total number of nodes in the network.
The task for each node is to identify the neighbours under
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(a) The average RMSE (b) The percentage of classification errors

Fig. 8. Simulation results with non-weighted prior.

(a) The average RMSE (b) The percentage of classification errors

Fig. 9. Simulation results with dynamically weighted prior.

FDI attacks, and perform secure information fusion. After
obtaining the latest estimation of the signal by fusing the
information from secure neighbours, each vehicular sensor
moves to a new location according to the maximum infor-
mation gain principle [44].

6.1 An illustrative example

We first present an example of a small scale network with
6 nodes. Among them, 2 nodes are under FDI attack with
σ2
v/σ

2
e = 10 dB. The network is deployed in the field to

monitor x(t) for t = 1, . . . , 500. In particular, we focus on
two performance metrics during the simulation: the number
of detection errors and the root mean square error (RMSE),
both averaged over the secure subset of the network. In
the FDI detection problem, there are two types of detection
errors. Type 1 errors, or false positive errors, are the errors
that nodes are in fact secure but misclassified as under
FDI attack. On the other hand, Type 2 errors, or false
negative errors, are the errors are in fact under FDI attack
but misclassified as secure.

The case of FDI + high probability of connections

Figure 6 illustrates the simulation results under only FDI
attack with strong connectivity. The network is initialized
at random locations within the field. After 500 iterations,
the four secure nodes stabilized at the locations which
approximately formulate a centroidal Voronoi tessellation

(CVT) of the field, by following the paths of maximum in-
formation gain (Figure 6(a)). At t = 500, node i successfully
establishes communication links with all of the rest network,
which returns low estimation variances (or high certainty)
around the locations of 4 secure nodes (Figure 6(b)). Note
that although the 2 corrupted nodes are also connected to
node 3, their local posteriors are excluded and contribute
no reduction of variances, as node 3 successful detect the
FDI attacks. The average number of Type 1 & 2 errors, and
the average number of neighbours are plotted in Figure 6(c).
With λ = 0.01, the network remains as almost a complete
graph over the entire simulation time. This strong connected
network enjoys fast detection of FDI attacks: the Type 2
error converges to zero within less than 100 simulation
time. Finally, the empirical cumulative probability function
(CDF) of estimation RMSE is plotted in Figure 6(d). The
CDF of RMSE given by the centralized and local KFs are
also plotted, serving as the optimal bound and the worst
case of estimation performance. It can be observed that the
proposed secure information fusion solution returns RMSEs
which are very close to the optimal results given by the
centralized KF.

The case of FDI + low probability of connections
Figure 7 illustrates the simulation results under FDI at-
tack and low probability of connections. Under the low
probability of connections (λ increases from 0.01 to 0.1),
the probability of successfully establishing a communica-
tion link between a pair of nodes is significantly reduced.
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Consequently, the secure nodes become less stable in terms
of their locations. They intend to orbit the centre of field
(Figure 7(a)). The variance map of node i at t = 500 is illus-
trated in Figure 7(b). Comparing to the high probability of
connections case, the upper left secure node is disconnected
from node 3, leading to higher estimation variance around
the upper left area. Furthermore, the reduced averaged
number of neighbours leads to larger number of Type 1
& 2 errors and slower convergence rate. As it is shown in
Figure 7(d), the Type 1 & 2 errors converge to zero around
t = 200, which takes double simulation time comparing
to the high probability of connections. Finally, in Figure
7(d), the RMSE given by the local KF is slightly improved
comparing to its counterpart in Figure 6(d), due to the fact
that nodes orbit in the field and have higher information
gain individually. However, after performing information
fusion, the estimation performance of the central KF and
the consensus methods degrade comparing to the high
probability of connections case. And the gap between CDFs
of RMSEs given by the KF and the consensus methods
increases, due to the consensus is formulated based on less
number of neighbours.

6.2 Simulation results

Next we investigate the impact of network connectivity
levels (weak, median, and high) and the effectiveness of
the dynamically weighted prior on the secure information
fusion by carrying out Monte Carlo simulations. The con-
figuration is similar to the illustrative example, except the
ratio between the variance of injected data and the variance
of the sensor noise is set to 5 dB, which makes it even harder
to detect the FDI attacks. The network size varies from
N = 6 to 18. Again, we are interested in two performance
metrics, the RMSE of estimation and the number of errors in
detection. The simulation results with non-weighted prior
are shown in Figure 8; and the results with dynamically
weighted prior are shown in Figure 9.

The impact of network connectivity
In both Figures 8(a) and 9(a), the performance of local
Bayesian is shown as the RMSE upper bound, which is the
worst case scenario when all nodes solely depend on their
local posterior and no information fusion is carried out; and
the performance of a centralized KF is shown as the opti-
mal RMSE lower bound, which requires the simultaneous
access of all sensor’s data and is therefore unrealistic in
the distributed system. Under the different level of network
connectivity, the performances of the proposed secure infor-
mation fusion solution are between the centralized KF and
the local Bayesian filter. The better network connectivity is
provided, the lower RMSE is achieved.

The detection errors and their percentage in the average
number of neighbours are shown in Figures 8(b) and 9(b).
Several observations are remarked here. First, the average
number of neighbours increases as the network size grows
(higher density within the fixed field area) and the network
connectivity improves (from λ = 0.1 to 0.01). Second, more
important, the percentages of the detection errors (type 1 & 2
combined) in the number of neighbours are more or less sta-
ble as the network size increases, but notably reduced when

the connectivity is improved. This phenomenon shows the
importance of communication in the distributed FDI attack
detection problem. In other words, when a node receives
larger number of local posteriors, it is able to establish the
average divergence matrix with faster convergence speed,
and therefore detect the FDI attack with less number of
misclassification.

The effectiveness of dynamically weighted likelihoods
and priors
Finally, we validate the effectiveness of dynamically
weighted likelihoods and priors by comparing results in
Figures 8 and 9.

In terms of RMSE, when the prior is not properly
weighted, we notice that there is a large cap (≈ 0.04)
between the centralized KF and the consensus formulation,
even when the network is highly connected (λ = 0.01).
However, with the dynamically weighted priors, the gap be-
tween the centralized KF and the consensus formulation is
significantly reduced (≈ 0.01). In other words, by increasing
the Kalman gain of local measurement and eliminating the
double-counted prior, the performance of consensus formu-
lation is much closer to the centralized KF. This comparison
also highlights the importance of our theoretical analysis in
Section 5.2: without realizing the risk of double-counting the
prior, the performance gain of increasing network size from
6 to 18 or improving the network connectivity from λ = 0.1
to 0.01 is limited; only when the data likelihoods and
priors are properly weighted, the consensus formulation can
achieve satisfying performance in mobile and distributed
systems.

7 CONCLUSIONS AND FUTURE WORK

In this work, we present a secure information fusion solu-
tion for the distributed CPS under FDIA with probabilistic
communications. The proposed solution relies on the ex-
change of local posteriors instead of raw sensor measure-
ments. In the FDIA detection step, a detector is designed
based on the average symmetrised KLDs between a pair of
local posteriors. We derive the approximated distribution
of the symmetrised KLDs and analyse the expected error
rate. In the information fusion step, we proposed a KLD-
based consensus formulation with dynamically weighted
common priors and local data likelihoods. The proposed
solution is applied to spatial-temporal signal monitoring
problem with a mobile sensor network, and the results
show promising FDIA detection and estimation accuracy.
For the future work, it is interesting to investigate the smart
attacking schemes toward the proposed detector in a fully
distribution system with probabilistic communications.
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