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Abstract: We propose novel one-sided omnibus tests for independence between two

multivariate stationary time series. These new tests apply the Hilbert–Schmidt

independence criterion (HSIC) to test the independence between the innovations of

the time series. We establish the limiting null distributions of our HSIC-based tests

under regular conditions. Next, our HSIC-based tests are shown to be consistent.

A residual bootstrap method is used to obtain the critical values for the tests,

and its validity is justified. Existing cross-correlation-based tests examine linear

dependence. In contrast, our tests examine general dependence (including linear

and non-linear), providing researchers with information that is more complete on

the causal relationship between two multivariate time series. The merits of our

tests are illustrated using simulations and a real-data example.

Key words and phrases: Hilbert-Schmidt independence criterion, multivariate time

series models, non-linear dependence, residual bootstrap, testing for independence.

1. Introduction

Before applying a sophisticated method to describe the relationship between

two time series, it is important to first determine whether they are independent. If

the dependence exists, causal analysis techniques, such as copula and multivariate

modeling, can be used to investigate the relationship between them, potentially

leading to interesting insights or effective predictive models. However, if two time

series are independent, one should use two independent parsimonious models;

see, for example, Pierce (1977); Schwert (1979); Hong (2001a); Lee and Long

(2009); Shao (2009); Tchahou and Duchesne (2013) for empirical examples in

this context.

Most existing methods used to test independence between two multivari-

ate time series models apply a measure based on cross-correlations. Specifically,
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they check whether the sample cross-correlations of the model residuals are sig-

nificantly different from zero, up to a fixed lag or all valid lags. The former in-

cludes the portmanteau tests (Cheung and Ng (1996); El Himdi and Roy (1997);

Pham, Roy and Cédras (2003); Hallin and Saidi (2005, 2007); Robbins and Fisher

(2015)), and the latter (with the aid of kernel smoothing) is a type of spectral

test (Hong (2001a,b); Bouhaddioui and Roy (2006)). Note that the idea of us-

ing cross-correlations in this way is a natural extension of the seminal studies of

Haugh (1976) and Hong (1996) for univariate time series models. However, in

many circumstances, this conveys uncorrelatedness, rather than independence.

In general, the aforementioned tests are designed to investigate linear de-

pendence (i.e., the cross-correlation in the mean, variance, or higher moments)

between two model residuals, and hence may lack power in detecting a non-linear

dependence structure. A significant body of research has documented non-linear

dependence relationships between various economic fundamentals; see, for ex-

ample, Hiemstra and Jones (1994); Wang, Wu and Yang (2013); Choudhry, Pa-

padimitriou and Shabi (2016); Diks and Wolski (2016), among others. However,

few studies attempt to account for both linear and non-linear dependence, both

of which are important characteristics.

To examine the general dependence structure, a test needs a direct measure

of independence. In the last decade, the Hilbert–Schmidt independence criterion

(HSIC) of Gretton et al. (2005) has been used extensively in many fields. Works

that provide one- or two-sample independence tests based on the HSIC include

those of Gretton et al. (2008) and Gretton and Györfi (2010) for observable inde-

pendent and identically distributed (i.i.d.) data, and Zhang et al. (2009); Zhou

(2012); Fokianos and Pitsillou (2017) for observable dependent or time series

data. The latter two studies applied the distance covariance (DC) of Székely,

Rizzoand Bakirov (2007), whereas Sejdinovic et al. (2013) showed that the HSIC

and DC are equivalent. When the data are unobservable and are derived from

a fitted statistical model (e.g., the estimated model innovations), the estimation

effect has to be considered. The original procedure based on the HSIC or DC

is no longer valid; thus, we need to modify the procedure for testing purposes.

However, very little work has been done in this context. Two exceptions are Sen

and Sen (2014) and Davis et al. (2018) for one-sample independence tests. The

former focused on a regression model with independent covariates, and the latter

considered vector AR models, but without providing a rigorous way to obtain

the critical values of the related test.

This paper proposes novel one-sided tests for the independence of two sta-
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tionary multivariate time series. These new tests apply the HSIC to examine

the independence between the unobservable innovation vectors of both time se-

ries. Of these tests, the single HSIC-based test is tailored to detect general

dependence between these two innovation vectors at a specific lag m, and the

joint HSIC-based test is designed for this purpose up to certain lag M . Under

regular conditions, the limiting null distributions of our HSIC-based tests are

established. Next, our HSIC-based tests are shown to be consistent. Moreover, a

residual bootstrap method is used to obtain the critical values for our tests, and

its validity is justified. Our methodologies are applicable for general specifications

of time series models driven by i.i.d. innovations. By choosing different lags, our

tests provide investigators with information that is more complete on the gen-

eral dependence (including both linear and non-linear) relationship between two

time series. Finally, the importance of our HSIC-based tests is illustrated using

simulations and a real-data example.

This paper is organized as follows. Section 2 introduces our HSIC-based

test statistics. Section 3 studies the asymptotic properties of our HSIC-based

tests. A residual bootstrap method is provided in Section 4. Simulation results

are reported in Section 5. A real-data example is presented in Section 6, and

concluding remarks are offered in Section 7. Additional simulations and the

proofs are provided in the online Supplementary Material.

Throughout the paper, R = (−∞,∞), C is a generic constant, Is is the s×s
identity matrix, 1s is the s× 1 vector of ones, ⊗ is the Kronecker product, AT is

the transpose of matrix A, ‖A‖ is the Euclidean norm of matrix A, vec(A) is the

vectorization of A, vech(A) is the half vectorization of A, D(A) is the diagonal

matrix whose main diagonal is the main diagonal of matrix A, ∂xh denotes the

partial derivative with respect to x, for any function h(x, y, . . .), op(1)(Op(1))

denotes a sequence of random numbers converging to zero (bounded) in proba-

bility, “→d” denotes convergence in distribution, and “→p” denotes convergence

in probability.

2. The HSIC-based Test Statistics

2.1. Review of the HSIC

In this subsection, we briefly review the HSIC, which tests the independence

of two random vectors; see, for example, Gretton et al. (2005) and Gretton et al.

(2008) for more detail.

Let U be a metric space, and let k : U ×U → R be a symmetric and positive-
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definite (i.e.,
∑

i,j cicjk(xi, xj) ≥ 0 for all ci ∈ R) kernel function. There exists a

Hilbert space H (called a Reproducing Kernel Hilbert Space (RKHS)) of functions

f : U → R with inner product 〈·, ·〉, such that

(i) k(u, ·) ∈ H, for ∀u ∈ U ; (2.1)

(ii) 〈f, k(u, ·)〉 = f(u), for ∀f ∈ H and ∀u ∈ U . (2.2)

For any Borel probability measure P defined on U , its mean element µ[P ] ∈ H
is defined as follows:

E[f(U)] = 〈f, µ[P ]〉, ∀f ∈ H, (2.3)

where the random variable U ∼ P . From (2.2)–(2.3), we have µ[P ](u) =

〈k(·, u), µ[P ]〉 = E[k(U, u)]. Furthermore, we say that H is characteristic if and

only if the map P → µ[P ] is injective on the space P := {P :
∫
U k(u, u)dP (u) <

∞}.
Likewise, let G be a second RKHS on a metric space V with kernel l. Let

Puv be a Borel probability measure defined on U × V, and let Pu and Pv denote

the marginal distributions on U and V, respectively. Assume that

E[k(U,U)] <∞ and E[l(V, V )] <∞, (2.4)

where the random variable (U, V ) ∼ Puv. The HSIC of Puv is defined as

Π(U, V ) : = EU,VEU ′,V ′ [k(U,U ′)l(V, V ′)] + EUEU ′EVEV ′ [k(U,U ′)l(V, V ′)]

−2EU,VEU ′EV ′ [k(U,U ′)l(V, V ′)],

where (U ′, V ′) is an i.i.d. copy of (U, V ), and Eξ,ζ (or Eξ) denotes the expectation

over (ξ, ζ) (or ξ). Following Sejdinovic et al. (2013), if (2.4) holds and both H
and G are characteristic, then

Π(U, V ) = 0 if and only if Puv = Pu × Pv.

Therefore, we can test the independence of U and V by examining whether

Π(U, V ) is significantly different from zero.

Suppose the samples {(Ui, Vi)}ni=1 are from Puv. Following Gretton et al.

(2005), the empirical estimator of Π(U, V ) is

Πn =
1

n2

∑
i,j

kijlij +
1

n4

∑
i,j,q,r

kijlqr −
2

n3

∑
i,j,q

kijliq (2.5)
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=
1

n2
trace(KHLH), (2.6)

where kij = k(Ui, Uj); lij = l(Vi, Vj); K = (kij) and L = (lij) are n× n matrices,

with entries kij and lij , respectively; and H = In − (1n1Tn )/n. Here, each index

of the summation
∑

is taken from 1 to n. If {(Ui, Vi)}ni=1 are i.i.d. samples,

Gretton et al. (2005) showed that Πn is a consistent estimator of Π(U, V ).

In order to compute Πn, we need to choose the kernel functions k and l. In

what follows, we assume U = Rκ1 and V = Rκ2 , for two positive integers κ1 and

κ2. Then, the following are some well-known choices (see Peters (2008); Zhang

et al. (2018)) for k (or l):

[Gaussian kernel] : k(u, u′) = exp

(
−‖u− u

′‖2

2σ2

)
,

for some σ > 0;

[Laplace kernel] : k(u, u′) = exp

(
−‖u− u

′‖
σ

)
,

for some σ > 0;

[Inverse multi-quadratics kernel] : k(u, u′) =
1

(β + ‖u− u′‖)α
,

for some α, β > 0;

[Fractional Brownian motion kernel] : k(u, u′) =
1

2
(‖u‖2h + ‖u′‖2h − ‖u− u′‖2h),

for some 0 < h < 1.

Note that the HSIC is easy to implement in multivariate cases, because the

computation cost of Πn is O(n2), regardless of the dimensions of U and V , and

many software packages can calculate (2.6) very quickly.

2.2. Test statistics

Consider two multivariate time series Y1t and Y2t, where Y1t ∈ Rd1 and

Y2t ∈ Rd2 . Assume that each Yst (s = 1 or 2, hereafter) admits the following

specification:

Yst = fs(Ist−1, θs0, ηst), (2.7)

where Ist = (Y T
st , Y

T
st−1, . . .)

T ∈ R∞ is the information set at time t; θs0 ∈ Rps is

the true, but unknown parameter value of model (2.7); ηst ∈ Rds is a sequence

of i.i.d. innovations, such that ηst and Fst−1 are independent; Fst := σ(Ist) is a

sigma-field; and fs : R∞ × Rps × Rds → Rds is a known measurable function.

Model (2.7) is rich enough to include many often-used models, such as the vector
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AR model of Sims (1980), BEKK model of Engle and Kroner (1995), dynamic

correlation model of Tse (2002), and vector ARMA-GARCH model of Ling and

McAleer (2003), among others; see also Lütkepohl (2005); Bauwens, Laurent

and Rombouts (2006); Silvennoinen and Teräsvirta (2009); Francq and Zaköıan

(2010); Tsay (2014) for surveys.

Model (2.7) ensures that each Yst admits a dynamical system generated by

the innovation sequence {ηst}. A practical question is whether either one of the

dynamical systems should include information on the other, which is equivalent

to testing the following null hypothesis:

H0 : {η1t} and {η2t} are independent. (2.8)

If H0 is accepted, we can separately study these two systems; otherwise, we may

use the information of one system to obtain a better prediction of the other

system. Let m be a given integer. Most conventional testing methods for H0

in (2.8) aim to detect linear dependence between η1t and η2t+m (or their higher

moments) using their cross-correlations. Below, we apply the HSIC to examine

the general dependence between η1t and η2t+m.

To introduce our HSIC-based tests, we need some additional notation. Let

θs = (θs1, θs2, . . . , θsps) ∈ Θs ⊂ Rps be the unknown parameter of model (2.7),

where Θs is a compact parametric space. Assume that θs0 is an interior point of

Θs, and Yst admits a causal representation:

ηst = gs(Yst, Ist−1, θs0), (2.9)

where gs : Rds ×R∞×Rps → Rds is a measurable function. Moreover, based on

the observations {Yst}nt=1 and (possibly) some assumed initial values, we let

η̂st := gs(Yst, Îst−1, θ̂sn) (2.10)

be the residual of model (2.7), where θ̂sn is an estimator of θs0, and Îst is the

observed information set up to time t.

As in (2.5)–(2.6), our single HSIC-based test statistic on η̂1t and η̂2t+m is

S1n(m) := Π(η̂1t, η̂2t+m) =
1

N2

∑
i,j

k̂ij l̂ij +
1

N4

∑
i,j,q,r

k̂ij l̂qr −
2

N3

∑
i,j,q

k̂ij l̂iq

=
1

N2
trace(K̂HL̂H), (2.11)
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for m ≥ 0, where k̂ij = k(η̂1i, η̂1j), l̂ij = l(η̂2i+m, η̂2j+m), and K̂ = (k̂ij) and

L̂ = (l̂ij) are N × N matrices with entries k̂ij and l̂ij , respectively. Here, the

effective sample size N = n−m, and each index of the summation is taken from

1 to N . Likewise, our single HSIC-based test statistic on η̂1t+m and η̂2t is

S2n(m) := Π(η̂1t+m, η̂2t), (2.12)

for m ≥ 0. Clearly, S1n(0) = S2n(0).

Using the single HSIC-based test statistics, we can further define the joint

HSIC-based test statistics as follows:

J1n(M) :=

M∑
m=0

S1n(m) and J2n(M) :=

M∑
m=0

S2n(m), (2.13)

for some specified integer M ≥ 0. The joint test statistic, J1n(M) or J2n(M),

can detect the general dependence structure of two innovations up to certain lag

M ; in contrast, the single test statistic, S1n(m) or S2n(m), is used to examine

the general dependence structure of two innovations at a specific lag m.

3. Asymptotic Theory

This section studies the asymptotics of our HSIC-based test statistics S1n(m)

and J1n(M). The asymptotics of S2n(m) and J2n(M) can be derived similarly,

and hence the details are omitted for simplicity.

3.1. Technical conditions

To derive our asymptotic theory, the following assumptions are needed.

Assumption 1. Yst is strictly stationary and ergodic.

Assumption 2. (i) The function gst(θs) := gs(Yst, Ist−1, θs) satisfies that

E

[
sup
θs

∥∥∥∥∂gst(θs)∂θsi

∥∥∥∥]2 <∞, E

[
sup
θs

∥∥∥∥∂2gst(θs)∂θsi∂θsj

∥∥∥∥]2 <∞,
and E

[
sup
θs

∥∥∥∥ ∂3gst(θs)

∂θsi∂θsj∂θsq

∥∥∥∥]2 <∞,
for any i, j, q ∈ {1, . . . , ps}, where gs is defined as in (2.9).

(ii)
∑∞

j=0 βη(j)
c/(2+c) < ∞, for some c > 0, where βη(j) is the β-mixing

coefficient of {(ηT1t, ηT2t)T }.
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Assumption 3. The estimator θ̂sn given in (2.10) satisfies that

√
n(θ̂sn − θs0) =

1√
n

∑
t

πs(Yst, Ist−1, θs0) + op(1)

=:
1√
n

∑
t

πst + op(1), (3.1)

where πs : Rds ×R∞ ×Rps → Rps is a measurable function, E(πst|Fst−1) = 0,

and E‖πst‖2 <∞.

Assumption 4. For R̂st(θs) := ĝst(θs)− gst(θs),∑
t

sup
θs

‖R̂st(θs)‖3 = Op(1),

where ĝst(θs) = gs(Yst, Îst−1, θs), and Îst is defined as in (2.10).

Assumption 5. The kernel functions k and l are symmetric. Furthermore, both

of them and their partial derivatives up to the second order are uniformly bounded

and Lipschitz continuous, that is,

(i) sup
x,y
‖p(x, y)‖ ≤ C; (ii) ‖p(x1, y1)− p(x2, y2)‖ ≤ C‖(x1, y1)− (x2, y2)‖,

for p = k, kx, ky, kxx, kxy, kyy, l, lx, ly, lxx, lxy, lxy, where kx = ∂xk(x, y), kxy =

∂x∂yk(x, y), lx = ∂xl(x, y), and lxy = ∂x∂yl(x, y).

A few remarks are in order related to the above assumptions. Assump-

tion 1 is standard for time series models. Assumption 2(i) requires technical

moment conditions for the partial derivatives of gst. Assumption 2(ii) gives a

sufficient technical condition to prove Theorem 2, for which the result of part (c)

of Theorem 1 in Denker and Keller (1983) can be applied directly. Assumption

3 is satisfied under mild conditions for most estimators, including the (quasi)

maximum likelihood estimator (MLE), least squares estimator (LSE), nonlinear

least squares estimator (NLSE), and their robust modifications; see, for exam-

ple, Comte and Lieberman (2003); Lütkepohl (2005) and Hafner and Preminger

(2009) for further detail. Assumption 4 is a condition on the truncation of the

information set Îst−1, and is similar to Assumption A5 in Escanciano (2006). As-

sumption 5 provides restrictive conditions for the kernel functions k and l. These

conditions may exclude some kernel functions, such as the fractional Brownian

motion kernel, but they are usually satisfied by the often-used Gaussian kernel,
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Laplace kernel, and inverse multi-quadratics kernel. The conditions in Assump-

tions 1–5 may be relaxed further, but they are convenient for presenting our

proofs in a simple way.

3.2. Lemmas

This subsection provides several lemmas, that are important to derive the

asymptotics of our test statistics.

Before introducing these lemmas, we present some additional notation. Let

kij =
∂g1i(θ10)

∂θ1
kx(η1i, η1j) +

∂g1j(θ10)

∂θ1
ky(η1i, η1j), (3.2)

lqr =
∂g2q+m(θ20)

∂θ2
lx(η2q+m, η2r+m) +

∂g2r+m(θ20)

∂θ2
ly(η2q+m, η2r+m), (3.3)

qkij =

(
∂g1i(θ10)

∂θ1
,
∂g1j(θ10)

∂θ1

)(
kxx(η1i, η1j) kxy(η1i, η1j)

kxy(η1i, η1j) kyy(η1i, η1j)

)

×
(
∂g1i(θ10)

∂θ1
,
∂g1j(θ10)

∂θ1

)T
, (3.4)

qlqr =

(
∂g2q+m(θ20)

∂θ2
,
∂g2r+m(θ20)

∂θ2

)

×

(
lxx(η2q+m, η2r+m) lxy(η2q+m, η2r+m)

lxy(η2q+m, η2r+m) lyy(η2q+m, η2r+m)

)

×
(
∂g2q+m(θ20)

∂θ2
,
∂g2r+m(θ20)

∂θ2

)T
, (3.5)

for i, j, q, r ∈ {1, 2, . . . , N}. With these notation, define

S
(0)
1n (m) =

1

N2

∑
i,j

kijlij +
1

N4

∑
i,j,q,r

kijlqr −
2

N3

∑
i,j,q

kijliq, (3.6)

S
(ab)
1n (m) =

1

N2

∑
i,j

k
(ab)
ij l

(ab)
ij +

1

N4

∑
i,j,q,r

k
(ab)
ij l(ab)qr −

2

N3

∑
i,j,q

k
(ab)
ij l

(ab)
iq , (3.7)

for a ∈ {1, 2} and b ∈ {1, . . . , a + 1}, where k
(11)
ij = kij , l

(11)
ij = lij , k

(12)
ij = kij ,

l
(12)
ij = lij , k

(21)
ij = qkij , l

(21)
ij = lij , k

(22)
ij = kij , l

(22)
ij = qlij , k

(23)
ij = kij , and

l
(23)
ij = l

T
ij . Then, S

(0)
1n (m) can be expressed as a V -statistic of the form (see
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Gretton et al. (2005)):

S
(0)
1n (m) =

1

N4

∑
i,j,q,r

h(0)m (η
(m)
i , η

(m)
j , η(m)

q , η(m)
r ),

for some symmetric kernel h
(0)
m , given by

h(0)m (η
(m)
i , η

(m)
j , η(m)

q , η(m)
r ) =

1

4!

(i,j,q,r)∑
(t,u,v,w)

(ktultu + ktulvw − 2ktultv) ,

where the sum is taken over all 4! permutations of (i, j, q, r), and η
(m)
t = (η1t,

η2t+m) ∈ Rd1 ×Rd2 . Likewise, all S
(ab)
1n (m) can be expressed as V -statistics for

the symmetric kernel h
(ab)
m , given by

h(ab)m (ς
(m)
i , ς

(m)
j , ς(m)

q , ς(m)
r ) =

1

4!

(i,j,q,r)∑
(t,u,v,w)

(
k
(ab)
tu l

(ab)
tu + k

(ab)
tu l(ab)vw − 2k

(ab)
tu l

(ab)
tv

)
,

where the sum is taken over all 4! permutations of (i, j, q, r), and

ς
(m)
t =

(
η1t,

∂g1t(θ10)

∂θ1
, η2t+m,

∂g2t+m(θ20)

∂θ2

)
∈ Rd1 ×Rp1×d1 ×Rd2 ×Rp2×d2 .

Now, we are ready to introduce three lemmas. The first lemma gives an

important expansion of S1n(m).

Lemma 1. S1n(m) admits the following expansion:

S1n(m) = S
(0)
1n (m) + ζT1nS

(11)
1n (m) + ζT2nS

(12)
1n (m)

+
1

2
ζT1nS

(21)
1n (m)ζ1n +

1

2
ζT2nS

(22)
1n (m)ζ2n + ζT1nS

(23)
1n (m)ζ2n +R1n(m),

where S
(0)
1n (m) and S

(ab)
1n (m) are defined as in (3.6) and (3.7), respectively, R1n(m)

is the remainder term, and ζsn = θ̂sn − θs0.

The second lemma is crucial to derive the asymptotics of S
(0)
1n (m) and S

(ab)
1n (m)

under H0.

Lemma 2. Suppose Assumptions 1, 2(i), and 5 hold. Then, under H0,

(i) E
[
h
(0)
m (x1, η

(m)
2 , η

(m)
3 , η

(m)
4 )

]
= 0,
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for all x1 ∈ Rd1 ×Rd2;

(ii) E
[
h
(ab)
m (x1, ς

(m)
2 , ς

(m)
3 , ς

(m)
4 )

]
= 0,

for all x1 ∈ Rd1 ×Rp1×d1 ×Rd2 ×Rp2×d2 and each a, b = 1, 2;

(iii) E
[
h
(23)
m (x1, ς

(m)
2 , ς

(m)
3 , ς

(m)
4 )

]
= Υ,

for all x1 ∈ Rd1 ×Rp1×d1 ×Rd2 ×Rp2×d2, where

Υ = 4E

[
∂g12(θ10)

∂θ1
kx(η12, η11)

]
E

[
∂g22(θ20)

∂θ2
lx(η22, η21)−

∂g23(θ20)

∂θ2
lx(η23, η21)

]

+4E

[
∂g13(θ10)

∂θ1
kx(η13, η11)

]
E

[
∂g23(θ20)

∂θ2
lx(η23, η21)−

∂g22(θ20)

∂θ2
lx(η22, η21)

]
.

By standard arguments for V-statistics (see, e.g., Lee (1990)), we have

N [S
(0)
1n (m)] = N [V

(0)
1n (m)] + op(1), where

V
(0)
1n (m) =

1

N2

∑
i,j

h
(0)
2m(η

(m)
i , η

(m)
j ) (3.8)

is the V -statistic with the kernel function

h
(0)
2m(x1, x2) = E

[
h(0)m (x1, x2, η

(m)
3 , η

(m)
4 )

]
, (3.9)

for x1, x2 ∈ Rd1×Rd2 . Under H0, {η(m)
t } is a sequence of i.i.d. random variables.

Hence, Lemma 2(i) implies that V
(0)
1n (m) is a degenerate V -statistic of order 1,

from which h
(0)
2m can be expressed as

h
(0)
2m(x1, x2) =

∞∑
j=0

λjmΦjm(x1)Φjm(x2), (3.10)

where {Φjm(·)} is an orthonormal function in the L2-norm, and λjm is the eigen-

value corresponding to the eigenfunction Φjm(·). That is, {λjm} is a finite enu-

meration of the nonzero eigenvalues of the equation

E
[
h
(0)
2m(x1, η

(m)
1 )Φjm(η

(m)
1 )

]
= λjmΦjm(x1),
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where EΦjm(η
(m)
1 ) = 0 for all j ≥ 1, and

E
[
Φjm(η

(m)
1 )Φj′m(η

(m)
1 )

]
=

{
1, j = j′,

0, j 6= j′

(see, e.g., Dunford and Schwartz (1963, p.1087)). From (3.8) and (3.10), under

H0, we have

N [S
(0)
1n (m)] =

∞∑
j=1

λjm

[
1√
N

N∑
i=1

Φjm(η
(m)
i )

]2
+ op(1). (3.11)

Next, we consider S
(ab)
1n (m), which results from the estimation effect. Under

H0, S
(ab)
1n (m) (for a, b = 1, 2) is a degenerate V -statistic of order 1 by Lemma

2(ii). Hence, N [S
(ab)
1n (m)] = Op(1), and its related estimation effect is thus

negligible, given that ζTsnN [S
(ab)
1n (m)] = op(1). However, under H0, the estimation

effect related to S
(23)
1n (m) is negligible only when Υ = 0. This is because when

Υ 6= 0, S
(23)
1n (m) = Op(1) by the law of large numbers for V-statistics. Thus, its

related estimation effect is not negligible in this case, based on the ground that

N [ζT1nS
(23)
1n (m)ζ2n] = Op(1).

Our third lemma provides a useful central limit theorem.

Lemma 3. Suppose Assumptions 1, 2(i), and 3–5 hold. Then, under H0,

Tn :=

(
1√
N

N∑
i=1

T T1i ,
1√
n

n∑
i=1

T T2i

)T
→d T := ((Zjm)j≥1,0≤m≤M , (WT

s )1≤s≤2)
T

as n → ∞, where T1i = ((Φjm(η
(m)
i ))j≥1,0≤m≤M )T ; T2i =

(
πT1i, π

T
2i

)T
; T is a

multivariate normal distribution with mean zero and covariance matrix T =

E(T1T T1 ), with Ti = (T T1i , T T2i )T ; {Zjm}j≥1 is a sequence of i.i.d. N(0, 1) ran-

dom variables; and Ws is a ps-variate normal random variable.

3.3. Asymptotics of test statistics

Based on Lemmas 1–3, this subsection studies the asymptotics of our test

statistics. Let

Λ(23)
m := E

[
h(23)m (ς

(m)
1 , ς

(m)
2 , ς

(m)
3 , ς

(m)
4 )

]
. (3.12)

First, we give the limiting null distributions of S1n(m) and J1n(M).
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Theorem 1. Suppose Assumptions 1, 2(i), and 3–5 hold. Then, under H0,

(i) n[S1n(m)]→d χm for 0 ≤ m ≤M ;

(ii) n[J1n(M)]→d

M∑
m=0

χm,

as n→∞, where χm is defined by

χm =

∞∑
j=1

λjmZ2
jm +WT

1 Λ(23)
m W2.

Here, λjm is defined as in (3.10), and Zjm and Ws are defined as in Lemma 3.

Theorem 1 shows that S1n(m) and J1n(M) have convergence rate n−1 under

H0. Based on this theorem, we reject H0 at the significance level α if

n[S1n(m)] > cmα or n[J1n(M)] > cα,

where cmα and cα are the αth upper quantiles of χm and
∑M

m=0 χm, respectively.

Because the distribution of χm depends on {Yst} and {πst}, a residual bootstrap

method is proposed in Section 4 to obtain the values of cmα and cα.

Second, we study the behavior of S1n(m) under the following fixed alterna-

tive:

H
(m)
1 : {η1t} and {η2t} are dependent such that E[h

(0)
2m(x1, η

(m)
2 )] 6= 0,

for some x1 ∈ Rd1 ×Rd2 .

Under H
(m)
1 , h

(0)
2m is not a degenerate kernel of order 1. Hence, the V-statistic

S
(0)
1n (m) cannot have the convergence rate n−1, as suggested in Lemma 2(i),

leading to the consistency of S1n(m) in detecting H
(m)
1 . Similarly, we can show

the consistency of J1n(M) in detecting the following fixed alternative:

H
(M)
1 : H

(m)
1 holds for some m ∈ {0, 1, . . . ,M}.

Theorem 2. Suppose Assumptions 1–5 hold. Then,

(i) lim
n→∞

P (n[S1n(m)] > cmα) = 1 under H
(m)
1 ;

(ii) lim
n→∞

P (n[J1n(M)] > cα) = 1 under H
(M)
1 .

Note that similar results to those of Theorems 1–2 hold for S2n(m) and
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J2n(M), which can be implemented in a similar way to S1n(m) and J1n(M),

respectively.

4. Residual Bootstrap Approximations

In this section, we introduce a residual bootstrap method to approximate

the limiting null distributions in Theorem 1. The residual bootstrap method

is popular in the time series literature; see, for example, Berkowitz and Kilian

(2000); Paparoditis and Politis (2003); Politis (2003), and many others. The

residual bootstrap procedure we use to approximate the critical values cmα and

cα is as follows:

Step 1 Estimate the original model (2.7), and obtain the residuals {η̂st}nt=1.

Step 2 Generate bootstrap innovations {η̂∗st}nt=1 (after standardization) by re-

sampling with replacement from the empirical residuals {η̂st}nt=1.

Step 3 Given θ̂sn and {η̂∗st}nt=1, generate the bootstrap data set {Y ∗st}nt=1, ac-

cording to

Y ∗st = fs(Î
∗
st−1, θ̂sn, η̂

∗
st),

where Î∗st is the bootstrap observable information set up to time t, condi-

tional on some assumed initial values.

Step 4 Based on {Y ∗st}nt=1, compute θ̂∗sn in the same way as θ̂sn, and then calcu-

late the corresponding bootstrap residuals {η̂∗∗st }nt=1, with η̂∗∗st := gs(Y
∗
st, Î

∗
st−1,

θ̂∗sn).

Step 5 Calculate the bootstrap test statistic S∗∗1n(m) and J∗∗1n(M) in the same

way as (2.11) and (2.13), respectively, where η̂∗∗st replaces η̂st.

Step 6 Repeat steps 1–5 B times to obtain {n[S∗∗1nb(m)]; b = 1, 2, . . . , B} and

{n[J∗∗1nb(M)]; b = 1, 2, . . . , B}. Then, choose their αth upper quantiles, de-

noted by c∗mα and c∗α, as the approximations of cmα and cα, respectively.

In order to prove the validity of the bootstrap procedure in steps 1–6, we

need some further notation. Let

h
(0∗)
2m (x1, x2) = E∗

[
h(0)m (x1, x2, η̂

(m∗)
3 , η̂

(m∗)
4 )

]
, (4.1)

Λ(23∗)
m = E∗

[
h(23)m (ς̂

(m∗)
1 , ς̂

(m∗)
2 , ς̂

(m∗)
3 , ς̂

(m∗)
4 )

]
, (4.2)
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where η̂
(m∗)
t = (η̂∗1t, η̂

∗
2t+m) and ς

(m∗)
t = (η̂∗1t, ∂g1t(θ̂1n)/∂θ1, η̂

∗
2t+m, ∂g2t+m(θ̂2n)

/∂θ2). Furthermore, let ζ∗sn = θ̂∗sn−θ̂sn, and$n := {Y11, Y12, . . . , Y1n, Y21, Y22, . . . ,
Y2n} be the given sample. Denote by E∗ the expectation conditional on $n, and

let o∗p(1)(O∗p(1)) be a sequence of random variables converging to zero (bounded)

in probability, conditional on $n.

Because {η̂∗st}Nt=1 is an i.i.d sequence conditional on $n, a similar argument

to that in Lemma 1 implies

S∗∗1n(m) = S
(0∗)
1n (m) + ζ∗T1n S

(11∗)
1n (m) + ζ∗T2n S

(12∗)
1n (m) +

1

2
ζ∗T1n S

(21∗)
1n (m)ζ∗1n

+
1

2
ζ∗T2n S

(22∗)
1n (m)ζ∗2n + ζ∗T1n S

(23∗)
1n (m)ζ∗2n +R∗1n(m), (4.3)

where S
(0∗)
1n (m), S

(ab∗)
1n (m), and R∗1n(m) are defined in the same way as S

(0)
1n (m),

S
(ab)
1n (m), and R1n(m), respectively, with η

(m)
t and ς

(m)
t replaced by η̂

(m∗)
t and

ς̂
(m∗)
t , respectively. Moreover, by a similar argument to that in Lemma 1(i), we

obtain

N [S
(0∗)
1n (m)] =

∞∑
j=1

λ∗jm

[
1√
N

N∑
i=1

Φ∗jm(η̂
(m∗)
i )

]
+ o∗p(1), (4.4)

where E∗Φ∗jm(η̂
(m∗)
1 ) = 0 for all j ≥ 1, and E∗[Φ∗jm(η̂

(m∗)
1 )Φ∗j′m(η̂

(m∗)
1 )] = 1 if

j = j′, and 0 if j 6= j′.

Next, we give two technical assumptions.

Assumption 6. The bootstrap estimator θ̂∗sn satisfies that

√
n(θ̂∗sn − θ̂sn) =

1√
n

n∑
t=1

πs(Y
∗
st, Îst−1, θ̂sn) + o∗p(1)

=:
1√
n

n∑
t=1

π∗st + o∗p(1),

where πs is defined as in Assumption 3, and E∗(π∗st|Î∗st−1) = 0.

Assumption 7. The following convergence results hold:

(i)
1

n

n∑
i=1

E∗[π∗siπ
∗T
s′i ]→p E

[
πs1π

T
s′1

]
;

(ii)
1

N

N∑
i=1

E∗[Φ∗jm(η̂
(m∗)
i )π∗si]→p E[Φjm(η

(m)
1 )πs1],
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as n→∞, for s, s′ = 1, 2, j ≥ 1, and m = 0, 1, . . . ,M .

Assumptions 6 and 7 are standard in proving the validity of bootstrap procedures,

and they are similar to those in Assumption A7 of Escanciano (2006). For the

(quasi) MLE, LSE, and NLSE or, more generally, estimators resulting from a

martingale estimating equation (see Heyde (1997)), the function πs(·) required

in Assumption 6 can be expressed as πs(Yst, Ist−1, θs) = %1(ηst(θs))×%2(Ist−1, θs),
for some functions %1(·) and %2(·) with E(%1(ηst(θs0))) = 0. Then, in those cases,

Assumptions 6 and 7 are satisfied under some mild conditions on the function

%2(·). Note that the calculation of the bootstrap estimator θ̂∗sn in step 4 may

be time-consuming for some times series models (e.g., multivariate ARCH-type

models) when n is large. In view of Assumption 6, we suggest generating θ̂∗sn as

follows:

θ̂∗sn = θ̂sn +
1

n

∑
t

πs(Y
∗
st, Î

∗
st−1, θ̂sn).

This saves a significant amount of computation time. In Section 5, we will apply

this method to conditional variance models, and find that it generates precise

critical values cmα and cα for the proposed HSIC-based tests.

The following theorem gives the asymptotics of our bootstrapped test statis-

tics.

Theorem 3. Suppose Assumptions 1–5 and 6–7 hold. Then, conditional on $n,

(i) n[S∗∗1n(m)] = O∗p(1) for 0 ≤ m ≤M ; (ii) n[J∗∗1n(M)] = O∗p(1); moreover, under

H0,

(iii) n[S∗∗1n(m)]→d χm for 0 ≤ m ≤M,

(iv) n[J∗∗1n(M)]→d

M∑
m=0

χm

in probability as n→∞, where χm is defined as in Theorem 1.

By Theorem 3(i), we know that conditional on $n, our bootstrapped critical

values c∗mα and c∗α are always bounded in probability. Under the alternative

hypothesis, the proof of Theorem 2 shows that n[S1n(m)] and n[J1n(M)] converge

to infinity. Therefore, the events {n[S1n(m)] > c∗mα} and {n[J1n(M)] > c∗α}
happen with probability one for large n. This implies that our bootstrapped

critical values c∗mα and c∗α are valid under the alternative hypothesis, although

the explicit distributions of the bootstrapped test statistics are absent, and might

be derived under some higher-order conditions in future.
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As shown in Theorem 3(ii), the explicit distributions of the bootstrapped

test statistics are the same as those of the related limiting null distributions.

Hence, our bootstrapped critical values c∗mα and c∗α are also valid under the null

hypothesis.

5. Simulation Studies

In this section, we compare the performance of our HSIC-based tests Ssn(m)

and Jsn(M) (s = 1, 2 hereafter) with some well-known existing tests in finite sam-

ples. Below, we compute Ssn(m) and Jsn(M), where k and l are the Gaussian

kernels and σ = 1. Additional simulation results can be found in the Supplemen-

tary Material, where k and l are chosen as inverse multi-quadratics kernels.

5.1. Conditional mean models

We generate 1,000 replications of sample size n from the following conditional

mean models: 
Y1t =

(
θ1,10 θ1,20
θ1,30 θ1,40

)
Y1t−1 + η1t,

Y2t =

(
θ2,10 θ2,20
θ2,30 θ2,40

)
Y2t−1 + η2t,

(5.1)

where θi0 = (θi,10, θi,20, θi,30, θi,40) (for i = 1, 2) contains all unknown parameters,

and {η1t} and {η2t} are sequences of i.i.d. random vectors. To generate {η1t}
and {η2t}, we need an auxiliary sequence of i.i.d. multivariate normal random

vectors {ut} with mean zero, where ut = (u1t, u2t, u
′
3t, u

′
4t)
′, with u1t, u2t ∈ R

and u3t, u4t ∈ R2×1, and covariance matrix given by

Ω =

 Ω1 02×2 02×2
02×2 Ω2 Ω4

02×2 Ω′4 Ω3

 ,

with

Ωτ =

(
1 ρτ
ρτ 1

)
for τ = 1, 2, 3, and Ω4 =

(
ρ4 ρ4
ρ4 ρ4

)
.

Here, we take θ10 = (0.4, 0.1,−1, 0.5), θ20 = (−1.5, 1.2,−0.9, 0.5), ρ2 = 0.5, and

ρ3 = 0.75, as in El Himdi and Roy (1997), who considered the same models as

those in (5.1).
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Based on {ut}, we consider six error-generating processes (EGPs):

EGP 1 : η1t = u3t, η2t = u4t and ρ4 = 0;

EGP 2 : η1t = u3t, η2t = u4t and ρ4 = 0.3;

EGP 3 : η1t =
u21t + 1√

6
u3t, η2t = |u1t|u4t and ρ4 = 0;

EGP 4 : η1t =
u21t + 1√

6
u3t, η2t = |u1t+3|u4t and ρ4 = 0;

EGP 5 : η1t =
u21t + 1√

6
u3t, η2t = |u2t|u4t, ρ1 = 0.8 and ρ4 = 0;

EGP 6 : η1t = u1tu3t, η2t = u2tu4t, ρ1 = 0.8 and ρ4 = 0.

Clearly, each entry of η1t or η2t has mean zero and variance one. Let ρη1,η2(d) be

the cross-correlation matrix between η1t and η2t+d. EGP 1 is designed for the null

hypothesis, because ρη1,η2(d) = 02×2 for all d in this case. EGPs 2–6 are set for

the alternative hypotheses, because they pose a linear or non-linear dependence

structure between η1t and η2t. Specifically, a linear dependence structure between

η1t and η2t exists in EGP 2, with ρη1,η2(d) = 0.3I2 for d = 0, and 0 otherwise. A

non-linear dependence structure between η1t and η2t is induced by the co-factor

u1t in EGP 3, the lagged co-factors u1t and u1t+3 in EGP 4, and two correlated

co-factors u1t and u2t in EGPs 5–6. In EGPs 3–6, η1t and η2t are dependent, but

uncorrelated.

For each replication, we fit two models in (5.1) using the LSE method. De-

note by {η̂1t} and {η̂2t} the residuals of the respective fitted models. Based on

{η̂1t} and {η̂2t}, we compute Ssn(m) and Jsn(M) (Ssn and Jsn in short). The

critical values of all HSIC-based tests are obtained using the residual bootstrap

method with B = 1,000 in Section 4.

We also compute the test statistics Gsn(M) (Gsn in short) in El Himdi and

Roy (1997), and the test statistics Wsn(h) (Wsn in short) in Bouhaddioui and

Roy (2006), where

G1n(M) =

M∑
m=−M

Ẑn(m), G2n(M) =

M∑
m=−M

[
n

n− |m|

]
Ẑn(m),

W1n(h) =

∑n−1
m=1−n[K(m/h)]2Z̃n(m)− d1d2A1n(h)√

2d1d2B1n(h)
,

W2n(h) =

∑n−1
m=1−n[K(m/h)]2Z̃n(m)− hd1d2A1√

2hd1d2B1
.
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Here, Ẑn(m) = n[vec(R12(m))]T [R−122 (0)⊗R−111 (0)][vec(R12(m))],

Rij(m) = D[(r̂ii(0))−1/2]r̂ij(m)D[(r̂jj(0))−1/2],

r̂ij(m) is the sample cross-covariance matrix between {η̂it} and {η̂jt+m}, Z̃n(m)

is defined in the same way as Ẑn(m), with η̂st replaced by η̃st, η̃st is the residual

from a fitted VAR(p) model for Yst, K(·) is a kernel function, h denotes the

bandwidth, A1 =
∫∞
−∞[K(z)]2dz, B1 =

∫∞
−∞[K(z)]4dz, and

A1n(h) =

n−1∑
m=1−n

(
1− |m|

n

)[
K
(m
h

)]2
,

B1n(h) =

n−1∑
m=1−n

(
1− |m|

n

)(
1− |m|+ 1

n

)[
K
(m
h

)]4
.

Note that G1n is to test the cross-correlation between η1t and η2t; G2n is its

modified version for small n; W1n has the same goal as G1n, but with the ability

to detect the cross-correlation beyond lag M ; W2n is the modified version of

W1n. Under certain conditions, the limiting null distribution of G1n or G2n is

χ2
(2M+1)d1d2

, and that of W1n or W2n is N(0, 1).

In all simulation studies, we set m = 0 and 3 for the single HSIC-based tests

Ssn(m), and set M = 3 and 6 for the joint HSIC-based test Jsn(M). Because

S1n(0) = S2n(0), the results of S2n(0) are absent. For Gsn(M), we choose M =

3, 6, and 9. For Wsn(h), we follow Hong (1996) to choose p = 3 (or 6) when

n = 100 (or 200), and use the kernel function K(z) = sin(πz)/(πz) (Daniel

kernel) with bandwidth h = h1, h2, or h3, where h1 = [log(n)], h2 = [3n0.2], and

h3 = [3n0.3]. The significance level α is set to 1%, 5%, or 10%.

Table 1 reports the power of the tests based on the two models in (5.1). The

sizes of all tests correspond to those in EGP 1. From this table, our findings are

as follows.

(i) The sizes of all single HSIC-based tests Ssn are close to their nominal values

in most cases, whereas the sizes of other tests are a little unsatisfactory. For

instance, Jsn are slightly oversized, especially at α = 5% and 10%, and W1n

(or W2n) is slightly oversized (or undersized) when n = 200 (or 100), at all

levels. The size performance of Gsn depends on M : a larger value of M

leads to a more undersized behavior, especially at α = 10%, although, in

general, G2n performs better than G1n.
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(ii) In all examined cases, the single HSIC-based test S1n(0) is the most powerful

of the tests in EGPs 2–3 and 5–6, and the single HSIC-based test S2n(3) has

a significant power advantage in EGP 4. These results are expected, because

S1n(0) and S2n(3) are designed to examine the dependence specifically at

lags 0 and 3, respectively, reflecting the setup of each EGP. Note that our

HSIC-based tests in EGP 3 are more powerful than those in EGP 5. This

is consistent with our setting that the dependence between η1t and η2t in

EGP 3 is stronger than that in EGP 5.

(iii) For the linear dependence case (i.e., EGP 2), the joint HSIC-based tests Jsn
have a comparable power performance as Gsn. In addition, they are much

less powerful than W1n(h1), but are much more powerful than W2n(h3)

when n = 100. For the non-linear dependence case (i.e., EGPs 3–6), the

joint HSIC-based tests Jsn are, in general, much more powerful than the

tests Gsn and Wsn, especially when n = 200. The only exception is J1n in

EGP 4, which cannot detect the dependence between η1t+m and η2t at lag

m = 3. In contrast, J2n performs very well here.

(iv) In all examined cases, the power of Jsn and Gsn decreases as the value of

M increases; this tendency is vague for Wsn.

Overall, our single HSIC-based tests are powerful in detecting dependence at

specific lags, and our joint HSIC-based tests exhibit a significant power advantage

in detecting non-linear dependence, which cannot be examined easily using other

tests.

5.2. Conditional variance models

We generate 1,000 replications of sample size n from the following conditional

variance models:

Y1t = V
1/2
1t η1t and V1t = (v1t,ij)i,j=1,2,

Y2t = V
1/2
2t η2t and V2t = (v2t,ij)i,j=1,2,

withv1t,11
v1t,22
v1t,12

 =

θ1,10 + θ1,20v1t−1,11 + θ1,30Y
2
1t−1,1

θ1,40 + θ1,50v1t−1,22 + θ1,60Y
2
1t−1,2

θ1,70
√
v1t−1,11v1t−1,22

 ,

v2t,11
v2t,22
v2t,12

 =

θ2,10 + θ2,20v2t−1,11 + θ2,30Y
2
2t−1,1

θ2,40 + θ2,50v2t−1,22 + θ2,60Y
2
2t−1,2

θ2,70
√
v2t−1,11v2t−1,22

 ,

(5.2)
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Table 1. Empirical sizes and power (× 100) of all tests based on the models in (5.1)

EGP 1 EGP 2 EGP 3

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.7 5.1 11.7 1.6 5.2 11.7 47.1 69.1 79.9 85.5 95.2 97.4 80.2 94.5 97.9 99.3 100 100

S1n(3) 0.6 5.4 11.4 0.7 4.3 10.9 1.1 5.5 13.0 0.6 4.9 9.9 0.8 5.1 10.6 1.1 5.9 10.0

S2n(3) 1.2 5.6 12.1 1.3 4.6 9.9 1.0 5.1 11.4 1.5 5.3 9.9 1.0 5.5 11.2 0.8 4.1 9.1

J1n(3) 0.7 5.3 12.3 1.2 5.2 11.5 19.4 44.5 58.4 55.1 78.4 85.4 30.7 64.4 79.9 88.0 96.8 98.8

J1n(6) 0.9 6.2 14.6 1.1 6.1 13.6 12.5 32.4 48.2 40.3 66.1 76.8 11.6 37.0 55.7 66.4 89.0 95.1

J2n(3) 1.4 7.1 12.5 1.8 6.7 13.9 19.3 42.2 57.4 54.8 78.3 87.0 31.9 61.7 77.6 86.7 96.8 98.3

J2n(6) 1.1 6.8 13.2 1.7 6.5 12.1 13.2 32.9 47.3 38.3 62.7 76.6 10.4 36.9 56.0 66.0 87.5 94.1

G1n(3) 0.5 3.6 7.6 0.7 5.0 10.1 17.3 41.5 57.1 69.1 88.4 93.0 10.9 23.9 33.4 14.7 29.3 39.4

G1n(6) 0.4 2.8 7.8 0.6 4.2 9.6 17.3 41.5 57.1 43.5 70.9 83.5 5.3 14.6 24.9 8.5 21.6 32.8

G1n(9) 0.4 1.5 4.9 0.2 3.3 6.8 8.1 25.0 39.1 29.4 55.1 69.3 2.9 10.0 16.6 6.3 17.0 25.2

G2n(3) 0.9 4.2 8.6 0.7 5.5 10.5 18.3 43.3 59.4 69.5 89.0 93.6 11.9 25.2 35.5 15.2 29.9 40.7

G2n(6) 0.6 4.6 10.4 1.0 5.4 10.9 12.5 30.3 45.0 45.8 72.8 84.4 6.6 18.4 29.6 10.2 24.4 34.8

G2n(9) 0.7 4.1 9.1 0.6 4.5 9.5 7.9 25.4 36.6 34.1 60.2 74.7 5.0 15.7 23.8 8.3 19.9 28.8

W1n(h1) 0.9 5.2 9.4 2.2 6.9 12.8 45.6 64.9 75.2 87.5 93.9 96.9 24.2 37.4 46.9 27.2 42.4 51.1

W1n(h2) 0.8 4.3 8.4 1.7 6.3 12.4 30.3 53.0 65.7 78.3 89.4 93.4 18.8 30.3 39.4 21.4 36.9 46.0

W1n(h3) 1.0 5.4 9.4 1.6 5.4 12.5 19.6 44.5 57.3 59.6 80.2 88.0 12.6 25.3 35.5 15.1 29.4 39.6

W2n(h1) 0.6 4.2 7.6 2.1 6.2 11.7 41.1 62.4 72.9 86.1 93.2 96.5 21.6 35.6 44.3 25.7 40.9 50.0

W2n(h2) 0.4 3.2 5.6 1.4 5.0 9.8 23.1 46.4 59.4 74.3 87.7 92.1 14.7 26.2 34.3 19.2 33.5 43.5

W2n(h3) 0.3 1.7 4.9 0.9 3.3 6.8 11.0 28.5 43.3 49.5 73.8 83.0 8.2 17.9 24.9 10.3 22.8 31.7

EGP 4 EGP 5 EGP 6

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.4 4.4 10.1 0.6 4.1 9.5 23.7 50.5 65.2 58.7 84.0 91.9 36.8 64.3 76.3 77.2 91.9 95.7

S1n(3) 0.4 3.7 7.9 0.4 3.9 9.5 0.5 4.2 9.2 0.7 4.3 9.4 0.5 3.1 7.8 0.8 4.7 9.8

S2n(3) 75.5 92.0 96.3 99.2 99.9 100 0.7 1.0 3.5 3.0 4.5 9.1 0.4 3.0 7.6 0.6 4.4 8.4

J1n(3) 0.3 2.6 6.5 0.4 2.7 7.8 4.5 23.6 34.4 20.7 46.3 60.4 7.6 25.3 41.9 35.8 63.8 75.7

J1n(6) 0.3 1.7 5.2 0.2 2.1 5.3 1.3 9.5 19.3 9.0 28.8 45.4 1.7 12.4 25.5 17.9 40.5 57.5

J2n(3) 28.4 57.2 76.2 86.7 96.5 98.5 4.7 21.5 32.4 19.3 45.7 59.7 5.6 23.6 38.8 35.4 63.0 75.9

J2n(6) 9.7 34.3 53.7 64.4 88.1 94.6 1.9 8.5 19.4 8.8 27.5 45.9 1.8 10.3 23.4 11.3 22.9 31.9

G1n(3) 10.4 21.4 31.9 12.8 27.1 38.4 5.5 14.7 23.7 8.1 19.6 28.0 3.9 12.7 20.3 4.9 14.2 24.8

G1n(6) 4.6 13.7 21.4 8.4 19.8 30.2 2.0 9.6 16.7 3.9 14.2 24.6 2.8 8.8 15.2 2.9 10.6 16.3

G1n(9) 2.9 8.3 15.4 5.4 15.6 24.5 1.4 5.3 12.3 2.7 10.6 17.5 1.7 6.9 11.2 2.1 7.9 13.9

G2n(3) 12.3 24.7 35.5 13.8 28.6 39.7 6.1 15.9 25.3 8.3 20.2 29.4 4.2 13.7 22.9 5.0 14.6 25.5

G2n(6) 7.0 17.8 26.8 9.0 22.9 32.6 3.2 12.8 21.3 4.6 16.5 26.1 3.7 11.6 19.3 3.3 11.6 19.0

G2n(9) 4.8 14.6 25.8 7.0 19.6 27.9 2.6 11.1 19.5 4.5 13.0 22.5 3.1 10.4 18.7 2.7 9.8 17.6

W1n(h1) 2.8 9.6 16.5 6.6 15.7 24.8 14.1 20.5 34.1 16.0 28.3 35.7 11.6 21.7 30.8 11.3 22.9 31.9

W1n(h2) 7.9 16.9 25.1 10.9 23.6 34.1 10.5 19.2 29.4 12.9 23.5 34.2 8.1 17.4 27.0 8.8 18.3 27.6

W1n(h3) 8.7 18.2 27.1 10.7 25.9 35.7 6.9 18.2 26.2 9.2 19.9 29.6 6.7 15.9 24.1 5.5 15.1 21.8

W2n(h1) 2.3 8.2 14.1 6.3 14.8 23.4 13.2 19.9 32.1 15.5 26.9 34.2 10.0 19.7 22.6 10.5 21.9 30.2

W2n(h2) 6.3 13.6 20.1 9.2 20.6 30.4 8.2 16.5 23.6 11.7 20.7 31.6 6.5 13.9 20.6 7.2 16.5 24.0

W2n(h3) 5.6 11.8 17.5 8.3 18.2 29.1 4.0 10.8 17.5 6.5 15.1 21.3 3.2 9.3 15.4 3.6 10.3 16.9

† For Wsn, h1 = [log(n)], h2 = [3n0.2] and h3 = [3n0.3]
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where θi0 = (θi,10, θi,20, . . . , θi,70) (for i = 1, 2) contains all unknown parame-

ters, and {η1t} and {η2t} are sequences of i.i.d. random vectors generated as

in (5.1). In (5.2), two CC-MGARCH models are studied, as in Tse (2002).

Following Tse (2002), we set θ10 = (0.2, 0.5, 0.1, 0.2, 0.5, 0.1, 0.5) and θ20 =

(0.3, 0.4, 0.2, 0.3, 0.4, 0.2, 0.6). For each replication, we fit the models in (5.2)

using the Gaussian-QMLE method. Denote by {η̂1t} and {η̂2t} the residuals

from the respective fitted models. Based on {η̂1t} and {η̂2t}, we compute Ssn(m)

and Jsn(M), and their critical values as before.

We also compute the test statistics Lsn(M) and Tsn(M) (Lsn and Tsn, in

short) of Tchahou and Duchesne (2013), where

L1n(M) =

M∑
m=−M

nρ2q̂1t,q̂2t(m), L2n(M) =

M∑
m=−M

[
n2

n− |m|

]
ρ2q̂1t,q̂2t(m),

T1n(M) =

M∑
m=−M

n · tr(CT12(m)C−111 (0)C12(m)C−122 (0)),

T2n(M) =

M∑
m=−M

[
n2

n− |m|

]
· tr(CT12(m)C−111 (0)C12(m)C−122 (0)).

Here, ρq̂1t,q̂2t(m) is the sample cross-correlation between {q̂1t} and {q̂2t+m}, Cij(m)

is the sample cross-covariance matrix between {ϕ̂it} and {ϕ̂jt+m}, q̂st = η̂Tstη̂st,

and ϕ̂st = vech(η̂stη̂
T
st). Note that L1n (or T1n) is used to test the cross-correlation

between two transformed (or original) residuals, and L2n (or T2n) is its modified

version for small n. Under certain conditions, the limiting null distribution of L1n

or L2n is χ2
(2M+1), and that of T1n or T2n is χ2

(2M+1)d∗1d
∗
2
, where d∗s = ds(ds + 1)/2

for s = 1, 2.

In all simulation studies, we choose the values of m and M as in the previous

subsection. The significance level α is set to 1%, 5%, or 10%. Table 2 summa-

rizes the power results based on the two models in (5.2). The sizes of all tests

correspond to those in EGP 1. From this table, our findings are as follows.

(i) The sizes of all tests are close to their nominal values, although most Tsn
are slightly oversized.

(ii) Similarly to the results shown in Table 1, the single HSIC-based test S1n(0)

or S1n(3), as expected, is the most powerful of the tests, and the HSIC-based

tests in EGP 3 are more powerful than those in EGP 5.

(iii) For the linear dependence case (i.e., EGP 2), all joint HSIC-based tests Jsn
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are more powerful than Lsn and Tsn. For the non-linear dependence case

(i.e., EGP 3–6), all Jsn have larger power than Lsn and Tsn in most cases,

but this advantage is small, especially for Jsn(6). There are two exceptions

in which some Jsn exhibit low power: first, J1n(3) and J1n(6) have no power

in EGP 4 (see also Table 1); second, J2n(6) is less powerful than most Lsn
and Tsn, especially for n = 200. Because the cross-correlation between η21t
and η22t is high in EGPs 2–6, the relatively good power performance of Lsn
and Tsn in some cases is not unexpected.

(iv) The power of the tests Jsn, Lsn, and Tsn decreases as the value of M

increases in all examined cases.

Overall, our single HSIC-based tests exhibit good power in detecting depen-

dence at specific lags, and our joint HSIC-based tests could be more powerful

than other tests in detecting either linear or non-linear dependence. Moreover,

our additional simulation results in the Supplementary Material indicate that the

selection of the kernel function could affect the performance of our HSIC-based

tests, although the overall patterns of performance are similar. Hence, choosing

kernel functions optimally based on some criteria is important in practice and

deserves future investigation.

6. A Real Example

In this section, we study two bivariate time series. The first consists of in-

dex series from the Russian market and the Indian market: the Russia Trading

System Index (RTSI) and the Bombay Stock Exchange Sensitive Index (BSESI),

respectively. The second includes two Chinese indices: the ShangHai Securities

Composite index (SHSCI) and the ShenZhen Index (SZI). The data were mea-

sured each day (Monday to Friday), from October 8, 2014 to September 29, 2017.

The final sample comprised 1,088 days. Missing data due to holidays were re-

moved before the analysis, after which the final data set includes n = 672 daily

observations. The resulting four time series are denoted by {RTSIt; t = 1, . . . , n},
{BSESIt; t = 1, . . . , n}, {SHSCIt; t = 1, . . . , n}, and {SZIt; t = 1, . . . , n}, respec-

tively.

As usual, we consider the log-return of each data set:

Y1t =

(
Y1t,1
Y1t,2

)
=

(
log(RTSIt)− log(RTSIt−1)

log(BSESIt)− log(BSESIt−1)

)
,
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Table 2. Empirical sizes and power (×100) of all tests based on the models in (5.2)

EGP 1 EGP 2 EGP 3

n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.7 4.3 10.5 1.6 5.4 9.2 100 100 100 100 100 100 100 100 100 100 100 100

S1n(3) 1.2 5.2 11.0 0.5 5.1 10.1 1.3 5.8 10.8 1.5 5.8 9.6 0.8 4.1 8.9 0.8 5.4 10.8

S2n(3) 1.1 4.5 9.3 0.6 4.6 9.7 0.9 5.1 9.3 0.9 4.6 9.3 1.2 4.9 9.5 1.2 4.5 8.6

J1n(3) 0.7 4.5 10.7 0.8 4.7 9.0 99.2 99.9 99.9 100 100 100 97.7 99.6 99.8 100 100 100

J1n(6) 0.7 3.7 9.1 0.4 4.1 8.8 91.3 98.5 99.4 99.8 100 100 85.9 96.5 98.6 99.2 100 100

J2n(3) 0.8 4.1 9.2 1.0 5.5 11.6 98.6 99.8 99.9 100 100 100 97.8 99.6 100 100 100 100

J2n(6) 0.6 4.0 9.0 1.0 4.9 10.3 91.0 97.8 99.1 99.9 100 100 83.8 96.4 98.8 95.5 95.9 96.0

L1n(3) 1.2 3.9 9.9 1.3 6.1 10.0 15.7 34.8 46.3 32.2 54.3 65.4 87.6 91.2 92.7 92.4 94.4 95.0

L1n(6) 1.1 4.3 9.2 0.9 5.6 11.3 8.5 25.2 37.7 22.0 41.5 54.8 82.0 88.4 90.7 90.0 92.4 93.2

L1n(9) 0.9 3.6 9.2 1.1 4.5 9.5 9.5 18.8 30.8 15.8 35.3 47.9 78.2 85.2 88.2 88.4 91.5 92.3

L2n(3) 1.2 4.1 10.1 1.3 6.2 10.3 16.0 35.2 46.6 32.4 54.5 65.5 87.6 91.2 92.7 92.4 94.4 95.0

L2n(6) 1.5 5.2 10.5 1.0 5.8 12.1 9.0 26.0 38.7 22.6 42.0 55.5 82.4 88.5 90.8 90.0 92.4 93.2

L2n(9) 0.9 4.4 11.5 1.3 4.8 10.5 6.1 20.5 32.3 16.9 36.7 49.2 78.6 85.8 88.6 88.4 91.6 92.4

T1n(3) 2.1 6.7 11.9 2.2 6.4 11.6 39.5 60.4 70.1 61.7 77.4 84.5 79.5 85.6 87.4 87.0 90.4 92.1

T1n(6) 1.7 6.5 11.6 1.6 6.2 11.4 26.3 41.5 54.3 45.9 63.1 72.7 68.3 76.5 79.3 77.9 83.5 86.5

T1n(9) 1.3 5.8 10.8 1.2 4.8 9.9 14.8 31.2 41.6 32.3 53.7 64.4 60.7 70.7 74.9 72.2 78.4 81.4

T2n(3) 2.2 7.4 12.8 2.3 6.7 12.7 41.0 60.8 70.9 61.5 78.0 84.5 79.9 85.7 87.8 87.2 91.0 92.1

T2n(6) 2.2 7.8 13.4 2.0 7.5 12.5 25.1 45.9 57.7 47.5 64.5 74.3 69.3 77.4 80.3 78.6 83.9 87.2

T2n(9) 2.6 7.5 13.5 1.5 7.0 12.5 18.4 36.7 48.3 35.3 58.0 68.0 63.6 73.2 76.4 73.8 79.4 82.1

EGP 4 EGP 5 EGP 6

n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.5 3.7 7.7 0.5 4.4 9.7 76.3 89.4 94.4 92.1 98.5 99.3 92.4 97.8 99.1 98.8 99.8 99.8

S1n(3) 1.0 4.3 8.9 1.0 4.1 10.1 0.6 3.9 9.0 0.7 4.9 9.1 0.8 4.5 10.3 1.0 4.5 10.1

S2n(3) 100 100 100 100 100 100 0.7 4.7 9.2 0.6 5.2 9.2 0.7 3.5 7.8 0.6 4.6 9.5

J1n(3) 0.3 2.5 6.5 0.7 3.9 8.6 33.9 61.2 73.5 61.8 82.0 88.9 56.4 80.2 88.0 86.3 95.3 97.9

J1n(6) 0.3 1.3 4.1 0.3 3.4 7.0 13.6 40.2 56.6 38.1 64.0 76.6 30.5 57.8 72.2 66.8 85.3 93.0

J2n(3) 97.1 99.4 99.8 100 100 100 30.1 61.3 74.7 62.0 81.2 89.0 56.6 78.8 87.5 85.9 95.1 98.1

J2n(6) 83.1 97.0 98.4 99.8 100 100 12.8 38.2 55.3 36.7 63.5 77.1 27.8 57.8 71.7 64.7 84.6 91.9

L1n(3) 86.6 91.2 92.1 93.2 94.4 95.1 51.9 61.1 70.2 66.7 76.4 80.9 49.6 64.8 73.4 68.1 79.5 85.3

L1n(6) 80.7 87.2 89.4 90.7 93.2 94.3 42.7 57.3 64.3 57.3 69.5 75.6 41.0 57.1 64.1 58.4 72.9 79.0

L1n(9) 75.1 84.1 86.1 87.9 91.8 92.8 37.6 52.2 59.1 51.6 63.8 70.0 31.8 51.8 59.1 52.7 67.8 74.9

L2n(3) 87.0 91.4 92.3 93.2 94.4 95.1 52.0 61.2 71.3 66.7 76.5 81.5 49.7 65.0 73.5 68.1 79.6 85.5

L2n(6) 81.3 87.4 89.7 90.7 93.2 94.3 43.3 58.3 65.0 57.6 69.7 75.8 41.6 57.1 64.5 58.5 73.0 79.1

L2n(9) 76.6 84.8 87.4 88.0 91.9 93.0 38.1 52.9 60.3 52.0 64.1 70.7 33.1 53.1 60.5 53.4 68.5 75.5

T1n(3) 80.5 85.6 88.1 88.1 90.5 92.2 51.7 59.8 64.4 58.1 67.5 72.2 43.8 55.1 61.2 56.2 65.5 70.1

T1n(6) 67.2 75.6 79.3 79.8 85.4 87.8 43.2 52.3 57.1 48.2 60.1 65.3 34.7 45.8 52.7 44.5 55.7 61.8

T1n(9) 60.4 69.0 72.6 71.7 78.5 82.1 37.7 46.7 52.1 41.7 51.8 57.3 29.3 40.4 46.2 40.1 50.4 55.8

T2n(3) 86.6 91.2 92.1 88.1 90.7 92.3 52.0 59.2 65.2 58.9 67.7 72.6 44.4 55.1 62.8 56.7 65.7 70.4

T2n(6) 68.7 77.2 81.2 81.0 86.3 88.2 44.9 53.3 57.8 49.5 60.9 66.4 36.9 47.4 54.3 45.7 57.3 62.5

T2n(9) 63.6 70.8 76.0 73.3 79.9 82.9 40.1 49.0 55.3 43.5 53.8 58.9 32.2 43.7 49.6 42.0 52.5 59.0
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Table 3. Estimation results for both fitted BEKK models

Parameters Estimates Parameters Estimates

A1 â1,11 0.2832×10−3 A2 â2,11 0.2528×10−5

â1,12 0.0050×10−3 â2,12 0.3856×10−5

â1,22 0.0022×10−3 â2,22 0.6714×10−5

B11 b̂11,11 0.4662 B21 b̂21,11 0.3098

b̂11,22 -0.0619 b̂21,22 0.3195

B12 b̂12,11 -0.1149 B22 b̂22,11 -0.1264

b̂12,22 0.3357 b̂22,22 -0.0692
C11 ĉ11,11 0.3569 C21 ĉ21,11 0.6808

ĉ11,22 0.2222 ĉ21,22 0.6783
C12 ĉ12,11 0.5370 C22 ĉ22,11 0.6431

ĉ12,22 0.9027 ĉ22,22 0.6455
† Note that As is a symmetric matrix, and all Bsj and Csj are diagonal matrixes.

Y2t =

(
Y2t,1
Y2t,2

)
=

(
log(SHSCIt)− log(SHSCIt−1)

log(SZIt)− log(SZIt−1)

)
.

An analysis of the ACF and PACF of Y1t,1, Y1t,2, Y2t,1, Y2t,2, and their squares

indicates they have no conditional mean structure, but they do have a conditional

variance structure. Motivated by this, we use the following BEKK model with

the Gaussian-QMLE method to fit Y1t and Y2t:

Yst = Σ
1/2
st ηst,

Σst = As +BT
s1Y1t−1Y

T
1t−1Bs1 + · · ·+BT

spY1t−pY
T
1t−pBsp

+CTs1Σst−1Cs1 + · · ·+ CTsqΣst−qCsq,

for s = 1, 2, where As = CTs0Cs0, with Cs0 being a triangular 2 × 2 matrix,

and Bs1, . . . , Bsp, Cs1, . . . , Csq are 2 × 2 diagonal matrices. Table 3 reports the

estimates for both fitted models. The respective p-values of portmanteau tests

Q(3), Q(6), and Q(9) of Ling and Li (1997) are 0.7698, 0.5179, and 0.5967 for

Y1t, and 0.5048, 0.7328, and 0.8746 for Y2t. This implies that both fitted BEKK

models are adequate.

Next, we apply our joint HSIC-based tests Jsn(M) to check whether Y1t and

Y2t behave independently of each other. As a comparison, we also consider the

tests Lsn(M) and Tsn(M). Table 4 reports the p-values for all six tests. Here,

except for J2n(M), with M ≥ 7, all examined joint HSIC-based tests Jsn(M)

convey strong evidence that Y1t and Y2t are not independent. However, neither

Lsn(M) nor Tsn(M) achieves this for M ≥ 2.
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Table 4. The p-value for all six joint tests up to lag M = 0, 1, . . . , 10.

Tests
M J1n J2n L1n L2n T1n T2n
0 0.0000 0.0000 0.0134 0.0134 0.0000 0.0000
1 0.0000 0.0000 0.0428 0.0428 0.0125 0.0124
2 0.0000 0.0000 0.0881 0.0879 0.1965 0.1956
3 0.0000 0.0260 0.0610 0.0605 0.1055 0.1035
4 0.0000 0.0040 0.1137 0.1128 0.2979 0.2927
5 0.0090 0.0240 0.2111 0.2095 0.4640 0.4557
6 0.0230 0.0280 0.2762 0.2739 0.5958 0.5851
7 0.0220 0.0720 0.3315 0.3282 0.7093 0.6972
8 0.0280 0.0730 0.4079 0.4037 0.6708 0.6540
9 0.0450 0.0830 0.4491 0.4437 0.7645 0.7475
10 0.0230 0.1040 0.5761 0.5706 0.8359 0.8199
† A p-value larger than 5% is in boldface.

To get more information, we further plot the values of the single version of

Jsn, L1n, and T1n in Fig 1. That is, Fig 1 plots the values of Ssn(m), L1n,s(m),

and T1n,s(m), for m ≥ 0, where

L1n,1(m) = nρ2q̂1t,q̂2t(m), L1n,2(m) = nρ2q̂1t,q̂2t(−m),

T1n,1(m) = n · tr(CT12(m)C−111 (0)C12(m)C−122 (0)),

T1n,2(m) = n · tr(CT12(−m)C−111 (0)C12(−m)C−122 (0)),

and all notation is inherited from Section 5.2. The limiting null distribution of

L1n,s(m) is χ2
1, and that of T1n,s(m) is χ2

9. Similarly to Ssn(m), L1n,s(m) and

T1n,s(m) capture the linear dependence between η1t and η1t+m at specific lag m.

The corresponding single version results for L2n and T2n are similar to those for

L1n and T1n; hence, they are not displayed here.

From Fig 1, we first find that all single tests indicate a strong contempo-

raneously causal relationship between the Chinese market and the Russian and

Indian (R&I) market. Second, S1n(1) implies that the R&I market has a signif-

icant affect on the Chinese market one day later. However, according to S2n(3)

(or S2n(10)), the impact of the Chinese market on the R&I market appears after

three (or ten) days. These findings demonstrate an asymmetric causal relation-

ship between two markets. Because none of the examined L1n,s(m) and T1n,s(m)

can detect a causal relationship for m ≥ 1, the contemporaneous causal rela-

tionship mainly causes the significance of Lsn(1) and Tsn(1) in Table 4, and the

lagged causal relationship may be non-linear. Because the R&I market has a
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Figure 1. The values of single tests S1n(m), L1n,1(m), and T1n,1(m) (right panel) across
m, and the values of single tests S2n(m), L1n,2(m), and T1n,2(m) (left panel) across m.
The solid lines are 95% one-sided confidence bounds of the tests.
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higher degree of globalization and marketization, it may have a faster impact

on other economies. In contrast, the Chinese market is more localized, and its

influence on other economies tends to be slower, but can last much longer. This

long-term effect may be caused by “the Belt and Road Initiatives” of the Chinese

government, implemented in 2015. Hence, the asymmetric phenomenon between

two markets seems reasonable, and may help the government to formulate effi-

cient policy, and investors to design more useful investment strategies.

7. Conclusion

We have applied the HSIC principle to derive novel one-sided omnibus tests

for detecting independence between two multivariate stationary time series. The

resulting HSIC-based tests have a non-degenerate asymptotical representation

under the null hypothesis, and are shown to be consistent. A residual bootstrap

method is used to obtain the critical values for our HSIC-based tests, and its valid-

ity is justified. Unlike existing cross-correlation-based tests for linear dependence,

our HSIC-based tests look for general dependence between two unobservable in-

novation vectors. Hence, they can provide researchers with information that is

more complete on the causal relationship between two time series. The impor-

tance of our HSIC-based tests is illustrated by simulation results and a real-data

analysis. The generality of the HSIC method means that our methodology may

be applied to many other important testing problems, such as testing for model

adequacy (Davis et al. (2018)), testing for independence among multi-dynamic

systems (Pfister et al. (2018)), and testing for independence in high-dimensional

systems (Yao, Zhang and Shao (2018)). We leave these interesting topics to

future study.

Supplementary Material

The online Supplementary Material contains additional simulation results

and the proofs of all lemmas and theorems.
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