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Type-2 diabetes mellitus (T2DM) and therapy options have been studied increasingly due
to their rising incidence and prevalence. The trend of applying traditional Chinese medicine
(TCM) to treat T2DM is increasing as a crucial medical care for metabolic dysfunctions.
Gegen Qinlian decoction (GQL), a well-known classical TCM formula used in China, has
been clinically applied to treat various types of chronic metabolic diseases. However,
antidiabetic effects of GQL administration during T2DM have never been studied
systematically. We assessed physiological and molecular targets associated with
therapeutic effects of GQL by evaluating network topological characteristics. The GQL-
related biological pathways are closely associated with antidiabetic effects, including the
TNF and PI3K–AKT signaling pathways. Associated primary biological processes such as
RNA polymerase II promoter transcription participate in the inflammatory response,
oxidative stress reduction, and glucose metabolic process, thereby exerting multiple
biological effects on the antidiabetic mechanism. Furthermore, our results showed that
GQL can affect blood glycemic levels and ameliorate inflammatory symptoms, and liver
and pancreas tissue injury in high-fat diet plus streptozotocin-induced diabetic mice. In
vivo and in vitro experiments confirmed that antidiabetic effects of GQL were associated
with a modulation of the TNF and PI3K–AKT–MTOR pathways.
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INTRODUCTION

Type-2 diabetes mellitus (T2DM) is a chronic metabolic disease which constitutes a severe threat to
global public health (Chan et al., 2009). T2DM is a chronic hyperglycemia and inflammatory disease
which may lead to macrovascular and microvascular degenerative complications, including
cardiovascular diseases, diabetic nephropathy, and retinopathy (Usuelli and La Rocca, 2015).
Metabolic dysfunction and inflammatory responses are partly responsible for islet function loss
and irreversible host organ damage during pathological progression of T2DM and its associated
complications. The World Health Organization estimated the number of deaths caused by diabetes
mellitus and its related complications at approximately 1,600,000 in 2016. Severe diabetic
complications and the lack of comprehensive therapy of T2DM and its associated afflictions
require identification of novel effective treatment avenues (Kalra et al., 2018). As a crucial
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healthcare and alternative medicinal complement avenue,
many traditional Chinese medicines (TCMs) have shown
superior success regarding treatment of human metabolic
disorders in China, Korea, and Japan. The remarkable
efficacy and safety of TCMs with low toxicity have been
acknowledged after several hundred years of practical
clinical application in chronic metabolic disorder therapy
(Pang et al., 2015).

As an alternative medicinal application, TCM has been
demonstrated to exert excellent clinical effects on T2DM due
to its rich herbal plant resources, many of which have been
developed and are commonly used alone or in combination with
adjuvant hypoglycemic agents for T2DM therapy (Covington,
2001). Gegen QinLian decoction (GQL) is a well-known classical
TCM which has been used to treat chronic diarrhea and damp-
heat syndrome, according to ancient records (Shang Han Lun) (Li
et al., 2016). GQL is composed of four herbal drugs at a weight
ratio of 5:3:3:2, for example, 15 g Puerariae Lobatae Radix (Gegen,
Pueraria lobata (Wild.) Ohwi), 9 g Scutellariae Radix (Huangqin,
Scutellaria baicalensis Georgi), 9 g Coptidis Rhizoma (Huanglian,
Coptis chinensis Franch.), and 6 g Glycyrrhizae Radix et Rhizoma
(zhi gan cao, Glycyrrhiza uralensis Fisch.). Modern clinical
research has shown that GQL can normalize hyperglycemia
and hyperlipidemia in T2DM patients (Ryuk et al., 2017), and
its practical therapeutic application during diabetes mellitus has
been assessed for more than ten years (Zeng et al., 2006). GQL
was also used to treat T2DM-related complications with
promising results (Han et al., 2017). However, the different
constituents of GQL may exert various effects, which obscures
the underlying molecular mechanisms; therefore, the respective
antidiabetic chemical and pharmacological processes must be
elucidated.

Systems pharmacology can help identify novel strategies and
useful methods for discovering TCMs to treat complex diseases
(Li and Zhang, 2013). In recent years, new network pharmacology
combined with gene ontology (GO) enrichment analysis has
become a useful tool to systemically determine interactions
among TCM compounds, gene or protein targets, and
pathways of diseases, which implies a holistic concept of TCM
therapy (Li et al., 2014; Guo et al., 2019). Based on systemic
bioinformatics, network pharmacology facilitates evaluation of
feasibility and applicability of TCM for treating complex diseases
through compound-target and target-signaling network analysis.
Network pharmacology was successfully established in our
laboratory for investigating complex herbal formulas used to
treat human cancers (Wang et al., 2018b; Guo et al., 2019;
Huang et al., 2020a). Meanwhile, previous ingredient–drug
networks combined with GO biological analysis has showed
that 4-hydroxymephenytoin from Puerariae Lobatae Radix can
improve insulin metabolism in islet cells and adipocytes (Li et al.,
2014). In the current study, we examined the pharmacological
mechanisms of GQL and its effects on T2DM using network
pharmacology analysis and experimental confirmation. Network
pharmacology analysis was performed to identify the protective
drug targets and the essential signaling pathways affected by GQL
during T2DM. Furthermore, we examined GQL-related
antidiabetic mechanisms using in vivo and in vitro

experiments. Our results suggest the potential underlying
mechanism of GQL and provide strong evidence for this
therapeutic avenue of treating T2DM.

MATERIALS AND METHODS

Ultrahigh-Performance Liquid
Chromatography Analysis of Gegen Qinlian
Decoction Constituents
Nong’s GQL formula (A190049310) was commercially purchased
from PuraPharm (Hong Kong, China), and its constituents were
identified using UHPLC analysis. GQL powder (1 g) was extracted
using methanol (10 ml) in a 15-ml centrifuge tube, and the
methanol solution was sonicated and centrifuged at 35,000 rpm.
The supernatant solution was then filtered through a 0.45-μm
membrane before UHPLC analysis. Chromatographic analysis was
performed using a reverse-phase ACE Excel C18 column (100mm
× 2.1 mm) at a flow rate of 0.379 ml/min at 35 C. The elutionmedia
with 0.15% trifluoroacetic acid (B) and methanol (A) were used
with a gradient protocol as follows: 77–70% B for 0–4.4 min,
70%–65% B for 4.4–4.576 min, 65%–42% B for
4.576–6.864 min, 42%–45% B for 6.864–7.040 min, 45%–45% B
for 7.04–9.68min, 45%–30% B for 9.68–12min, and 30–30% B for
12–15min.

Interaction Network of Gegen Qinlian
Decoction Constituents and T2DM Target
Genes
We collected information on the GQL chemical constituents from
previous studies (An et al., 2014; Wang et al., 2016; Qiao et al.,
2016; Qiao et al., 2018). Forty-two active chemical GQL
constituents were identified, including eight compounds from
Puerariae Lobatae Radix, 14 compounds from Scutellariae Radix,
seven compounds from Coptidis Rhizoma, and 13 compounds
from Glycyrrhizae Radix et Rhizoma. Some chemical compounds
of GQL show some properties of absorption, distribution,
metabolism, and excretion (ADME) and the standard of drug-
likeness (DL), and potentially druggable compounds were
selected as active constituents for further target prediction of
GQL. Information on oral bioavailability (OB) and DL index of
the 42 compounds is shown in Supplementary Table S1.
Bioinformatic data of protein targets of bioactive GQL
constituents were analyzed based on the online TCMSP
database (http://tcmspw.com/) (Supplementary Table S2).
Next, T2DM-associated target genes were compiled using the
TTD (http://db.idrblab.net/ttd/), KEGG (http://www.kegg.jp/),
and CTD (http://ctdbase.org/) databases to identify
corresponding T2DM-associated protein targets (Zhou et al.,
2019). The complex network diagrams of active GQL
constituents and identified anti-T2DM targets were plotted as
an ingredient–target interaction network to be mapped using
Cytoscape 3.6.1 software (Shannon et al., 2003). To illustrate
GQL-related target protein interactions in T2DM, highly
connected target proteins were screened based on
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protein–protein interaction information using STRING software
(http://string-db.org). We used a high confidence threshold (>0.
9) to ensure reliability, and protein–protein interaction data with
high node degrees obtained from STRING were selected for
establishing a protein–protein interaction network.

Target Proteins Analysis
To identify potential target proteins affected by GQL, GO
biological function and KEGG pathway enrichment searches
were carried out using the annotation database of DAVID
biological information (Huang et al., 2007) to determine the
predicted target protein function affected by GQL and their
important role in signaling transduction. The top 10
significantly enriched terms for the predicted proteins
regarding biological process (BP), cellular components (CC),
and molecular functions (MF) were produced using the
Benjamini–Hochberg procedure (Haynes, 2013).

Establishment and Treatment of a T2DM
Mouse Model
All animal experiments were approved by the Committee on the
Use of Live Animals in Teaching and Research of the University
of Hong Kong. After adaptive feeding for one week, six-week-old
C57BL/6J male mice were fed a high-fat diet (HFD, Research
Diets, D12492) to induce obesity. After four weeks, HFD-fedmice
were intraperitoneally injected with streptozotocin solution (STZ;
Sigma-Aldrich, St. Louis, MO, United States ) at 50 mg/kg on two
consecutive days (Srinivasan et al., 2005). Next, mice with high-
fasting blood glucose levels (≥11.0 mmol/L) were randomly
selected as T2DM models. The diabetic mice were assigned to
a GQL treatment and a control group (n � 5, each). Following the
best practice in pharmacological research (Heinrich et al., 2020),
we used a common criterion of drug dosage, body surface area
(BSA) formulas (Reagan-Shaw et al., 2008), to calculate the drug
doses in mice. With respect to previous studies on GQL in clinical
(Tong et al., 2011) and animal studies (Blanchard and Smoliga,
2015; Lv et al., 2019;Wu et al., 2019), we orally administered GQL
at 1 g/kg (GQL-L group) and 2 g/kg (GQL-H group) to T2DM
mice for six weeks. An oral glucose tolerance test (OGTT) was
used to assess glucose tolerance. After an initial glucose gauge
(2 g/kg), blood glucose levels were monitored using a glucometer
at various time points. The glucose plot area under the curve
(AUC) was used to evaluate glucose tolerance in T2DMmice after
GQL treatment. The calculation of the glucose AUC was
performed using Prism 8.3.1 software. Serum samples were
used to measure insulin, HbA1c, ALT, and AST levels.

Cell Culture
AML12 hepatocytes (obtained from the American Type Culture
Collection, Manassas, VA, United States ) were cultured in
DMEM/F12 medium (10% FBS plus 100 mg/ml streptomycin
and 100 U/mL penicillin) and were incubated at 37 C in an
incubator continuously supplying 5% CO2. To assess antidiabetic
effects of GQL, we cultured AML12 cells in a palmitate plus high-
glucose (33 mM) medium at 37 C for 24 h and treated the cells
without or without GQL (100 μg/ml).

Immunoblotting
Protein was extracted by adding RIPA solution, and supernatant
containing proteins was collected after centrifugation. After protein
quantification using a Bio-Rad Protein Assay Kit II (5000002), protein
separation was performed by SDS-PAGE gel electrophoresis, and
separated proteins were transferred to amembrane and blocked using
5% BSA solution to prevent nonspecific protein binding. After
blocking, the immunoblot membrane was incubated with primary
antibodies against the target proteins such as GAPDH, iNOS, P-65,
SOCS 2, P-ERK, P-AKT, P-MTOR, and P-JNK. After washing three
times, the membrane was incubated with secondary antibody (1:
2,500). Protein expression was visualized using the ECL system and
was analyzed using the Chemidoc chemiluminescent platform (Guo
et al., 2019).

RT-PCR Analysis
Total RNA was isolated by using an RNeasy Mini Kit (Qiagen,
Hilden, Germany), and concentration was measured at a 260 /
280-nm ratio. First-strand cDNA was transcribed from total
RNA using a First Strand Synthesis Kit (Takara, Japan). PCR
was conducted using SYBR Green reagent, specific primers
(Table 1), and a Light Cycler 480 (Roche, Basel,
Switzerland).

Hematoxylin and Eosin and Oil Red O
Staining
Tissue samples of HFD + STZ mice were fixed in 4%
paraformaldehyde buffer, and tissue sections (5 μm thickness)
were stained using H&E and Oil Red O for general histology
(Lucchesi et al., 2015).

Data Analyses
Statistical analysis was conducted using an ANOVA or Student’s
two-tailed t-test with Prism Software 8.3.1. Statistical significance
is reported at p < 0.05.

RESULTS

Interaction Analysis of Gegen Qinlian
Decoction and Type-2 Diabetes Mellitus
Target Proteins
TCM was administered orally to examine its efficacy after the
ADME process, and OB of the 42 active ingredients in GQL has
been indicated to determine potentially druggable active
compounds (Qiao et al., 2018). By screening the OB and DL
index (Supplementary Table S1), we identified 12 candidate
compounds from four herbs that contributed active compounds,
including wogonin, oroxylin A, baicalein, baicalin, coptisine,
epiberberine, berberine, palmatine, isoliquiritigenin,
liquiritigenin, glycyrol, and formononetin (Supplementary
Figure S1). Based on previous studies, GQL formula
constituents were determined using UPLC analysis
(Figure 1A), and puerarin (MOL07), daidzin (MOL01),
berberine (MOL24), palmitane (MOL25), baicalin (MOL17),
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and baicalein (MOL12) were identified as the major active
constituents of the GQL formula. GQL contained puerarin at
1.038%, which meets the quality standard requirement of GQL
formula according to the China Pharmacopeia 2015.We explored
the therapeutic targets of the 42 active GQL constituents, and
SMILES structural similarity of the selected active GQL
constituents (Supplementary Table S3) was used to
investigate the drug–target interaction prediction through the
similarity ensemble approach, in which 38 different ingredients of
GQL with practical pharmacological activities were closely
associated with the 468 target proteins shown in
Supplementary Table S4. Accordingly, the
component–target–disease network showed that 38 active
ingredients interacting with 148 T2DM-related target genes
were generated using a therapeutic target database (Wang
et al., 2020), and the network visualization was analyzed using
Cytoscape 3.6.1 (Figure 1B). The compound–target network
comprising 715 edges and 186 nodes showed that six high-
degree compounds were associated with multiple target
proteins, that is, MOL18 (chrysin, 38), MOL12 (baicalein, 44),
MOL03 (daidzein, 58), MOL07 (puerarin, 41), MOL08 (wogonin,
53), and MOL28 (isoliquiritigenin, 46). Critical target proteins or
ingredients with a high degree of connection in the interaction
network may be responsible for essential antidiabetic effects
of GQL.

Gegen Qinlian Decoction Type-2 Diabetes
Mellitus Target Protein Identification
Highly connected subnetworks with 53 gene nodes were
identified using the MCODE module analysis (Zhang et al.,
2019) (Figure 2A). The Venn diagram results (Figure 2B)
suggested 11 overlapping genes which were identified by
matching the four herbal compounds-related genes with each
other, including AR, ESR1, PTGS2, PIM1, CDK2, ESR2,
HSP90AA1, NOS2, NOS3, PTGS1, and RXRA. This
interaction network contained 296 edges and 52 nodes
(Figure 3C), of which edges represent interactions between
the proteins and nodes represent target proteins. MAPK14,
JUN, STAT3, IL-2, JAK2, TP53, CCND1, AKT1, FOS,
RELA,MMP9, SIRT1, PPARG, IL-6, EGFR, TGFB1, VEGFA,
JAK2, PTGS2, IL1B, TNF, and NFKB1 were centrally located
in the interaction network with high node degrees, suggesting that
these high-degree proteins may be the key antidiabetic targets of
GQL during T2DM treatment.

Identification of Potential Signaling
Pathways
Among the GO enriched categories, the BP ontology (101
records), CC ontology (14 records), and MF ontology (19
records) consisted of 75.4, 14.2, and 10.4%, respectively
(Figure 3A). Target proteins of the BP category were mostly
associated with RNA polymerase II promoter transcription and
were relevant to the inflammatory response, oxidative stress
reduction, and glucose metabolic process (Figure 3B). Target
proteins in the MF category were predominantly associated with
heme binding and cytokine activity (Figure 3C), and CC target
proteins were categorized as belonging to extracellular space or
cytosol (Figure 3D). The results showed that GQL may thus bind
kinase in plasma or in the cell membrane during inflammatory
response, oxidative stress, and glucose metabolism. To further
elucidate the association of target proteins with signaling
pathways, a target–pathway interaction network was produced
based on GQL-related target proteins (Figure 4A). Furthermore,
the top 30 KEGG pathways were screened out
(Benjamini–Hochberg corrected p < 0.05) to generate a
target–pathway signaling network involving 33 target proteins
(Figure 4B). KEGG analysis indicated that these target proteins
mostly participated in the regulation of TNF, NOD-like receptor,
PI3K–AKT, FoxO, TLR, and apoptosis. GO and KEGG
enrichment analyses suggested that bioactive ingredients of
GQL affecting the TNF inflammatory signaling and PI3K/AKT
pathways were responsible for the main therapeutic effects
during T2DM.

Antidiabetic Effects of Gegen Qinlian
Decoction in Diabetic Mice
Curative effects of the GQL formula on HFD + STZ-induced
diabetic mice were evaluated, and GQL treatment showed
promising hyperglycemic effects, as evidenced by the reduction
in fasting blood glucose levels (Figure 5A). Compared with the
controls, the GQL-L and GQL-H treatment mice showed
significantly reduced glucose levels during the six-week
treatment. Moreover, improvements regarding body weight
(Figure 5B), triglycerides (Figure 5C), cholesterol
(Figure 5D), HbA1C (Figure 5E), and insulin levels
(Figure 5F) were also observed in the GQL treatments. The
OGTT assay showed lower AUC values in GQL-L GQL-H mice
than in the controls (Figures 5G,H). GQL treatment significantly
reduced the levels of ALT and AST in the serum of HFD + STZ

TABLE 1 | PCR primer sequences and target genes.

Genes Forward (59-39) Reverse (59-39)

TNFα CTACCTTGTTGCCTCCTCTTT GAGCAGAGGTTCAGTGATGTAG
IL-6 AGGATACCACTCCCAACAGACCT CAAGTGCATCATCGTTGTTCATAC
IL1β CTTCAGGCAGGCAGTATCACTCAT TCTAATGGGAACGTCACACACCAG
Caspase-8 CTCCGAAAAATGAAGGACAGA CGTGGGATAGGATACAGCAGA
Caspase-3 AAGGAGCAGCTTTGTGTGTGT AAGAGTTTCGGCTTTCCAGTC
β-actin ACGGCCAGGTCATCACTATTG TGGAAAAGAGCCTCAGGGC
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FIGURE 1 | (A) UPLC-UV profiles of GQL. (1) Puerarin (MOL07), (2) daidzin (MOL01), (3) berberine (MOL24), (4) palmitane (MOL25), (5) baicalin (MOL17), and (6)
baicalein (MOL12). (B) Compound–target network with 715 edges and 186 nodes. Red squares indicate antidiabetic active compounds (13) of GQL. Purple circles
indicate 80 common target proteins of active GQL constituents and T2DM targets. Edges indicate interactions between targets and ingredients.
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FIGURE 2 | (A) Highly connected subnetworks (53 nodes, 1,120 edges) produced using Cytoscape 3.6.0, (B) a Venn diagram of the four herb compound-related
gene numbers, and (C) protein–protein interaction network (52 nodes, 296 edges) produced using STRING.
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mice (Figures 5I,J). Severe steatosis and cytoplasmic vacuoles
were observed in hepatocytes of HFD + STZ mice, in addition to
inflammatory infiltration. Oral administration of GQL prevented
fat deposition in liver tissues, as shown by Oil Red O staining
(Figure 5K). Compared with the controls, liver structures were
significantly altered in GQL-L and GQL-H mice, as indicated by
smaller amounts of fatty vacuoles and less interlobular
mononuclear inflammation (Figure 5K). Under hyperglycemic
conditions, the pancreatic tissue of HFD + STZ model mice
showed severe necrotic changes and a reduction in the size of
islets, especially around large vessels (Pandey et al., 2019). GQL
supplementation prevented histomorphological changes in
pancreatic tissues of HFD + STZ mice. These results suggested
that GQL alleviates liver and islet cell damage in pancreatic tissues
caused by diabetes mellitus. By examining antidiabetic effects of
GQL in HFD + STZ mice, we found that GQL reduced the serum
levels of TNFα and IL-1β (Figure 6A) and the levels of TNF-α,
IKKα, IL-6, IL-1β, CASP 8, and CASP three mRNA (Figure 6B),
which confirmed that antidiabetic effects of GQL were associated
with TNF-α signaling. Additionally, GQL increased the levels of
phosphorylated AKT, MOTR, ERK, and JNK in liver tissue

(Figures 6C,D), confirming activation of AKT/mTOR
signaling in GQL-treated diabetic mice.

In vitro Confirmation of PI3K/AKT and
TNF-α Signaling Pathway Activation by
Gegen Qinlian Decoction
PI3K/AKT and TNF-α–related target proteins and signaling
pathways were assessed in AML12 hepatocytes exposed to
palmitate and high glucose levels. The TNF signaling pathway
was examined by measuring TNFα, IKKα, IL-6, IL-1β, CASP 8,
and CASP 3 mRNA (Figure 7A), showing that GQL treatment
significantly reduced TNF-related inflammatory proteins,
including TNFα, IKKα, IL-6, and IL-1β (Figure 7B).
Furthermore, GQL-induced inflammation reduction was
associated with reduced levels of phosphorylated NF-κB
protein and increased phosphorylated JNK and ERK1/2
production (Smith et al., 2007), as well as SOCS3 protein
expression, which contributed to apoptosis (Figures 7C,D). To
confirm activation of the PI3K/AKT signaling pathway
(Figure 8A), we measured AKT and MTOR proteins in

FIGURE 3 | (A) GO enrichment analysis, and (B–D) top 10 significant GO enrichment terms in categories BP, MF, and CC.
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FIGURE 4 | (A) Target–pathway interaction network and (B) KEGG enrichment analysis.
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FIGURE 5 | (A) Fasting blood glucose changes in HFD + STZ-treated C57BL/6 mice after GQL treatment; (B) body weight elevation; (C,D) triglyceride and
cholesterol levels; (E,F) HbA1c and insulin levels; (G) glucose AUC during OGTT; (H) glucose levels during OGTT measured 0, 30, 60, 90, and 120 min after oral
administration of glucose solution (2 g/kg); (I,J) serum ALT and AST levels.
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AML12 cells using Western blotting. GQL treatment increased
AKT and mTOR phosphorylation (Figures 8B–D), suggesting
that GQL may activate AKT/mTOR signaling.

DISCUSSION

T2DM is a heterogeneous disease with high morbidity and
complex associated afflictions. Thus, development of diabetes
is associated with multiple target proteins or pathways. TCMs
composed of multiple indigents may exert various
pharmacological effects via multiple targets and signaling
pathways, which may aid in T2DM treatment. However, the
complexity of TCMs may complicate in-depth research to
elucidate the underlying mechanisms. Due to extensive clinical
application of GQL to treat T2DM in China (Ryuk et al., 2017),
network pharmacology is important to verify the
pharmacological mechanism by which GQL attenuates T2DM.

Our study explored the mechanisms of a multicomponent,
multigene-targeting GQL formula by establishing a T2DM
association network. This analysis was based on therapeutic

effects of GQL formula relevant to 148 antidiabetic target
genes, and GQL regulated binding kinase in plasma or cell
membranes and modulated inflammatory responses, oxidative
reduction, and glucose metabolic process by 38 significant
proteins and signaling pathways, that is, the PI3–AKT (Huang
et al., 2018), insulin (Brännmark et al., 2013), and TNF signaling
pathways (Alipourfard et al., 2019). Based on KEGG pathway
analysis, PI3-AKT and TNF signaling pathways were among the
top 30 significant pathways, and GO enrichment highlighted the
main biological processes of RNA polymerase II promoter
transcription for modulating insulin metabolism, glucose
homeostasis, and inflammation, thereby exerting
multicomponent, multi-target, multichannel, and antidiabetic
effects. Chronic low-grade inflammation is a common
characteristic of T2DM, with primary alterations occurring in
the liver and pancreatic islets. The NF-κB and JNK signaling
pathways contribute to chronic inflammation during T2DM.
GQL can be used to treat inflammation and oxidative stress so
as to reduce the severity of colitis by inhibiting TLR4/NF-κB
activation (Li et al., 2016). Our experiments indicated that GQL
suppressed activation of NF-κB and of two major mitogen-

FIGURE 6 | (A) Serum TNFα and IL1β; (B) levels of TNFα, IKKα, IL-6, IL1β, CASP 8, CASP3, and AP-1 mRNA in diabetic mice determined using RT-PCR; (C,D)
relative levels of P-AKT, P-MTOR, -JNK, and P-ERK proteins detected by immunoblotting.
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FIGURE 7 | (A) KEGG pathway map of the TNFα signaling pathway; (B) levels of TNFα, IKKα, IL-6, IL1β, CASP 8, CASP3, and AP-1 mRNA determined using RT-
PCR; (C,D) relative expression of iNOS, P-P65, SOCS2, P-JNK, and P-ERK as detected by immunoblotting.
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FIGURE 8 | (A) KEGG pathway map of the AKT signaling pathway, and (B) relative levels of P-AKT, AKT, P-MTOR, and MTOR proteins as evaluated by
immunoblotting.
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activated protein kinases (ERK1/2 and JNK). Inhibition of NF-κB
and ERK1/2 ameliorated TNF-α–induced inflammation induced
by high glucose exposure (Smith et al., 2007). Our results showed
that GQL promoted phosphorylation of AKT and mTOR in vitro
and in vivo to inhibit T2DM development.

In the current study, GQL constituents with high OB and DL
indices were selected as bioactive compounds with high
pharmacokinetics because they may be absorbed and distributed
in the patient’s body. Our compound–target network analysis
showed 12 potential candidate compounds with high node
degrees, that is, wogonin, oroxylin A, baicalein, baicalin,
coptisine, epiberberine, berberine, palmatine, isoliquiritigenin,
liquiritigenin, glycyrol, and formononetin, all of which may be
associated with the marked antidiabetic effect of GQL on T2DM.
These bioactive compounds exert antihyperlipidemic, anti-
inflammatory, and anti-oxidative effects during diabetes and
diabetic complications. Bioactive isoflavones from Puerariae
Lobatae Radix, puerarin, and daidzin showed antidiabetic effects
in animal studies, such as puerarin improving insulin resistance
and islet damage by inhibiting inflammation and oxidative stress
during diabetes and diabetic complications (Chen et al., 2018).
Daidzin can modulate glucose and lipid metabolism and reduces
the inflammatory response through the TNFα/JNK signaling
pathway in macrophages during T2DM (Das et al., 2018).
Wogonin, baicalin, and baicalein are active ingredients of
Scutellariae Radix, which have been considered potential anti-
oxidative and anti-inflammatory agents for treating obesity,
insulin resistance, and inflammatory disorders (Fang et al.,
2020). Wogonin can increase glucose cellular absorption to
reduce hyperglycemia through the AKT and GLUT4 pathways
(Khan and Kamal, 2019), and it exerts anti-inflammatory effects
through NF-κB signaling and anti-fibrosis effects against diabetic
nephropathy through the TGF-β1/Smad3 signaling pathway
(Zheng et al., 2020); moreover, it can alleviate diabetic
cardiomyopathy through anti-inflammatory and anti-oxidative
activities (Khan et al., 2016a). Alkaloids, especially berberine,
palmatine, and coptisine, are responsible for therapeutic effects
of Rhizoma coptidis, which can have beneficial effects on diabetes
and diabetic complications by modulating AKT/AMPK–NF-κB/
MAPK/PI3K and oxidative stress signaling pathways (Wang et al.,
2018a). Specifically, berberine acts as an antihyperglycemic agent
during T2DM treatment through increased phosphorylation of
AKT, thereby improving insulin resistance through AMPK
activation (Chang et al., 2015). Coptisine ameliorates oxidative
injury in diabetic nephropathy by regulating the Nrf2 signaling
pathway, and liquiritigenin inhibits diabetes-induced mesangial
matrix accumulation in diabetic nephropathy by decreasing the
NF-κB and NLRP3 inflammasome (Zhu et al., 2018).
Isoliquiritigenin attenuates inflammation and oxidative stress in
diabetic renal injuries through an SIRT1-dependent mechanism
(Huang et al., 2020b). These previous studies on bioactive
compounds and the results of the present study support the use
of pharmacological network prediction. In the exploration of the
potential underlying mechanism, network pharmacology has
shaped its own analytical rules and evaluation of rationality (Li,
2021). Our results suggested successful network pharmacology for
screening the mechanism of action of TCMs with respect to a

specific disease. Anti-inflammation and PI3K-AKT/MTOR
activation (Khan et al., 2016b) and multiple active ingredients
of GQL that can synergize with numerous target proteins result in
diverse beneficial mechanisms in the treatment T2DM. Our results
showed that the antihyperglycemic effects of GQL were associated
with alleviation of liver and pancreas injury, which is common
during T2DM (Loria et al., 2013). Moreover, our results indicated
that GQL in T2DM treatment may affect the TNF/NF-κB and
PI3K/AKT/MTOR pathways to reduce inflammation and improve
hyperglycemia. Furthermore, detailed pharmacological
mechanisms by which GQL ameliorates T2DM will be
investigated in our future study.

In conclusion, a combination of pharmacology network
analysis and experimental approaches may be a useful research
tool to elucidate antidiabetic mechanisms of TCMs in detail. The
development of T2DM is a complex pathological process
involving multiple signaling pathways and multiple targets.
Our results suggest that GQL can modulate multiple target
proteins in multiple signaling pathways and can be used for
T2DM therapy. The antidiabetic effects of GQL in vitro and in
vivo should be further examined in clinical trials with T2DM
patients. However, more evidence is needed to further validate
antidiabetic bioactivities of the active compounds and to evaluate
their respective contributions.
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