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Abstract

This paper focuses on train stop deployment planning for high-speed railway lines during a major

disruption, when a segment is completely blocked for a relatively long period of time. Due to this

disruption, trains approaching the disrupted area must be stopped at appropriate stations based on

their types for both safety and operational reasons. Stopped trains should not hinder other trains

that can continue to run during the disruption. Train stop deployment planning is applied to handle

this problem. A mixed integer linear programming (MILP) model is formulated to minimize the

number of canceled trains and the total weighted train deviations. The model is tested on a real-

world instance, the Beijing-Shanghai high-speed railway, and related lines are implicitly taken into

account because of cross-line trains. The results show that our model can obtain good solutions

within a relatively short computation time for disruptions lasting no more than 90 minutes.

Keywords: High-speed railway; Segment blockage; Train stop; Integer linear programming

1 Introduction and Motivation

Disruptions to railway systems inevitably occur due to various external and internal factors, such as

bad weather conditions, a faulty switch on a busy track, a broken signaling system or rolling stock, or

damaged overhead wires. These disruptions require trains to deviate from their original timetable, which

negatively affects passenger service.

Immediately after a disruption occurs, dispatchers must control affected trains and update the original

timetable to a disposition timetable based on the latest information. In a serious disruption, in which

some track segments are temporary blocked, trains that need use the disrupted area cannot continue

their journey. Dispatchers must immediately and appropriately handle trains that are approaching the
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disrupted area. Two strategies are typically used to address these situations. The first is to short-turn

disrupted trains in an appropriate station adjacent to the disrupted area (Nielsen et al. [2012], Louwerse

and Huisman [2013], Veelenturf et al. [2016], Ghaemi et al. [2017] and Ghaemi et al. [2018]). This

train rescheduling strategy is used in a number of European countries, such as the Netherlands, where

railway lines are relatively short and seat reservations are not used. However, in other countries, such as

China and Japan, short-turning is not favored for long distance high-speed railway lines. Instead, trains

approaching the disrupted area must stop and wait at suitable stations until the end of the disruption;

this is called the disrupted train service waiting strategy (Hirai et al. [2009] and Zhan et al. [2015]).

Railway systems that use this strategy usually have rather long high-speed railway lines and use seat

reservations. Thus, it is often difficult for passengers to find other ways to continue their journey if

trains short-turn mid-trip, and it is not convenient for passengers to transfer from one train to another

when seat reservations are used. In this study, we focus on long-distance high-speed railway lines with

seat reservations, and use the disrupted train service waiting strategy for disrupted train service. Under

this strategy, the issue of how to stop disrupted trains at suitable stations to wait for the disruption to

end (train stop deployment planning, for short )is both critical and complex (Hirai et al. [2009]). Until

now, train stop deployment planning during a serious disruption has mainly been handled manually by

dispatchers, which is quite challenging. In addition, to the best of our knowledge, few previous papers

have investigated this important issue. These considerations motivate our research.

In a situation of serious disruption, in which all tracks in a segment are blocked (also called complete

blockage), train rescheduling on a long-distance high-speed railway line with dense traffic is complicated.

Trains in both directions (inbound and outbound trains) must be rescheduled efficiently. In a short-

turning strategy, only trains on one side of the disrupted line are considered, as train rescheduling on the

other side is similar, see Louwerse and Huisman [2013] and Veelenturf et al. [2016] for examples. On a

double-track high-speed railway line, inbound (outbound) trains use inbound (outbound) tracks in each

segment normally. In a train service waiting strategy, trains in both directions do not interrupt each

other if we assume that inbound (outbound) trains are only allowed to use inbound (outbound) sidings

in each station. Thus, train services in each direction can be rescheduled independently. That is, we

only reschedule train services in one direction; see Zhan et al. [2015]. However, it is likely that trains in

both directions will share sidings at each station in a complete blockage, which is helpful for reducing the

impact of disruption on train operations. Accordingly, we allow trains in both directions to share sidings

at a station in this study. Thus, trains in both directions, including local trains and cross-line trains,

must be rescheduled simultaneously.

We mainly focus on train stop deployment planning in a seriously disrupted situation, which is a

critical step for train rescheduling. As soon as a complete blockage occurs, railway dispatchers must

stop trains approaching the disrupted area. Because various types of trains run on a high-speed railway

network, dispatchers have to decide which train should stop at which station, both to ensure safety and

improve operational efficiency. For example, lower-speed trains should not hinder higher-speed trains,

and local trains that can continue to run should not be blocked by trains that will be stopped for a long

time. We discuss train stop deployment planning in more detail in the problem description section. A

new mixed integer linear programming (MILP) model is formulated to solve the train stop deployment

planning problem at a macroscopic level. A real-world high-speed railway line in China, the Beijing-

Shanghai high-speed railway line, and the other lines connected to this line are used to test our model.
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This paper’s contributions are twofold. First, we formulate a MILP model to handle real-time train

stop deployment planning on long high-speed railway lines during a complete blockage, taking local trains

and cross-line trains into account. Second, unlike most previous studies, which only considered part of

trains in a complete blockage(trains running in one direction, or trains running on one side of the location

of the disruption), our model considers trains in both directions simultaneously, because trains in both

directions can share station tracks or even main lines during a serious disruption. To this end, our results

can be used to reduce the impact of disruptions on train operations.

The remainder of this paper is organized as follows. Section 2 gives an overview of the related

literature. In Section 3, we describe the problem in detail. In Section 4, a MILP model is formulated to

model train stop deployment planning during disruptions. Section 5 presents the computational results

based on a series of disruption scenarios. Conclusions and future research are discussed in Section 6.

2 Literature review

Train rescheduling has recently become an active area for researchers. Numerical research has been

conducted in this area; see, for example, recent surveys by Cacchiani et al. [2014], Corman and Meng

[2015], and Fang et al. [2015].

Unforeseen incidents caused by internal or external factors can be classified as disturbances or disrup-

tions, according to their degree of influence on the railway system (Cacchiani et al. [2014]). A disturbance

is a relatively small perturbation, such as a train being delayed by several minutes due to longer passenger

boarding time at a station. However, a disruption caused by a serious accident, such as a locomotive

breakdown or blockage on a railway line, may significantly affect the railway system. According to Cac-

chiani et al. [2014], most previous research on real-time train rescheduling has focused on disturbances.

In addition, most research has focused on rescheduling trains at the microscopic level instead of a macro-

scopic level. At the microscopic level, more details of the railway network and train information need to

be considered. For example, a railway line must be divided into block sections instead of sections between

two successive stations, which is the approach normally used in macroscopic train rescheduling. For more

information about microscopic and macroscopic train rescheduling, we refer to Cacchiani et al. [2014].

D’Ariano et al. [2008] and Corman et al. [2010, 2011a, 2012, 2014] reschedule trains during disturbances

at a microscopic level. These studies develop a real-time traffic management system, called ROMA, based

on the alternative graph model. However, because ROMA considers railway infrastructure at a micro-

scopic level, solving large real-world instances is time consuming. Another research area for small railway

disturbances is railway delay management. The railway delay management model is utilized to determine

which connections should be maintained during small delays. Several studies have been conducted to

solve this problem at the macroscopic level; see Schöbel [2007, 2009], Schachtebeck and Schöbel [2010],

and Dollevoet et al. [2012].

Fewer studies have considered real-time train rescheduling during a disruption (Cacchiani et al. [2014]).

Corman et al. [2011b] reschedule trains during a situation in which one line of a segment is unavailable

for a time at a microscopic level. They consider a network that is divided into several dispatching areas.

In their experiments, they compare the solutions obtained by centralized and distributed dispatching

strategies, and find that the latter is more effective. Meng and Zhou [2011] study meet-pass plans for

trains on a single-track railway line when a track section is blocked for a relatively short time.
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At the macroscopic level of disruption management, Brucker et al. [2002] reschedule trains when one

track of a railway segment is unavailable due to construction. They determine the sequence of trains

in both directions passing the construction segment to minimize total train lateness. They assume that

the sequence of trains in each direction running outside the construction segment is fixed; however, in a

complex railway system with trains of various speeds, the sequence of trains running in one direction will

not be fixed. Zhan et al. [2016] also focus on train rescheduling given a partial blockage. They introduce

a MILP model to determine the order of trains traveling in opposite directions that must share the only

available track in the blocked segment. In their model, the order of trains is not fixed in advance, and

trains can change their order to reduce the influence of the disruption on train operations.

Albrecht et al. [2013] study train rescheduling at a macroscopic level for a disruption in which track

maintenance occurs. They consider both train operations and track maintenance by regarding each

track maintenance task as a pseudo train. They apply a problem space search meta-heuristic method to

quickly generate disposition timetables to minimize the total delay for trains and maintenance, and test

this approach on a single-track rail network in Queensland, Australia.

Louwerse and Huisman [2013] adjust a train timetable to form a disposition timetable for both partial

and complete segment blockages. They describe the railway system using an event-activity graph, and

formulate an integer programming model to minimize the number of canceled trains and the total train

delay while taking train balance into account. Veelenturf et al. [2016] extend the model in Louwerse

and Huisman [2013] to consider railway station capacity in each station and explicitly integrate rolling

stock circulation. Furthermore, unlike Louwerse and Huisman [2013], they reschedule trains for the entire

period of disruption, including the transfer from the original timetable to the disposition timetable at

the occurrence of the disruption and from the disposition timetable to the original timetable at the end.

As previously mentioned, both Louwerse and Huisman [2013] and Veelenturf et al. [2016] allow trains to

short-turn before they arrive at the disrupted area instead of stopping trains to wait for the disruption

to end.

Ghaemi et al. [2017, 2018] focus on the train short-turning strategy at the microscopic and macroscopic

levels. In their studies, trains approaching the blocked location must short-turn at intermediate stations

before the disrupted area. Due to limited station capacity, trains may need to short-turn several stations

before the disrupted area. Therefore, their model determines which trains should short-turn at which

station and then run as another train in the opposite direction. However, not all of the world’s railway

systems use the short-turning strategy to deal with disruptions.

For some railway systems, it is preferable to let disrupted trains stop at intermediate stations to wait

for the disruption to end. To the best of our knowledge, few papers have investigated in detail how to stop

trains during a blockage. Hirai et al. [2009] consider how to stop trains at appropriate stations during

a disruption in which the line is blocked by an accident for a long time. This decision-making process

is called train stop deployment planning. They formulate a petri-net-based integer programming model

to solve the train stop deployment planning problem, but because they describe the railway network at

a microscopic level, and a large number of parameters are required, the model can become very large.

Hence, it cannot solve large real-world problems. Zhan et al. [2015] reschedule trains during a blockage,

and partially solve the train stop deployment planning problem. However, they only handle long-distance

trains in one direction, and their approach cannot handle local and cross-line trains.
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3 Problem description

This paper focuses on high-speed train rescheduling on double-track railway lines given a complete

blockage. Because of the complete blockage of a segment, trains cannot pass the disrupted area and

must deviate from the original timetable. Railway dispatchers must handle all of the disrupted trains

efficiently. The train rescheduling process during a complete disruption can be divided into two stages.

The first is the train handling process during the disruption, also called train stop deployment planning ;

the second is train rescheduling after the disruption ends. This paper focuses on the first stage, which is

critical for the whole train rescheduling problem. In the following, we describe our main problem based

on the simple example shown in Figure 1.

S1 S2 S3 S4 S5

S6

S7

Line 1

Line 2

Figure 1: A simple example of a disrupted railway network

In Figure 1, there is a small high-speed railway network consisting of two high-speed railway lines.

Line 1 is from station S1 to S5. Line 2 consists of stations S3, S6, and S7. Lines 1 and 2 connect with

each other at Station S3. Each circle denotes a station, and the stations denoted by double circles are

large stations with shunting yards, which can be used as origins and destinations for some trains. A

disruption occurs on line 1 in the segment between stations S3 and S4, shown by the red cross. Because

of the disruption, no trains on line 1 can pass the disrupted area until the end of the disruption.

Immediately after the disruption occurs, dispatchers must stop any trains approaching the disrupted

area at appropriate stations. Because each station has a limited number of available tracks (also called

station capacity) and because each track can be occupied by at most one train at a certain time, the

number of disrupted trains stopped at each station, both inbound and outbound, cannot exceed station

capacity. In addition, medium-speed trains should not hinder high-speed trains. Furthermore, some

trains run on other high-speed lines that diverge from the disrupted high-speed railway line ahead of

the disrupted area, e.g., trains may run from station S1 to station S3 on line 1 and then on line 2 to

station S7. Such trains can continue their journeys on line 2 during the disruption. When dispatchers

consider stopping disrupted trains, these running trains must not be hindered by the stopped trains, so

that delay on one line does not spread to connecting lines. Finally, local trains whose destinations are

ahead of the disrupted area, e.g., trains running from station S1 to station S3, can continue to run to

their destinations during the disruption. Thus, stopping long-distance trains should not hinder these

local trains. Specifically, long-distance trains running from station S1 to station S5 must stop at stations

before the disrupted area to wait for the disruption to end, and cannot hinder local trains that run from

station S1 to station S3.

In the train stop deployment planning stage, dispatchers must determine which trains should be

stopped and which can continue to run, and which station to send trains to, with the goal of minimizing
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the total impact of the disruption on train operations, and preventing conflicts among trains. We refer

to Hirai et al. [2009] for more details about the train stop deployment planning problem.

4 Model formulation

4.1 Assumptions

In our model, the following assumptions are made. However, some of them can be altered.

• Each track in a station can be used by trains to dwell or pass. Trains from each track in a segment

can enter any station track.

• Trains that have entered the disrupted area when a disruption occurs can continue according to

the original timetable. Trains already present in the disrupted area when the disruption occurs

should be carefully handled based on detailed information. If they have passed the disrupted area,

they can continue their journey; otherwise, they cannot pass. Because we reschedule trains at a

macroscopic level, we make this assumption to ensure that these trains have passed the disrupted

area at the start of the disruption.

• Train services can only be canceled if they are scheduled to depart from their origin after a disruption

occurs. After they have departed, they must continue until they arrive at their destination, possibly

with significant delays.

4.2 Basic model

The train stop deployment planning problem is also part of the train rescheduling problem, and it

can be formulated using an event-activity network; see, for example, Zhan et al. [2015, 2016] for instance.

An event-activity network can be denoted by a directed graph N = (E,A), where E is the set of events,

and A is the set of activities. An event e ∈ E consists of the arrival or departure of a train at a station.

Accordingly, the set of events E can be further divided into two subsets: Earr ⊂ E, which contains all

of the arrival events, and Edep ⊂ E, which contains all of the departure events. Furthermore, let Earr
s

and Edep
s be the subsets of the arrival events and departure events at station s, respectively. An activity

a ∈ A connects two events. Activities can be divided into train activities and headway activities. A train

activity, a ∈ Atrain, can either be a running activity a ∈ Arun between a departure event from a station

and an arrival event at the successive station, or a dwell activity a ∈ Adwell between an arrival event and

a departure event of the same train at the same station. A headway activity, a ∈ Ahead, can either be a

segment headway activity a ∈ Atrack
head that expresses the headway time between two trains running on the

same track, or a station headway activity a ∈ Astation
head that denotes the minimum headway time between

the departure and arrival of two consecutive trains on the same track at a station.

Let T be the set of trains, which can be divided into two subsets Tup and T down. Tup is the subset that

contains all upside trains (inbound trains), while the subset T down contains all downside trains (outbound

trains). Let S be the set of stations and Seg the set of segments. For an event e ∈ E, parameter te

is the train corresponding to event e, and parameter qe is the scheduled time of event e in the original

timetable. In addition, parameters µ+
e and µ−e are the penalties for a time unit of tardiness and a time

unit of earliness for train event e ∈ E. For each train t, parameter γt is the penalty for canceling train t.
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Stations sot and sdt are the origin and destination stations of train t. Assume that a disruption starts at

time Hstart
dis and ends at time Hend

dis in the segment between station sk and station sl, (sk, sl) ∈ Seg, (see

Figure 2).

Delays for arrival events and departure events differ in two ways. First, passengers care more about

arrival delays. This means that an arrival delay usually has a higher penalty than a departure delay.

Second, trains are allowed to arrive earlier than scheduled, but they cannot depart before the scheduled

time. If a train arrives earlier than scheduled, it causes a deviation from the original timetable, and thus

earliness should be minimized. We therefore consider the deviation of arrival events and departure events

separately.

For each event e ∈ Etrain, we define a decision variable D+
e as the delay (tardiness) of event e. For

each arrival event e ∈ Earr, we define a decision variable D−e as the earliness of arrival event e. The

decision variable xe is the real time of event e in the disposition timetable. For each train t ∈ T , we

introduce a binary variable yt, which is defined as follows:

yt =

 1 if train t ∈ T is canceled

0 otherwise
(1)

Canceled train services are moved beyond the end of the day, which prevents canceled trains from

hindering other trains or each other; see constraint (3). Parameter M1 equals the time duration of a

whole day, i.e., 1,440 min. Using the notations above, we develop the following basic model for train

operations. Some additional train operational constraints are added in Subsection 4.3, and constraints

on stopping trains are explained in detail in Subsection 4.4.

min
∑
t∈T

γtyt +
∑
e∈E

µ+
e D

+
e +

∑
e∈Earr

µ−e D
−
e (2)

subject to

2M1yte −M1 ≤ xe − qe ≤M1 ∀e ∈ E, te ∈ T (3)

xe ≥ qe ∀e ∈ Edep (4)

D+
e ≥ xe − qe −M1yte ∀e ∈ E, te ∈ T (5)

D−e ≥ qe − xe ∀e ∈ Earr (6)

xe = qe ∀e ∈ E : qe < Hstart
dis (7)

yte = 0 ∀te ∈ T, e ∈ Edep
sote

: qe ≤ Hstart
dis (8)

yt ∈ {0, 1} ∀t ∈ T (9)

xe, D
+
e , D

−
e ≥ 0 ∀e ∈ E (10)

Objective (2) specifies that, we minimize train cancelations and the total weighted train deviation

(tardiness/earliness). Constraint (3) ensures that the events of the canceled trains occur at time qe +M1,

thus moving canceled trains beyond the end of the day. Constraint (4) prevents trains from departing

from a station before the scheduled time. Constraint (5) indicates that no delays for events of canceled

trains are considered, and the delay for event e of a non-canceled train is at least xe− qe. Constraint (6)

expresses the earliness of the arrival event e. Constraint (7) ensures that trains run as scheduled before
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the occurrence of the disruption. Constraint (8) indicates that trains departing from their origin before

the occurrence of the disruption are not canceled. Constraints (9) and (10) specify the domains of the

variables.

4.3 Additional train operational constraints

As mentioned, train stop deployment planning is a critical element in solving the whole train reschedul-

ing problem. To ensure safety and prevent conflicts among trains, the minimum running and dwell time,

headway between trains, and overtaking constraint should be respected; these constraints are similar to

those in train rescheduling problems. We discuss these three constraints in the following sub-sections.

4.3.1 Single-train precedence constraints

For a single train, the minimum running time in each segment and minimum dwell time in each station

that it passes should be respected. The minimum duration of such a train activity a is La. If a ∈ Arun

is a running activity, La indicates the minimum running time, otherwise, La is the minimum dwell time.

Then, a single-train precedence constraint can be modeled as follows.

xf − xe ≥ La ∀a = (e, f) ∈ Atrain (11)

Constraint (11) indicates that the minimum running time of a train in each segment and the minimum

dwell time in each intermediate station should be respected. Here f is the successive event of event e

corresponding to the same train, and a = (e, f) is a train activity.

4.3.2 Headway constraints between trains

A railway track is divided into a sequence of blocks by signals, and each block can be occupied by

at most one train at a time. The headway time between two consecutive trains on any block cannot be

less than the minimum headway time. To fulfill this requirement, we require that the headway for the

complete segment be equal to the largest headway between the blocks.

Due to the different speeds of trains, especially during a disruption, it is common for a fast train to

overtake a slow train at an intermediate station. To keep track of the order of two events on a track, we

first introduce the set of headway activities Atrack
head . An activity a = (e, f) ∈ Atrack

head corresponds to two

events e ∈ E and f ∈ E, with te 6= tf , that are either both arrival events or both departure events in the

same direction at the same station. We introduce a binary decision variable λa as defined in equation

(12).

λa =

 1 if event e takes place before event f

0 otherwise
(12)

The following two constraints ensure that λa takes the correct value, and that the headway times

between two consecutive trains in the same direction are respected. Note that we consider various types

of trains, and cross-line trains that run through different high-speed lines. Two trains that arrive at

the same junction station from different lines in the same direction are not allowed to be too close to

each other. This is also the case for trains that depart from the same junction station to different lines

in the same direction. We call this the junction station constraint. This constraint is summarized by
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Constraints (13) and (14).

λa + λa′ = 1 ∀a = (e, f) ∈ Atrack
head ∧ a′ = (f, e) ∈ Atrack

head (13)

xf − xe +M2 × (1− λa) ≥ La ∀a = (e, f) ∈ Atrack
head (14)

In Constraint (13), “∧” means that both the conditions before and after it are fulfilled. Constraint

(13) ensures that event e takes place before or after event f . Constraint (14) indicates that, if event

e ∈ E takes place after event f ∈ E, then xf − xe < 0, and thus λa must be equal to 0. Furthermore, if

event e ∈ E takes place before event f ∈ E, then λa = 1 due to (13), and hence the minimum headway

time La between events e and f is respected.

Note that the parameter M2 is a large positive number. Because we move events e ∈ E corresponding

to canceled trains beyond the time horizon at time qe +M1, the value of M2 should be larger than that

of M1. Otherwise, when λa = 0, constraint (14) cannot always be satisfied.

4.3.3 Overtaking constraints

Note that we consider one-way double-track high-speed lines, and each track is used for trains running

in one direction. Trains are unable to overtake each other on the same track in a segment, which means

that the departure order of two trains from a station must be the same as the arrival order at the

successive station. To this end, we introduce order activity pairs.

Between two trains in a segment (s, s′), where s′ is the successive station of s, there are two headway

activities: a = (e, f) and a′ = (e′, f ′), where e, f ∈ Edep
s and e′, f ′ ∈ Earr

s′ , te = te′ and tf = tf ′ . Both

activities a and a′ are headway activities, a, a′ ∈ Atrack
head , but a denotes the departure headway while a′

denotes the arrival headway of the same train. Then the pair (a, a′) is an order activity pair, and B is

defined as the set of all order activity pairs. To prohibit overtaking in a segment, we introduce Constraint

(15).

λa − λa′ = 0 ∀(a, a′) ∈ B (15)

By Constraints (13) and (14), if xe > xf , then λa = 0, otherwise λa = 1. Similarly, if xe′ > xf ′ , then

λa′ = 0, otherwise λa′ = 1. Thus λa = λa′ indicates that trains te and tf arrive at station s′ in the same

order that they departed from station s. That is, trains te and tf do not overtake each other between

stations s and s′.

4.4 Train stop deployment planning during a disruption

As mentioned earlier, train stop deployment planning is a vital stage of the train rescheduling process.

This main goal of this stage is to determine how to stop trains approaching the disrupted area to prevent

them from hindering trains that can still continue to run during the disruption. Specifically, the stopped

trains should not block trains that can continue to run on other related lines during the disruption. In

the following, we formulate how to stop disrupted trains.

4.4.1 Definition of directly influenced train services

To handle disrupted train services during the disruption, we must first identify all of the train services

that have been disrupted. We assume that there is no way of predicting the occurrence of or end to the
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disruption. Hence, the train services that are directly influenced by the disruption are those that fully or

partly run during the disruption; see Figure 2.

Disruptionh1 h2

Downside directly influenced area

Upside directly influenced area

Time

D
is

ta
n
ce

sk

sl

L1 L3 L2 L4

Figure 2: Area that is directly influenced by the disruption

We define Tdis as the subset of train services that are influenced directly by the disruption, which can

be further divided into a directly influenced downside train service set T down
dis and a directly influenced

upside train service set Tup
dis. Assume that a disruption occurs at time h1 and lasts until time h2 in the

segment between stations sk and sl; see Figure 2. In this figure, train services running in the area between

lines L1 and L2 belong to T down
dis , while train services running in the area between lines L3 and L4 belong

to Tup
dis. Note that no anticipation of the end of the disruption is allowed. Therefore, all trains that start

during the disruption period are regarded as directly influenced trains even if the disruption has already

ended by the time of their planned arrival at the disrupted area based on the estimation.

To formulate Tdis in detail, we further divide T down
dis and Tup

dis into two subsets each. That is, T down
dis is

divided into T down,short
dis and T down,long

dis , and Tup
dis is divided into Tup,short

dis and Tup,long
dis . Here T down,short

dis

and Tup,short
dis include all of the disrupted downside and upside train services that do not need to pass the

disrupted area, as they arrived at their destinations before entering the disrupted segment. T down,long
dis

and Tup,long
dis include all of the directly influenced downside and upside train services that need to pass

the disrupted area. Stations are numbered along the downside direction.

For a downside train service t ∈ T down, event e ∈ Edep
sot

is the original departure event of train service

t, event e′ ∈ Earr
sdt

is the final arrival of train service t, and event e′′ ∈ Edep
sk

is the departure event of

train service t at station sk. Accordingly, the subsets of T down,short
dis and T down,long

dis can be formulated as

follows:

T down,short
dis = {t ∈ T down : e ∈ Edep

sot
: qe ≤ h2 ∧ e′ ∈ Earr

sdt
: qe′ ≥ h1} ∀sot , sdt ∈ S : sot < sdt ≤ sk (16)

T down,long
dis = {t ∈ T down : e ∈ Edep

sot
: qe ≤ h2 ∧ e′′ ∈ Edep

sk
: qe′′ ≥ h1} ∀sot , sdt ∈ S : sot ≤ sk < sdt (17)

In equation (16), T down,short
dis includes all of the short-distance trains that depart from their origin

before the end of the disruption and arrive at their destination after the occurrence of the disruption;

similarly, in equation (17), T down,long
dis includes all of the long-distance trains that depart from their origin

before the end of the disruption and are scheduled to depart from station sk after the occurrence of the
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disruption.

All of the downside train services that are directly influenced by the disruption can be formulated as

follows:

T down
dis = T down,short

dis ∪ T down,long
dis (18)

Similarly, for an upside train service t ∈ Tup, let e ∈ Edep
sot

be the original departure event of train

service t, e′ ∈ Earr
sdt

be the final arrival of train service t, and e′′ ∈ Edep
sl

be the departure event of train

service t at station sl. Then, the subsets of Tup,short
dis and Tup,long

dis can be formulated as follows:

Tup,short
dis = {t ∈ Tup : e ∈ Edep

sot
: qe ≤ h2 ∧ e′ ∈ Earr

sdt
: qe′ ≥ h1} ∀sot , sdt ∈ S : sot > sdt ≥ sl (19)

Tup,long
dis = {t ∈ Tup : e ∈ Edep

s0t
: qe ≤ h2 ∧ e′′ ∈ Edep

sl
: qe′′ ≥ h1} ∀sot , sdt ∈ S : sot ≥ sl > sdt (20)

The meaning of equation (19) is similar to that of equation (16), while the meaning of equation (20)

is similar to that of equation (17).

Then, all the upside train services that directly influenced by the disruption are formulated as follows:

Tup
dis = Tup,short

dis ∪ Tup,long
dis (21)

Based on the preceding formulations, all of the train services that are directly influenced by the

disruption can be depicted by equation (22):

Tdis = T down
dis ∪ Tup

dis (22)

4.4.2 Formulation of train stop deployment planning

Each directly influenced train t ∈ Tdis has to take one of the following four actions to avoid entering

the disrupted area.

• Train t may be canceled if it is scheduled to depart from its origin after the disruption has occurred.

• Train t may have to stop and wait at an intermediate station until the end of the disruption.

• Train t may arrive at its destination if it is a short-distance train, t ∈ T down,short
dis ∪ Tup,short

dis .

• Train t may wait outside station s if no station track is available there if train t is running in

segment (s′, s) at the time the disruption occurs.

(1) Train stopping and waiting at an intermediate station

To determine whether train t needs to stop at station s to wait for the disruption to be resolved, for

each train t ∈ Tdis and each station s ∈ S (s ≤ sk for downside train services and s ≥ sl for upside train

services), we define a binary variable wt,s according to equation (23).

wt,s =

 1 if train t stops at station s to wait until the end of the disruption

0 otherwise
(23)

For each train t ∈ Tdis, if it stops at a certain intermediate station s to wait for the disruption to be

resolved, it has to dwell there until the disruption is over before it can depart, because no anticipation
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of the end of the disruption is allowed, as we do not know the exact time the disruption will really end.

However, if we allow trains to depart slightly before the end of the disruption, the delay to the trains may

decrease, but the schedule is not robust; see Zhan et al. [2016] for more details. We define e ∈ Edep
s as

the departure event of train te from station s. We have the following constraints for upside and downside

train te ∈ Tdis.

xe > Hend
dis ∗ wte,s

 ∀e ∈ Edep
s , s ∈ S : s ≤ sk if te ∈ T down

dis

∀e ∈ Edep
s , s ∈ S : s ≥ sl if te ∈ Tup

dis

(24)

We define a station set S̃ ⊂ S that includes all of the intermediate stations. Because of the first

assumption in Section 4.1, a train can uses any track at a station and trains in both directions can share

the same track at a station. This can help to model the station capacity constraint as follows. During

the disruption, the number of trains that dwell at station s, s ∈ S̃, (s ≤ sk for downside trains and s ≥ sl
for upside trains) waiting for the disruption to end cannot exceed the capacity of station s. Parameter

Cs is introduced to denote the capacity of station s. Furthermore, to guarantee that stopped trains do

not block other trains that can continue to run, at least one residual track should be available at each

intermediate station. Thus the station capacity constraint for trains that dwell at an intermediate station

s until the end of disruption is as follows:

∑
t∈Tdis

wt,s ≤ Cs − 1

 ∀s ∈ S̃ : s ≤ sk if t ∈ T down
dis

∀s ∈ S̃ : s ≥ sl if t ∈ Tup
dis

(25)

(2) Trains waiting outside a station

It is possible that trains running in a segment when disruption occurs cannot dwell at the successive

station because of a lack of station capacity. We assume that such trains wait outside the successive

station until the end of the disruption. Note that only the directly influenced trains that are running on

the disrupted line when the disruption occurs may need to wait outside the successive station because of

a lack of station capacity. Trains that dwell at stations when the disruption occurs can stop there until

the end of the disruption, but they are not allowed to stop in the segment. To this end, we define a train

service subset T run
dis ⊂ Tdis for trains that are running in the segment when the disruption occurs. Train

service set T run
dis is further divided into downside train service set T run,down

dis and upside train service set

T run,up
dis , respectively.

In principle, it is unusual that a train running in a segment when the disruption occurs cannot be

accommodated at successive stations due to a lack of station capacity, because the number of trains

running simultaneously in a segment is relatively limited due to the headway constraint. Furthermore, a

relatively large number of tracks are available at each station for trains when a train is allowed to enter

any station track. However, we take this situation into account to ensure that our model can handle it.

Because short-distance and cross-line trains can continue to run during the disruption, we first need to

consider whether a long-distance train has to wait outside a station. A binary variable Ot,s is introduced

to indicate whether train t ∈ T run
dis

⋂
(T down,long

dis ∪ Tup,long
dis ) has to wait outside station s. The definition

of Ot,s is given in equation (26).

Ot,s =

 1 if train t waits outside station s for the disruption to end

0 otherwise
(26)
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As mentioned previously, if a train t is running in segment (s′, s′′) when the disruption occurs, where

station s′′ is the successive station of s′ for train t, it may only wait outside station s′′. That is, train t

is not allowed to wait outside any other station. This is formulated in equation (27).

Ot,s = 0 ∀t ∈ T run
dis , s ∈ S̃ : s 6= s′′ (27)

To check whether a long-distance train has to wait outside a station, we need to find out whether there

is a residual station capacity available in the successive stations that are ahead of the disruption location.

Specifically, for train tf ∈ T run,down
dis

⋂
T down,long
dis , we assume that train tf is running in segment (sm, sn)

when the disruption occurs, sn ≤ sk. Here event f is a departure event of train tf from station sm,

f ∈ Edep
sm . We further define T 1

tf ,sm
as the subset of disrupted downside trains that depart from station

sm before train tf . We define A1
tf ,sm

⊂ Atrack
head as the subset of headway activities between the departure

train tf at station sm and any other train te ∈ T down
dis that departs from station sm. Finally, we define

T 2
tf ,sm

, which contains the trains in set T 1
tf ,sm

that are running on the disrupted line when the disruption

occurs. The value of binary variable Otf ,sn for downside train tf is specified as constraints (28).

∑
a=(e,f)∈A1

tf ,sm

λa−
∑

te∈T 2
tf ,sm

∑
sn<s≤sk

Ote,s ≥ Otf ,sn×
∑

sn≤s≤sk

(Cs−1) ∀tf ∈ T run,down
dis ∩T down,long

dis (28)

In constraint (28),
∑

a=(e,f)∈A1
tf ,sm

λa counts the total number of downside trains that arrive at

station sn before train tf ;
∑

te∈T 2
tf ,sm

∑
sn<s≤sk Ote,s is the total number of downside trains in fron-

t of train tf that have to wait outside a station before station sn, and
∑

sn≤s≤sk(Cs − 1) denotes

the total cumulative capacity of stations sn to sk that is available. Therefore,
∑

a=(e,f)∈A1
tf ,sm

λa −∑
te∈T 2

tf ,sm

∑
sn<s≤sk Ote,s is the total number of trains that can occupy station capacity. Supposing∑

a=(e,f)∈A1
tf ,sm

λa −
∑

te∈T 2
tf ,sm

∑
sn<s≤sk Ote,s ≥

∑
sn≤s≤sk(Cs − 1), train tf has to wait outside sta-

tion tn, because no residual capacity of the successive stations is available for train tf . Note that when∑
a=(e,f)∈A1

tf ,sm
λa−

∑
te∈T 2

tf ,sm

∑
sn<s≤sk Ote,s ≥

∑
sn≤s≤sk(Cs− 1), Otf ,sn can be either 1 or 0, but in

combination with constraint (35), the preferred value of Otf ,sn is 1.

For each downside train te ∈ T down
dis , e ∈ Edep

s , if it stops outside station s, it must wait there until

the end of the disruption. This is denoted as follows:

xe > Hend
dis ×Ote,s ∀te ∈ T run,down

dis , e ∈ Edep
s , s ∈ S̃ : s ≤ sk (29)

We assume that train tf ∈ T run,up
dis is running in segment (sp, sr) when the disruption occurs, sr ≥ sl.

We define T 1
tf ,sp

as the subset of disrupted upside trains that depart from station sp before train tf . We

define A1
tf ,sp

⊂ Atrack
head as the subset of headway activities between the departing train tf at station sp

and any other train te ∈ Tup
dis departing from station sp. T 2

tf ,sp
contains the trains in set T 1

tf ,sp
running on

the disrupted line at the time that the disruption occurs. The value of binary variable Otf ,sr for upside

train tf is specified as constraint (30).

∑
a=(e,f)∈A1

tf ,sp

λa −
∑

te∈T 2
tf ,sp

∑
sl≤s<sr

Ote,s ≥ Otf ,sr ×
∑

sl≤s≤sr

(Cs − 1) ∀tf ∈ T run,up
dis ∩ Tup,long

dis (30)

The meaning of constraint (30) is similar to that of constraint (28).
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For each upside train te ∈ Tup
dis, e ∈ Edep

s , if it stops outside station s to wait for the disruption, it

must wait there until the end of the disruption. This is denoted as follows:

xe > Hend
dis ×Ote,s ∀te ∈ T run,up

dis , e ∈ Edep
s , s ∈ S̃ : s ≥ sl (31)

(3) Short-distance and cross-line trains arriving at their destinations

As mentioned in the problem description section, train services of multiple types may run on a high-

speed line. Some short-distance trains and cross-line trains may still be able to reach their destinations

during the disruption. However, if a short-distance train runs on a segment following a long-distance

train and the long-distance train has to wait outside the successive station, then this short-distance train

is hindered by the long-distance train. We assume that this short-distance train must also wait outside

the successive station. To this end, we have to determine which short-distance and long-distance trains

are running in which segments when the disruption occurs. The set of downside long-distance trains that

are running in segment (s, s′), where s′ is the next station of s and s′ ≤ sk, can be formulated as follows:

T
run(s,s′),down,1
dis = {t ∈ T down,long

dis |qe < Hstart
dis ∧ qf > Hend

dis }, e ∈ Edep
s , f ∈ Earr

s′ , te = tf = t (32)

Similarly, the set of downside short-distance trains that are running in segment (s, s′), where s′ is the

next station of s and s′ ≤ sk, can be formulated as follows:

T
run(s,s′),down,2
dis = {t ∈ T down,short

dis |qe < Hstart
dis ∧ qf > Hend

dis }, e ∈ Edep
s , f ∈ Earr

s′ , te = tf = t (33)

Any two trains t and t′ run in segment (s, s′) when the disruption occurs, where train t ∈ T run(s,s′),down,2
dis

and t′ ∈ T run(s,s′),down,1
dis . Event e is the departure event of t from station s, e ∈ Edep

s and event f is

the departure event of t′ from s, f ∈ Edep
s . Therefore, activity a = (e, f) is the headway activity of

trains t and t′ departing from station s. Furthermore, event e′ is the departure event of t from station

s′, e′ ∈ Edep
s′ . Based on this notation, whether short-distance train t is hindered by long-distance train t′

can be formulated as follows:

xe′ > Hend
dis (ot′,s′ + λa − 1) (34)

Constraint (34) denotes that if a long-distance train t′ departs from station s before a short distance

train t (λa = 1), and train t′ has to wait outside successive station s′ (ot′,s′ = 1), then train t also has to

wait outside station s′ (xe′ > Hend
dis ). If not, then train t does not need to wait outside station s′ until

the disruption ends.

Note that we have handled downside short-distance trains using constraint (34). The same method

can also be used to handle upside short-distance trains. To simplify, we have omitted the formulation for

upside short distance trains.

(4) Action for directly influenced long-distance train services

For each directly influenced downside long-distance train t ∈ T down,long
dis , if it is not canceled, it either

stops at a station to wait until the disruption is over or waits outside the successive station sn (supposing

that train t ∈ T run
dis is in the segment just before station sn when the disruption occurs) until the end of

the disruption. Our focus is on long-distance high-speed railways with a seat reservation system, and it is

quite difficult within this system for passengers to temporarily transfer from one train to another during
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their journey. The third assumption in Section 4.1 ensures that a train cannot be canceled mid-trip. The

activity for a directly influenced long-distance train is denoted as follows:

∑
s∈S:sot≤s≤sk

wt,s + yt +Ot,sn = 1 ∀t ∈ T down,long
dis , sn ∈ S̃ : sn ≤ sk (35)

Similarly, for each directly influenced upside train t ∈ Tup,long
dis , if not canceled, it either stops at

a station to wait until the end of the disruption or it waits outside the successive station sr (if train

t ∈ T run
dis is running in the segment before station sr when the disruption occurs) until the end of the

disruption. This is denoted as follows:

∑
s∈S:sl≤s≤sot

wt,s + yt +Ot,sr = 1 ∀t ∈ Tup,long
dis , sr ∈ S̃ : sr ≥ sl (36)

5 Computational Experiments

To confirm our analysis of the train stop deployment planning problem during a complete blockage, we

now present experimental results based on the Chinese high-speed railway network. IBM ILOG CPLEX

12.8 is used as the solver, with CPLEX parameters set to their default values. All of our experiments are

run on an Intel(R)Core(TM)i7-7700 Processor CPU @3.60GHz 3.60GHz, 16.0GB RAM desktop.

5.1 Test instance and parameter values

To test the model, a real-world instance from China’s high-speed railway is utilized. Here we focus

on the Beijing-Shanghai high-speed line, but other high-speed lines related to this line are implicitly

considered due to cross-line trains, such as the Wuhan-Shanghai high-speed line and the Jinan-Qingdao

high-speed line, which are shown as dotted lines in Figure 3. Interested readers can find more details

about China’s high-speed railway network in Zhan et al. [2016].

The Beijing-Shanghai high-speed line is one of the longest in the world, with a length of 1,318 km.

Furthermore, many high-speed lines in this area are connected to the Beijing-Shanghai high-speed line,

and trains can cross between lines. There are in total 23 stations located on the Beijing-Shanghai high-

speed line, dividing the whole line into 22 segments. According to the practical timetable applied in 2013,

172 trains in total (86 inbound and 86 outbound trains) operate on this line; 84 of these are long-distance

trains that travel the whole line, while the others are local or cross-line trains.

The total number of tracks at each intermediate station is given in Table 1. The minimum train

running times in each segment for high-speed and medium-speed trains are shown in Table 2. Note that

the minimum running times for inbound and outbound trains in the same segment are the same. In

addition, the dwell time for each train in each station is based on the original timetable. The arrival and

departure headway times between two consecutive trains at each station in the same direction are set to

3 minutes and 4 minutes, respectively. Note that because we have changed the departure headway time

to 4 min, the minimum running time in the segment may be slightly different from that in Zhan et al.

[2016]. We have made this modification because we believe that a departure time interval of 4 min is

more practical than 2 min. The headway time between a train that departs from a station track and

another train that arrives at the same track is set to 3 minutes.
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Danyang North

Changzhou North
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Suzhou North

Kunshan South

Wenzhou

Figure 3: Chinese high-speed railway network connected with the Beijing-Shanghai high-speed line by
cross-line trains

In the case study, the penalty values for canceling a high-speed train service and a medium-speed

train service (γt) are 5000 and 3000, respectively. The penalty values for a one-minute arrival delay

(tardiness) for a high speed train and a medium speed train (µ+
e ) are 5 and 3, respectively. Similarly,

the penalty values for one minute arrival earliness for a high-speed train and a medium-speed train (µ−e )

are 2 and 1, respectively. However, the penalty values for a one-minute departure delay (tardiness) for

a high-speed train and a medium-speed train (µ+
e ) are 3 and 2, respectively. Because canceling a train

service has more serious effects on passenger service, we assign a much larger penalty value to canceling

than to delaying a train. In addition, because passengers care more about arrival delay than departure

delay, we assign a larger penalty value to an arrival delay. Finally, M1 is 1,440 minutes, which is the

duration of a whole day, and M2 is 2,880 minutes. For readers’ convenience, we show the definitions and

values of the parameters in Table 3.

To test our approach, we assume various disruption scenarios based on occurrence time, and the

location and duration of the disruptions. Six scenarios are considered in our experiments, as shown in

the first column of Table 4. For each disruption scenario, the three numbers in brackets are the occurrence

time, the location, and the disruption duration. For example, disruption scenario (10, 9, 60) indicates

that the disruption occurs at 10:00 in the morning, is located in segment 9, and lasts 60 min. Based
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Table 1: Number of tracks at each intermediate station of the Beijing-Shanghai high-speed railway

NO. Station Tracks NO. Station Tracks

1 Langfang 4 12 Bengbu South 11
2 Tianjin South 6 13 Dingyuan 4
3 Cangzhou West 6 14 Chuzhou South 6
4 Dezhou East 7 15 Nanjing South 10
5 Jinan West 17 16 Zhengjiang North 6
6 Taian 6 17 Dangyang North 4
7 Qufu East 6 18 Changzhou North 6
8 Tengzhou East 4 19 Wuxi East 6
9 Zaozhuang West 6 20 Suzhou North 6
10 Xuzhou East 15 21 Kunshan South 12
11 Suzhou East 6

Table 2: Minimum running time for high-speed and medium-speed trains in each segment

Segment High-speed (min) Medium-speed (min) Segment High-speed (min) Medium-speed (min)

1 15 17 12 17 21
2 13 15 13 11 14
3 16 20 14 12 15
4 21 24 15 12 15
5 17 21 16 14 14
6 10 15 17 6 6
7 11 16 18 6 7
8 10 14 19 11 14
9 7 7 20 5 6
10 11 16 21 6 6
11 13 17 22 12 13

The segments are numbered in order from Beijing to Shanghai.

on these assumed disruption scenarios and the parameter setting above, we obtain the results for each

scenario.

5.2 Computational results

Using the assumed disruption scenarios and the parameter setting in the previous subsection, we

obtain the results for each disruption scenario; see Table 4. The computation time for each scenario is

limited to 5 min. Except for the computation time limitation, if a solution with a gap of 0 is obtained,

the computation is also stopped. The total number of trains considered in each scenario is around 40.

In Tables 4 and 5, the first column is the disruption scenario, the second is the objective value for the

model, the third shows the total train deviation, the fourth shows the number of canceled trains, and

the last two columns illustrate the computation time and the gap (the difference between the best upper

bound and lower bound obtained in the given time).

From Table 4, we can see that CPLEX can solve the train stop deployment planning problem for each

disruption scenario within 5 min, with an average gap of around 10%. A disruption of longer duration

tends to have a more serious impact on train operations than one occurring at the same time and in the

same location but with a shorter duration. In addition, a longer duration disruption is more difficult to

solve than a shorter duration one. Some trains may be canceled due to disruption, but the number of

canceled trains is not more than one or two in our cases. We can obtain the timetable for each disruption

scenario and illustrate the train stop plan. Due to limited space, we only show the timetable for one
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Table 3: Values for the parameters used in our case study

Parameter Definition Value

λa Departure headway between two trains in the same direction 4
λa Arrival headway between two trains in the same direction 3
λa Headway between two trains depart from and arrive at the same station track 3
γt Penalty for cancelling a high-speed train 5000
γt Penalty for cancelling a medium-speed train 3000
µ+
e Penalty for a unit arrival delay of a high-speed train 5
µ+
e Penalty for a unit arrival delay of a medium-speed train 3
µ−e Penalty for a unit arrival earliness of a high-speed train 2
µ−e Penalty for a unit arrival earliness of a medium-speed train 1
µ+
e Penalty for a unit departure delay of a high-speed train 3
µ+
e Penalty for a unit departure delay of a medium-speed train 2
M1 A large positive number 1440
M2 A large positive number 2880

Note that parameters with the same form are specified by a specific event e or activity a.

Table 4: Results for various disruption scenarios for all of the trains operating during the disruption

Scenario Objective Total deviation (min) Cancelation Time(s) Gap(%)

(10, 9, 60) 34934 7605 1 300 14.09
(10, 9, 90) 90191 20381 2 300 21.99

(12, 14, 60) 32190 8433 0 300 6.18
(12, 14, 90) 83006 21979 0 300 10.87
(15, 17, 60) 22822 5784 0 88 0
(15, 17, 90) 60940 14203 1 300 11.22

disruption scenario (10, 9, 60) (Figure 4).

In Figures 4 and 5, the horizontal axis shows time, while the vertical axis is the station dimension.

The stations are numbered starting at 0, from Beijing South Station to Shanghai Hongqiao Station. Red

lines in the figure are operation lines for high-speed trains, while the blue lines are for medium-speed

trains. Note that we use black lines to specify the deviations in train operation. The disrupted area is

shown as a green rectangle.

In Figure 4, we can see that trains approaching the disrupted area are stopped at appropriate stations

to wait for the disruption to end. For trains traveling from Beijing toward Shanghai, three trains can

stop at Station 8 to wait for the disruption, as in total four tracks are available at this station and one

must be reserved for emergency rescue trains or other running trains, as discussed earlier. In the opposite

direction, five trains stop at Station 9 to wait for the disruption to end, as the station capacity is six.

Five trains also wait at Station 10 for the disruption to end because this station also has six tracks. As

Figure 4 shows, our model can stop trains at the appropriate stations in a blocked situation.

In practice, trains that have already started from their origin are the most critical, as trains that

have not departed from their origin can simply wait at their origin stations. Therefore, to reduce the

complexity of computation, we apply the train stop deployment planning model only for trains that are

operating when the disruption occurs. Figure 4 shows that trains that start earlier from their origin tend

to be more influenced by the disruption, while trains that arrive at the disrupted area a long time after

the end of the disruption are usually less influenced. This also shows that it is reasonable to consider

only trains that are urgent instead of all directly influenced trains. Table 5 shows the results for each
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Figure 4: Rescheduled timetable for disruption scenario (10,9,60), including all of the directly influenced
trains

scenario. Because the railway dispatchers place much more emphasis on short computation time than on

an optimal solution, we limit the computation time to 100 seconds and the relative gap to 5%.

Table 5: Results for various disruption scenarios for trains that departing from their origin before the
disruption occurs

Scenarios Objective Total deviation (min) Time(s) Gap(%)

(10, 9, 60) 28929 7345 73 5
(10, 9, 90) 81579 20665 100 12.75

(12, 14, 60) 31929 8365 35 5
(12, 14, 90) 76519 19871 72 5
(15, 17, 60) 21742 5502 6 0
(15, 17, 90) 49361 12518 39 0

(10, 9, 90) 78289 19891 3600 8.14

It is much easier to handle trains that are already operating on the railway lines at the start of the

disruption. We can obtain the solutions for all of the assumed disruption scenarios except scenario (10,

9, 90) within 100 seconds, with a gap no larger than 5%. This short computation time is acceptable for

railway dispatchers who need to handle urgent disrupted trains. We also test disruption scenario (10, 9,

90) with a relatively long computation time, 3,600 seconds; see the last row of Table 5. The solution for

this disruption scenario obtained in 3,600 seconds is only 4% better than that obtained in 100 seconds.

Thus, we can say that the results obtained in 100 seconds are good enough for practical use. We can

19



obtain a rescheduled timetable to assist dispatchers in each disruption scenario. Figure 5 shows the

disposition timetable for the same scenario (10, 9, 60).

Figure 5: Rescheduled timetable for disruption scenario (10, 9, 60), including trains originally departing
before the occurrence of the disruption

In Figure 5, we can see that the train stopping pattern is similar to that in Figure 4. This indicates

that we can solve the train stop deployment planning problem in a short computation time by considering

fewer trains. Furthermore, all of the trains that deviate from the original timetable (trains with part of

their operation lines in black in the figure) in Figure 4 are also rescheduled in Figure 5. Thus, we can see

that the solutions obtained within 100 seconds are adequate for practical use.

6 Conclusions

In this paper, we have studied train stop deployment planning in a highly disrupted situation for

a long-distance high-speed railway line and lines connected with it by cross-line trains. The railway

network is considered at the macroscopic level using an event-activity graph, and a Mixed Integer Linear

Programming model is proposed to solve the train stop deployment planning problem, which is a critical

part of the whole train rescheduling problem. A real-world instance of the Beijing-Shanghai High-speed

Railway and other lines connected with it by cross-line trains is used to test our model.

Because we allow inbound trains and outbound trains to share station tracks, we take trains in both

directions into account to minimize the impact of disruptions on train operations. Trains approaching the

disrupted area are stopped at appropriate intermediate stations to wait for the disruption to end. Due
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to limited station capacity, the number of trains waiting for the disruption cannot exceed capacity. In

addition, stopping trains should not hinder other running trains. In particular, it is important to prevent

the delay of trains on one high-speed railway line from propagating to other connected lines by cross-line

trains as much as possible.

From our experiments, we find that a longer disruption not only means a more serious impact on

train operations, but also greater model computation time. If we consider all of the directly influenced

trains, we can obtain rescheduling solutions for all of the disruption scenarios within 5 min, and the

average gap is about 11%, although the maximum gap increases to 21.99%. We consider about 40 trains

simultaneously to further reduce computation time, and show that we can solve the train stop deployment

planning problem for only trains that are operating on the railway line when the disruption occurs instead

of all of the directly influenced trains. This is reasonable from a practical point of view, as running trains

require more urgent attention. In addition, we find that considering only trains that are operating at

the time the disruption occurs does not greatly influence the solutions found in our experiments. We

can therefore obtain a rescheduled timetable for each disruption scenario within 100 seconds, which is

acceptable for real-time applications. The model developed in this research can help railway dispatchers

to handle trains approaching a disrupted area.

Several directions for further research are possible. First, we solve our model using CPLEX. Although

we obtain good solutions for a disruption with a duration of 90 min, more efficient algorithms would be

helpful in solving disruptions of longer duration, and in obtaining optimal solutions. Second, we formulate

the train stop deployment planning problem at a macroscopic level. A feasibility check from a microscopic

point of view may be necessary. Finally, it would be worth investigating how to simultaneously solve the

problem of train stop deployment planning and train rescheduling after the end of a disruption.
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Anita Schöbel. Integer programming approaches for solving the delay management problem. In Algorith-

mic methods for railway optimization, pages 145–170. Springer, 2007.

Anita Schöbel. Capacity constraints in delay management. Public Transport, 1(2):135–154, 2009.

Lucas P Veelenturf, Martin P Kidd, Valentina Cacchiani, Leo G Kroon, and Paolo Toth. A railway

timetable rescheduling approach for handling large-scale disruptions. Transportation Science, 50(3):

841–862, 2016.

Shuguang Zhan, Leo G. Kroon, Lucas P. Veelenturf, and Joris Wagenaar. Real-time high-speed train

rescheduling in case of a complete blockade. Transportation Research Part B: Methodological, 78:

182–201, 2015.

Shuguang Zhan, Leo G. Kroon, Jun Zhao, and Qiyuan Peng. A rolling horizon approach to the high

speed train rescheduling problem in case of a partial segment blockage. Transportation Research Part

E: Logistics and Transportation Review, 95:32 – 61, 2016.

23


