Disturbance-Aware Neuro-Optimal System Control
Using Generative Adversarial Control Networks

Kai-Fung Chu, Student Member, IEEE, Albert Y.S. Lam, Senior Member, IEEE, Chenchen Fan, and Victor O.K.
Li, Fellow, IEEE

Abstract—Disturbance, which is generally unknown to the
controller, is unavoidable in real-world systems and it may
affect the expected system state and output. Existing control
methods, like Robust Model Predictive Control, can produce
robust solutions to maintain the system stability. However, these
robust methods trade the solution optimality for stability. In this
paper, a method called Generative Adversarial Control Networks
(GACNs) is proposed to train a controller via demonstrations
of the optimal controller. By formulating the optimal control
problem in the presence of disturbance, the controller trained
by GACNs obtains neuro-optimal solutions without knowing
the future disturbance and determines the objective function
explicitly. A joint loss, composed of the adversarial loss and
the least square loss, is designed to be used in the training
of the generator. Experimental results on simulated systems
with disturbance show that GACNs outperform other compared
control methods.

Index Terms—Optimal control, generative adversarial net-
works, neural networks, adaptive dynamic programming, ap-
proximate dynamic programming, inverse reinforcement learn-
ing.

I. INTRODUCTION

ISTURBANCE is unavoidable in real-world systems.
As an input to a control system, it may deviate the
expected system state and output. With known dynamics and
disturbance, control and planning methods, such as model
predictive control (MPC) [1], can be used to optimally control
the system. However, disturbance is generally unknown to the
controller. To address this problem, one usually estimates the
disturbance and then performs the action that can compensate
the influence of the disturbance [2]. Some researchers use ma-
chine learning techniques such as neural networks to estimate
the disturbance [3], [4]. However, inaccurate estimation can
adversely affect both the optimality and stability and we need
to rely on robust control methods, such as Robust MPC [5] to
reserve the stability. To do this, we minimize the corresponding
objective function by considering the boundary of maximum
disturbance. However, there is a tradeoff between stability and
optimality when using robust methods. We can enlarge the
disturbance boundary for stability but this will sacrifice the
optimality.
Stability is usually a basic requirement in system control and
it can be achieved by various methods based on optimal control

K.F. Chu, A.Y.S. Lam and V.O.K. Li are with the Department of Electrical
and Electronic Engineering, The University of Hong Kong, Hong Kong (e-
mail: kfchu@eee.hku.hk; ayslam@eee.hku.hk; vli@eee.hku.hk).

C. Fan is with the Department of Mechanical Engineering, The University
of Hong Kong, Hong Kong (e-mail: fancc@connect.hku.hk).

theory [6]. Dynamic programming (DP) is commonly used
to solve optimal control problems with optimality preserved.
In the presence of disturbance and due to the “curse of di-
mensionality”, DP often cannot produce the optimal solutions
in practice. To address these issues, approximate dynamic
programming (ADP) [7] was proposed to approximate the
dynamic programming solutions using neural networks, which
is also known as Adaptive Dynamic Programming [8] or
Reinforcement Learning (RL) [9], [10]. Such neural networks
are usually trained by their extensive interactions with the
environments and they approximate the system dynamics and
also the dynamics equations of optimal solution. It aims at
determining an optimal action based on the given state by
maximizing the long-term reward. For those systems with
uncertainty, robust ADP [11], as an extension of ADP, was
proposed to deal with the disturbance. In [12], a neuro-optimal
control method using ADP was developed to manipulate non-
linear systems in the presence of disturbance. It contains a
recurrent neural network and a feedforward neural network
as an function approximator to reconstruct the system dy-
namics and disturbance, respectively. In this way, the optimal
control problem with disturbance is transformed into a two-
player zero-sum control problem. However, the worst scenario
due to disturbance is taken into account in the computation
resulting in sub-optimal solution in the above methods. In
[13], a neural network-based control method was presented
to approximate the system uncertainties and disturbances of
the discrete-time non-linear system. Another neural network-
based decentralized control method was also proposed for a
large-scale non-linear system where the system state variables
were interconnected between the subsystems [14]. In general,
ADP suffers from certain limitations:

o The approximation and control performance heavily de-
pend on the neural network learning technique;

o The reward function, or reinforcement signal, is usually
difficult to be defined manually. Consider autonomous
driving [15] as an example. Maximizing a reward function
that minimizes the travel time is generally not sufficient
and there are other measures, such as safety distance
to other vehicles and pedestrians, which cannot be well
modeled by the manually defined reward function. In
[16], an RL problem with safety constraints is trans-
formed to a constrained Markov decision process and
solved by a Lyapunov-based approach, but they did not
consider disturbance.

o RL may require extensive interactions between the con-

troller and the system to learn an approximation of the
system dynamics and to maximize the reinforcement sig-
nal, but the system may not be available to the controller
at the training stage.

To overcome the above limitations, the controller may learn
from a given set of expert demonstrations without defining
a reward function manually, or constantly interacting with
the system. In this case, the objective of the controller be-
comes performing similarly to the expert demonstrations as
much as possible and thus the interaction with the system
is unnecessary at the training stage. This is called imitation
learning [17] and one of the several possible approaches to
solve the problem is by using Inverse Reinforcement Learning
(IRL) [18]. IRL is an approach to determine the best reward
function that can explain given expert demonstrations. A
method based on Generative Adversarial Networks (GANs)
[19], called generative adversarial imitation learning (GAIL)
[20], was proposed to tackle the imitation learning problem
and it can avoid the scaling problem induced by some existing
IRL algorithms. GANs were proposed in recent years [19] and
it is a framework originally designed for generating artificial
images by modeling a two-player minimax game, in which
a generator and a discriminator are trained simultaneously
to generate and classify the artificial images, respectively.
Other than image generation, GANs have other applications
like three-dimensional object generation [21] and human pose
estimation [22]. In GAIL, control actions are generated by the
generator and the discriminator classifies whether its input is
generated control actions or expert demonstrations. However,
GAIL does not consider the presence of disturbance, leading
to direct correspondence between the state and action. In
fact, with disturbance, randomness is involved and such direct
correspondence may not achieve the best performance.

In this paper, we propose a GAN-based approach, called
Generative Adversarial Control Networks (GACNSs), to train
the controller. To the best of our knowledge, we are the first
to model a state feedback control problem in the presence
of unknown disturbance to function approximation problem
solvable by the proposed GACNs. Historical system states
and expert demonstrations are used as the training data for
GACNS, in which a generator and a discriminator are trained
simultaneously to determine an estimate of the objective func-
tion and the neuro-optimal control actions without knowing
the future disturbance. The convergence analysis is provided
to show the convergent property of the approach. We also
find that the control performance is improved by using a joint
loss function, instead of the single adversarial loss function
proposed in the original GAN model, in our experiments.
The controller trained by GACNs is shown to be robust to
disturbance and outperform other compared control methods.

The main contributions of this paper can be summarized as
follows:

1. We re-formulate the optimal control problem with distur-
bance as an IRL problem solvable by GACNS;

2. We propose a variant method based on GANs called
GACN:S that is specifically designed to solve the problem;

3. A convergence analysis is given to investigate the con-

vergence of the proposed method;

4. To the best of our knowledge, we are the first to handle
the optimal control with disturbance using the adversarial
training approach; and

5. We perform extensive experiments in a discrete time
system and cartpole system using the proposed method
and other compared methods.

The rest of this paper is organized as follows. Section
IT presents the background information of Optimal control,
IRL and GANSs. Section III defines the system model and
the system control problem with disturbance. We present our
proposed control approach in Section IV and experiments are
illustrated in Section V. Finally, Section VI concludes this

paper.

II. BACKGROUND

In this section, IRL and GANs are reviewed to provide
background information for subsequent sections.

A. Inverse Reinforcement Learning

According to [23], IRL is characterized informally as a
problem that determines the reward function being optimized
by giving measurements of an agent’s behavior over time, mea-
surements of the sensory inputs to that agent, and the model
of the environment. In other words, IRL aims to determine an
estimated reward function #(-), which can explain the observed
behavior 7* produced from the true reward function r(-) [18].
The estimated reward function #(-) is maximized to obtain the
relevant actions by RL algorithms. The IRL problem can be
modeled as follows:

sy 4T
E[3 (s(r)salr)lm] 2 B[3o (s(r): a(r)la] v

where m = {a(t),...,a(t+T)}, a(7) is the control action at
time 7, s(7) is the system state at time 7, and 7" is the latest
allowed time in the time horizon [24].

1) Maximum Entropy IRL: One special form of IRL is max-
imum entropy IRL (MaxEnt-IRL) [25], in which Boltzmann
distribution is used to model the expert demonstrations given
as follows:

polw) = e), 1)
where v = {s(t),a(t),...,s(t+T),a(t+T)} is a trajectory,
Fy(v) = > fo(s(7),a(r)) is a learned cost (objective)
function parameterized by the adjustable parameters 6 with the
cost function fy(-) for each time slot, and Z is the integral
of e=Fo() over all trajectories [25]. pg(v) is optimized by
adjusting parameters 6 to produce the maximum probability
pj(v) with the given expert trajectory v. With the optimized
parameters 0*, Fjj(v) accounts for the expert trajectory and
may generate optimal trajectories in the new environment. In
[25], Z is estimated by dynamic programming.

s(t+ 1)‘
s(1) a(r) y(@
— > Controller System ———
w(T)
Fig. 1. System block diagram

B. Generative Adversarial Networks

In this framework, a generative model G and a discrim-
inative model D are trained simultaneously. The goal of G
is to generate expected outputs that minimize the divergence
between the distributions of generated outputs ¢(x) and the
real data p(z) such that the input of D is misclassified. On
the other hand, D classifies whether its inputs are real data or
generated outputs from GG. GANs correspond to a two-player
minimax game with the value function V (G, D) as:

m(%n max V(G, D) = Eyp[logD(2)] +Eygllog(l — D(z))].

)
G takes random noise z as input and outputs a sample x ~
G(z). We train G such that the distribution of G(z) is mapped

to the data space p(x). The loss function of the generator
Leen(G) is given as:!

Loen(G) = Epog[—logD(z)] + Ezoillog(l — D(z))]. (3)

D takes a sample x as input and outputs D(x), where D(z)
represents the probability that z is sampled from p(x). The
loss function of the discriminator Lgs(D) is:

Lgis(D) = Eyp[—logD(z)] + Eyog[—log(l — D(z))]. (4)

III. SYSTEM MODEL

Figure 1 shows a discrete time system with disturbance
and the corresponding controller. At discrete time 7 € N, the
controller takes an n-dimensional system state s(7) € R™ as
input and outputs an m-dimensional control action a(7) € R™
to the system. The controller adjusts the control action based
on s(7) such that an objective function f(-) > 0 is minimized.
Let w(7) € RP be the disturbance in p dimensions. We model

the system dynamics as
= g(s(7),a(7),w(7)),

s(t+1)
y(r) = h(s(r),a(r)),

where g(-) and h(-) are the corresponding system dynamic
functions, and y(7) is the system output.

We design the optimal controller by considering the follow-
ing optimization problem, in which we plan the actions for the
next T time-steps at each time ¢:

®)

IThe first term is a well-known alternative called “the —logD trick” [26] to
deal with the gradient vanishing problem in the original GAN loss function.
This function provides a better training signal compared to the original one.
Therefore, it is common to consider the sum of these two loss functions as
the loss function of the generator as in [27].

Problem 1 (Optimal Control Problem):

t+T
min > 7 (6().a(r) (6
st. s(t+1)=g(s(r),alr),w(r)),7=¢t,...., 6 +T -1
(6b)
y(r) = h(s(1),a(r)), 7 =t,...,t +T (6¢)
s(r) € S,a(r) € A,w(r) e W, m=1t,...,t+ T,
(6d)

where S, A, and W are the sets of all possible states,
actions, and disturbances, respectively. Problem 1 can only be
solved when the disturbance is given. However, the disturbance
is generally unknown in real-world scenarios. To overcome
this, one can adopt robust optimization, which is a minimax
approach that minimizes the objective by considering the
maximum disturbance boundary. The robust optimal control
problem can be defined as:
Problem 2 (Robust Control Problem):

t+T

B, 2 7
s.t. (6b)—(6d). (7b)

By solving the problem within the boundary of maximum
disturbance, the solution is robust in the sense that the system
is stable for any disturbance w(7) € WW. However, such
robustness sacrifices optimality. We can see that there are
certain limitations when solving problems 1 or 2. Problem
1 cannot be solved without known disturbance while solving
problem 2 suffer from sub-optimal solution. To preserve the
optimality with unknown disturbance, we first reformulate
the optimal control problem to the function approximation
problem as follows:

Problem 3 (Function Approximation Problem):

min > f(s(r).a(r) (82)
st. $(r+1)=g(8(r),a(r)),7=4t,....,t +T—1 (8b)
4(r) = h(s(r),a(r)), 7 =t,...,.t+T (8¢)
§(r)eS,alr) € Ar=t,... t+T, (8d)

where §(8(7),a(r)) is an approximation of
g(s(1),a(7),w(r)) and §(7) is an estimate of y(7). In this
formulation, disturbance is unnecessary with the approximated
function given. We aim to find the equivalent functions f(-)
and §(-) such that f(3(7),a(r)) = f(s(7),a(r)), which
allows us to address Problem 3.

Instead of solving Problem 3 directly, we define a trainable
function G(s(7)) to generate the control action a(7). The
optimal G* is given as:

t+T

= arg min Z f(s)

a(r)eA

G*(s(7)) = a(r)

where §(7 + 1) = g(8(7),a(r)). The training approach to
determine G is presented in the next section.

ST T
/e ___
VAR A |
/ / | |
z | [
AL | P
enerator
| f |
/7 7 | Generated (0)
s(1) z 5@, a(T)} ! Discriminator —>d)¢— or
{s(0),a" (1)} - l / Optimal (1)
. '
Optimizer @ (®)
f
w(7)

Fig. 2. Model of GACNs

IV. GENERATIVE ADVERSARIAL CONTROL NETWORKS

In this section, we design a GAN-based control method
with IRL to address Problem 3 and explain why the designed
control method is solving the given problem. We also provide
a convergence analysis for the method.

As discussed in Section II-A, IRL aims to determine an
estimated reward function 7(-) with given {s(7),a(7)},7 =
t,...,t + T. Consider that the optimal state-action pair
{s(7),a*(r)} are given in Problem 3 and we have #(7) =
f(5(7),a(r)). We can determine the estimated system dynam-
ics g(+) and objective functions f(-) by using IRL. Then we
can solve Problem 3 with the estimated functions §(-) and f{(-)
using MPC. However, IRL algorithms are often computational
intensive [28] which lower its applicability in this case. In
recent years, GANs have shown promising results in solving
various problems [19]. As estimating the reward function in
MaxEnt-IRL is shown to be equivalent to optimizing both the
generator and discriminator in GANs [27], we propose GACNs
to jointly estimate the objective function and to obtain the
neuro-optimal control action simultaneously.

A. Connection between MaxEnt-IRL and GANs
For a given G with ¢(z) as the distribution of the generated
data, the optimal discriminator D (x) is given as [19]:
p(z)
p(x) + g(x)’
where p(z) is real data distribution. Instead of estimating Eq.

(10) directly, the discriminator Dy with parameters 6 can be
considered as an estimate of p(z) with a known ¢(x), i.e.,

Dg(x) = (10)

_ pel®)
Po(x) +q(z)
From the model of MaxEnt-IRL as shown in Eq.(1), the
estimate of real data distribution pg(v) is substituted by the
Boltzmann distribution in order to relate MaxEnt-IRL with
GANs. The optimal trajectory has the largest likelihood in
MaxEnt-IRL. For the loss function of the discriminator, it
should be the largest when the trajectory is optimal. Therefore,
the substitution is the necessary condition of the loss function
of the discriminator and thus we can always substitute pg(x)
by the Boltzmann distribution. The discriminator becomes:

Dy(z) = Y

) ze
Dg v) = = ,
ze oW +q(v) ((v)

1 e—Fg('U)

12)

where {(v) is estimate of Le (") 4 g(v).
By substituting Eq. (12) to Eq. (4), the loss function of the
discriminator can be derived as follows:

[fdis(DQ) = Evrvp[_l()gDG('U)] + EUNq[_IOg(l - DH(U))}

1 —Fy(v)
_1°g<z<)
ety

=logZ + EUNP[F(; v)] —
+2Ey~¢ [log((v)] .

The optimal point of the discriminator is its derivative with
respect to 6:

= Evap +

Ey~q[logg(v)]+
(13)

%E_Fe(v)ﬁgFg(v)

%%ﬂm—&wﬁﬂw“ﬁ“[C)

(14)
On the other hand, the log-likelihood objective of MaxEnt-
IRL is:

»Ccost (0) =]vap [_Inge (U)}

=E,p[Fo(v)] + logZ (15)

|

where Z is estimated from the derivative of the discriminator’s
loss with respect to Z, which is:
—Fy(v) :| }
9z Lais(Dg)=0

Z:{m“[%w>

The derivative with respect to 6 of the log-likelihood objec-
tive of MaxEnt-IRL is given as:

=E,p[Fo(v)] + logE,¢ [

(16)

1 _—Fy(v)
D9 Leo(8) = Eomep|0o Fo(0)] — Eon lze ()9, Fy(v)
¢(v)
17)

We can see that the optimal points of both the discriminator
and MaxEnt-IRL log-likelihood are the same by comparing
Egs. (14) and (17). Hence, GANs can be considered as a
sample-based algorithm for MaxEnt-IRL and the details can
be found in [27].

B. Model architecture

Here a GAN-based architecture is presented to solve Prob-
lem 3. In this model, there are three components, namely,
optimizer O, generator G and discriminator D. Figure 2 illus-
trates the detailed architecture of GACNSs, where the dotted
lines indicate the parameters update by the corresponding loss
functions (Eq. (20) for G and Eq. (21) for D). Suppose that
we have the historical training dataset of initial state s(7) and
disturbance w(7). To generate a set of corresponding optimal
control action a*(7), O can solve Problem 1. The states s(7)
and actions a*(7) form a labeled dataset {s(7),a*(7)} for
training. The generator aims to generate control actions that
stably and optimally control the system. It takes s(7) as input
and outputs a generated control action a(7). The inputs of D

are randomly sampled between the optimal state-action pairs
{s(7),a*(7)} and generated state-action pairs {s(7),a(r)}. D
classifies whether its input is an optimal state-action pair from
O or a generated state-action pair from G. If generated state-
action pair {s(7),a(r)} is given, D is expected to output a
zero. When optimal state-action pair {s(7),a*(7)} is given,
D is expected to output a one. It is an iterative process where
the parameters of G and D are iteratively updated using the
loss function given in Eq. (20) and (21). As discussed in
[19], training of the GAN-based architecture facilitates the
approximation of G' to O. In other words, with sufficient
training, the output of G is close to that of O and D cannot
distinguish its input from G or O.

Traditional GANs aim to generate artificial images and
thus the generator and discriminator are usually constructed
as convolutional neural networks [29]. However, GACNs
generate control actions from the given system states. For
simplicity and generalization purposes, we adopt multilayer
perceptrons to form the architecture for both the generator and
the discriminator in our design. Other kinds of neural networks
can also be considered, depending on the actual structure of
the state and control action.

The generator is trained with two loss functions, i.e., an
adversarial loss and a least square loss. The least square loss
is responsible for constructing the average control action from
the distribution while the adversarial loss refines the control
action by selecting a particular trajectory from the distribution.
The objective is to map the input state to output control action
using the generator function. The optimal control action from
O can be used as the supervisory signal for the function. We
minimize the distance between the generated and the optimal
using a least square approach, in which the least square loss
is given by:

Lis = E[(a(r) — a*(1))?]. (18)

However, the least square loss tends to produce an average
value from the distribution of possible control actions, which
may degrade the control performance. Therefore, the adver-
sarial loss, as

Lagy = Ezng[—logD(z) +log(1 - D(z))], (19)

is also introduced to refine the output by choosing a partic-
ular trajectory from the distribution that is more similar to
the real output from the optimal controller. As discussed in
Section IV-A, optimizing the adversarial loss is equivalent to
estimating the objective function, which allows the generator
to determine the control actions. This leads to generalization
of the objective of optimal controller rather than simple
behavioral cloning of the optimal controller. G tries to generate
control actions as close as possible to the control actions
from O such that D is misclassified. Therefore, the logistic
likelihood between the discriminator output and the correct
labels should be minimized.

By combining L1 s and L,qy, the joint loss function of the
generator is:

Lgen(G) =)\adV[fadv +)\LS‘CLS; (20)

where A4y and A g are the weights of the corresponding
losses. A similar joint loss function was used for image

inpainting [30], which showed that the joint loss function
enhances performance over a single loss function. To the
best of our knowledge, we are the first to embrace the joint
adversarial-least square loss for system control.

We train D to better determine whether the input state-
action pair is from O or G. Hence, we minimize the negative
logistic likelihood between the discriminator outputs and the
correct labels. The loss function of the discriminator is:

Lais(D) = Eyop[—logD(z)] + Epg[—log(l — D(z))]. (21)

C. Stability and Convergence Analysis

We give the stability and convergence analysis of the
proposed GACNs approach below:

1) Stability analysis: The asymptotic stability of the system
under the designed control law is investigated first. The
optimal control law of Problem 1 is given as

t+T

a* = arg min Z f(s(7),a(r))

a(t)EA

(22)
T=t

By denoting L(s(7)) = ming(rye Ei—g (s(),a(r)) and

according to the Bellman’s principle of optimality, we have
L(s(r +1)) = L(g(s(7), a(r), w(r))
t+T

= min s(1),a(T)).
{a(7—+1),~~,a(t-l—T)}EAT;lf(() ())

(23)

Moreover, L(s(7)) can be rewritten as:
L = mi 1), a(t)) +
(5(r) = min, f(s(0),a(t)

t+T

Y f(s(r),a(r)).

T=t+1

min
{a(t+1),,a(t+T)}€A

(24)

Taking L(s(7)) as a Lyapunov function candidate, we have

AL(tT) = L(s(t+ 1)) — L(s(7))

= _ agl)iélAf(S(t)’ a(t)) <0,

as the cost function f(s(t),a(t)) > 0, Vs # 0.

The above analysis implies that for Problem 1, under the
optimal control law a*, the system is asymptotically stable.
Next, we just need to show that a(r) will converge to
a*(7). Therefore, in the following, we will investigate the
convergence analysis of the detailed implementation process
of GACNs.

2) Convergence analysis of GACNs:

a) Generator: The estimated control action a(7) is ob-
tained from the output of the generator. Then the approximate
control action can be given as

a(r) = G(s(7)). (25)

To update the generator G(s(7)), we need to minimize the
joint loss function given as (20) to get the update law of the
approximate control a(7). It is obvious that (18) is a convex
function since a;éés > 0. For training errors using least
square regression, the convergence was proven in [31]. For the

adversarial loss function (19), we need to investigate whether
it is convex for fixed D, the following equations hold:

OLads 2 2
oG~ ee { D(z) (1- D(ar))} ’
?Logy 2 2
oGz e {Dzm - D(x))Q] -

As % > 0, the adversarial loss function (19) is convex.
The joint loss function of the generator is also convex
due to the convexity-preserving characteristic of the non-
negative weighted sum of two convex functions. Therefore,
the estimate control law a(7) will converge to a*(7) according
the gradient-descent-based direction of the joint loss function.
b) Discriminator: The loss function of the discriminator
is chosen as (21). For fixed G, the optimal discriminator D is

p(z)
p(z) + G(z)
From Proposition 2 in [19], if G and D have enough capacity,
the discriminator is allowed to reach its optimum given the
generator. Generated data G(z) are updated based on the
convex loss function of the generator according to Section
IV-C2a to minimize the criterion

Eyp[—log D*(2)] + Epg[—log(1 — D*(x))].

Then the generated data G(z) converge to p.

During the training process, we need to minimize the loss
function of the generator (20) and the discriminator (21)
simultaneously. Based on the above analysis, the objective
function is convex in G. In other words, when D is optimal, a
gradient descent update for G at the optimal D is computed.
The minimum of the objective function with optimal D is
convex in G with a unique global optimum. therefore when GG
is updated with sufficiently small step size, G will converge
to p.

In summary, a(r) will converge to a*(7) by training
GACN:Ss. By regarding the networks of the generator and the
discriminator as action network and critic network, respec-
tively [32], the estimation error |a(7) — a*(7)| is uniformly
ultimately bounded. Combining the asymptotic stability with
control action a*(7) and the uniformly ultimately bounded
convergence, the uniformly ultimately bounded stability of the
approximate system (Eq. (5)) can be obtained.

D*(x) = (26)

27

V. EXPERIMENTS

We evaluate our proposed GACNS on a discrete time linear
system and on the OpenAl Gym “CartPole” environment [33].
As in [34], 25 future steps are evaluated in both test cases. For
both test scenarios, the disturbance is represented by the sum
of uniform random noise and a sine function, as follows:
(-1

) (28)
where W(r) € [-1,1] and o« + 8 = 1. o and S are
the weights for simulating different levels of randomness of
the disturbance. For example, the disturbance is completely
random if « =1 and 8 =0.If a =0 and g =1, it is a pure
sine function without randomness.

w(T) = aW(T) + Bsin(27

The following control approaches are compared with
GACNs:

1. Perfect MPC: The controller has perfect information of
the future disturbance, which allows us to compute the
global optimal control action using MPC.

2. Robust MPC (Open-loop minimax MPC) [35]: The objec-
tive function is minimized by considering the maximum
disturbance boundary as presented in Problem 2.

3. Robust MPC (Closed-loop minimax MPC): This method
was proposed in [34] to solve Problem 2. The difference
between this and the open-loop is that the future con-
trol inputs are parameterized as affine functions of past
disturbances but the open-loop does not.

4. Stochastic control (certainty-equivalent) [36]: This
method assumes that the distribution of the disturbance
is known and thus the unknown disturbance variable is
substituted by the expected value.

5. Future prediction MPC: Disturbance is predicted with
different prediction accuracy. The predicted disturbance
is incorporated in the computation of Problem 1 using
MPC.

6. Supervised learning: A multilayer perceptron is trained
to minimize the least square loss (Eq. (18)) between the
outputs and expert demonstrations.

7. GANs: A GAN-based approach is trained to minimize
the adversarial losses of the generator (Eq. (19)) and the
discriminator (Eq. (21)).

8. LSGANSs [37]: A variant of GANs with least square loss
of the generator and the discriminator where Lgen(G) =
Eunc(D(x) — 1)2] and Lag(D) = Eonpl(D(x) - 1)?] +
E.~al(D(2)?)]

9. WGANs [26]: A variant of GANs with four mod-
ifications to GANs: (i) Remove the sigmoid func-
tion at the last layer of the discrimintor network;
(i) Use Lgen(G) = Epog[—D(x)] and Lg(D) =
Eyzp[—D(x)] + Ezg[D(x)]; (iii) Clip the weight to a
fixed box (e.g., [-0.01, 0.01]) after each gradient update;
(iv) Use RMSProp [38] as the training algorithm.

10. WGAN-GP [39]: In addition to WGANSs, a gradient
penalty is added to the loss function instead of the weight
clipping method in WGANSs.

GACN:Ss are different from the above GAN-based approach in
the sense that GACNs are trained to minimize the joint loss
functions of the generator (Eq. 20) and the loss function of
the discriminator (Eq. 21). The generator and discriminator of
GAN are two-layer perceptrons. The hidden layer contains 64
hidden units. We purposely avoid using deep neural networks
and other complicated techniques. The reason is that different
specific control problems may have different structures of
state and action, and the neural network architecture needs
to be fine-tuned accordingly. But such fine-tuning process is
out of the scope of this paper. We try to test the proposed
framework instead of using deep neural networks to boost its
performance. For the training parameters, we use Adam [40]
with the learning rate of 0.001, batch size of 32 and trained
for 100,000 iterations and select the best trained model based
on the validation set for testing.

In particular, for future prediction MPC, we define ¢ as the
accuracy of the predicted value to simulate certain percentage
of the prediction error in the prediction. The percentage error
is defined using Symmetric Mean Absolute Percent Error
(SMAPE) and we have

¢ =1—SMAPE(w,w) =1— 29)
where w is the predicted value of w for a pre-defined accuracy
¢. Given w and ¢, we can calculate w based on Eq. (29),
which allows us to simulate the prediction of w with different
prediction accuracy ¢. The MPC problems are modeled and
solved using YALMIP [41] and GUROBI [42]. Supervised
learning, GAN, and other GAN-based approaches are imple-
mented using Tensorflow [43] and Python.

A. Test 1: Discrete time system

We follow [34] to model the discrete time linear system as
follows:?

f(s(r),a(r)) = [y(r) — 1],
g(s(1),a(r),w(r)) = As(r)+ Ba(r) + Ew(r),
h(s(1),a(T)) = Cs(t) 4+ Da(1),
where
2.938 —0.7345 0.25 0.25
A= 4 0 o |.,B=[o |,
0 1 0 0
C =(—0.2072 0.04141 0.07256),D =0,
0.0625
E = 0
0

From the objective function f(s(7),a(7)), we can see that
it is an optimal tracking problem controlling the output to
track a desired reference value of 1. Table I shows the aver-
age objective function value of different control approaches
and different levels of disturbance. The lower the objective
function value, the better the control approach since Problem
3 is a minimization program. The control action of perfect
MPC is optimal since it is given all future information which is
impractical in real situations. It mainly serves as a benchmark
to show the global optimal value. In general, the larger the
value of «, the larger the objective function value. This is
because a larger « increases the randomness level of the
disturbance and thus it makes the system harder to control.
Among the five tested GAN-based models, only GAN and
GACN smoothly decrease the values when o decrease while
other three models have abnormal values. It may due to
the reason that the networks stuck at sub-optimal during
the training. Overall, on all the tested randomness levels of
disturbance, GACNs perform the best among other practical
control approaches in general.

We purposely avoid using deep neural networks and other
complicated architecture, and use a simple two-layer percep-
tron in the joint adversarial-least square loss GAN for the

0.25%(—2s+1)

Discretized version of the system is S(s210.257) -

experiment to test the performance of this framework. MPC
is an important baseline as it is widely used in the industry
over the past decades. The simulation results show that this
framework outperforms MPC in the presence of disturbance
even with a simple shallow neural network.

Fig. 3 shows the validation loss during training for the
five GAN-based models of different values of o and 8. From
the figure, we can see that GANs, WGANs, WGAN-GP and
GACNSs can converge after about 30,000 to 50,000 iterations
while LSGANSs oscillates during the training. In particular,
WGANs and WGAN-GP converge to a relatively high level
for « = 0.1 and 3 = 0.9. Only GANs and our proposed joint
loss GACNs can converge to a low loss value in all tested
cases, which shows that these two methods are more suitable
for this test case.

Fig. 4 shows the output and control action of a dis-
crete time system with different disturbance levels. Since
f(s(r),a(r)) = |y(r) — 1|, minimizing this objective function
means regulating the output y to 1. In general, the trained
model can regulate the output to 1 at about 5 to 10 time steps
and maintain a similar value in later time steps. For smaller «
(smaller randomness level of disturbance), the magnitude of
control action is large at the beginning and becomes smaller
at later time steps. This is because the control action has
to regulate the output to 1 at the beginning. After reaching
the steady state at later time steps, the control action is only
required to compensate its effect on the system. For larger «
(smaller randomness level of disturbance), the control action
oscillates to compensate the effect of disturbance such that the
output is steady. That means the model already has the ability
to predict the disturbance and thus maintain the steady state
outputs.

B. Test 2: OpenAl Gym “CartPole” environment

The environment “CartPole-v1” is used in the experiments.
In this environment, a pole stands upright on a cart with
a random small state value at the beginning. The state is
composed of 4 elements: cart position, cart velocity, pole
angle, and pole velocity at the tip. The controller tries to
prevent the pole from falling by applying a force to the
cart. The objective function of the controller is to maintain
the pole standing upright by minimizing its vertical angle,
i.e., the third element of the state. The parameter settings,
such as for the mass of cart and pole, follow the default
values given in OpenAl Gym. Two modifications are made
to fit our problem: (1) An additional random horizontal force
w € [—0.5,40.5] is applied on the pole at each time-step to
simulate the disturbance; (2) Instead of a € {—10,+10}, the
system is controlled by applying a force a € [-10,+10] to
the cart, which is a more general control action to verify the
controller performance when compared to the original binary
control input.

Table II shows the average objective function values (pole
angle in radian) of different control approaches and distur-
bance. Since the controller aims to minimize the pole angle,
the lower the value, the better the control approach. The
values in Table II may look similar and small since the value

TABLE I
DISCRETE TIME SYSTEM RESULTS.

Methods Average objective function value with different disturbance levels
a=1,=0| a=09,=01| a=078=03 | «a=05,=05 | «a=03,6=07 | «a=0.1,=0.9
Perfect MPC 7.1855 6.8705 6.3136 5.9818 5.8305 5.7269
Robust MPC (Open-loop) 30.1059 26.0293 18.8557 12.3883 9.7572 9.4783
Robust MPC (Closed-loop) 28.7224 24.4317 16.9499 10.3468 7.8011 7.5684
Stochastic 19.4087 15.6614 9.7708 7.9950 7.8632 7.9755
Future prediction MPC ¢=1% ¢ =10% ¢ =30% ¢ =50% ¢ =T70% ¢ = 90%
45.3642 39.6001 15.9469 8.3091 7.2852 6.6823
Supervised learning 14.4433 13.0550 9.9841 7.7452 7.0111 6.8159
GANs 12.3042 11.0794 8.6491 7.2400 6.5087 6.0672
LSGANSs 12.3410 11.0613 8.6649 13.6291 14.0102 15.6013
WGANs 13.8431 11.6170 9.2477 7.4890 6.8097 22.9780
WGAN-GP 27.5566 11.3695 8.6814 7.3004 17.6359 22.4305
GACNs 12.3042 11.0572 8.6640 7.1919 6.5069 6.0457
1 w‘ 3 RdlE I
: ‘ < [m i g | teor

24 H ‘ ‘U\H‘

- h\

Validation loss

6
lterations %10*

@a=1,=0

L
~GANs
—LSGANs
~WGANSs
WGAN-GP

w0 WM H\ HH‘“\
H H‘\H

) i
il [13
§ Hw l |

Validation loss

6
lterations. x10*

() a=0.9,3=0.1

Validation loss
3 = 8

Iterations ° x10*
(©) a=0.7,8=0.3

[ITTIN
‘H,‘\ |[~GANs

GANs
~~LSGANs
~WGANs
WGAN-GP
~~GACNs

—LSGANs
+WGANs

- WeAN-GP

—GACNs_

Validation loss

Lo

R W WV O A B N

(d) a=0.5,8=0.5

Fig. 3.

is in radians (1 degree = 0.01745 rad). A few degrees of
tilt may cause the pole to fall. From the results, although
future prediction MPC outperforms other approaches with
a 90% prediction accuracy, its solution is infeasible when
accuracy gets lower than 30%. The performance of future
prediction MPC depends greatly on the prediction accuracy.
For o = 0.3 to 1, GACNs perform the best among all the
compared methods.

Fig. 5 shows the validation loss during training for the
five GAN-based models of different values of o and §. In
general, LSGANs, and GACNs converge very fast to a low
validation loss while GANs need additional iterations for
convergence. WGANs and WGAN-GP oscillate a lot during
the training. WGANSs only converge after about 80,000 to
100,000 iterations for @« = 0.1 and S 0.9. The fast

Iterations <10

e a=0.3,=07

5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

lterations

) a=0.1,=0.9

x10*

Discrete time system validation loss during training with different disturbance levels.

convergence and stable training property of LSGANs and
GACNSs show that these two methods are good for this test
case.

Fig. 6 shows the pole angle and control force applied to the
cart of the cartpole system with different disturbance levels.
The objective is to maintain the pole upright, i.e., minimize
the pole angle. From the figure, we can see that the angle
reduces to zero at about 5 time steps and remains at similar
values afterwards. For smaller o (smaller randomness level
of disturbance), the pole angle and control action are rela-
tively steady. For larger @ (randomness level of disturbance),
although the pole angle oscillates during the process, it is
still controlled within an acceptable range. This shows that
the model can control the system such that the effect of
disturbance is lessened.

Output

= Qutput
©— Control ation

20

15

0 5

> Output

©— Control action | |79

10 15

Output

20

5 10 15

> Qutput
©— Conlrol action

20

0 25
Time Step Time Step Time Step
@a=1,8=0 (b a=09,8=0.1 () a=0.7,8=03
14 1 141 G 1 14 1
= Qutput - | = Output - 1o = Output .
12} ©— Control action | |08 12t | & Gontrol action | | 08 12F | & Control action | | 08
|
N | | o x
1 e e e e X 1F | Lo A 10 | - 34
] | o
| | ;
= A | i S0 “ i 698 ¢
] [£ | = | =4 = |
2 06 / J o\ | 2 06 | |
] y \ | z | 0l
- ¢ ’ w - |/
04 A | 04F | i
[| |
0.2 02f | 0z2f |
|
| | 7
0 of xRy of | A]
RN v |
02 L L s s 4 02 L s L 4 02 = P " s s 4
o 5 10 15 20 25] 5 10 15 20 25 0 5 10 15 20 25
Time Step Time Step Time Step

@da=057p3=05

(&) a=03,8=0.7

Fig. 4. Output and control action of discrete time system with different disturbance levels.

) a=0.1,8=0.9

TABLE II
CARTPOLE RESULTS.
Methods Average objective function value with different disturbance levels
a=1,=0| a=09,4=01| a=07,=03 | «a=05,=05 | «a=03,6=07 | «a=0.1,=0.9
Perfect MPC 0.0784 0.0783 0.078 0.0777 0.0776 0.0776
Robust MPC (Open-loop) 0.1827 0.1722 0.1579 0.1583 0.1775 0.2031
Robust MPC (Closed-loop) 0.1823 0.1715 0.1577 0.1573 0.1757 0.1992
Stochastic Pole falls Pole falls Pole falls Pole falls Pole falls Pole falls
Future prediction MPC ¢=1% ¢ =10% ¢ =30% ¢ =50% ¢ =T70% ¢ = 90%
Pole falls Pole falls Pole falls 0.2676 0.1516 0.0996
Supervised learning 0.1897 0.1794 0.1617 0.15 0.1427 0.1375
GANs 0.1846 0.1723 0.1567 0.1428 0.1285 0.1214
LSGANSs 0.1803 0.1701 0.1540 0.1396 0.1271 0.1212
WGANs 0.1898 0.1746 0.4294 0.4454 0.4975 0.5894
WGAN-GP 0.1874 0.2023 0.1584 0.1409 0.1288 0.1257
GACNs 0.1803 0.1698 0.1539 0.1393 0.1271 0.1210
VI. CONCLUSION

An efficient controller that can learn to adapt to the dis-
turbance is desired for systems with unknown disturbance.
In this paper, GACNs are proposed to control systems with
disturbance. We also presented an optimal control problem
which can be transformed to a function approximation prob-
lem, solvable by the proposed GACNs. The controller trained
by GACNSs can learn from the demonstrations of optimal con-
troller in which the controller obtains a neuro-optimal solution
without knowing the future disturbance and the explicit ap-
proximated objective function. A joint adversarial-least square
loss is used to train the generator and the convergence analysis
is given to prove the convergent property of the proposed

approach. We test GACNs on a discrete time system and the
OpenAl Gym CartPole environment. Experiment results show
that GACNs are robust to disturbance and outperform other
compared control methods.

In the future, we shall investigate using GACNSs in more
complex systems, such as hybrid systems [44], [45], dis-
tributed systems [46], and networked systems [47].

REFERENCES

[11 D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789-814, 2000.

W. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based
control and related methods—an overview,” IEEE Trans. Ind. Electron.,
vol. 63, no. 2, pp. 1083-1095, Feb 2016.

[2]

O -)

Validation loss
o
®

Iterations

(@a=1,8=0

®

- N s B

Validation loss

0 1 2 3 4 5 6 7 8 9 10

Iterations

da=057p3=05

Validation loss.

1 ’ i
T QM

Validation loss

2 3 4 5 6 7 8 9 10

Iterations.

(b) a=0.9,8=0.1

Iterations.

(&) a=03,8=0.7

Fig. 5. Cartpole validation loss during training with different disturbance levels.

Pole angle

Pole angle

—

— = Qutput
—©— Control action ‘\
.

—o

001 F ¢ |

003
5 10 15 20 25 30 35 40 45 50
Time Step
@a=1,8=0
0.08

0.01

°

-0.01

5 10 15 20 25 30 35 40 45 50
Time Step

@ a=05p3=05

10
8

6

4

Pale angle

Pale angle

-0.01

o

I Y
e—

i —]
S5
e —

Ao=
¥
o X S

) [~ output

| [—©— Control action | |
| [
tineml

— -
—)
—$

o

0.01

1
| X
.

I

1
[, fooi

10 15 20 25 30 35 40 45 50
Time Step

(b a=0.9,3=01

2 Qutput
—6— Control action | |

10 15 20 25 30 35 40 45 50
Time Step

(&) a=03,5=0.7

10

8

10

8

Pole angle

Pole angle

1 ‘“ 1 ‘H ~GANs
| i ‘ ~-LSGANs
‘ I “ ‘ | |- WGANs
| | WGAN-GP|
‘ | \‘ ‘ | | -aacns
‘ i

Validation loss

| ill
S kA Mo Ak AR b A A 4 i
o2ll o AmtAL P M AR s e i
0
o 1 2 3 4 5 3 7 8 9 10
lterations 10%

() a=0.7,6=0.3

B

- N B B

Validation loss

Iterations

() a=0.1,8=0.9

(© a=0.7,8=03

0.03 10

| —% Output
| —6— Gontrol action | | &

»MNWM&M%M%\‘F
K
&,

5 10 15 20 25 3 35 4 45 50
Time Step

) a=0.1,8=0.9

Fig. 6. Pole angle and control force applied to the cart of the cartpole system with different disturbance levels.

[3] H. Sun and L. Guo, “Neural network-based DOBC for a class of
nonlinear systems with unmatched disturbances,” IEEE Trans. Neural

[4

=

[5]

Netw. Learn. Syst., vol. 28, no. 2, pp. 482489, Feb 2017.

B. Xu, Y. Shou, J. Luo, H. Pu, and Z. Shi, “Neural learning control of
strict-feedback systems using disturbance observer,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 5, pp. 1296-1307, May 2019.

A. Bemporad and M. Morari, “Robust model predictive control: A

survey,” in Robustness in identification and control.

pp- 207-226.

Springer, 1999,

1957.
[7]

[8]

[9]

of dimensionality.

10

[6] R. E. Bellman, “Dynamic programming,” Princeton University Press,

W. B. Powell, Approximate Dynamic Programming: Solving the curses
John Wiley & Sons, 2007, vol. 703.
F-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, 2009.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[10] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
(19]
[20]

[21]

[22]

[23

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]
[34]
[35]

[36]

[37]

[38]

[39]

and autonomous control using reinforcement learning: A survey,” I[EEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042-2062, June
2018.

Y. Jiang and Z. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 5, pp. 882-893, May 2014.

Q. Wei, R. Song, and P. Yan, “Data-driven zero-sum neuro-optimal
control for a class of continuous-time unknown nonlinear systems with
disturbance using ADP,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 2, pp. 444-458, Feb 2016.

S. Shao, M. Chen, and Y. Zhang, “Adaptive discrete-time flight control
using disturbance observer and neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 12, pp. 3708-3721, 2019.

H. Wang, P. X. Liu, J. Bao, X. Xie, and S. Li, “Adaptive neural output-
feedback decentralized control for large-scale nonlinear systems with
stochastic disturbances,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 3, pp. 972-983, 2020.

C. Urmson et al., “Autonomous driving in urban environments: Boss and
the urban challenge,” J. of Field Robot., vol. 25, no. 8, pp. 425466,
2008.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
Lyapunov-based approach to safe reinforcement learning,” in Proc.
NIPS, 2018, pp. 8103-8112.

S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233-242, 1999.

A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning.” in Proc. ICML, 2000, pp. 663—-670.

1. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672-2680.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc.
NIPS, 2016, pp. 4565-4573.

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a
probabilistic latent space of object shapes via 3D generative-adversarial
modeling,” in Proc. NIPS, 2016, pp. 82-90.

L. Ma et al., “Pose guided person image generation,” in Proc. NIPS,
2017, pp. 406-416.

S. Russell, “Learning agents for uncertain environments,” in Proc. 11th
Ann. Conf. on Comput. Learn. Theory. ACM, 1998, pp. 101-103.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. ICML, 2004.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI, 2008.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. ICML, 2017, pp. 214-223.

C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A connection between
generative adversarial networks, inverse reinforcement learning, and
energy-based models,” in Proc. NIPS Workshop on Adversarial Training,
2016.

C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. ICML, 2016.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proc. ICLR, May 2016.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proc. IEEE
CVPR, 2016, pp. 2536-2544.

F. Bach and E. Moulines, “Non-strongly-convex smooth stochastic
approximation with convergence rate O(1/n),” in Proc. NIPS, 2013.
Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete
stability analysis of a heuristic approximate dynamic programming
control design,” Automatica, vol. 59, pp. 9-18, 2015.

G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

J. Lofberg, “Approximations of closed-loop MPC,” in Proc. 42nd IEEE
Conf. on Decision and Control, 2003, pp. 1438-1442.

——, “Minimax approaches to robust model predictive control,” Ph.D.
dissertation, Linkoping University, Linkoping, Sweden, 2003.

H. Van de Water and J. Willems, “The certainty equivalence property in
stochastic control theory,” IEEE Trans. Autom. Control, vol. 26, no. 5,
pp. 1080-1087, Oct. 1981.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proc. ICCV, 2017.

G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning - lecture 6a - overview of mini-batch gradient descent,” CSC321
Lecture slides, 2012.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Proc. NIPS, 2017.

[40]
[41]
[42]

[43]

[44]

[45]

[46]

(471

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE ICRA, Sept 2004, pp. 284-289.

Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2018.
[Online]. Available: http://www.gurobi.com

M. Abadi et al, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for
hybrid control: Model and optimal control theory,” IEEE Trans. Autom.
Control, vol. 43, no. 1, pp. 31-45, 1998.

C. Fan, J. Lam, and X. Xie, “Peak-to-peak filtering for periodic
piecewise linear polytopic systems,” Int. J. of Syst. Sci., vol. 49, no. 9,
pp. 1997-2011, 2018.

A. V. Fursikov, Optimal control of distributed systems. Theory and
applications. Amer. Math. Soc., 1999.

Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Eng. Practice, vol. 11, no. 10, pp. 1099-1111,
2003.

Kai-Fung Chu (S’17) received the B.Eng. (First
Class Honors) and M.Sc. degrees both in electronic
and information engineering from The Hong Kong
Polytechnic University, Hong Kong, in 2013 and
2016, respectively. He is currently pursuing the
Ph.D. degree in the Department of Electrical and
Electronic Engineering, The University of Hong
Kong, Hong Kong. He was a Project Engineer
from 2013 to 2016. His research interests include
deep learning and reinforcement learning, artificial
intelligence, distributed control, optimization, and

intelligent transportation systems.

Albert Y.S. Lam (S’03-M’10-SM’16) received the
BEng degree (First Class Honors) in Information
Engineering and the PhD degree in Electrical and
Electronic Engineering from the University of Hong
Kong (HKU), Hong Kong, in 2005 and 2010, re-
spectively. He was a postdoctoral scholar at the
Department of Electrical Engineering and Computer
Sciences of University of California, Berkeley, CA,
| USA, in 2010--12. Now he is the Chief Scientist
and the Chief Technology Officer at Fano Labs, and
an adjunct assistant professor at the Department of

Electrical and Electronic Engineering of HKU. He is a Croucher research
fellow. His research interests include optimization theory and algorithms,
artificial intelligence, smart grid, and smart city. He is an Associate Editor of
IEEE Transactions on Intelligent Transportation Systems and IEEE Transac-
tions on Evolutionary Computation.

Chenchen Fan received the B.E. degree in Automa-
tion and the M.E. degree in Control Science and
Engineering from Harbin Institute of Technology,
Harbin, China, in 2014 and 2016, respectively. She
is currently working toward her Ph.D. degree in
Mechanical Engineering at the University of Hong
Kong, Pokfulam, Hong Kong, as an awardee of the
Hong Kong PhD Fellowship Scheme (HKPFS). Her
research interests include robust filtering, periodic
systems, switched systems and robust control.

Victor O.K. Li (S’80—M’81—F’92) received SB,
SM, EE and ScD degrees in Electrical Engineering
and Computer Science from MIT. Prof. Li is Chair
of Information Engineering and Cheng Yu-Tung Pro-
fessor in Sustainable Development at the Department
of Electrical & Electronic Engineering (EEE) at the
University of Hong Kong. He is the Director of
the HKU-Cambridge Clean Energy and Environment
Research Platform, and of the HKU-Cambridge Al
to Advance Well-being and Society Research Plat-
form, which are interdisciplinary collaborations with
Cambridge University. He was the Head of EEE, Assoc. Dean (Research)
of Engineering and Managing Director of Versitech Ltd. He serves on the
board of Sunevision Holdings Ltd., listed on the Hong Kong Stock Exchange
and co-founded Fano Labs Ltd., an artificial intelligence (AI) company with
his PhD student. Previously, he was Professor of Electrical Engineering at
the University of Southern California (USC), Los Angeles, California, USA,
and Director of the USC Communication Sciences Institute. He served as
Visiting Professor at the Department of Computer Science and Technology
at the University of Cambridge from April to August 2019. His research
interests include big data, Al, optimization techniques, and interdisciplinary
clean energy and environment studies. In Jan 2018, he was awarded a USD
6.3M RGC Theme-based Research Project to develop deep learning techniques
for personalized and smart air pollution monitoring and health management.
Sought by government, industry, and academic organizations, he has lectured
and consulted extensively internationally. He has received numerous awards,
including the PRC Ministry of Education Changjiang Chair Professorship at
Tsinghua University, the UK Royal Academy of Engineering Senior Visiting
Fellowship in Communications, the Croucher Foundation Senior Research
Fellowship, and the Order of the Bronze Bauhinia Star, Government of the
HKSAR. He is a Fellow of the Hong Kong Academy of Engineering Sciences,
the IEEE, the IAE, and the HKIE.

