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a b s t r a c t 

Decrement in processing speed (PS) is a primary cognitive morbidity in clinical populations and could significantly 
influence other cognitive functions, such as attention and memory. Verifying the usefulness of connectome-based 
models for predicting neurocognitive abilities has significant translational implications on clinical and aging re- 
search. In this study, we verified that resting-state functional connectivity could be used to predict PS in 99 older 
adults by using connectome-based predictive modeling (CPM). We identified two distinct connectome patterns 
across the whole brain: the fast-PS and slow-PS networks. Relative to the slow-PS network, the fast-PS network 
showed more within-network connectivity in the motor and visual networks and less between-network connec- 
tivity in the motor-visual, motor-subcortical/cerebellum and motor-frontoparietal networks. We further verified 
that the connectivity patterns for prediction of PS were also useful for predicting attention and memory in the 
same sample. To test the generalizability and specificity of the connectome-based predictive models, we applied 
these two connectome models to an independent sample of three age groups (101 younger adults, 103 middle- 
aged adults and 91 older adults) and confirmed these models could specifically be generalized to predict PS of 
the older adults, but not the younger and middle-aged adults. Taking all the findings together, the identified 
connectome-based predictive models are strong for predicting PS in older adults. The application of CPM to pre- 
dict neurocognitive abilities can complement conventional neurocognitive assessments, bring significant clinical 
benefits to patient management and aid the clinical diagnoses, prognoses and management of people undergoing 
the aging process. 
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. Introduction 

Processing speed (PS), defined as how fast a person can perform
 mental task ( Salthouse, 2000 ), is one of the strongest predictors of
eurocognitive status, especially in older adults ( Deary et al., 2010 ;
althouse and Ferrer-Caja, 2003 ). Its changes underpin much of the age-
elated decline in higher-order cognitive abilities ( Finkel et al., 2009 ;
uo and Craik, 2008 ; Salthouse, 2010 ; Silva et al., 2018 ). Hence, a
ecrement in processing speed is a primary cognitive morbidity in clin-
cal populations ( Dow et al., 2004 ) and could significantly influence
ther cognitive functions, such as attention ( Silva et al., 2018 ) and mem-
ry ( Hedden et al., 2005 ; Levitt et al., 2006 ; Zaremba et al., 2019 ), in
n aging population. Such deterioration in the cognitive functions has
een suggested to be one of the greatest health threats of older adults
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 Bishop et al., 2010 ), so characterizing the different levels of PS ability
n older adults may aid the clinical diagnoses, prognoses and manage-
ent of people undergoing the aging process. Conventionally, in clini-

al settings, PS is revealed in psychometric pencil-and-paper tests (e.g.,
ymbol Digit Modalities Test (SDMT): Smith, 1982 ; Digit-Symbol Sub-
titution: McLeod et al., 1982 ). With the advancement of neuroimaging
nowledge and methodology, brain predictive models could aid to char-
cterize the cognitive abilities of those patients who may have difficul-
ies in completing neuropsychological tasks. Yet, existing literature has
rimarily focused on exploring the correlational relationship between
rain imaging features and PS ( Eckert, 2011 ; Silva et al., 2019 ); studies
n the feasibility of applying imaging data to build models for predicting
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In constructing a neural model for PS, task-specificity and repro-
ucibility were two major barriers for the establishment of a neural
odel for cognitive constructs. To overcome these barriers, a large

mount of literature has successfully demonstrated that task-free fMRI
ould identify age-related ( Hohenfeld et al., 2018 ; Pievani et al., 2014 )
nd cognitive-ability neuromarkers in older adults, such as memory
erformance ( Meskaldji et al., 2016 ; Sakaki et al., 2013 ), attention
ontrol ability ( Fountain-Zaragoza et al., 2019 ) and cognitive scores
 Buckley et al., 2017 ; Lin et al., 2018 ). Therefore, rs-fMRI is capable
f generating valuable information about individual variation in neu-
ocognitive functioning. Although some argued that the resting state is
ore neutral compared to the task state, rs-fMRI has been verified to

erve as a baseline brain state and could be used to predict subsequent
ask performance ( Carter et al., 2010 ; Sakaki et al., 2013 ; Siegel et al.,
016 ) and to predict training effects on cognitive functions after the in-
ervention ( Arnemann et al., 2015 ). A number of review studies have
ighlighted the advantages of rs-fMRI over task-fMRI: 1) rs-fMRI data
re easier to collect without the requirement of specific experimental de-
ign, thus boosting data sharing across studies and sites; 2) rs-fMRI could
liminate potential confounds that are related to task performance fluc-
uation and variability; 3) rs-fMRI shows high test-retest reproducibil-
ty and reliability in detecting specific process in brain functions in the
bsence of an explicit task (e.g., default-mode network) ( Fox and Gre-
cius, 2010 ; Lee et al., 2013 ; Panchuelo et al., 2014 ; Van Den Heuvel and
ol, 2010 ; Van Dijk et al., 2010 ). Besides, the rs-fMRI predictive models
enerated from one population could be used to predict the same cogni-
ive ability in other populations while using different tasks ( Fong et al.,
019 ) or tests ( Rosenberg et al., 2016 ). These findings indicated that the
redictive model generated from the brain state could be generalized to
ifferent populations. Also, the model could capture the features of a
ognitive construct independent of the instrument used for operational-
zing the measure. 

There has been a growing interest in identifying individual neurocog-
itive differences by using whole-brain functional connectivity or the
connectome ” approach to characterize unique patterns of brain orga-
ization for each neurocognitive function ( Finn et al., 2015 ; Liu et al.,
018 ; Rosenberg et al., 2016 ). The application of the machine learn-
ng method further catalyzes the momentum of research to verify the
easibility and usefulness of rs-fMRI data in building models that can
alidly predict neurocognitive functions. A connectome-based predic-
ive modeling (CPM) approach has been introduced to predict behav-
or using functional connectivity in the machine-learning framework
 Shen et al., 2017 ). So far, CPM has been demonstrated to predict fluid
ntelligence ( Finn et al., 2015 ), attention ( Rosenberg et al., 2016 , 2020 ;

u et al., 2020 ), reading ability ( Jangraw et al., 2018 ), cognitive im-
airment score ( Lin et al., 2018 ), personality traits ( Hsu et al., 2018 )
nd loneliness ( Feng et al., 2019 ). 

In this study, we employed the rs-fMRI to establish a predictive
odel for PS for older adults. We applied the CPM approach and
sed whole-brain resting-state functional connectivity to predict older
dults’ PSs measured by the SDMT ( Forn et al., 2009 ; Gawryluk et al.,
014 ). A previous rs-fMRI study revealed that a faster PS was associ-
ted with stronger functional connectivity between the left primary mo-
or cortex and the right precentral and postcentral gyrus ( Koenig et al.,
014 ), suggesting that connectivity strength within the motor network
as positively correlated with PS performance. Furthermore, structural
RI studies found converging evidence that PS depends on processes

ubserved by the frontal regions and cerebellum ( Böhr et al., 2007 ;
ckert et al., 2010 ; Kennedy and Raz, 2009 ). Task-related ( Forn et al.,
009 ; Gawryluk et al., 2014 ; for review, see Silva et al., 2018 ) and task-
emand-related activations ( Forn et al., 2013 ) have been reported in
he frontal, parietal, occipital and temporal lobes and the cerebellum.
ased on these previous findings, we first hypothesized that PS could
e predicted by resting-state functional connectivity in older adults.
econd, we examined the characteristics of the predictive connectomes
nd hypothesized that it would involve the neural correlates across the
hole brain (as reported in Forn et al., 2013 ). Third, we established
he domain specificity of the model by verifying how well the model
ould also be applied in the same sample to predict other cognitive do-
ains —neurocognitive abilities that are highly correlated with PS (at-

ention: Silva et al., 2018 ; memory: Hedden et al., 2005 ; Levitt et al.,
006 ; Zaremba et al., 2019 ). Fourth, we verified the external generaliz-
bility of the model in the older participants in the Cam-CAN data set
 Shafto et al., 2014 ; Taylor et al., 2017 ). Last but not least, we exam-
ned the specificity of the model by testing the model in other age groups
e.g., younger adults and middle-aged adults). The development of PS
bility through the lifespan is not linear ( Lee et al., 2012 ), and there
re systematic, but not unidirectional, differences in segregation and
ntegration across different brain regions between older and younger
dults ( Chong et al., 2019 ; Zonneveld et al., 2019 ). Therefore, we pre-
icted that the model built from older adults would not be applicable to
ounger adults. 

. Methods 

.1. Internal validation participants 

In this study, we recruited 125 right-handed older adults with no
ast or current neurological diseases or psychological illnesses from the
ocal community through advertisements in public places. Participants
ere excluded based on the following criteria: (1) excessive head mo-

ion, as described in Section 2.4 (21 participants); (2) high score in the
eriatric depression scale test (score > 8, 1 participant); (3) incomplete
esting-state scanning (1 participant); and (4) incomplete cerebellum
overage of brain scanning (3 participants, see Section 2.5 ). Finally,
9 participants (74 females and 25 males; mean age = 66.84 years,
D = 4.59 years) remained in the prediction analysis. All participants
cored above 19 in the Hong Kong version of the Montreal cognitive as-
essment (MoCA), indicating an absence of dementia based on the cut-
ff of the older Chinese adults in Hong Kong ( Yeung et al., 2014 ). Ex-
ept for the one participant who scored 20, all other participants scored
qual or above 22 in MoCA, indicating that most of our participants
ere cognitively intact. A portion of these participants were included in
 previous study ( Yu et al., 2020 ). Written consent was obtained from
ll the participants prior to the study. This study was approved by the
esearch Ethics Committee of the University of Hong Kong. 

.2. Neurocognitive assessments 

.2.1. Processing speed 
To evaluate PS, we administered the Chinese version of the SDMT

 Lee et al., 2002 ; Smith, 1982 ). Participants were required to match
umbers from 1 to 9 to each geometric symbol by reading aloud the
umber as quickly as they could in 90 s. The number of the correct
atched items was recorded and was used to reflect PS ability. 

.2.2. Selective and divided attention 
To evaluate selective attention ability, we administered the Arrow

est ( Lee et al., 2005 ). Participants were presented with arrows pointing
ither in the “up ” or “down ” direction in two conditions. In the “go ” con-
ition, participants were asked to identify the correct direction of the
rrowheads; while in the “reverse ” condition, they were asked to iden-
ify the opposite direction of the arrowheads. Each condition had four
locks with a total number of 18 trials in each block. The interference
core was calculated by subtracting the reaction time (RT) in the “go ”
ondition from the RT in the “reverse ” condition, and was multiplied by
1, with a higher score indicating better selective attention. The internal
onsistency reliability (Cronbach’s 𝛼) of the Arrow test was 0.70. 

To evaluate the divided attention, we administered the Color Trails
est (CTT) with two subtests: CTT 1 and CTT 2 ( Lee and Chan, 2000 ).
n CTT 1, participants were required to connect numbers from 1 to 15
n ascending order. The even numbers were printed on yellow circles,
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hile the odd numbers were printed on pink circles. In CTT 2, there
ere two sets of numbers (1–15), with one set printed on pink circles
nd the other printed on yellow circles. Participants were asked to link
he numbers in ascending order and alternate between pink and yellow
ircles. The RTs of completing the two subtests were recorded. The di-
ided attention was assessed by subtracting the RT in CCT 1 from the RT
n CCT 2 and was multiplied by ̠1, with a higher score indicating better
ivided attention. The internal consistency reliability (Cronbach’s 𝛼) of
he CTT was 0.77. 

.2.3. Verbal and nonverbal memory 
To evaluate verbal and nonverbal memory, the Chinese Auditory

erbal Learning Test (CAVLT; Lee et al., 2002 ) and the Continuous Vi-
ual Memory Test (CVMT; Trahan and Larrabee, 1988 ) were used in the
ssessment. In the CAVLT, participants were presented with a list of 15
ords for five trials, followed by a free-recall test of the list in each trial.
he participant’s verbal memory ability (total learning) was calculated
y summing the number of the successfully recalled words in the five tri-
ls. In the CVMT, participants were shown 112 drawings in seven blocks.
rom the second block on, there were seven “old ” and nine “new ” stim-
li in each block (42 “old ” and 54 “new ” in total) that participants were
sked to recognize. Nonverbal memory ability (recognition) was calcu-
ated by subtracting the incorrect recognition score (false alarm) from
he correct recognition score (hit). 

The relationship between all the behavioral variables were assessed
sing the partial Pearson correlation analysis, controlling for sex, age
nd education. A partial Spearman correlation analysis was conducted
f one of the variables did not follow a normal distribution (Kolmogorov-
mirnov Test, p < 0.05). The relationship between PS and age and edu-
ation was explored using a bivariate Spearman correlation analysis. 

.3. Image acquisition and preprocessing 

We obtained the imaging data using a 3T Philips MRI scanner at
he University of Hong Kong. The resting-state fMRI data were ac-
uired using a single-shot gradient-echo multislice echo-planar imag-
ng (EPI) pulse sequence (slice number = 32; slice thickness = 4 mm
ithout inter-slice gap; TR = 2000 ms; TE = 30 ms; flip angle = 90°;
atrix size = 64 × 64, FOV = 230 × 230 × 128 mm 

3 ); 240 vol were
cquired in about 8 min. The structural MRI data were acquired us-
ng the T1-weighted MPRAGE sequence (137 sagittal slices; slice thick-
ess = 1.2 mm; TR = 6.64 ms; TE = 3.1 ms; flip angle = 9°; matrix
ize = 256 × 256, FOV = 256 × 256 × 164 mm 

3 ). The resting-state fMRI
ata have never been used in any previous publication. 

All the images were preprocessed using SPM 12
 https://www.fil.ion.ucl.ac.uk/spm/ ) and DPABI 3.1 ( Yan et al.,
016 ). For the resting-state fMRI data, the first five volumes were
iscarded. Images were then corrected for slice-timing and head mo-
ion. Nuisance regressors, including mean signals from white matter,
erebral-spinal fluid signals and global signals, as well as the Friston
4-motion parameters (six motion parameters, six motion derivatives
nd their squares), were regressed out from the data. As suggested by
ower et al. (2012) , volume with a mean frame-wise displacement
FD) > 0.5 mm was added as a covariate, and the one volume prior to
his volume and the two volumes after this volume were also added
s covariates. The number of volumes with FD > 0.5 mm ranged from
 to 62, and the mean was 5.76 (the percentage of volumes with FD
 0.5 mm ranged from 0 to 26.4%, and the mean was 2.45%). The

mages were then spatially smoothed by a Gaussian kernel of 6 mm
ull-width-at-half-maximum (FWHM) and temporally smoothed using
he frequency bandwidth of 0.01–0.1 Hz. 

.4. Head motion controls 

Considering the head motion effect on the resting-state functional
onnectivity, participants were excluded with absolute head motion
 2 mm translation and > 2° rotation or mean FD > 0.2 mm
 Jenkinson et al., 2002 ; Yan et al., 2013 ). To verify that the behavioral
cores (i.e., PS, divided and selective attention, verbal and nonverbal
emory) and predicted scores were not correlated with head motion,
e also tested the correlation coefficients between the mean FD and the
bserved behavioral and predicted scores. To further control for possi-
le head motion confounds, we also ran the identical prediction analysis
ith the mean FD as an additional covariate. In addition, we evaluated
hether the predictive models would also be associated with the mean
D, utilizing the method in Section 2.8 . 

.5. Functional connectivity network construction 

Network nodes were defined using the Shen 268-node functional
rain atlas that encompasses the cortex, subcortical areas and cerebel-
um ( Shen et al., 2017 ). First, the functional images were normalized
o the structural images, generating a deformation and an inverse de-
ormation matrix. Following that, we warped the 268-node atlas from
NI space into individual functional space using the inverse deforma-

ion matrix. To ensure good quality of registration, the warped atlases
ere visually checked using SPM, and participants with poor registra-

ion were excluded (see above), resulting in 99 participant-specific at-
ases. We then extracted the mean time series of each node by averaging
he time series of all the voxels in each node in the participant-specific
tlases. The functional connectivity (edge) was calculated as the Pear-
on correlation coefficient ( r ) between the mean time series of each pair
f nodes. A Fisher’s r -to- z transformation was then used to normalize
he correlation coefficients, and the resulting 268 × 268 matrix for each
articipant was utilized in the following CPM analysis. 

.6. Predictive model construction 

.6.1. Leave-one-out cross-validation 
To evaluate whether the resting-state functional connectivity could

e used to predict the PS in novel older adults, we applied the
PM method using a leave-one-out cross-validation (LOOCV) method
 Finn et al., 2015 ; Rosenberg et al., 2016 ; Shen et al., 2017 ) and
erformed the analyses in MATLAB (R2017b, MathWorks). First, for
ach set of n − 1 participants, behavioral variables were normalized
ithin the training set. Subsequently, the Spearman’s partial correla-

ion coefficients were calculated between the edges and the observed
ehavior score, controlling for sex, age and education. As suggested by
hen et al. (2017) , we used the Spearman’s rank correlation rather than
he Pearson’s correlation because the observed behavior scores in our
ample did not follow a normal distribution assessed by the Kolmogorov-
mirnov Test ( p < 0.05). Besides, because there were unequal numbers
f females and males in our sample and the PS was significantly associ-
ted with age and education, we controlled for sex, age and education
o select edges that were correlated with PS independent of other possi-
le confounds. We obtained a 𝜌 value and a p value for each edge. Next,
e extracted a positive network and a negative network, respectively,
y selecting edges that were positively correlated and negatively corre-
ated with the behavior score, using a threshold of p < 0.01, which was
dopted in previous studies ( Lin et al., 2018 ; Rosenberg et al., 2016 ).
e then summed the edge values in the positive and negative networks,

espectively, to characterize the network strength for each participant. 
Next, the network strength indices extracted from the positive and

egative networks were fitted into three general linear models to gen-
rate three coefficients and three intercepts. The first one (positive net-
ork model) predicted PS with positive network scores, the second (neg-
tive network model) with negative network scores, and the third (com-
ined network model) with the difference of the positive and negative
etwork scores as one independent variable (positive score minus neg-
tive score; Greene et al., 2018 ; Rosenberg et al., 2020 ). The positive
nd negative functional connectivity indices of the left-out participant

https://www.fil.ion.ucl.ac.uk/spm/
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ere then fitted into these three linear models to generate three pre-
icted scores for the left-out participants. The Spearman’s correlation
oefficients between the observed and predicted scores were calculated,
efined as the true predictive correlation 𝜌true . To assess the significance
f the predictive connectome-based models, we adopted a permutation
esting method, as the analyses in the LOOCV were not independent and
he number of degrees of freedom were overestimated ( Rosenberg et al.,
016 ). By randomly shuffling the observed behavior score, we ran the
OOCV procedure identical to the CPM analysis described above (run
000 times). The p permu value was calculated as the percentage of 𝜌
alues generated from the null-distributed samples that were larger or
qual to the true predictive correlation 𝜌true . Model performance was
alculated using the fraction of explained variance ( R 

2 , in percentage)
etween the predicted values and the observed values ( Poldrack et al.,
019 ), where 𝑅 

2 = 1 − 

𝑆 𝑆 𝐸 

𝑆 𝑆 𝑇 
( SSE is the sum of squared error; SST is

he sum of squared total). A negative correlation between the predicted
alue and actual behavior score (negative 𝜌 value) was considered as an
nsuccessful prediction and was assumed to explain none of the vari-
nce, where R 

2 was set to zero. 

.6.2. Validation analysis using repeated k-fold cross-validation 
To further validate our main results, we adopted repeated k-fold (i.e.,

-fold, 5-fold, and 10-fold) cross-validation methods (also called shuf-
e split). Taking the 2-fold cross-validation as an example, we randomly
ivided the participants into two subsets with approximately equal num-
ers (i.e., 50 and 49), with one being the training set and the other being
he testing set. All the behavioral variables were normalized in the train-
ng and testing set separately. The training set was used to build a linear
rediction model, and the model’s parameters were further applied to
redict the behavior scores of the testing set. The Spearman correlation
oefficients 𝜌 and explained variance R 

2 were calculated for the positive,
egative and combined network models. This procedure was repeated
wice, with each subset being used as the testing set once. The two 𝜌s
nd R 

2 values were averaged to obtain the prediction performance. The
-fold cross-validation was further repeated 100 times, and the final
rediction performance was generated from averaging all the 𝜌 and R 

2 

alues. The model’s significance was tested using 5000 permutations. 

.7. Functional anatomy 

We defined a “fast-PS network ” containing edges that appeared in
very iteration of the LOOCV in the positive network. In the same vein,
 “slow-PS network ” was defined that comprised edges that appeared
n the negative network. To identify the functional anatomy of the fast-
nd slow-PS networks, we defined the brain nodes as different networks
n two ways. The Shen 268-node functional brain atlas was classified
nto 10 anatomical macroscale regions (e.g., prefrontal, motor, insula;
hen et al., 2013 ) and eight canonical functional networks (e.g., medial
rontal, frontoparietal, default mode; Finn et al., 2015 ). We explored
he characteristics of the within- and between-network connectivity by
umming the common edges using the eight functional networks in the
ast- and slow-PS networks. Following this, we compared the connectiv-
ty patterns by subtracting the number of edges in the slow-PS network
rom the fast-PS network. Considering the eight functional networks had
ifferent numbers of nodes, we calculated and compared the proportion
f the within- and between-network connectivity to control for the net-
ork size. We first summed the actual connectivity within or between

he network(s) from the fast- and slow-PS network and then calculated
he proportion of that connectivity ( s = actual number of connectivity
 total number of all possible connectivity within or between the net-
ork). 

.8. Procedures for testing the PS-CPM models 

We then examined the domain specificity, the external validity and
he effect of confounds of the processing speed CPM (PS-CPM) mod-
ls, as described in the following sessions. The common procedures for
hese analyses are described below. Two network strength scores were
alculated by summing the edges selected from the fast-PS network and
low-PS network. Subsequently, the fast-PS network strength, slow-PS
etwork strength, and combination of the two network strengths (fast-
S network strength minus slow-PS network strength) were fitted into
hree linear models separately (fast-PS network model, slow-PS net-
ork model, combined network model). The estimated model param-

ters from the above three linear models were applied to the other de-
endent variables of our primary data set and the external data set re-
pectively. For testing the PS-CPM model on the external data sets, the
etwork strengths were calculated with the same procedure, and eval-
ated against the corresponding dependent variables. A Spearman cor-
elation analysis was then conducted between the predicted scores and
he observed behavioral scores, as some of the variables did not follow a
ormal distribution (Kolmogorov-Smirnov Test, p < 0.05). An R 

2 value
as also computed to evaluate the prediction performance. Permutation

esting (5000 times) was adopted to test the significance of the predic-
ion. 

.9. Domain specificity of the PS-CPM models 

In order to investigate the domain specificity of the PS-CPM models,
e tested if the models also predicted attention and memory perfor-
ance, using the method in Section 2.8 . We generated three predicted

cores. To explore whether the prediction was driven by the correlation
etween PS and attention/memory, we also tested the partial Spearman
orrelation between the predicted scores and the observed scores, while
ontrolling for PS. To further explore the effect of attention and memory
n our PS-CPM models, we additionally controlled attention and mem-
ry in the edge selection and tested whether it would affect the pre-
iction performance of PS-CPM models on PS. To explore whether the
S-CPM models could predict cognitive function that was not associated
ith PS, we also tested the predictive value of the models on the total
ove scores of Tower of London (ToL) (for details, see Supplementary
aterials). The total number of move in the ToL task was found not to be

orrelated with PS, and it mainly assesses planning process ( Riccio et al.,
004 ). The false discovery rate (FDR) procedure was further applied to
he number of comparisons. Statistical significance was considered to be
 < 0.05, two-tailed. To investigate the specificity of the PS-CPM mod-
ls, we also used Hotelling-Williams t -test ( Steiger, 1980 ) to test whether
he correlations between the network strengths (fast-PS and slow-PS net-
orks) and PS were significantly different from the correlation between

he network strengths and (1) attention and (2) memory. 

.10. External validation: Cam-CAN data set 

.10.1. Participants 
We used an open data set of participants from Stage 2 of the

ambridge center for Ageing and Neuroscience (Cam-CAN) project
available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ ; details
bout this project can be found in previous work ( Shafto et al., 2014 ;
aylor et al., 2017 ). A list of publications using this data set could be
ound at: https://www.cam-can.org/index.php?content = publications .
articipants in the external validation were selected from a total of 708
articipants with demographic information (e.g., age, sex, education)
vailable. Participants were included according to the following crite-
ia: (1) right-handed (73 participants excluded); (2) with all MRI modal-
ty data available (e.g., resting-state fMRI, structural MRI; 60 partici-
ants excluded); (3) head motion < 2 mm translation and < 2° rotation,
ean frame-wise displacement (FD) < 0.2 mm ( Jenkinson et al., 2002 ;
an et al., 2013 ; 203 participants excluded); (4) Good registration qual-

ty (16 participants excluded); (5) complete brain scanning (with no
issing brain nodes; 25 participants excluded); and (6) with a behavior

core of the processing speed task (choice response time task, see Sec-
ion 2.9.2) available and an accuracy > 75% (36 participants excluded).

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
https://www.cam-can.org/index.php?content=publications
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inally, we included 295 participants with the Mini-mental State Exami-
ation (MMSE; Folstein et al., 1975 ) scores above 24 in the external vali-
ation analyses. The participants were further divided into three groups:
01 younger adults (50 females and 51 males; mean age = 30.65 years,
D = 5.12 years), 103 middle-aged adults (53 females and 50 males;
ean age = 48.65 years, SD = 5.71 years) and 91 older adults (44 fe-
ales and 47 males; mean age = 72.09 years, SD = 7.63 years). 

.10.2. Processing speed measurement 
The choice response time task (CRT) was used to assess the PS in

he new sample. The CRT required participants to make appropriate
esponses based on the presented stimuli. It has been suggested that the
RT and SDMT measure a similar construct, and the performance of
hese two tests are associated ( Deary et al., 2011 ; Iverson et al., 2005 ).
n the CRT, participants were presented with an image of a hand with
our blank circles above each finger and were asked to place their right
ands on a response box with four fingers on four separate buttons. In
ach trial, one of the four blank circles above the hand would turn black,
nd participants had to press the button using the corresponding finger
s quickly as possible (maximum 3-second response time). The inter-
rial intervals (ITI) varied pseudo-randomly with a positively skewed
istribution and a mean of 3.7 s, from a minimum of 1.8 to a maximum
f 6.8 s. There were 67 trials in total. The mean reaction times (RT) from
he stimulus onset to pressing the button were recorded and reflected the
Ss of the participants. The RT was multiplied by − 1 and z-transformed
efore being entered into the following analysis, with a higher score
epresenting faster PS. The internal consistency reliability (Cronbach’s
) of the CRT was 0.97. 

.10.3. Image parameters and preprocessing 
The MRI data were collected at the Medical Research Council Cog-

ition and Brain Science Unit (MRC 

–CBSU) on a 3T Siemens TIM Trio
ystem, with a 32-channel head coil. The resting-state fMRI data were
cquired using a gradient- echo-planar imaging (EPI) sequence (slice
umber = 32 in descending order; slice thickness = 3.7 mm with an
nterslice gap of 20%; TR = 1970 ms; TE = 30 ms; flip angle = 78°;
atrix size = 64 × 64, FOV = 192 × 192 × 142 mm 

3 ); 261 vol were ac-
uired in about 8 min and 40 s. The structural MRI data were acquired
sing a T1-weighted MPRAGE sequence (192 sagittal slices; slice thick-
ess = 1.2 mm; TR = 2250 ms; TE = 2.99 ms; flip angle = 9°; matrix
ize = 256 × 240, FOV = 256 × 240 × 192 mm 

3 ). 
All the images were preprocessed as described in Section 2.3 . The

umber of volumes with FD > 0.5 mm ranged from 0 to 63, and the
ean was 9.92 (the percentage of volumes with FD > 0.5 mm ranged

rom 0 to 24.6%, and the mean was 3.9%). Participants were excluded
ith absolute head motion > 2 mm translation and > 2° rotation or mean
D > 0.2 mm. The performance (mean RT) of CRT was not significantly
orrelated with mean FD (younger adults: 𝜌 = 0.045; p = 0.66; middle-
ged adults: 𝜌 = 0.028; p = 0.78; older adults: 𝜌 = 0.13; p = 0.23),
uggesting that head motion was not a significant potential confound of
ur validation results. 

.10.4. Functional connectivity network construction 
All procedures of constructing resting-state networks were the same

s those described in Section 2.5 . 

.10.5. CPM prediction 
To verify if the identified PS-CPM models could be generalized to the

lder adults, we applied the approach in Section 2.8 . We fitted the net-
ork strengths of the Cam-CAN data set to the three linear models (fast-
S network model, slow-PS network model, combined network model)
nd generated three predicted scores for PS. To control for the head mo-
ion effect, we also calculated the partial Spearman correlation coeffi-
ients between the predicted scores and CRT scores by adding the mean
D as a covariate. The Spearman correlation test was used because the
RT scores did not follow a normal distribution (Kolmogorov-Smirnov
est, p < 0.05). 
.10.6. PS-CPM validated in other age groups in the Cam-CAN data set 
To investigate the specificity of the PS-CPM models, we repeated

ur external validation analyses in the younger-aged group and in the
iddle-aged group, using the Cam-CAN data set. The other analyses
ere identical to those in the aged group for the younger and middle-
ged groups. 

.11. Supplementary analyses 

Four supplementary analyses were conducted to evaluate the influ-
nce of potential confounds on our results. For clarity, the primary CPM
odel described in Section 2.6.1 is labelled as C1 (stands for CPM model
). In the analysis of C1, C2, C4 and C5, partial correlation was applied in
he edge selection loops, and the corresponding variables were entered
nto the partial correlation function as nuisance variables. We examined
he effect of head motion in model C2 by entering mean FD, age, sex and
ducation as nuisance covariates (also described in Section 2.4 ). As PS
as highly correlated with age, how and whether to control age could
otentially influence the CPM results. Thus, we also used different co-
ariate controlling methods. In C3, we controlled for nuisance variables
y regressing out the age, sex and education from both behavioral and
onnectivity measures of the training set in each loop and utilized sim-
le correlation in the edge selection. In C4, we controlled only for sex
nd education to explore the effect of age on the PS-CPM model. 

Lastly, we also explored the effect of the p threshold selection in the
dge selection in model C5. Instead of a predefined p -value, we tested a
ange of p values from 0.001 to 0.1 with an interval of 0.001 ( Gao et al.,
019 ; Jiang et al., 2018 ). Optimal p thresholds that led to the best pre-
iction performance were obtained for the positive network ( p = 0.093)
nd negative network ( p = 0.013) separately (C5; for details, see Sup-
lementary Materials). In the supplementary analyses (C2-C5), different
PM models were constructed and generalized to the younger, middle-
ged, and older adults in the Cam-CAN data set. To further investigate
hether the predictions of different supplementary analyses were sig-
ificantly different from those of C1, we applied the Hotelling-Williams
 -test ( Steiger, 1980 ) and compared the significant correlation coeffi-
ients in the internal and external validations. 

. Results 

.1. Connectivity–behavior prediction 

The demographic information of the 99 participants is shown in
able 1 . The connectome-based predictive models significantly pre-
icted the PS scores of the novel participants (left-out participant in
he LOOCV) using resting-state functional connectivity (positive net-
ork: 𝜌 = 0.36, R 

2 = 8.58%, p permu = 0.010; negative network: 𝜌 = 0.42,
 

2 = 11.20%, p permu = 0.003; combined network: 𝜌 = 0.40, R 

2 = 10.49%,
 permu = 0.001; Fig. 1 A). Furthermore, the models remained significant
 ps permu < 0.05) after applying different k-fold cross-validation schemes
 Table 2 ). For the positive network, the number of edges extracted from
ach iteration ranged from 496 to 654, and the fast-PS network con-
ained 331 common edges (0.93% of the 35,778 total edges) occurring
n every iteration. For the negative network, the number of edges ex-
racted from each iteration ranged from 527 to 708, and the slow-PS
etwork contained 380 common edges (1.06% of the total edges). The
ast-PS and slow-PS networks are separately shown in Fig. 2 . 

.2. Functional network anatomy 

We identified connectivity patterns within and between the eight
etworks in the fast-PS network and the slow-PS network, after taking
he eight functional network sizes into consideration and obtaining the
roportion of each network ( Fig. 3 ). Our results showed that, in the
ast-PS network, connectivity within the motor network contributed the
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Table 1 

Demographic information of the participants used in this study and correlations between the studied variables, controlling for sex, age and education. The correlation analyses 
were conducted on the z -transformed values of the variables. 

Variables 
Correlation coefficients ( r or 𝜌) 

Mean SD Processing speed Selective attention Divided attention Verbal memory Nonverbal memory Fast-PS Slow-PS 

Our sample: N = 99 

1. Sex (Female/male) 74/25 

2. Age (years old) 66.84 4.59 − 0.55 ∗ ∗ ∗ a -.17 a − 0.29 ∗ ∗ a − 0.39 ∗ ∗ ∗ a -.19 a 

3. Education (years) 12.02 4.65 .35 ∗ ∗ ∗ a .17 a .18 a .41 ∗ ∗ ∗ a -.002 a 

4. Processing speed 1 (n) 53.74 10.47 —
5. Selective attention (ms) − 12.54 5.89 .21 ∗ —
6. Divided attention (ms) − 52.26 24.95 .23 ∗ ∗ .31 ∗ ∗ ∗ —
7. Verbal memory (n) 47 9.45 .35 ∗ ∗ ∗ .08 .002 b —
8. Nonverbal memory (n) 71 7.15 .32 ∗ ∗ .17 .10 b .17 b —
9. Fast-PS network strength 39.41 32.06 .74 ∗ ∗ ∗ .23 ∗ c .33 ∗ ∗ c .31 ∗ ∗ c .32 ∗ ∗ c —
10. Slow-PS network strength − 28.74 37.71 − 0.69 ∗ ∗ ∗ − 0.24 ∗ c − 0.29 ∗ ∗ c − 0.30 ∗ ∗ c − 0.34 ∗ ∗ c − 0.92 ∗ ∗ ∗ —

Cam-CAN sample: N = 91 

1. Sex (Female/male) 44/47 

2. Age (years old) 72.09 7.63 − 0.34 ∗ ∗ a 

3. Education (years) 19.45 4.16 -.16 a 

4. Processing speed 2 (ms) − 692.60 145.03 —

Note: Fast-PS and slow-PS network strengths are extracted from the PS-CPM models that appeared in every internal validation loop. The correlations between the network 
strengths and PS only indicate the relationship between PS-CPM networks and PS, while the prediction results ( 𝜌, R 2 and p permu ) of the PS-CPM models are shown in Fig. 1 A. 
N , number of participants; M , mean; SD , standard deviation; Processing speed 1 : Symbol Digit Modalities Test; Processing speed 2 : Choice Response Task; Selective attention: 
Arrow test; Divided attention: Color Trail Test; Verbal memory: Chinese Auditory Verbal Learning Test; Nonverbal memory: Continuous Visual Memory Test. Unless otherwise 
specified, the correlation coefficients were acquired using Partial Spearman correlation analysis. a : bivariate Spearman correlation coefficients. 

b Partial Pearson’s correlation coefficients. 
c : p -values are obtained based on FDR corrections; ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 



M. Gao, C.H.Y. Wong and H. Huang et al. NeuroImage 223 (2020) 117290 

Fig. 1. Resting-state functional connectivity predicts processing speed (SDMT score) of older adults in the internal validation data set (A) and predicts processing 
speed (CRT score) of older adults in the external validation data set (B). Behavioral scores were standardized for visualization. PS: processing speed; SDMT: Symbol 
Digit Modalities Test; CRT: Choice Response Task. p permu : p -value obtained from permutation tests (5000 times). 

Table 2 

K-fold cross-validation results of CPM analyses. 

Positive network Negative network Combined network 
k- 
fold 

𝜌 R 2 (%) 

p permu 

𝜌 R 2 (%) 

p permu 

𝜌 R 2 (%) 

p permu mean SD mean SD mean SD mean SD mean SD mean SD 

2-fold 0.36 0.05 10.34 2.75 < 0.001 0.38 0.06 10.76 2.80 0.001 0.39 0.05 11.36 2.66 < 0.001 

5-fold 0.36 0.05 14.22 2.77 0.003 0.40 0.05 15.33 2.93 < 0.001 0.39 0.04 15.19 2.50 0.0014 

10-fold 0.35 0.05 19.09 3.24 0.005 0.40 0.05 21.00 3.46 0.002 0.38 0.05 20.78 3.94 0.0016 

Note: SD : standard deviation; p permu : p values obtained from permutation (5000 times). 

Fig. 2. Fast-PS network (left, pink) and slow-PS network 
(right, blue) obtained from the PS-CPM models and distributed 
in macroscale brain regions. The demonstrated edges are the 
common edges that occurred in every iteration of the CPM 

construction. There are 331 common edges in the fast-PS net- 
work and 380 common edges in the slow-PS network. The 
10 macroscale regions include the prefrontal cortex, motor 
cortex, insula, parietal cortex, temporal cortex, occipital cor- 
tex, limbic (including the cingulate cortex, amygdala and hip- 
pocampus), cerebellum, subcortical areas (thalamus and stria- 
tum) and brainstem. Connectivity figures were created using 
ggraph ( CRAN.R-project.org/package = ggraph ) . (For interpre- 
tation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

https://www.CRAN.R-project.org/package=ggraph
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Fig. 3. Fast- and slow-PS networks and their 
comparison in canonical functional networks. 
Each node represents one functional network. 
Larger circles and thicker lines represent a 
greater proportion of connections. Each cell 
(fast-PS > slow-PS) represents the comparison 
of edges within and between each functional 
network. The connectivity within and between 
each functional network was obtained by ex- 
tracting the proportion of that connectivity (ac- 
tual number of connectivity / total number of 
all possible connectivity within or between the 
network(s)), controlling for network size. The 
proportions ranged from 3.0% to 13.5% for 
the functional networks in the fast-PS network, 
and from 2.7% to 12.5% for the functional net- 
works in the slow-PS network. PS: processing 
speed; MF: medial frontal; FP: frontoparietal; 

DM: default mode; SubC: subcortical and cerebellum; VI: visual I; VII: visual II; VA: visual association. 
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ost, whereas in the slow-PS network, connectivity between the motor-
isual II, motor-SubC and motor-frontoparietal networks contributed the
ost. The comparison between the two networks ( fast-PS > slow-PS )

howed that the fast-PS network consisted of more within-network con-
ectivity in the motor and visual I networks, while the slow-PS network
onsisted of more between-network connectivity in the motor-visual II,
otor-SubC and motor-frontoparietal networks. 

These results demonstrated that more within-network connectivity
n the motor and visual network indicated faster PSs, whereas more
etween-network connectivity in the motor-visual, motor-SubC and
otor-frontoparietal networks indicated slower PSs. 

.3. Motion control 

Head motion, referring to the mean FD, was not significantly as-
ociated with the PS ( 𝜌 = 0.08, p = 0.39), attention (Arrow: 𝜌 = 0.11,
 = 0.27; CTT: 𝜌 = 0.14, p = 0.16) or memory (CAVLT: 𝜌 = 0.06, p = 0.58;
VMT: 𝜌 = − 0.03, p = 0.81). Neither the predicted PS score generated
y the positive network ( 𝜌 = − 0.06, p = 0.55) nor the negative net-
ork ( 𝜌 = 0.07, p = 0.48) was correlated with the mean FD. In ad-
ition, our PS-CPM models did not significantly predict head motion
fast-PS network: 𝜌 = 0.01, R 

2 = 0.02%, p permu = 0.47; slow-PS net-
ork: 𝜌 = 0.09, R 

2 = 1.49%, p permu = 0.20; combined network: 𝜌 = 0.05,
 

2 = 0.55%, p permu = 0.31). Furthermore, the PS-CPM models remained
ignificant after adding the mean FD as an additional covariate (posi-
ive network: 𝜌 = 0.36, R 

2 = 8.66%, p permu = 0.009; negative network:
= 0.42, R 

2 = 10.94%, p permu = 0.002; combined network: 𝜌 = 0.41,
 

2 = 10.38%, p permu = 0.001). The common edges were highly over-
apped with the main results after controlling for motion (percentage of
verlapping: fast-PS network: 94.12%; slow-PS network: 95.73%). These
esults suggested that head motion did not have significant confounding
ffects on our major findings. 

.4. Domain specificity 

The associations between each behavioral variable are shown in
able 1 . PS was negatively associated with age. Our behavioral ex-
loratory analyses confirmed that PS was positively correlated with se-
ective (arrow test) and divided (CTT) attention and verbal (CAVLT) and
onverbal (CVMT) memory, and was not correlated with planning func-
ion (ToL). Our results showed that the PS-CPM models (fast-PS network,
low-PS network and combined network) significantly predicted atten-
ion and memory following FDR correction ( 𝜌s > 0.22, Rs 2 > 4.26%,
s < 0.05) ( Table 3 ). However, the predictions were not significant af-
er controlling for PS (| 𝜌s| < 0.19, Rs 2 < 3.30%, ps > 0.27). These re-
ults suggested that the associations between PS-CPM models and atten-
ion/memory were largely driven by the association between PS and at-
ention/memory in older adults. On the other hand, the PS-CPM models
till significantly predicted PS after controlling for attention and mem-
ry (positive network: 𝜌 = 0.40, R 

2 = 10.25%, p permu = 0.004; nega-
ive network: 𝜌 = 0.31, R 

2 = 5.98%, p permu = 0.031; combined network:
= 0.37, R 

2 = 8.30%, p permu = 0.005). Furthermore, Hotelling-Williams
-tests showed that the correlations between the network strengths and
S were significantly larger than the correlations between network
trengths and attention/memory measures (attention: | t s| > 3.14, p s <
.001; memory: | t s| > 2.79, p s < 0.01). Besides, the PS-CPM models did
ot significantly predict planning function. The above results might sug-
est that the common networks derived from the PS-CPM models mainly
aptured the construct of PS. In sum, our results showed the PS-CPM
odels, which mainly captured the feature of PS, could be used for pre-
icting selective and divided attention, as well as verbal and nonverbal
emory in the same sample. 

.5. External validation: cam-can data set 

The demographic information of the Cam-CAN participants is shown
n Table 1 and Table 4 . The internal and external validation samples
older adults) differed significantly in sex ( 𝜒2 = 14.04, p < 0.001), age
 t = − 5.80, p < 0.001) and education ( t = − 11.57, p < 0.001). The
ast- and slow-PS networks significantly predicted the mean RT of the
RT in older adults in the Cam-CAN sample (fast-PS network: 𝜌 = 0.25,
 

2 = 8.13%, p = 0.02; slow-PS network: 𝜌 = 0.22, R 

2 = 6.74%, p = 0.04;
ombined network: 𝜌 = 0.22, R 

2 = 7.75%, p = 0.04; Fig. 1 B). How-
ver, our PS-CPM models could not be generalized to either the younger
dults (fast-PS network: 𝜌 = 0.01, R 

2 = 0.14%, p = 0.92; slow-PS net-
ork: 𝜌 = 0.04, R 

2 = 0.60%, p = 0.66; combined network: 𝜌 = 0.04,
 

2 = 0.39%, p = 0.72) or the middle-aged adults (fast-PS network:
= 0.01, R 

2 = 0.24%, p = 0.93; slow-PS network: 𝜌 = − 0.05, R 

2 = 0,
 = 0.60; combined network: 𝜌 = − 0.03, R 

2 = 0, p = 0.77), which con-
rmed our a priori hypotheses. These findings remained unchanged after
ontrolling and adding the mean FD as a covariate, indicating that head
otion did not significantly influence our results. Details of the results

re shown in Table 4 . Our results suggested that the PS-CPM models
enerated from our own sample could be generalized to predict the PS
bility in older adults but could not be generalized in the younger adults
r middle-aged adults. 

To further investigate why the PS-CPM models could not be gen-
ralized to the younger groups, we did several exploratory analyses
for details, see Supplementary Materials). First, we used resting-state
unctional connectivity and tried to build internal validation CPM mod-
ls in the younger and middle-aged groups from the Cam-CAN data
et. Results showed that we could not obtain CPM models that signifi-



M. Gao, C.H.Y. Wong and H. Huang et al. NeuroImage 223 (2020) 117290 

Table 3 

PS-CPM models predict other cognitive functions. 

Neurocognitive 

Assessments 

Fast-PS network Slow-PS network Combined network 

𝝆 R 2 (%) p permu p corr 𝝆 R 2 (%) p permu p corr 𝝆 R 2 (%) p permu p corr 

Selective attention (Arrow) 0.22 6.35 0.010 0.012 0.24 7.98 0.007 0.010 0.25 7.49 0.006 0.010 

Divided attention (CTT) 0.32 7.81 0.001 0.002 0.31 6.15 0.001 0.003 0.33 7.15 < 0.001 0.002 

Verbal memory (CAVLT) 0.25 4.26 0.005 0.009 0.30 5.73 0.002 0.003 0.29 5.22 0.003 0.007 

Nonverbal memory (CVMT) 0.33 10.19 < 0.001 0.001 0.36 12.06 < 0.001 0.001 0.35 11.61 < 0.001 0.001 

Planning function (ToL) 0.03 1.28 0.382 0.382 0.08 2.24 0.219 0.253 0.06 1.83 0.289 0.382 

controlling for PS 

Selective attention (Arrow) 0.08 1.60 0.220 0.354 0.10 2.80 0.157 0.294 0.10 2.33 0.147 0.354 

Divided attention (CTT) 0.13 0.76 0.086 0.268 0.11 0.30 0.130 0.294 0.13 0.51 0.085 0.268 

Verbal memory (CAVLT) − 0.13 1.29 0.891 0.891 − 0.06 0.29 0.730 0.843 − 0.10 0.69 0.836 0.891 

Nonverbal memory (CVMT) 0.14 1.91 0.089 0.268 0.19 3.30 0.034 0.268 0.16 2.76 0.063 0.268 

Planning function (ToL) 0.02 0.43 0.440 0.550 0.08 1.19 0.236 0.354 0.05 0.84 0.314 0.550 

Note: PS-CPM: processing speed connectome-based modeling; Arrow: Arrow test; CTT: Color Trail Test; CAVLT: Chinese Auditory Verbal Learning 
Test; CVMT: Continuous Visual Memory Test; ToL: Tower of London. Numbers in bold indicate significant correlations after FDR correction ( p < 
0.05). 

Table 4 

External validation in the Cam-CAN data set. 

Younger adults N = 101 Middle-aged adults N = 103 Older adults N = 91 
Mean SD Mean SD Mean SD 

Sex 

(Female/male) 

50/51 53/50 44/47 

Age (years old) 30.65 5.12 48.65 5.71 72.09 7.63 

Education 

(years) 

21.95 3.2 20.04 3.16 19.45 4.16 

Processing 

speed (ms) 

− 474.9 71.6 − 548.8 80.3 − 692.6 145.03 

Pearson 

correlation 

(PS and age) 

− 0.105 − 0.217 ∗ − 0.322 ∗ 

PS-CPM 

models 

Fast-PS Slow-PS Combined Fast-PS Slow-PS Combined Fast-PS Slow-PS Combined 

External 

validation ( R 2 ) 

0.14% 0.60% 0.39% 0.24% 0.00% 0.00% 8.13% 

∗ 6.74% 

∗ 7.75% 

∗ 

Control for FD 

( R 2 ) 

0.14% 0.59% 0.38% 0.22% 0.00% 0.00% 7.90% 

∗ 6.58% 

∗ 7.55% 

∗ 

Note: 𝜌 indicated Spearman correlation coefficients; SD : Standard deviation; PS: Processing speed; FD: frame-to-frame displacement head motion; Numbers in bold 
indicate significant results ( p < 0.05); ∗ : p < 0.05. 
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antly predicted the PS of the younger or middle-aged adults. Second,
e tested whether the variance of PS in the younger groups was sig-
ificantly different from the variance in the older adults of the Cam-
AN data set. Results showed that older adults had significantly higher
RT variance, compared to the younger and middle-aged adults. Third,
e compared our PS-CPM networks (fast-PS network and slow-PS net-
ork) with the SA-CPM (sustained attention-CPM, high-attention net-
ork and low-attention network) networks derived from younger adults

n Rosenberg et al. (2016) . Results showed that the overlaps between the
ast-PS and high-attention network (percentage of overlapping: 0.18%),
nd between the slow-PS and low-attention network (percentage of
verlapping: 0%) were very low. 

.6. Supplementary analyses 

The results of the supplementary analyses are shown in Fig. 4 (for
etails, see Supplementary Table S1 and S2). In the internal valida-
ion, our results showed that in different supplementary analyses, the
esting-state CPM models still significantly predicted PS (positive net-
ork: R 

2 = 8.58 ~ 11.70%; negative network: R 

2 = 5.98 ~ 12.25%;
ombined network: R 

2 = 10.38 ~ 12.40%; all ps permu < 0.05). In the
xternal validation in the older adults, the PS-CPM models remained
ignificant to predict the PS (fast-PS network: R 

2 = 8.13 ~ 9.64%; slow-
S network: R 

2 = 6.53 ~ 7.66%; combined network: R 

2 = 7.75 ~ 9.13%;
ll ps < 0.05). For external validation in the younger and middle-aged
dults, all the supplementary analyses showed that the PS-CPM models
ould not be generalized to predict the PS in these two groups (fast-PS
etwork: R 

2 = 0 ~ 0.29%; slow-PS network: R 

2 = 0 ~ 0.91%; combined
etwork: R 

2 = 0 ~ 0.58%; all ps > 0.05). 
Overall, it was observed that the CPM model predictions in the sup-

lementary analyses were not markedly different from those of the ini-
ial model, particularly during external validation, which suggested that
ur core findings were robust across different control analyses. 

. Discussion 

This study’s findings indicated that, by using the data-driven CPM
ethod, the resting-state functional connectivity could significantly pre-
ict PS in older adults. The predictive networks incorporated functional
onnectivity among the frontal, parietal, temporal and occipital regions
nd the cerebellum, which belongs to the motor, frontoparietal, medial
rontal, default-mode, visual-related and SubC networks, respectively.

e further identified two connectome patterns (fast- and slow-PS net-
orks) associated with PS at the region and network levels. Specifi-

ally, the fast-PS network consisted of largely within-network connec-
ivity in the motor and visual networks. The slow-PS network, on the
ther hand, consisted of largely between-network connectivity in the
otor-SubC and motor-frontoparietal networks. Our findings also con-
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Fig. 4. Prediction performance (explained 
variance) of different supplementary analyses 
in older adults in the internal (A) and external 
(B) validation. C1: main CPM analyses (con- 
trolling for age, sex and education in edge se- 
lection); C2: effect of head motion (control- 
ling for age, sex, education and mean FD in 
edge selection); C3: effect of regression meth- 
ods of possible confounds (for each set of n -1 
participants, regressing out age, sex and edu- 
cation from the functional connectivity matrix 
and PS score before training the CPM models); 
C4: effect of age (controlling for sex and edu- 
cation in edge selection); C5: effect of p thresh- 
old selection (optimal p thresholds for the pos- 
itive network ( p = 0.093) and negative net- 
work ( p = 0.013) separately). “—∗ —” indicates 
the comparisons between the correlation coef- 
ficient of C1 and the correlation coefficients 
of other supplementary analyses are signifi- 
cant. “—n.s. —” indicates the comparisons be- 
tween the correlation coefficient of C1 and the 
correlation coefficients of other supplementary 
analyses (C2-C5) are not significant. “∗ ” indi- 
cates p < 0.05. 
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rmed our a priori expectation that the PS-CPM models could also pre-
ict attention and memory in the internal validation sample. Models
dentified from our sample could predict the PS ability of participants
n an external independent sample of older adults but not in samples of
ounger adults or middle-aged adults, showing that our predictive mod-
ls were robust, generalizable and specific to the older adults. Our study
rovides promising evidence that resting-state functional connectivity
cross multiple regions can be used to identify individual differences in
S in older adults. 

.1. Age specificity of PS-CPM network 

In this study, we have successfully demonstrated that the whole-
rain resting-state functional connectivity data could predict PS in
lder adults using the CPM method. Resting-state functional connec-
ivity has been consistently recognized as quite well-suited for clinical
pplications, as it can be obtained from populations who have diffi-
ulty performing tasks within a short period ( Fox and Greicius, 2010 ).
n addition, the scanning protocol for resting-state fMRI is relatively
tandard, which promotes the generalizability of the predictive mod-
ls in other big data sets ( Smith et al., 2013 ). Besides, a large body
f literature has shown its predictive ability in different functions
 Arnemann et al., 2015 ; Liu et al., 2018 ; Ramos-Nuñez et al., 2017 ;
iegel et al., 2016 ). Given that abnormal changes in the brain took
lace years before the clinical symptoms occurred in the neurodegen-
rative disorders ( Pievani et al., 2014 ; Villemagne et al., 2013 ), rs-
MRI seems like an attractive neuromarker for clinical prognoses. Be-
ides, external validation analyses revealed that our PS-CPM models
ould be generalized to predict PS in an independent sample of older
dults, indicating that our predictive models were relatively robust.
aken together, our findings suggest these age-related neuromarkers
ight complement conventional assessments and yield potential clinical

enefits. 
On the other hand, CPM models generated from older adults could

ot be generalized to younger and middle-aged adults. There are several
ossible reasons. First, the variance in the older adults of the Cam-CAN
ata set was significantly larger than the variance in the younger and
iddle-aged groups. Besides, we could not find internally validated CPM
odels that could predict the CRT score in these two groups. These find-

ngs could suggest that the resting-state functional connectivity might
ot be able to capture the small individual variability of the processing
peed as assessed by the CRT in the younger and middle-aged adults.
econd, our internal validation data set only included older adults. Thus,
nly a limited range of PS scores were trained in the model construc-
ion, which might explain why the model could not capture the cogni-
ive characteristics outside the included range. Future work could build
S-CPM models on samples with more diverse age and behavioral score
anges, and test their generalizability across different age groups. Third,
he PS-CPM networks were not similar to the SA-CPM networks derived
rom younger adults ( Rosenberg et al., 2016 ). This might suggest that
ur PS-CPM primarily captured the neurocognitive function variance in
lder adults. 
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.2. Domain specificity of PS-CPM network 

We observed that the PS-CPM models could also predict attention
nd memory in the same sample with which we had worked. On the
ther hand, our exploratory analysis confirmed that the prediction was
argely driven by the association between the PS and attention/memory.
esides, the PS-CPM models could still predict PS even after control-

ing for attention/memory. These results suggested that our model was
lso predictive of memory and attention functions, which was likely
o be due to their shared processes with processing speed, since their
ssociations disappeared after controlling for processing speed. On the
ontrary, our model was likely to capture relatively unique cognitive
rocesses of processing speed, given the predictivity was maintained
ven after controlling for attention and memory. Therefore, the PS-CPM
odel should be applied to primarily predict processing speed, and its
redictivity on other cognitive functions may be bound by common pro-
esses shared by those functions with processing speed. 

Previous studies have demonstrated that attentional CPM models can
redict other cognitive functions, such as inhibition control ( Fountain-
aragoza et al., 2019 ) and memory recall ( Jangraw et al., 2018 ). These
ndings suggest that the predictive CPM networks of a certain neurocog-
itive ability might be useful for predicting other related neurocogni-
ive abilities. The PS theory of aging suggests that PS is the leading
redictor of changes in cognitive abilities, especially in fluid abilities
 Salthouse, 1996 ). Accumulated evidence supports that PS is associated
ith attentional deficits ( Forn et al., 2013 ; Silva et al., 2018 , 2019 ) and
redicts memory performance ( Brébion et al., 2000 ; Finkel et al., 2007 ;
edden et al., 2005 ; Levitt et al., 2006 ; Zaremba et al., 2019 ). Our study
ot only confirmed that PS had a close relationship with attention and
emory but also revealed that functional connectivity models predict-

ng PS could provide useful information about attention and memory
erformance. Based on the general slowing theory, aging is accompanied
y a general reduction in PS that in turn leads to deterioration in cogni-
ive functions such as attention and memory performance ( Finkel et al.,
007 ; Luo and Craik, 2008 ; Salthouse, 1996 ). Our findings could sug-
est that declines in attention and memory functions might be caused
y the alteration in the overlapping neural systems between the PS and
hese cognitive functions. Research has indicated that the frontopari-
tal, motor and cerebellum networks are involved in attention processes
 Bush, 2011 ) and recognition memory ( Meyer and Damasio, 2009 ). In
ine with these findings, our PS-CPM networks, encompassing the frontal
nd parietal regions as well as the cerebellum, appear to be applicable
or predicting attention and memory. Future work could test the speci-
city and generalizability of the PS-CPM models in other PS and cogni-
ive tests. 

.3. Connectome patterns of the fast- and slow-PS networks 

The fast- and slow-PS networks generated from the CPM revealed
hat functional connectivity across multiple neural systems (i.e., the
otor, SubC, frontoparietal, medial frontal, default-mode and visual-

elated networks) could be used to predict PS in older adults. A
arge amount of literature has investigated the age-related changes in
hese neural networks and their relationships with PS ( Eckert, 2011 ;
erreira and Busatto, 2013 ). Resting-state study found that increased
onnections within the motor network was associated with better SDMT
erformance ( Koenig et al., 2014 ). Normal aging might disrupt the func-
ion of the motor network, which could affect the preparation and plan-
ing of movements and result in longer reaction times ( Wu et al., 2007 ).
tructural declines in the frontal lobe and the cerebellum were thought
o contribute to age-related decline in PS ( Eckert et al., 2010 ; Lu et al.,
013 ). The default-mode network has consistently been shown to de-
rease in network connectivity through the aging process, resulting in
eneral cognitive decline ( Hafkemeijer et al., 2012 ; Hohenfeld et al.,
018 ; Prvulovic et al., 2011 ). The visual network, along with other
ttention networks, becomes less cohesive across the human lifespan
 Betzel et al., 2014 ), which might affect the task performance. 

Further comparison between the fast- and slow-PS networks re-
ealed distinct connectome patterns among the eight functional net-
orks ( Fig. 3 ). The fast-PS network included more within-network con-
ectivity in the motor and visual I networks, while the slow-PS net-
ork included more between-network connectivity in the motor-SubC
nd motor-frontoparietal networks. In other words, a faster PS was as-
ociated with more within-network connectivity in the motor and vi-
ual I networks. A previous study found that aging was associated with
ess connectivity within the motor network ( Varangis et al., 2019 ), and
lder adults exhibiting stronger connectivity within the motor network
utperformed their peers in motor and speed functions ( Seidler et al.,
015 ). The visual-related network has also been found to be activated
uring the SDMT task ( Forn et al., 2013 ). A meta-analysis revealed that
he primary visual cortex (BA17, visual I network) plays an essential role
n PS and it participates in the detection of visual patterns and visual
ttention ( Silva et al., 2019 ). 

On the other hand, we found more between-network connectivity in
he motor-SubC, motor-frontoparietal networks in the slow-PS network,
ompared to the fast-PS network, which indicated a slower PS. It is sug-
ested that stronger connectivity between the motor and SubC networks
as associated with better precision in motor tasks ( Schlerf et al., 2014 ).
he cortico-thalamo-cerebellar circuit, including the motor cortex, cere-
ellum, thalamus and striatum, is involved in subserving the precise mo-
or control function and cognition ( Haber and Calzavara, 2009 ; Manto
t al., 2012 ; Stoodley, 2012 ). Additionally, cerebellar projections could
nduce a reduction of excitatory output (inhibition) from the cerebel-
um through the thalamus to the motor cortex, leading to modified and
recise motor control ( Daskalakis et al., 2004 ). Along with these find-
ngs, our results indicate that more connectivity between the motor and
ubC networks contribute to the precise performance in the SDMT task,
owever, at the expense of speed. In regard to the motor-frontoparietal
onnectivity, previous studies found the connectivity between the motor
nd the frontoparietal networks was negatively related to motor learn-
ng ( Mary et al., 2016 ), suggesting that connectivity between the motor
nd non-motor networks (e.g., the cognitive control network) might af-
ect the motor performance and PS. The increased connectivity between
he frontoparietal and motor networks might indicate an enhanced top-
own control of motor execution and task operation, due to the lack
f sufficient communication within the motor network in older adults
 King et al., 2017 ). 

Taken together, the connectome patterns derived from our CPM
odels in the older adults revealed more within-network connectivity

n the fast-PS network, while there was more between-network connec-
ivity in the slow-PS network. Increased within-network connectivity
epresented higher functional segregation of brain networks; whereas,
ncreased between-network connectivity represented higher functional
ntegration of brain networks ( King et al., 2017 ). Here, functional segre-
ation refers to highly clustered connectivity in networks and functional
ntegration refers to connections between networks that allow integra-
ion of information from different networks ( Damoiseaux, 2017 ). Our
esults might suggest that functional segregation in the key brain net-
orks (i.e., motor networks, SubC networks) plays an important role

n supporting certain cognitive functions in older adults. Functional
onnectivity studies have converged with the observations, demon-
trating that older adults have lower network segregation and higher
etwork integration compared to younger adults ( Cao et al., 2014 ;
amoiseaux, 2017 ; Geerligs et al., 2014 ). The decreased segregation
as found to be associated with age-related decline in motor perfor-
ance ( Cassady et al., 2019 ; King et al., 2017 ). Consistent with existing
ndings, the connectivity patterns generated from our CPM suggest that

unctional segregation in the motor network is vital for PS functioning in
lder adults, and higher connections between different networks might
ndicate an insufficient neural system and a compensatory mechanism
o implement certain tasks ( Morcom and Johnson, 2015 ). 
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.4. Limitations 

Several limitations should be acknowledged in this study. First, our
ignificant findings were generated from rather modest sample sizes
older adults, our sample: n = 99; Cam-CAN sample: n = 91); however,
hey can be further verified and validated by studies using a relatively
arger sample size. Second, our sample and the Cam-CAN sample signif-
cantly differed in their distributions of sex, age and education. Future
tudies could recruit more homogenous internal and external validation
amples. Third, task-fMRI ( Greene et al., 2018 ; Rosenberg et al., 2016 )
nd multimodal brain data ( Jiang et al., 2019 ) have been suggested to
mprove prediction accuracy. Future work could explore the usefulness
f incorporating task-fMRI and multimodal brain data in order to fur-
her improve overall model accuracy. Fourth, our study provided pre-
iminary evidence that resting-state connectivity could predict the cur-
ent PS level in older adults. PS has been found to show an inverted U
evelopmental trajectory throughout the life span ( Finkel et al., 2009 ;
ettelbeck and Burns, 2010 ). Based on our study, it would be of great

nterest to predict the change of PS throughout life span by using a lon-
itudinal design in future work. 

. Conclusion 

In conclusion, findings of this study clearly indicate that resting-state
unctional connectivity across multiple neural systems (i.e., the motor,
ubC, frontoparietal, medial frontal, default-mode and visual-related
etworks) can be used to predict PS in older adults. Furthermore, the
onnectivity patterns generated from the PS-CPM models could be use-
ul for predicting attention and memory performance in older adults.
he findings of this study provide evidence that resting-state functional
onnectivity can be applied to characterizing individual differences in
S in older adults. Further work could help to accumulate evidence on
he feasibility and usefulness of applying connectome-based predictive
odels to understand these neurocognitive abilities. Our results might

id with the clinical diagnosis, prognosis and management of people
ndergoing aging. 
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