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Tree-based machine learning performed
in-memory with memristive analog CAM
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Tree-based machine learning techniques, such as Decision Trees and Random Forests, are

top performers in several domains as they do well with limited training datasets and offer

improved interpretability compared to Deep Neural Networks (DNN). However, these

models are difficult to optimize for fast inference at scale without accuracy loss in von

Neumann architectures due to non-uniform memory access patterns. Recently, we proposed

a novel analog content addressable memory (CAM) based on emerging memristor devices

for fast look-up table operations. Here, we propose for the first time to use the analog CAM

as an in-memory computational primitive to accelerate tree-based model inference. We

demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such

that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory

compute concept for enables few-cycle model inference, dramatically increasing 103 × the

throughput over conventional approaches.
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Deep neural networks (DNN) are becoming the main-
stream model for numerous classification tasks such as
image and voice recognition1. However, DNNs are

unsuitable for multiple government2 and industry3 applications
where inspectability and explainability are critical, training data
may be limited, or where domain knowledge and historical
expertise needs to be incorporated in critical decisions. These
applications also include those in the medical space4,5 where fast
and accurate clinical assessments of a disease are critical as well as
a deep understanding of the cause or reasons for a specific model
classification result in order to rapidly prepare treatments. In
these domains, tree-based methods, such as decision trees (DT)
and their ensembles, for example random forest (RF) methods6,
are popular machine learning (ML) approaches due to their ease
of training, good performance with small datasets7 and reason-
able interpretability for domain experts to verify and understand8.
However, while fast to train, large-scale tree-based models are
difficult to optimize for fast runtime (i.e., inference) without
accuracy loss in von Neumann architectures9. In von Neumann
architectures, storage and computing units are physically
separated10, which results in high energy consumption and time
for data movement between the processor and storage11. More-
over, highly irregular memory access patterns to the model and
feature vector for each DT node are nonuniform, and higher
accuracy models require more and deeper DTs, resulting in
unpredictable traversal times. State-of-the-art implementations
run in super-linear time with DT depth, limiting scalability.
Various approaches for speeding up RF9,12–14 showed mainly
incremental improvements as the data-locality access pattern
problem remains.

A new class of accelerators where computation is performed
inside the memory, termed in-memory computing (IMC)15, is
gaining momentum and accelerators for different applications
such as neural network training and inference16–19, image
processing20,21 and scientific computing22–24 have demonstrated
large performance improvements. Many such works utilize a core
IMC primitive based on crossbar arrays of nonvolatile memory
(NVM) devices15, often dubbed memristors25, to directly accel-
erate vector matrix multiplication. The IMC crossbar primitive
combined with memristors, which can operate at low power and
high speed26, forms the basis of the dramatic performance
improvements. However, implementation of tree-based ML
algorithms in crosspoint arrays has not been shown yet, since
these workloads are not dominated by matrix operations. Other
traditional CMOS accelerator approaches have been studied for
these models, such as an RF IMC accelerator based on
complementary-metal-oxide-semiconductor (CMOS) static ran-
dom access memories (SRAM) in ref. 27, but model inference at
high throughput and low energy operation remains a challenge.

Recently, another IMC primitive has been increasingly studied
based on content addressable memories (CAM)28. CAM circuits
natively perform a matching operation between an input data
word (search key) and a stored set of data patterns in the CAM
array in a highly parallel manner—thus accelerating a lookup
operation. Traditional CAMs are based on SRAM, and show
excellent throughput due to the parallel lookup at the cost of very
large power consumption and area. Memristor-based CAM and
ternary CAM (TCAM) circuits have been proposed29–33 to pro-
duce lower-power CAMs, and their ability of performing high
performance computation, such as finite automata inference33–35

has been shown. While powerful, these approaches were limited
to binary memristor states and did not take advantage of the
analog continuous state tunability of memristive devices and the
increased computational density. To fully leverage memristor
capabilities, we recently developed an analog memristor-based
CAM circuit and concept36. Instead of searching, storing and

outputting digital data, the analog CAM enables the search of
analog values and the storage of analog ranges using the con-
tinuously tunable states of memristors, and compares an analog
input with this stored range to determine a match or mismatch.
This concept enables both a multi-bit encoding for each cell, or
the ability to store continuous ranges. Other multi-bit CAM have
also been proposed in ferroelectric technology34.

Here we propose the first demonstration of accelerating the
important class of tree-based ML models with an IMC approach
utilizing the analog CAM. Our new concept efficiently maps root-
to-leaf paths of tree-based models directly to analog CAM rows
for few-cycle model inference, and is critically enabled by the
unique features of the analog CAM, in particular the range sto-
rage and analog search, as well as compression from the ‘X’ or
‘don’t care’ encoding, described below. To demonstrate this
concept, we first present in detail the analog CAM circuit, an
accurate behavioral model from a 180 nm taped-out hybrid
CMOS-memristor chip36 and detail how the tree-based models
map to the analog CAM hardware. Then, by pairing analog CAM
arrays with 1-transistor-1-resistor (1T1R) resistive random access
memory (RRAM)37 or memristor for majority voting, we show
how to map RF models and also detail our hardware-aware
compression techniques which leverage the unique features of the
analog CAM to reduce memory utilization (i.e., area and power).
Finally, we benchmark our approach against recent state-of-the-
art approaches for RF model inference. Our in-memory com-
puting approach with analog CAM outperforms the throughput
of existing accelerators by 1000× with a 30× reduction of node
energy to decision.

Results
Analog CAM compact model. With analog CAM hardware, the
highly irregular memory lookup patterns of tree-based machine
learning models can be accelerated with IMC architectures, due to
the analog CAM capability to store ranges of values and search
analog data. Figure 1a shows the conceptual flowchart for
implementing such models in CAMs, where after the generation
of the ML model it can be compressed before deployment to
optimize the performance. Figure 1b shows the working principle
of a digital TCAM. Digital words are stored in different rows of
the memory array. By applying a search word on the data line
(DL), or columns, it is possible to rapidly search if the word is
present in the memory, in which case the address is returned.
Each match line (ML), or row, is initially precharged and remains
charged only if all elements of the searched word match with that
stored word. A wildcard ‘X’ representing an ‘always match’ is also
possible to be stored or searched, allowing for a third (ternary)
state in this TCAM. Different hardware implementations of
TCAM have been proposed both based on traditional CMOS
technology28,38 and NVM technology29–33. To represent more
than three levels in a TCAM cell one needs to be able to represent
a range, defined by a lower and upper limit. For example, if the
data d= 13 is to be represented, the memory cell should be able
to accept any value 12.5 < i < 13.5 where the 0.5 accounts for the
system tolerance, namely half of the least significant bit or LSB/2.
Figure 1c shows a conceptual schematic of an analog CAM
array36, where ranges are stored in memory, an analog word is
given as input on the DL (columns) and the corresponding match
is sensed on ML (rows) as a digital signal. In this case the
equivalent of a wildcard ‘X’ corresponds to storing the range
thresholds to the maximum acceptable limits, in this case 0 to 1,
such that any input will match. Figure 1d illustrates a schematic
for an analog CAM based on memristor technology36, although
other implementations, for example based on ferroelectric
transistors34 have recently been proposed as well. Range
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thresholds are stored in the memory conductance M1 (lower
threshold) and M2 (upper threshold) as shown in the inset. By
applying a DL analog value, a voltage divider between memory
device and the series transistors T1 and T3 controls the discharge
transistor (T2) on the lower threshold side, or the inverter
(T4–T5) on the upper threshold side which controls the upper
threshold discharge transistor (T6). Note that not only multi-bit
values but also ranges can be stored through the programming of
the left and right conductances.

The lower and the higher bound of the searching range is
stored as conductance in the RRAM device in our analog CAM.
The RRAM device current–voltage (I–V) characteristics are
shown in Fig. 1e, with the device structure fabricated in a back-
end-of-line (BEOL) process illustrated in Supplementary Infor-
mation Fig. 1. A TaOx dielectric layer is sandwiched between
metallic top electrode (TE) and bottom electrode (BE) and the
structure is realized on a conventional 180 nm complementary-
metal-oxide-semiconductor (CMOS) process36,37,39 (see Meth-
ods). A newborn device is typically in a high resistance state due
to limited conduction in the dielectric layer. After a forming
procedure, oxygen vacancies are reordered such that a conductive
path is formed between TE and BE resulting in a low resistance
state (LRS). Then by applying a negative reset pulse, the
conductive path can be retracted and the device results in a high
resistance state (HRS). Conductance can be modulated from LRS
to HRS by switching positive and negative voltage. Moreover,
switching to different intermediate states can be controlled
through a variety of means, including through current compli-
ance (IC) modulation, namely the maximum current flowing into
the RRAM device during the set transition controlled with a series
transistor, or by means of Vstop, or the maximum voltage applied
during the reset operation26,40. Figure 1f shows the cumulative
distribution function of 16 different levels measured on 2048
devices on a large array37 (Supplementary Information Fig. 2),
corresponding to 4 bits, demonstrating the possibility of analog
and multi-bit capability. If a larger number of bits is needed,
multiple cells can be used in parallel, with a bit-slicing technique,

similar to what is typically done in crosspoint arrays41. For small
applied voltages, memristor devices offer a linear conduction as
shown in Fig. 1f, especially for states close to LRS levels. The
linear dependence simplifies the interpretation of the voltage
divider in the analog CAM circuit.

We taped-out an analog CAM array in 180 nm CMOS
technology36, with the cell layout shown in Fig. 2a. We also
carried out extensive circuit simulations on a more aggressive
16 nm technology node36 to study the impact of power
consumption and scalability of the design. However, to have a
fast deployment and performance assessment of more complex
and large-scale problems, such as DT/RF and other tree-based
machine learning algorithms, a compact and reliable analog CAM
cell model based on the actual analog CAM taped-out should be
realized. SPICE circuit simulations can be computationally
expensive for large-scale systems, compared to small-scale arrays,
and may not comprehensively include true process variations and
parasitics. Thus they can be improved with data from taped-out
chips. For this reason we designed a compact cell model whose
details are illustrated in Supplementary Note 1 and Methods.
Figure 2b shows circuit simulation results of the current flowing
in the lower threshold branch, or in transistor T2, as a function of
VDL and M1 programmed conductance GM1, where a large
current corresponds to a low VDL or high GM1 as expected.
Figure 2c shows the model calculation for the same current,
which is in good agreement with the circuit simulation.
Figure 2d-e shows the circuit simulation and model calculation,
respectively, of the current flowing into the upper threshold
branch, or in transistor T6, where in this case high current
corresponds to high VDL or low GM2. Data and calculation are in
good agreement, confirming the model reliability. Note that
circuit simulations were performed by taking into account post-
tape-out parasitic effects (see Methods), thus the model
comprehensively describes the cell behavior in a reliable manner.
Figure 2f shows data (circle) and model calculation (lines) of two
different ranges programmed in two analog CAM cell36, which
confirms that the model can accurately predict cell behavior.

Fig. 1 Analog content addressable memory with memristor. a Illustration of this work, tree-based machine learning models are optimized and deployed on
analog CAM hardware. b Digital ternary content addressable memory (TCAM), which searches a given input word across the whole memory and outputs
the location of a match. c Analog CAM, where each cell stores ranges of values, or multi-bit representations. An analog input word is searched against the
whole memory array in parallel, similar to the digital TCAM. d Circuit schematic of an analog CAM with memristor. e Memristor current–voltage (I–V)
characteristics for different cycles. f Cumulative density functions of 16 levels of conductance corresponding to 4 bits of information, each programmed
into 128 memristive devices. g I–V plot of read sweep for different conductances programmed in memristors showing linear behavior.
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Mapping DT/RF to analog CAM. DT are powerful ML models
allowing data classification and regression, with much clearer
understanding of the resulting models than deep learning tech-
niques. As a toy example, Fig. 3a shows a DT trained to classify
the Iris dataset42, where features namely sepal and petal width
and length are organized as a feature vector f= [f0, f1, f2, f3] and
given as input. At each node a decision on a feature is made
according to a threshold. If the decision is positive, the tree is
traversed from top to bottom following the left branch; if the
decision is negative, the right branches are taken. Trees are tra-
versed until reaching a leaf, which in this case corresponds to the
classes of Iris, namely Setosa, Virginica or Versicolor. DT can be
mapped to analog CAM arrays by directly programming each
root-to-leaf path into an array row. Feature vectors f are given as
input to the columns DL, and ML is initially precharged. If all the
analog CAM cells of a row match f, ML stays charged—otherwise
ML discharges into the unmatched analog CAM cell. Note that
this corresponds of doing an AND operation between every
analog CAM cell in a row. Figure 3b shows the implementation of
the DT of Fig. 3a into an analog CAM array. If a feature com-
ponent is not present in the root-to-leaf path, a wildcard ‘X’ can
be inserted corresponding to the whole range programmed in the
analog CAM, i.e., the LRS on the lower threshold memristor and
the HRS on the upper threshold memristor, as can be seen in the
f1 column. If a feature is present multiple times in a branch and
with different thresholds, for example in the second row, third
column, then the two thresholds are combined and a range is
encoded. In the case of only one threshold decision for a parti-
cular feature, one of the memristors is kept as a wildcard (LRS or
HRS) and the other is programmed at an intermediate threshold
value, implementing a ‘less than or equal to’ with a high threshold
(a left branch), while a ‘greater than’ is programmed in the
opposite case (a right branch). While the presence of a large
number of ‘X’ appears as a drawback it will be actually used for
allowing compression as it will be shown in the next section. MLs
of the matching rows directly correspond to the matching class,

making an analog CAM able to perform a one-step classification
independent of the array size, corresponding to three clocks
cycles tCLK for charging ML, asserting DLs, and latching MLs after
tCLK. Note that not only DT can be mapped to analog CAM but
also in principle any tree-based ML algorithm comprising root-
to-leaf decision paths. Multiple types of trees can be mapped to
CAMs independent of the tree hyperparameters such as depth or
height. When the size of the problem exceeds the maximum size
of an array, multiple arrays can be used in a tiled architecture as
described in the following section. To verify that analog CAM
arrays are effectively able to draw decision boundaries we trained
12 different DTs with all possible intersections of two features.
We observe in a two-dimensional space the classification results
by deploying the DTs on analog CAM arrays using the compact
model and monitoring the matched rows. Figure 3c shows a plot
of the ML predicted class (shadows) and ground truth results
(circles) as a function of different DL voltages corresponding to
different feature vector values. Circles landing on a shadow with
matching color corresponds to a correct prediction. The trend
suggests that the DT model deployed on analog CAM draws the
correct decision boundaries in the classification task. Figure 3d
shows a plot of the ML discharge currents (left) in each analog
CAM cell of Fig. 3b as a function of VDL and the corresponding
ML outputs as a function of time for the same feature vector of
Fig. 3a-b, demonstrating the ability to recognize the correct class.
The corresponding conductance values mapped in the analog
CAM array are shown in Supplementary Information 3. This
example corresponds to the first demonstration of mapping DT
root-to-leaf path with IMC due to analog CAM. With the wild-
card and range encoding capabilities, analog CAM is beautifully
well suited for mapping such computations, which is complex to
accelerate in conventional and custom hardware.

While DT are easy to train and deploy, their accuracy for real
world problems is affected by overfitting. This is due to the need for
more tree depth to effectively minimize the cost function during
training. To avoid this, ensemble methods are used in which

Fig. 2 Analog CAM compact model. a 180 nm cell layout showing the various inputs/outputs. b, c Circuit simulation and model calculation of ML discharge
current on the lower threshold branch as a function of VDL and GM1. d, e Circuit simulation and model calculation of ML discharge current on the upper
threshold branch. f Experimental data (circle) and compact model (lines) for two different ranges stored in analog CAM cells.
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multiple trees are evaluated in parallel. This is the case for RF,
consisting of ntrees inferred in parallel, with the output result
computed as the majority gate of single DT outputs. Each DT in a
forest is trained with a small random portion of the dataset and
usually requires only a shallow depth and relatively small number
ntrees to reach good accuracy. Both tree inference and a majority
vote can be implemented with IMC. Figure 4a shows an
architectural overview of the RF inference acceleration approach.
Inputs are applied on the DL with a digital to analog converter
(DAC, see Supplementary Information Fig. 7). Each root-to-leaf
path of each DT is mapped to a row of the analog CAM array,
whose ML outputs are converted to a digital high or low signal with
a sense amplifier, whose circuit is illustrated in Supplementary
Information Fig. 8. Sense amplifier outputs are connected to the
gate of a one-transistor-one-resistor (1T1R) memristor (RRAM)
array37, with every column sensing a corresponding class. The 1T1R
RRAM array M is programmed such that M[i, j]= LRS if
class(i)= class(j), where i corresponds to the ML index and j the
column index, and columns correspond to a different class. In this
way, the more ML is activated of a given class, the larger the current
flowing into the 1T1R RRAM array column for that class. Currents
are sensed with a typical chain consisting of a trans-impedance
amplifier (TIA), sample and hold (S&H), and analog to digital
converter (ADC)37. Note that only 4 clock cycles, corresponding to
precharging the ML, asserting DL, evaluating the root-to-leaf path
with the SA latch, and triggering the RRAM read, are needed to
reach a classification result and, as a first approximation, this is
independent of the number of trees in the forest.

To test our system and compare results with previous
benchmarks27, we implemented an RF for the classification of
KUL Belgium traffic sign dataset43 whose data processing is
explained in Supplementary Information 4. We mapped the RF
into the analog CAM and RRAM arrays and evaluated the
accuracy of inference on 200 samples27 reaching 0.965, higher
than the reference state of the art. These RF models are well
matched to analog IMC implementations, showing strong
resilience to variation and noise that can otherwise affect analog
hardware. As an example, Fig. 4b shows the RF accuracy as a
function of the standard deviation of a Gaussian distribution
representing the variability in the memristor conductances, which
captures a practical challenge in some memristive devices40.
Accuracy remains unaltered for a standard deviation up to
σG= 5%, which can be realized in practical and size-scaled
devices39. Figure 4c shows accuracy loss as a function of the
number of bits considered in programming the analog CAM
threshold demonstrating that only for fairly low bit numbers, i.e.,
Nbit < 3 the accuracy degrades considerably.

Architecture optimization. To directly deploy our RF model to
an analog CAM, a very large array, i.e., 2000 × 256= 512 kb, is
needed for one-shot classification. However, most of the analog
CAM cells in an RF implementation remain empty. In fact, each
root-to-leaf path has a maximum size of the number of decision
nodes, a hyperparameter that can be defined during training and
known as maximum depth. Typically the maximum depth is

Fig. 3 Mapping decision tree on analog CAM. a Decision tree for classifying the Iris dataset; a feature vector is given as input and features are compared
with learned thresholds to decide which branch of the tree to take. b Analog CAM array mapping the decision tree of a, where each root-to-leaf path is
written in an array row. Classification outputs are given on the ML, in one shot. c Decision map of different DT trained with two features of the feature
vector, calculated in the analog CAM. d Current flowing in every analog CAM cell as a function of VDL and resulting ML digital output for the inference of
feature vector and DT in a.
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Fig. 4 RF accelerator architecture. a Overview of the full IMC system, with analog CAM executing root-to-leaf evaluation in one step and 1T1R RRAM
array executing the majority vote in the analog domain. b Accuracy as a function of the standard deviation of injected noise σG in the programmed
conductance for 100 different experiments, filled line represent the average while bands correspond to the standard deviation. c Accuracy loss as a function
of the number of bit for representing the threshold in 10 RF trained on the dataset, filled line represent the average while band the standard deviation. d The
number of populated (non `X') analog CAM cells in the arrays as a function of the feature index for a direct mapping (raw, light blue line) and reordered
array (blue line). e Tiles and array mapping procedure, the threshold map THMap traversed from bottom to top and from left to right by H ×W tiles (T0 in
the example), which are filled in the presence of valid rows, namely rows that are not completely empty. Once a tile is full, it is placed in the corresponding
array (A0) in the example, which will evaluate a group ofW features from the feature vector. fMemory size needed as a function of tile height H and width
W. g Schematic of variational autoencoder architecture for compressing the dataset a 32 wide feature vector. h Accuracy as a function of maximum depth
in the RF with and without autoencoder as input. i Memory size required as a function of maximum depth in the RF with and without autoencoder as input.
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small compared to the number of available features; in the present
reference dataset the feature vector length is F= 16 × 16= 256,
and good RF accuracy is reached with a maximum depth ~10
(Supplementary Information Fig. 5). Figure 4d shows the number
of occupied cells in the analog CAM array as a function of the
feature identifier. As seen from the ‘Raw’ (light blue) line, some
features occur frequently and correspond to ‘important’ pixels in
the training images (for example defining the shape of the traffic
sign), but other features are hardly considered (for example the
border of the images) and only a few analog CAM cells of the
corresponding columns are occupied. Given that the feature order
is arbitrary in each individual root-to-leaf path, we reordered
them based on occurrence such that all-important features are on
the left side of the entire analog CAM array. In this way part of
the array remains completely off, or empty. Moreover, we simi-
larly reorder the columns to make sure that the most populated
columns are on the bottom of the analog CAM array. The blue
line of Fig. 4d shows the reordered count, demonstrating that a
part of the array can remain empty and offering compressibility
once the large RF array is tiled onto reasonable-sized analog CAM
arrays.

We investigated efficient architectures for mapping a large RF
model by exploring CAM array tile sizes and available
compression schemes. We divided the CAM architecture into
tiles of practical size H ×W, i.e., up to 480 × 48, dimensions that
were previously found to be feasible33,36. Figure 4e shows the tile
writing procedure and the tiled architecture. Given a target
threshold map THMap following the reordering procedure we
start by sweeping an H ×W tile T0 on the left part of the array,
i.e., we evaluate THMap[0, 0:W] and if there is at least one cell not
empty we accept the row and write it in T0[0, 0:W], otherwise we
discard it. We continue evaluating THMap[i, 0:W], with i= 1 and
writing in T0[j, 0:W] incrementing i at every cycle and j only if
the location is written until T0 is filled. We proceed by positioning
T0 at array location A0, which will evaluate the feature group fg0
corresponding to the first W features. We take a new tile T1 and
start filling it and repeat the process until all elements of
THMap[: , 0:W] have been considered. Once this part of THMap

has been mapped, we increment the column, namely, we start
evaluating THMap[0,W: 2W], and place the corresponding tiles in
array location A1, which evaluates feature group fg1 corresponding
to features W ~ 2W. The process is repeated until all of THMap

has been evaluated and all the k= F/W arrays are populated.
Note that most tiles of A0 are populated while most of Ak is
empty, thanks to the reordering. In this way, most of the right-
side arrays tiles can be eliminated. The output of each tile is
collected in a register and logically added to perform the final
majority vote only one time in an RRAM memory. Figure 4f
shows the CAM memory size as a function of the tile dimensions
H and W after reordering and mapping, demonstrating
significant compression compared to the initial size of 512 kb.
We finally choose the training hyperparameters for benchmark-
ing our system to yield good accuracy with a reduced memory
size (Supplementary Information Fig. 5), namely an RF with 15
trees and a maximum depth of 10 is chosen here.

The memory size can also be compressed by reducing the
dimension of the input images, either by preprocessing the data
with principal component analysis (PCA), independent compo-
nent analysis (ICA), or with an autoencoder. Figure 4g shows a
standard variational autoencoder schematic, with 128 hidden
neurons in the decoder and encoder path and a latent space of 32
elements. We trained the RF with the dataset preprocessed with
the autoencoder, namely with a feature vector size of 32
(Supplementary Information Fig. 6). Figure 4h shows the
classification accuracy as a function of the maximum depth of
the trees with and without autoencoder preprocessing, where it is

possible to obtain a loss of a few percent in exchange for
significant compression. Figure 4i shows the memory size using
32 × 32 tiles, for encoding the RF with and without autoencoder,
demonstrating a compression factor close to the latent space
dimension compared with the original dimension.

Performance evaluation. To evaluate the power consumption
and throughput of the analog CAM system, we considered a full
circuit including an ML precharge circuit, sense amplifier, a
digital to analog converter36 for charging the DL (Supplementary
Information Figs. 7 and 8), and memristor conductances from the
data of Fig. 1e. For each decision boundary, the corresponding
conductance to the map was directly extracted from the dis-
tribution such that hardware statistical variations are taken into
account. To study the design hyperparameters namely tile size H
and W, and clock frequency tCLK we evaluate the accuracy,
throughput, power consumption, and energy per node per deci-
sion, namely the energy spent for assessing each threshold in a
tree. Figure 5a shows accuracy as a function of tCLK for different
H and a fixed W= 16. As expected, accuracy does not depend on
H but there is a dependence on tCLK, as enough time should be
given to ML for discharging if the input does not correspond to a
match. However, good accuracy is preserved for tCLK > 1ns, which
guarantees a high throughput up to 60 × 106 Decisions/sec, as
shown in Fig. 5b. Note that the throughput does depend on W, in
fact, arrays Ai are evaluated one by one, thus a smaller tile size W
corresponds to a larger number of arrays A and latency. However,
with a continuous input flow, operations can be pipelined by for
example charging ML of A1 while latching the ML result of A0

and throughput can be highly increased at the cost of power
consumption, at fixed energy per decision. Figure 5c shows the
dynamic power needed for charging and discharging the ML as a
function of tCLK for different W, demonstrating a dependence
on W due mostly to tiling. ML power is dominated by the
precharge and sense amplifier circuit but also the memory con-
tribution becomes significant for W > 10. In Fig. 5d it is reported
the dynamic power consumption needed for charging the DL,
considering the proposed DAC and an optimum Rout (Supple-
mentary Information 7). While dynamic power consumption is
low, static power consumption due to the voltage divider eva-
luation of M1-T1 and M2-T3, which is shown in Fig. 5e as a
function of H and W is quite important and should be carefully
taken into account while choosing the hyperparameters.
Finally, Fig. 5f shows the energy per node per decision as a
function of H and W at tCLK= 1ns. Finally, Supplementary
Information Fig. 9 shows the energy per decision as a function of
H and W for the pipelined architecture, assuming a constant
input data stream, which has an opposite trend compared with
Fig. 5d. Taking into account this dependence we chose tiles of
size 16 × 480 and maximize the performance of the pipelined
architecture, leading to a total number of 29 needed arrays for
mapping the problem. Supplementary Information Fig. 10
shows a breakdown of the energy consumption for the various
components.

Finally, we compared the performance of our approach to
existing ASIC and conventional proposals. For a fair comparison
to the ASIC works, we evaluated our analog CAM hardware on a
65 nm technology by applying a constant field scaling procedure.
We considered a maximum clock frequency of 1 GHz, as a
practical case27, and evaluated the performance of our architec-
ture compared with different results from literature12,14,27,44. The
comparison is shown in Table 1 with analog CAM outperforming
existing accelerators in throughput and energy per decision27.
Moreover, the algorithm independent metrics, normalized by the
number of nodes of each tree once again shows the strong
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improvement of accelerating RF with an analog CAM architec-
ture compared to other works, with an energy-delay product per
node 3 orders of magnitude lower the state of the art (see
Supplementary Information note 2). We note as well that our
analog CAM approach is flexible and can be optimized for
specific applications—for example, by using a pipelined archi-
tecture one can modulate the amount of power spent at the cost
of a reduced throughput or vice-versa, in a constant-energy
power/accuracy trade-off. We also compare the area previously
shown for the layout of analog CAM at 16 nm technology node36,
with a scaled SRAM-based implementation at the same
technology node considering all peripheral involved (see
Supplementary Information node 3). While the area of 6T2M
analog CAM is ~2 × larger than the 6T SRAM, the area efficiency
of analog CAM implementation is ~142 × larger. In fact, with the
nonvolatile and analog behavior of memristor, which represent
the decision boundaries in analog CAM, the computational
density reaches unprecedented peaks.

We envision that such results open the possibility for analog
CAM to accelerate different tree-based workloads, including

state-of-the-art AI tasks that usually require high energy
consumption for training and inference45.

Discussion
In summary, we have proposed a tree-based machine learning
accelerator with IMC primitives based on analog CAM, in which
by mapping root-to-leaf paths to CAM array rows it is possible to
perform rapid parallel inference. A post-layout compact model of
the analog CAM was designed to assess performance on RF
inference as part of a larger CAM-RRAM system implementation.
Results at a scaled technology node demonstrate up to ~103×
higher throughput and ~12× reduced energy per decision com-
pared with the state-of-the-art, resulting in >104× lower EDP.
Our work lays the foundation for novel accelerators based on
analog CAM as a radical new computing primitive side-by-side
with crosspoint arrays. The high performance offered for this
class of machine learning models possessing increased explain-
ability provides a compelling opportunity to use analog CAM-
based hardware in critical application areas.

Fig. 5 Performance evaluation. a Classification accuracy as a function of tclk for different tile height H at fixed tile widthW= 16. Accuracy does not depend
on H as expected, until for nominal operational frequency namely for tclk > 1ns, below which mapping in the chosen conductance range is not possible.
Throughput (b), ML dynamic power consumption (c) and DL dynamic power consumption (d) as a function of tclk for different W at fixed H= 48. e SL
static power consumption as a function of H and w for tclk= 1ns. f Energy per DT node per decision as a function of H and w for tclk= 1ns.

Table 1 Comparison of tree-based ML accelerators in literature with this work.

Accelerator Process fclk Power Throughput Energy Node energy EDP Node EDP

[nm] [Ghz] [mW] [Dec/s] [nJ/dec] [pJ] [aJs] [aJs]

Intel X556044 45 2.8 190 × 103 9.3 × 103 20.4 × 106 N/A N/A N/A
Nvidia Tesla M205044 40 2.8 225 × 103 20.4 × 103 11 × 106 N/A N/A N/A
Xilinx Virtex-644 40 0.079 11 × 103 31.3 × 103 351 × 103 N/A N/A N/A
ASIC12 65 0.2 5.6 30 186.7 × 103 22 6.2 × 1012 740 × 103

ASIC14 65 0.25 27.6 60 460 × 103 1.4 7.7 × 1012 24 × 103

ASIC IMC27 65 1 7.1 364.4 × 103 19.4 9.8 53.2 × 103 27
This work 65 1 26.74 20.83 × 106 1.28 0.32 61 15 × 10−3

This work pipelined 65 1 427 333 × 106 1.28 0.32 3.84 0.9 × 10−3
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Methods
Memristor integration. The memristors were monolithically integrated on CMOS
fabricated in a 180 nm technology node. The integration starts with a removal of
silicon nitride and oxide passivation with reactive ion etching (RIE) and a buffered
oxide etch (BOE) dip. Chromium and platinum bottom electrodes are then pat-
terned with e-beam lithography and metal lift-off process, followed by reactive
sputtered 4.5 nm tantalum oxide as switching layer. The device stack is finalized by
e-beam lithography patterning of sputtered tantalum and platinum metal as top
electrodes.

Analog CAM circuit simulation. 6T2M analog CAM cell and small arrays were
designed and simulated in Cadence Virtuoso Custom IC design environment, and
the simulation result post-processed with HP-SPICE. The simulations utilize the
TSMC 180 nm and 16 nm library and the designs follow the corresponding rules. A
custom python script generates the netlist for analog CAM arrays with different
numbers of rows and columns and arbitrary configured memristor conductance
and input voltages.

Analog CAM model. Analog CAM model was implemented in Python environ-
ment by fitting outputs of circuit simulation with simplified physical laws and
behavioral equation. While mostly in the subthreshold regime, input transistor
T1(T3) was modeled both in subthreshold and ohmic conduction regimes. The first
obey the simplified MOS model:

ID1 ¼ ID0 exp
VDL

α

� �
ð1Þ

with ID0 and α fitting parameters (for details see Supplementary Information 1).
Given that T1 drain-source voltage (corresponding to the voltage divider) Vdiv=
VG,T2− VSL,lo is typically low, or Vdiv < VGS−VT with VGS= VDL− VSL,lo and VT

threshold of T1, in the region of interest, we assume that it can only be either in
subthreshold or ohmic (linear) region, whose current obeys to the law:

ID1 ¼ k1ðVGS � VT Þ ð2Þ
with k1 fitting parameter corresponding to physical and electrical properties. Once
the voltage divider has been computed, the ML discharge current can be computed
as:

ID2 ¼ k2ðVdiv � VT Þ2 ð3Þ
Being the output transistor T2 (T6) is typically biased in the saturation region, at
least in the initial discharging phase. Finally, the inverter was modeled as a sigmoid
for simplicity and fast calculation:

VG:T6 ¼
�0:8

1þ expð�βðVdiv þ γÞÞ þ 0:8: ð4Þ

Parastic parameters were extracted from the post-layout simulation and corre-
spond to a resistance connecting each cell namely RML= RDL= r= 1.4Ω and a
parasitic capacitance of CML= CDL= c= 1.9fF. Precharge block and sense ampli-
fier were assumed as parasitic capacitance, which was extracted from the post-
layout simulation as CPC= 40.95fF and CSA= 50fF, respectively.

Models training. All tree-based models were trained in a Python environment
with sklearn module. To match the benchmark, we trained RF with KUL Belgium
traffic signs dataset43 considering the same 8 class and training/testing set as in
literature27, thus we used 2300 training and 200 testing images taken from the
classes ‘No Overtaking’, ‘Children’, ‘Crossroads with a minor road’, ‘Priority road’,
‘Give Way’, Stop’, ‘No vehicles’, and ‘Maximum speed limit’. However, while the
reference RF was trained with 64 trees and a maximum depth of 6, we optimized
the hyperparameters namely maximum depth and number of trees reaching an
accuracy of 96.5% when deployed to analog CAM, overcoming the given accuracy
of 94%.

Power consumption calculation. Power consumption calculation of the pipelined
architecture was divided in three parts, namely

● static power consumption flowing into the voltage divider

Pstatic ¼ Vsl;hiID0 ð5Þ
● dynamic power consumption to charge the DL

PDL ¼ V2
DDWN
R

ð6Þ

with W tile width, N number of tiles, and R output resistance of the DAC
(Supplementary Information)

● dynamic power consumption to charge and discharge the ML

PML ¼ 1
2tCLK

ðCMLVML0Þ2HN þ ∑
i¼N

j¼0
∑
i¼H

i¼0

1
2tCLK

ðCMLðVML0 � VML;i;jÞÞ2

ð7Þ

with VML0 initial voltage of the ML, which can be set from the precharge
block, H tile height, and VML,i,j ML voltage of row i of tile j at t= tCLK. The
first term corresponds to the charging energy and the second to the
discharging in each cell.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the results of this study is proprietary to Hewlett Packard
Enterprise.
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