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Abstract:

Background: We recently discovered autism/intellectual disability somatic mutations in
postmortem brains, presenting higher frequency in Alzheimer’s disease subjects, compared with
the controls. We further revealed high impact cytoskeletal gene mutations, coupled with potential
cytoskeleton-targeted repair mechanisms.

Objective: The current study was aimed at further discerning if somatic mutations in brain
diseases are presented only in the most affected tissue (the brain), or if blood samples phenocopy
the brain, toward potential diagnostics.

Methods: Variant calling analyses on an RNA-seq database including peripheral blood samples
from 85 soldiers (58 controls and 27 with symptoms of posttraumatic stress syndrome - PTSD)
was performed.

Results: High (e.g. protein truncating) as well as moderate impact (e.g. single amino acid change)
germline and putative somatic mutations in thousands of genes were found. Further crossing the
mutated genes with autism, intellectual disability, cytoskeleton, inflammation and DNA repair
databases, identified the highest number of cytoskeletal-mutated genes (187 high and 442
moderate impact). Most of the mutated genes were shared and only when crossed with the
inflammation database, more putative high impact mutated genes specific to the PTSD-symptom
cohorts vs. the controls (14 vs. 13) were revealed, highlighting tumor necrosis factor specifically
in the PTSD-symptom cohorts.

Conclusions: With microtubules and neuro-immune interactions playing essential roles in brain
neuroprotection and Alzheimer-related neurodegeneration, the current mutation discoveries
contribute to mechanistic understanding of PTSD and brain protection, as well as provide future

diagnostics toward personalized military deployment strategies and drug design.



Introduction:

Recent studies have associated brain somatic mutations with aging and neurodegeneration. For
example, Lodato et al. [1] used single-cell whole-genome sequencing to perform genome-wide
somatic single-nucleotide variant (sSNV) identification on single neuronal DNA from the
prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well
as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair
(Cockayne syndrome and xeroderma pigmentosum). These researchers discovered that the sSSNV's
increased approximately linearly with age in both areas (with a higher rate in the hippocampus),
and were more abundant in neurodegenerative diseases [1]. Similarly, Verheijen et al. [2]
discussed somatic mutations, commonly referred as “somatic brain mosaicism” highlighting
mutations in  post-mitotic neurons of the hypothalamo-neurohypophyseal system, and
hypothesized on the implications for Alzheimer's disease (AD), further discussed by Leija-Salazar
et al. [3]. Lastly, Rohrback et al. [4] discussed the identification of multiple forms of somatically
produced genomic mosaicism (GM). Many of these studies concentrated on single cell analysis,
mostly hypothesizing, but not directly analyzing AD postmortem brains.

We have recently hypothesized that de novo mutations in genes regulating embryonic
development, may instigate AD in the form of brain somatic mutations [5]. Importantly, our
hypothesis and results are now further corroborated [6]. A leading gene presenting heterozygous
dominant de novo autism intellectual disabilities (ID), causing mutations, is activity-dependent
neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy [5, 7]. RNA-
seq of olfactory bulbs identified a novel ADNP hotspot mutation, c.2187 2188insA. Altogether,
665 mutations in 596 genes, with 441 mutations in AD patients (389 genes, 38% AD-exclusive

mutations), and 104 genes presenting disease-causing mutations (OMIM) were discovered [5].



OMIM AD-mutated genes converged on cytoskeletal mechanisms, autism- and ID-causing
mutations (about 40% each). Importantly, the number and average frequencies of AD-related
mutations per subject were higher in AD subjects compared to controls [5]. These findings were
corroborated in other brain areas, and mutation frequencies correlated with the severity of Tau
pathology (tauopathy). Interestingly, at the single cell level, most mutations were found in the
neuronal support cells, rather than neurons. Furthermore, in cell cultures, ADNP mutations
inhibited Tau-microtubule interactions [5]. The drug candidate, ADNP fragment NAP
(NAPVSIPQ, containing a SxIP microtubule end binding proteins, EB1,3 binding motif),
replaced/enhanced Tau-microtubule interaction in the face of ADNP mutations [5].

While brain somatic mutations present an interesting high-risk factor and a therapeutic target, these
mutations are not appropriate for diagnostic measures, as sampling is problematic. However, with
the discovery of more somatic mutations in non-neuronal cells as compared to neurons [5], we
posited that blood borne cells will also display somatic mutations, accumulating with aging and
brain diseases. As such, a study evaluating both AD brain and blood samples showed significant
SNV increases with aging, and an almost 5-fold slower accumulation in brain compared to blood
[8]. Regardless, the study discovered that low-level brain somatic mutations in the hippocampal
formation were associated with dysregulation of Tau hyperphosphorylation [8]. Regarding aging-
related accumulation of somatic mutations, Watson et al. [9], using blood sequencing data from
~50,000 individuals, revealed how mutations, genetic drift, and fitness shape the genetic diversity
of healthy blood (clonal hematopoiesis), emphasizing that somatic mutations acquired in healthy
tissues as we age are potentially major determinants of the aging process.

The advantages of blood biomarkers are considerable. A number of inorganic and organic markers

found free in the plasma or within exosomes have shown a solid potential as biomarkers for AD,



including metallic ions, auto-antibodies, cytokines, phospholipids and microRNA-species. In
2012, researchers at the AD Neuroimaging Initiative and Australian Imaging Biomarker and
Lifestyle Research Group produced a panel of 27 biomarkers that demonstrated small, but
statistically significant changes between healthy individuals and AD patients [10]. These included
proteins such as insulin-like growth-factor binding protein 2 (IGF-BP2), and 2 microglobulin
(B2M) [10]. We and others also found a reduction in serum ADNP as correlated with reduced
cognition and AD [11, 12]. Additionally, lower regulator of G-protein signaling 2 (RGS2)
expression levels were discovered in mild cognitive impairment and AD blood samples, compared
with controls [13]. These findings suggest ADNP and RGS2 as novel future AD biomarkers toward
early AD detection and future disease modifying therapeutics. We also discovered an interaction
between circulating pituitary adenylate cyclase-activating polypeptide (PACAP) and ADNP in
terms of resilience to stressful conditions [14].

Aging and stress (including PTSD) serve as major risk factors for AD [15, 16], with PTSD possibly
even doubling the risk of AD and dementia [16, 17]. The molecular mechanisms for this may
include reduced “cognitive reserve”, suggested by impaired verbal memory in PTSD [18], as well
as brain alterations in the hippocampus [19], anterior cingulate [20], and prefrontal structures [21].
Additionally, PTSD may be associated with independent risk factors for dementia including
smoking, hypertension, hyperlipidemia, diabetes, obesity, inflammation, and major depression
[21-23]. Interestingly, PTSD and dementia were also suggested to have a bidirectional relationship,
with PTSD increasing the risk for late-onset dementia, while dementia increases the risk for
delayed-onset PTSD in those who experienced a significant trauma earlier in life [24].

In this respect, a robust multi-omic panel for predicting combat-related PTSD diagnosis in male

veteran populations was previously established, with 28 biomarkers including features from DNA



methylation, proteins, miRNAs, metabolites, and other molecular and physiological measurements
[25]. This panel was implemented in an independent validation cohort, predicting PTSD diagnosis
with 81% accuracy, 85% sensitivity, and 77% specificity, hence indicating that PTSD can
potentially be identified using blood-based screening or diagnostic tools [25].

Here, we have analyzed peripheral blood samples from 85 Canadian infantry soldiers and showed
mutated genes, associated with AD and autism, in peripheral blood cells of individuals suffering
from symptoms of PTSD. These findings may pave the path to new diagnostic measures in

molecular neurodegeneration as well as stressful conditions including PTSD.



Materials and Methods:

Design, Measures and Gene Expression Omnibus (GEQ) Datamining

The gene expression dataset GSE109409 [26] was identified as containing a complete Next-
Generation Sequencing (NGS) transcriptomics, RNA-seq data from peripheral blood samples of
85 male Canadian infantry soldiers (n = 58 participants negative for symptoms of PTSD and n =
27 participants with symptoms of PTSD), with an average age of 29.86+7.4 years, after returning
from deployment to Afghanistan.

To control for batch effects, biological and technical confounders, a set of 7 covariates was selected
using a greedy step-down regression procedure combined with normalized gene count Principal
Component Analysis (PCA). The set included aggregate batch, neutrophil count, white blood cell
count, read percentage GC content, percentage of mapped reads, percentage reads not exonic and
de-duplicated read percentage. Furthermore, the same number of soldiers had a previous
deployment as those whose first deployment was Afghanistan both within and between groups
[26].

Specifically, the soldiers took part in the study immediately after their return from deployment and
every 4 months following that for up to 1-year [26]. Upon enrollment, soldiers were asked to
complete the following series of questionnaires: a demographic information sheet, the Combat
Exposure Scale from the Deployment risk and Resilience Inventory (DRRI) [27], and the
Posttraumatic Stress Disorder Checklist for military personnel (PCL-M) [28]. The PCL is one of
the most widely used self-report measures of PTSD, extensively used in the military [29, 30], and
has been repeatedly shown to highly correlate the diagnostic gold standard, namely the Clinical-
Administered PTSD Scale (CAPS) [30]. While neither the specific PTSD symptoms, nor any other

related psychological disorder (e.g. depression) were mentioned in the original study, grouping the



participants based on a dichotomized PCL score has shown that 58 scored < 34 (Control) and 27
scored > 34 (Symptoms of PTSD) [26]. A cut-off score of 39 was previously found to be optimally
efficient at identifying full PTSD [29]. Furthermore, scores between 35 and 49 have been shown
to classify as risk for meeting subthreshold PTSD diagnostic criteria [7, 30, 31].

Following form completion, 2.5 ml of blood was collected using the PAXgene blood RNA
collection protocol (PreAnalytiX GmbH, QIAGEN or BD) for gene expression and 4 ml of blood

was collected for a complete blood count (CBC) [26].

Variant Calling

Variant calling was performed as before [5] according to GATK’s best practices pipeline. Namely,
trimmed reads were mapped to the human genome (Ensembl’s GRCh38) using STAR v2.4.2a
[32], with default parameters and twopassMode set to basic. Reads were then deduplicated using
Picard. Mapped reads were further processed with GATK’s v.3.7 [33] SplitNCigarReads, which
was used as a method developed specially for RNA-seq, splits reads into exon segments (getting
rid of Ns but maintaining grouping information) and hard-clips any sequences overhanging into
the intronic regions. Next, the processed reads were used for variant calling by GATK’s
HaplotypeCaller with ploidy set to 10 in order to detect also low frequency variants. Variants were
filtered with the following values for SNPs and Indels respectively: QD<2.0, FS>30.0, MQ<40.0,
MQRankSum<-12.5, ReadPosRankSum<-8.0 and QD<2.0, FS>30.0 and ReadPosRankSum<-
20.0. Variants were further filtered against dbSNP build 146 [34, 35], a widely used data source,
integrated and referenced by many other databases and projects such as OMIM, Clinvar, 1000
genomes project, to name a few, and includes both pathogenic and non-pathogenic variants. Given

the elaborate content of the dbSNP database, combined with the special settings of the current



project, in which low frequency mutations are called, extensive filtering had to be implemented,
rather than reliance only on curated databases that may be more accurate than dbSNP, but less
elaborate. Any variant that appeared there was discarded. Annotation was done with Ensembl’s
Variant Effect Predictor v.83 [36] against GRCh38. Only variants that were predicted to have high
impact, had average coverage of at least 10 reads in each group and were covered by at least ~90%-
95% of the samples in each group, that is by 27 samples in the PTSD-symptom and by 58 samples
in the control, were considered in the analysis. Variant analysis and sample description are detailed

in Tables S1A-B.

Comparative Databases

Using the Venn diagram tool (https://bioinfogp.cnb.csic.es/tools/venny/), several comparisons

were performed with multiple sources including the autism spectrum disorder (ASD, autism)

(https://gene.sfari.org/database/human-gene/), intellectual disability (ID)

(http://www.ccgenomics.cn/IDGenetics/gene.php?dataset=IDGD_gene_detail), inflammatory

response (http://www.informatics.jax.org/go/term/G0O:0006954), cytoskeleton

(http://www.informatics.jax.org/go/term/GO:0005856), and DNA repair

(http://www.informatics.jax.org/go/term/G0O:0006281) databases.

Statistics

Results are presented as means + standard error of the mean (SEM). Data were checked for normal
distribution by normality test. Unpaired student's t-test or Mann-Whitney U test analyses were
performed. P values smaller than 0.05 were considered significant. All tests were two-tailed.

Outlier ~ values  were  excluded using the  GraphPad  outlier  calculator


https://bioinfogp.cnb.csic.es/tools/venny/
https://gene.sfari.org/database/human-gene/
http://www.ccgenomics.cn/IDGenetics/gene.php?dataset=IDGD_gene_detail
http://www.informatics.jax.org/go/term/GO:0006954
http://www.informatics.jax.org/go/term/GO:0005856
http://www.informatics.jax.org/go/term/GO:0006281

(https://www.graphpad.com/quickcalcs/Grubbs1.cfm). All statistical analyses were conducted

using either SigmaPlot version 11 for Windows (Systat Software, Inc., Chicago, IL, USA), or

GraphPad Prism versions 5 & 6 for Windows (GraphPad Software, Inc., La Jolla, CA, USA).
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Results:

Individuals in the PTSD-symptom group display a relatively high number of putative high
impact mutations, compared with matched controls

When looking at putative high (e.g. protein truncating mutations) and moderate (e.g. a change in
amino acid in the protein) impact mutations, a relatively high number of high impact mutation
containing genes was found in the PTSD-symptom cohort similar to controls, taking into
consideration a saturation effect. Thus, it should be noted that in general, the number of the
detected mutations does not increase linearly with the number of samples, as the larger the cohort
size is, there would be less new mutations, since most of these already appeared before. For high
impact mutations, 1,147 genes were found to display 1,556 mutations in the PTSD-symptom group
vs. 1,501 genes displaying 2,107 mutations in the control group (Fig. 1A). For moderate impact
mutations, 1,985 genes were found to display 5,645 mutations in the PTSD-symptom group vs.
3,219 genes displaying 9,246 mutations in the control group (Fig. 1B). When looking at the
average mutation frequency/number per subject, no significant differences were found between
the tested groups, either in the case of high impact mutations, or in the case of moderate impact

mutations (Fig. S1).

Cytoskeletal-related genes comprise the largest group of mutated genes among the PTSD-
symptom and control cohorts

Based on our previous findings associating AD brain mutations with autism, intellectual disability,
inflammatory response, cytoskeleton and DNA repair genes [5], putatively mutated genes in this
cohort were crossed with known databases of these gene/protein groups (Supplemental, Figs. S2-

21). We have identified the largest number of high impact mutated genes in the cytoskeletal protein
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group (187), with 23 genes being specific for PTSD-symptom (Fig. 2, Venn diagram). As our
previous analyses regarding gene/protein associations utilized the STRING tool [5], we performed
a STRING analysis here, revealing several key mutated protein interactions including 7SCI,
FMRI, GSK3B, and EZR, specific to the PTSD-symptom population. The Tuberous Sclerosis 1
(TSCI) gene encodes the growth inhibitory protein hamartin, negatively regulating mammalian
target of rapamycin complex 1 (mTORC1) signaling, with mutations in this gene previously
associated with Tuberous Sclerosis [37]. The FMRP Translational Regulator 1 (FMRI) encodes
an RNA-binding protein, and may be involved in mRNA trafficking from the nucleus to the
cytoplasm, thus being implicated in Fragile X Syndrome [38]. The Glycogen Synthase Kinase-3
Beta (GSK3B) gene product is a serine-threonine kinase, serving as a negative regulator of glucose
homeostasis [39]. This protein is involved in various processes including energy metabolism,
inflammation, ER-stress, mitochondrial dysfunction, and apoptotic pathways [39]. Mutations in
the GSK3B gene were linked with Parkinson’s disease (PD) and AD [40, 41], with GSKB3 directly
linked to tau hyperphosphorylation [42]. The Ezrin (EZR) gene encodes a cytoplasmic peripheral
membrane protein, playing a key role in cell surface structure adhesion, migration and
organization, as well as implicated in different human cancers [43].

When looking at the frequency of moderate impact mutations, a high number of cytoskeletal

mutated genes was also discovered (442), including 74 genes specific for the PTSD-symptom

group (Fig. 2).

Increased mutations in inflammatory genes in the PTSD-symptom cohort
Most of the high impact mutated genes, in all tested databases were shared (Supplemental, Figs.

S2-11). Only the inflammation database showed more high impact putatively mutated genes
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specific in the PTSD-symptom cohort as compared to controls (14 vs. 13) (Fig. 3). Further analysis
identified the putatively mutated tumor necrosis factor (7NF), despite a low coverage of 2/7 in that
region, in one person in the PTSD-symptom cohort. Importantly, TNF plays central roles in the
immune response [44]. In this respect, other genes that exhibited PTSD-associated mutations are
described below. Interleukin 1 Receptor Type 2 (IL/R2) encodes a cytokine receptor that belongs
to the interleukin 1 receptor family [45]. It should be noted that cytokines in general serve as major
mediators of the immune response, controlling different cellular functions including proliferation,
differentiation and cell survival/apoptosis, as well as being involved in several pathophysiological
processes [46]. Caspase 1 (CASPI) and Caspase 4 (CASP4) gene products play a central role in
the execution-phase of cell apoptosis, with caspase 4 cleaving and activating its own precursor
protein, as well as caspase 1 precursor [47, 48].

Moderate impact mutations in pro-inflammatory genes did not show similar trends to the high

impact mutations described above (Supplemental Fig. S16-17).
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Discussion:

The current paper reveals somatic mutations in the blood of PTSD patients, with suggestive unique
patterns/genes, paving the path to future investigations and potential novel biomarkers affecting
disease mechanisms.

Interestingly, in terms of gene expression, the study that originally collected the samples and
assessed gene expression revealed an increased expression of the low-density lipoprotein receptor-
related protein 8 (LRPS8) as a PTSD-symptom-specific transcript [26]. LRP8 is a cell surface
receptor for Reelin (RELN) and apolipoprotein E (APOE)-containing ligands, important for brain
development, with APOE4 presenting the highest risk gene for AD [49] (Identifier:
ENSP00000303634, LRPS). Additionally, Reelin-mediated atherosclerosis was shown to be
promoted by isoforms E2 and E4 of APOE, hence increasing the risk for AD [50]. The other PTSD-
symptom gene discovered in the original study is Golgi membrane protein 1 (GOLM]I) [26], a
cellular response protein to viral infection, belonging to the GOLM1/CASC4 family (Identifier:
ENSP00000373364, GOLM). These results suggest an association of PTSD with viral infection
[51], which may also account, in part, for a potentially increased mutation rate [52]. Interestingly,
GOLMI1 was previously found to be significantly increased in an aged mouse model of AD [53].
In this respect, gene expression levels are not directly linked with higher mutation rates, with
neither LRP8 nor GOLM]I found here among the mutated genes. Similarly, we did not find
mutations in IGF-BP2, B2 microglobulin (#2M) [10] and ADNP, suggested in our introduction to
change in blood samples as a consequence of AD, given that serum levels correlate with reduced
cognition and AD [11, 12]. Notably, ADNP/NAP (regulating cytoskeletal dynamics) [5] control

Apoe expression in a sex-dependent manner [54].

14



Importantly, in the current study several cytoskeleton-related genes were found to carry a high
impact mutation, only in the PTSD-symptom cohort, including 7SC1, FMRI1, GSK3B and EZR.
Regardless, it should be noted that the current study is a somewhat pioneering study, with many
of the mutated genes appearing only in a single or a few individuals, and having a low coverage.
This suggests that these mutations should be validated and examined in larger cohorts.
Interestingly, 7SC1, FMRI, GSK3B and EZR are linked with either the neurodegenerative AD or
the neurodevelopmental autism spectrum disorder (ASD) [41, 55-61]. In this respect, PTSD may
be associated with the risk of developing dementia, specifically of the common AD type [17, 62].
Alterations of hormones, regulating the production and deposition of amyloid beta (AB) plaques,
a diagnostic feature of AD dementia, have also been suggested to cause PTSD [63, 64].
Additionally, several pathways possibly linking trauma and autism were previously suggested,
with ASD potentially serving as a vulnerability marker for PTSD, specifically by increasing the
risk for exposure to traumatic events. Then, once PTSD has appeared, it may exacerbate ASD
symptoms [65]. Importantly, ASD and PTSD may share underlying common molecular
mechanisms, leading to neurological abnormalities associated with both disorders, as well as
cognitive and behavioral outcomes such as cognitive rigidity, anger and aggression [65].

Furthermore, the reciprocal neuro-immune interactions, with immune cells/factors affecting brain
cells [66, 67] and the brain affecting immune responses [68], are of great interest. These
interactions are directly associated with changes in circulating cytokine amounts (e.g. [L-6) as a
consequence of trauma [69]. Here, high impact mutations have been discovered in TNF (a key
player in the immune response), as well as /L/R2 only in the PTSD-symptom cohorts, and not the
control cohorts, thus implicating somatic mutations/immune-genetics in susceptibility to PTSD.

Conforming to these findings, previous independent studies looking at blood biomarkers suggested
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that individuals suffering from PTSD display increased levels of proinflammatory markers,
including interleukin-1p (IL-1p), interleukin-6 (IL-6), TNF-0, and C-reactive protein, compared
with healthy controls [70-73]. Additionally, CASP! and CASP4 genes were also found to be
mutated solely in the PTSD-symptom cohort. These caspases are involved in the processing and
secretion of pro-inflammatory molecules and are often referred as “pro-inflammatory caspases”
[47, 48], thereby indicative of a possible inflammatory state in PTSD patients. The connection
between a systemic pro-inflammatory state and PTSD was previously emphasized by several
studies [74]. For example, increased levels of cytokines, as those observed in PTSD, may cause
inflammation, damaging the brain and further increasing the risk of dementia [17, 63].
Interestingly, opposing findings were also reported, with no significant correlations found between
inflammatory markers and severity of PTSD symptoms [72].

Future investigations with larger cohorts, deeper coverage and validation methods should further
assess the impact of blood as a surrogate source for mutation biomarkers. These future
investigations should further investigate similarities of blood and brain-identified cytoskeletal and
aging-related mutations, thus enabling the identification of populations at risk. In line with that, a
recent study in thousands of civilian and military Europeans identified significant PTSD gene
expression associations [75]. Specifically, in the civilian and military cohorts, the Zinc Finger
Protein 140 (ZNF140) was predicted to be upregulated in whole blood, and the splicing regulator
Small Nuclear Ribonucleoprotein U11/U12 Subunit 35 (SNRNP35) was predicted to be
downregulated in the dorsolateral prefrontal cortex, further linked to stress and glucocorticoids
[75]. However, this study did not analyze for potential mutations and study limitations should take

into consideration potential sequencing bias [76].

16



Interestingly, when searching PubMed, several RNA-seq gene expression databases obtained from
human peripheral blood leukocytes in PTSD cohorts were found. These databases were either
limited (GSE83601)[77], did not represent a soldier cohort (GSE97356)[78], or included PTSD
patients (rather the symptomatic cases), and cannot be claimed as ethnically different from the
Canadian cohort used in our study (GSE64814; RNA-seq from peripheral blood leukocytes of U.S.
Marines, N=188, obtained both pre- and post-deployment to conflict zones)[79]. Future studies
should target additional populations to provide a further global aspect of the research outcome.

In practical terms, our findings may further suggest the use of preventative treatments, such as
drugs targeting the cytoskeletal system, as we proposed before, with NAP [5], and ADNP-
regulating peptide hormones including pituitary adenylate cyclase-activating polypeptide
(PACAP) [14]. Notably, the previously demonstrated efficacy for NAP in amnestic mild cognitive
impairment population [80, 81], coupled with patient stratification-based on similar and extended
studies as described above, will facilitate a personalized, precision medicine for PTSD and
prodromal AD.

To conclude, our previous discovery of potential brain somatic mutations as driving AD focused
on ADNP/NAP targeting microtubule end binding proteins [5]. In this respect, ADNP/NAP take
a major regulatory role in neuronal and immunological functions [54, 82-84]. This finding is
enhanced by our further discovery of numerous somatic mutated genes revealing preponderance
in cytoskeletal/autism/intellectual disability AD-postmortem brain mutations [5], which are
associated with synaptic plasticity in the brain [54, 85], as well as the functionality of the immune
synapse [86, 87]. Interestingly, original studies, also at the brain ultrastructural level, revealed
microtubule reduction in AD and aging that is independent of tau filament formation, focusing on

microtubule cytoskeleton in general [88]. Our current findings enhance the applicability of the
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previous postmortem brain discoveries, with PTSD-symptomatic patients carrying specific
potentially treatable gene mutations, mirroring to some degree brain dysfunctions, and possibly

leading toward precision medicine.
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Figure Legends:
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Figure 1. Soldiers display somatic mutations in blood cells.
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(A-B) The pie charts represent distribution of high and moderate impact mutations into two groups:

control and PTSD-symptom (n = 58 control participants negative for symptoms of PTSD and n =

27 participants positive for PTSD symptoms).
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Figure 2. Cytoskeletal-related genes in the PTSD-symptom group are most frequently

mutated.

STRING analysis was performed for cytoskeletal-related genes in the control and PTSD-symptom

groups, as identified by a Venn diagram, and shown for putative 23 high impact PTSD-specific

genes. Enriched biological processes, molecular functions and pathways are presented for these

genes, most frequently mutated, compared with the control group. An additional Venn diagram is

presented for moderate impact mutations.
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Figure 3. Inflammation-related genes in the PTSD-symptom group are increasingly mutated.

STRING analysis was performed for inflammation-related genes in the control and PTSD-

symptom groups, as identified by a Venn diagram, and shown for putative 14 high impact PTSD-

specific genes. Enriched biological processes, molecular functions and pathways are presented for

these genes, most frequently mutated, compared with the control group.
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Figure S1. No significant differences were observed in either high or moderate impact mutation frequencies/numbers per subject

between control and PTSD-symptom groups.

(A) high impact mutation frequency/number per subject, and (B) moderate impact mutation frequency/number per subject for each

group in the peripheral blood leukocytes (n = 58 control participants negative for symptoms of PTSD and n = 27 participants positive

for PTSD symptoms).
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Figure S2. High Impact Shared Autism-related Genes Between Control and PTSD-symptom groups (Crossed with SFARI
Database).

STRING analysis was performed for mutated autism-related genes in the control and PTSD-symptom groups, as identified by a Venn
diagram, and shown for 63 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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Figure S3. Mutated Autism-related Genes in the Control and PTSD-symptom groups (Crossed with SFARI Database).

(A) STRING analysis was performed for 40 high impact autism-related mutated genes in the control group, as identified by a Venn

diagram. (B) STRING analysis was performed for 19 high impact autism-related mutated genes in the PTSD-symptom group, as

identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the

genes (where available).



Control PTSD-symptom

16 Genes

Biological Process (GO)

GO-term description count in gene set false discovery rate
G0:0051276 chromosome organization 80f 999 000040 @
G0:0032876 negative regulation of DNA endoreduplication 20of5 00051 @ Y
60:0006325 chromatin organization 6 of 683 0.0051 @& SMAD4
G0:0006996 organelle organization 10 of 3131 0.0066 ()
G0:2000113 negative regulation of cellular macromolecule biosynthetic ... 7 of 1348 0.0076 @ P
(more ...)

ENSG00000173575

<)

Molecular Function (GO)

GO-term description count in gene set false discovery rate
G0:0003682 chromatin binding 6 of 501 0.00027
G0:0036033 mediator complex binding 20f4 0.00067
G0:0043168 anion binding 8 of 2696 0.0141
G0:0042393 histone binding 30f188 0.0141
G0:0035639 purine ribonucleoside triphosphate binding 7 of 1794 0.0141
(more ...)
KEGG Pathways

pathway description count in gene set false discovery rate
hsa04110 Cell cycle 30f123 0.0055
hsa04211 Longevity regulating pathway 20of 88 0.0481

Figure S4. High Impact Shared ID/ASD-related Genes Between Control and PTSD-symptom groups (Crossed with ID_ASD

Database).
STRING analysis was performed for mutated ID/ASD-related genes in the control and PTSD-symptom groups, as identified by a Venn
diagram, and shown for 16 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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(A) STRING analysis was performed for 11 high impact ID/ASD-related mutated genes in the control group, as identified by a Venn

diagram. (B) STRING analysis was performed for 4 high impact ID/ASD-related mutated genes in the PTSD-symptom group, as

identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the

genes.
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Figure S6. High Impact Shared Inflammation-related Genes Between Control and PTSD-symptom groups (Crossed with
Inflammatory Response Database).

STRING analysis was performed for mutated Inflammation-related genes in the control and PTSD-symptom groups, as identified by a
Venn diagram, and shown for 26 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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Figure S7. Mutated Inflammation-related Genes in the Control and PTSD-symptom groups (Crossed with Inflammatory

Response Database).

(A) STRING analysis was performed for 13 high impact inflammation-related mutated genes in the control group, as identified by a

Venn diagram. (B) STRING analysis was performed for 14 high impact inflammation-related mutated genes in the PTSD-symptom

group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented

for the genes.
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Figure S8. High Impact Shared Cytoskeleton-related Genes Between Control and PTSD-symptom groups (Crossed with

Cytoskeleton Database).

STRING analysis was performed for mutated cytoskeleton-related genes in the control and PTSD-symptom groups, as identified by a

Venn diagram, and shown for 111 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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S9. Mutated Cytoskeleton-related Genes in the Control and PTSD-symptom groups (Crossed with Cytoskeleton
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Figure
Database).

(A) STRING analysis was performed for 53 high impact cytoskeleton-related mutated genes in the control group, as identified by a

Venn diagram. (B) STRING analysis was performed for 23 high impact cytoskeleton-related mutated genes in the PTSD-symptom

group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented

for the genes.
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Figure S10. High Impact Shared DNA Repair-related Genes Between Control and PTSD-symptom groups (Crossed with DNA
Repair Database).

STRING analysis was performed for mutated DNA repair-related genes in the control and PTSD-symptom groups, as identified by a
Venn diagram, and shown for 39 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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Figure S11. Mutated DNA Repair-related Genes in the Control and PTSD-symptom groups (Crossed with DNA Repair

Database).

(A) STRING analysis was performed for 21 high impact DNA repair-related mutated genes in the control group, as identified by a Venn

diagram. (B) STRING analysis was performed for 9 high impact DNA repair-related mutated genes in the PTSD-symptom group, as

identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the

genes.
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Figure S12. Moderate Impact Shared Autism-related Genes Between Control and PTSD-symptom groups (Crossed with SFARI
Database).

STRING analysis was performed for mutated autism-related genes in the control and PTSD-symptom groups, as identified by a Venn
diagram, and shown for 76 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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Figure S13. Mutated Autism-related Genes in the Control and PTSD-symptom groups (Crossed with SFARI Database).

(A) STRING analysis was performed for 94 moderate impact autism-related mutated genes in the control group, as identified by a Venn

diagram. (B) STRING analysis was performed for 29 moderate impact autism-related mutated genes in the PTSD-symptom group, as

identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the

genes.
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Figure S14. Moderate Impact Shared ID/ASD-related Genes Between Control and PTSD-symptom groups (Crossed with
ID_ASD Database).

STRING analysis was performed for mutated ID/ASD-related genes in the control and PTSD-symptom groups, as identified by a Venn
diagram, and shown for 8§ moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes,

molecular functions and pathways are presented for these genes.
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Figure S15. Mutated ID/ASD-related Genes in the Control and PTSD-symptom groups (Crossed with ID_ASD Database).
(A) STRING analysis was performed for 25 moderate impact ID/ASD-related mutated genes in the control group, as identified by a
Venn diagram. (B) STRING analysis was performed for 9 moderate impact ID/ASD-related mutated genes in the PTSD-symptom group,

as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for

the genes.
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Figure S16. Moderate Impact Shared Inflammation-related Genes Between Control and PTSD-symptom groups (Crossed with

Inflammatory Response Database).

STRING analysis was performed for mutated Inflammation-related genes in the control and PTSD-symptom groups, as identified by a

Venn diagram, and shown for 47 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological

processes, molecular functions and pathways are presented for these genes.
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Figure S17. Mutated Inflammation-related Genes in the Control and PTSD-symptom groups (Crossed with Inflammatory

Response Database).

(A) STRING analysis was performed for 78 moderate impact inflammation-related mutated genes in the control group, as identified by

a Venn diagram. (B) STRING analysis was performed for 32 moderate impact inflammation-related mutated genes in the PTSD-

symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are

presented for the genes.
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Figure S18. Moderate Impact Shared Cytoskeleton-related Genes Between Control and PTSD-symptom groups (Crossed with
Cytoskeleton Database).

STRING analysis was performed for mutated cytoskeleton-related genes in the control and PTSD-symptom groups, as identified by a
Venn diagram, and shown for 156 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological

processes, molecular functions and pathways are presented for these genes.
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Figure S19. Mutated Cytoskeleton-related Genes in the Control and PTSD-symptom groups (Crossed with Cytoskeleton
Database).

(A) STRING analysis was performed for 212 moderate impact cytoskeleton-related mutated genes in the control group, as identified by
a Venn diagram. (B) STRING analysis was performed for 74 moderate impact cytoskeleton-related mutated genes in the PTSD-symptom
group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented

for the genes.
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Figure S20. Moderate Impact Shared DNA Repair-related Genes Between Control and PTSD-symptom groups (Crossed with
DNA Repair Database).

STRING analysis was performed for mutated DNA repair-related genes in the control and PTSD-symptom groups, as identified by a
Venn diagram, and shown for 38 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological

processes, molecular functions and pathways are presented for these genes.

21



UBRS
KIN
e BABAM1
\ S
RT \ RNASEH2A WAS
AN \
e S R
SR\
N N
NS MCM3
\\i;._ CDK2
NG S . >
‘\\ AR 2] Clorfss POLD4 STUB1
g : f < 3 = HSF1
DEK
NSMCE4A
POLDIP2
@ FANCA
@zwvszs 8<:|Nr> PPPAR2
Biological Process (GO) Biological Process (GO)
GO-term description count in gene set false discovery rate GO-term description count in gene set  faise discovery rate
GO0006281 DA repair 640f 491 394690 @ GO0006281  DNArepair 180491 24923 @
GO0006259  DNA metabolic process 660773 244083 @ GO0006259  DNA metabolic process 190f773 246022 @
leic acid 68 0f 3941 430042 @ GO0006950  responseto stress 19013267 490011 @
i 69 of 4551 415040 (3 GO0006289  nucleotide-excision repair 70110 324009
600051276 chvomosome organization 3901999 17929 @ i repair 60f75 220008 @
(more...) (more...)
Molecular Function (GO) KEGG Pathways Molecular Function (GO)
Goterm o - term KEGG Pathways
600140097 g on DNA 3 s ool e 600140097 —
600003677 57 hsa03410 80f33 000043133 hsa03420
G0:0003676 44 0f 3332 18303450 Sof13 6010051879 psa02022
G0:1901363 heterocyclic d binding 50 of 5305 15203440 Sof40 600004386 ns303440
G0:0097159 'organic cyclic compound binding 50 of 5382 hsa03430 40f23 G0:0004003 hsa03410

20f

12203030

(more...)

Figure S21. Mutated DNA Repair-related Genes in the Control and PTSD-symptom groups (Crossed with DNA Repair
Database).

(A) STRING analysis was performed for 70 moderate impact DNA repair-related mutated genes in the control group, as identified by a
Venn diagram. (B) STRING analysis was performed for 21 moderate impact DNA repair-related mutated genes in the PTSD-symptom
group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented

for the genes.
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