

Putative Blood Somatic Mutations in PTSD-symptomatic Soldiers: High Impact of Cytoskeletal and Inflammatory Proteins

Shlomo Sragovich¹, Michael Gershovits², Jacqueline CK Lam^{3,4,5}, Victor OK Li³

and Illana Gozes^{1*}

Running title: Blood Borne Somatic Mutations in PTSD

¹The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel; ²The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; ⁴Department of Computer Science and Technology, The University of Cambridge, Cambridge, UK; ⁵CEEPR, MIT Energy Initiative, MIT, Cambridge, Massachusetts, USA.

***Corresponding author:**

Illana Gozes, Ph.D.; Professor of Clinical Biochemistry

Head, the Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology

Sackler Faculty of Medicine, Tel Aviv University

Tel Aviv 69978, Israel, Phone: 972-3-640-7240, Fax: 972-3-640-8541

E-mail: igozes@tauex.tau.ac.il

Keywords: Alzheimer's disease, Autism, Blood Biomarkers, Cognition, PTSD

Abstract:

Background: We recently discovered autism/intellectual disability somatic mutations in postmortem brains, presenting higher frequency in Alzheimer's disease subjects, compared with the controls. We further revealed high impact cytoskeletal gene mutations, coupled with potential cytoskeleton-targeted repair mechanisms.

Objective: The current study was aimed at further discerning if somatic mutations in brain diseases are presented only in the most affected tissue (the brain), or if blood samples phenocopy the brain, toward potential diagnostics.

Methods: Variant calling analyses on an RNA-seq database including peripheral blood samples from 85 soldiers (58 controls and 27 with symptoms of posttraumatic stress syndrome - PTSD) was performed.

Results: High (e.g. protein truncating) as well as moderate impact (e.g. single amino acid change) germline and putative somatic mutations in thousands of genes were found. Further crossing the mutated genes with autism, intellectual disability, cytoskeleton, inflammation and DNA repair databases, identified the highest number of cytoskeletal-mutated genes (187 high and 442 moderate impact). Most of the mutated genes were shared and only when crossed with the inflammation database, more putative high impact mutated genes specific to the PTSD-symptom cohorts vs. the controls (14 vs. 13) were revealed, highlighting tumor necrosis factor specifically in the PTSD-symptom cohorts.

Conclusions: With microtubules and neuro-immune interactions playing essential roles in brain neuroprotection and Alzheimer-related neurodegeneration, the current mutation discoveries contribute to mechanistic understanding of PTSD and brain protection, as well as provide future diagnostics toward personalized military deployment strategies and drug design.

Introduction:

Recent studies have associated brain somatic mutations with aging and neurodegeneration. For example, Lodato et al. [1] used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on single neuronal DNA from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). These researchers discovered that the sSNVs increased approximately linearly with age in both areas (with a higher rate in the hippocampus), and were more abundant in neurodegenerative diseases [1]. Similarly, Verheijen et al. [2] discussed somatic mutations, commonly referred as “somatic brain mosaicism” highlighting mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system, and hypothesized on the implications for Alzheimer's disease (AD), further discussed by Leija-Salazar et al. [3]. Lastly, Rohrback et al. [4] discussed the identification of multiple forms of somatically produced genomic mosaicism (GM). Many of these studies concentrated on single cell analysis, mostly hypothesizing, but not directly analyzing AD postmortem brains.

We have recently hypothesized that *de novo* mutations in genes regulating embryonic development, may instigate AD in the form of brain somatic mutations [5]. Importantly, our hypothesis and results are now further corroborated [6]. A leading gene presenting heterozygous dominant *de novo* autism intellectual disabilities (ID), causing mutations, is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy [5, 7]. RNA-seq of olfactory bulbs identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes, with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations), and 104 genes presenting disease-causing mutations (OMIM) were discovered [5].

OMIM AD-mutated genes converged on cytoskeletal mechanisms, autism- and ID-causing mutations (about 40% each). Importantly, the number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls [5]. These findings were corroborated in other brain areas, and mutation frequencies correlated with the severity of Tau pathology (tauopathy). Interestingly, at the single cell level, most mutations were found in the neuronal support cells, rather than neurons. Furthermore, in cell cultures, ADNP mutations inhibited Tau-microtubule interactions [5]. The drug candidate, ADNP fragment NAP (NAPVSIPQ, containing a SxIP microtubule end binding proteins, EB1,3 binding motif), replaced/enhanced Tau-microtubule interaction in the face of ADNP mutations [5].

While brain somatic mutations present an interesting high-risk factor and a therapeutic target, these mutations are not appropriate for diagnostic measures, as sampling is problematic. However, with the discovery of more somatic mutations in non-neuronal cells as compared to neurons [5], we posited that blood borne cells will also display somatic mutations, accumulating with aging and brain diseases. As such, a study evaluating both AD brain and blood samples showed significant SNV increases with aging, and an almost 5-fold slower accumulation in brain compared to blood [8]. Regardless, the study discovered that low-level brain somatic mutations in the hippocampal formation were associated with dysregulation of Tau hyperphosphorylation [8]. Regarding aging-related accumulation of somatic mutations, Watson et al. [9], using blood sequencing data from ~50,000 individuals, revealed how mutations, genetic drift, and fitness shape the genetic diversity of healthy blood (clonal hematopoiesis), emphasizing that somatic mutations acquired in healthy tissues as we age are potentially major determinants of the aging process.

The advantages of blood biomarkers are considerable. A number of inorganic and organic markers found free in the plasma or within exosomes have shown a solid potential as biomarkers for AD,

including metallic ions, auto-antibodies, cytokines, phospholipids and microRNA-species. In 2012, researchers at the AD Neuroimaging Initiative and Australian Imaging Biomarker and Lifestyle Research Group produced a panel of 27 biomarkers that demonstrated small, but statistically significant changes between healthy individuals and AD patients [10]. These included proteins such as insulin-like growth-factor binding protein 2 (IGF-BP2), and β 2 microglobulin (β 2M) [10]. We and others also found a reduction in serum ADNP as correlated with reduced cognition and AD [11, 12]. Additionally, lower regulator of G-protein signaling 2 (RGS2) expression levels were discovered in mild cognitive impairment and AD blood samples, compared with controls [13]. These findings suggest ADNP and RGS2 as novel future AD biomarkers toward early AD detection and future disease modifying therapeutics. We also discovered an interaction between circulating pituitary adenylate cyclase-activating polypeptide (PACAP) and ADNP in terms of resilience to stressful conditions [14].

Aging and stress (including PTSD) serve as major risk factors for AD [15, 16], with PTSD possibly even doubling the risk of AD and dementia [16, 17]. The molecular mechanisms for this may include reduced “cognitive reserve”, suggested by impaired verbal memory in PTSD [18], as well as brain alterations in the hippocampus [19], anterior cingulate [20], and prefrontal structures [21]. Additionally, PTSD may be associated with independent risk factors for dementia including smoking, hypertension, hyperlipidemia, diabetes, obesity, inflammation, and major depression [21-23]. Interestingly, PTSD and dementia were also suggested to have a bidirectional relationship, with PTSD increasing the risk for late-onset dementia, while dementia increases the risk for delayed-onset PTSD in those who experienced a significant trauma earlier in life [24].

In this respect, a robust multi-omic panel for predicting combat-related PTSD diagnosis in male veteran populations was previously established, with 28 biomarkers including features from DNA

methylation, proteins, miRNAs, metabolites, and other molecular and physiological measurements [25]. This panel was implemented in an independent validation cohort, predicting PTSD diagnosis with 81% accuracy, 85% sensitivity, and 77% specificity, hence indicating that PTSD can potentially be identified using blood-based screening or diagnostic tools [25].

Here, we have analyzed peripheral blood samples from 85 Canadian infantry soldiers and showed mutated genes, associated with AD and autism, in peripheral blood cells of individuals suffering from symptoms of PTSD. These findings may pave the path to new diagnostic measures in molecular neurodegeneration as well as stressful conditions including PTSD.

Materials and Methods:

Design, Measures and Gene Expression Omnibus (GEO) Datamining

The gene expression dataset GSE109409 [26] was identified as containing a complete Next-Generation Sequencing (NGS) transcriptomics, RNA-seq data from peripheral blood samples of 85 male Canadian infantry soldiers (n = 58 participants negative for symptoms of PTSD and n = 27 participants with symptoms of PTSD), with an average age of 29.86 ± 7.4 years, after returning from deployment to Afghanistan.

To control for batch effects, biological and technical confounders, a set of 7 covariates was selected using a greedy step-down regression procedure combined with normalized gene count Principal Component Analysis (PCA). The set included aggregate batch, neutrophil count, white blood cell count, read percentage GC content, percentage of mapped reads, percentage reads not exonic and de-duplicated read percentage. Furthermore, the same number of soldiers had a previous deployment as those whose first deployment was Afghanistan both within and between groups [26].

Specifically, the soldiers took part in the study immediately after their return from deployment and every 4 months following that for up to 1-year [26]. Upon enrollment, soldiers were asked to complete the following series of questionnaires: a demographic information sheet, the Combat Exposure Scale from the Deployment risk and Resilience Inventory (DRRI) [27], and the Posttraumatic Stress Disorder Checklist for military personnel (PCL-M) [28]. The PCL is one of the most widely used self-report measures of PTSD, extensively used in the military [29, 30], and has been repeatedly shown to highly correlate the diagnostic gold standard, namely the Clinical-Administered PTSD Scale (CAPS) [30]. While neither the specific PTSD symptoms, nor any other related psychological disorder (e.g. depression) were mentioned in the original study, grouping the

participants based on a dichotomized PCL score has shown that 58 scored < 34 (Control) and 27 scored \geq 34 (Symptoms of PTSD) [26]. A cut-off score of 39 was previously found to be optimally efficient at identifying full PTSD [29]. Furthermore, scores between 35 and 49 have been shown to classify as risk for meeting subthreshold PTSD diagnostic criteria [7, 30, 31].

Following form completion, 2.5 ml of blood was collected using the PAXgene blood RNA collection protocol (PreAnalytiX GmbH, QIAGEN or BD) for gene expression and 4 ml of blood was collected for a complete blood count (CBC) [26].

Variant Calling

Variant calling was performed as before [5] according to GATK's best practices pipeline. Namely, trimmed reads were mapped to the human genome (Ensembl's GRCh38) using STAR v2.4.2a [32], with default parameters and twopassMode set to basic. Reads were then deduplicated using Picard. Mapped reads were further processed with GATK's v.3.7 [33] SplitNCigarReads, which was used as a method developed specially for RNA-seq, splits reads into exon segments (getting rid of Ns but maintaining grouping information) and hard-clips any sequences overhanging into the intronic regions. Next, the processed reads were used for variant calling by GATK's HaplotypeCaller with ploidy set to 10 in order to detect also low frequency variants. Variants were filtered with the following values for SNPs and Indels respectively: QD<2.0, FS>30.0, MQ<40.0, MQRankSum<-12.5, ReadPosRankSum<-8.0 and QD<2.0, FS>30.0 and ReadPosRankSum<-20.0. Variants were further filtered against dbSNP build 146 [34, 35], a widely used data source, integrated and referenced by many other databases and projects such as OMIM, Clinvar, 1000 genomes project, to name a few, and includes both pathogenic and non-pathogenic variants. Given the elaborate content of the dbSNP database, combined with the special settings of the current

project, in which low frequency mutations are called, extensive filtering had to be implemented, rather than reliance only on curated databases that may be more accurate than dbSNP, but less elaborate. Any variant that appeared there was discarded. Annotation was done with Ensembl's Variant Effect Predictor v.83 [36] against GRCh38. Only variants that were predicted to have high impact, had average coverage of at least 10 reads in each group and were covered by at least ~90%-95% of the samples in each group, that is by 27 samples in the PTSD-symptom and by 58 samples in the control, were considered in the analysis. Variant analysis and sample description are detailed in Tables S1A-B.

Comparative Databases

Using the Venn diagram tool (<https://bioinfogp.cnb.csic.es/tools/venny/>), several comparisons were performed with multiple sources including the autism spectrum disorder (ASD, autism) (<https://gene.sfari.org/database/human-gene/>), intellectual disability (ID) (http://www.ccgenomics.cn/IDGenetics/gene.php?dataset=IDGD_gene_detail), inflammatory response (<http://www.informatics.jax.org/go/term/GO:0006954>), cytoskeleton (<http://www.informatics.jax.org/go/term/GO:0005856>), and DNA repair (<http://www.informatics.jax.org/go/term/GO:0006281>) databases.

Statistics

Results are presented as means \pm standard error of the mean (SEM). Data were checked for normal distribution by normality test. Unpaired student's t-test or Mann-Whitney U test analyses were performed. P values smaller than 0.05 were considered significant. All tests were two-tailed. Outlier values were excluded using the GraphPad outlier calculator

(<https://www.graphpad.com/quickcals/Grubbs1.cfm>). All statistical analyses were conducted using either SigmaPlot version 11 for Windows (Systat Software, Inc., Chicago, IL, USA), or GraphPad Prism versions 5 & 6 for Windows (GraphPad Software, Inc., La Jolla, CA, USA).

Results:

Individuals in the PTSD-symptom group display a relatively high number of putative high impact mutations, compared with matched controls

When looking at putative high (e.g. protein truncating mutations) and moderate (e.g. a change in amino acid in the protein) impact mutations, a relatively high number of high impact mutation containing genes was found in the PTSD-symptom cohort similar to controls, taking into consideration a saturation effect. Thus, it should be noted that in general, the number of the detected mutations does not increase linearly with the number of samples, as the larger the cohort size is, there would be less new mutations, since most of these already appeared before. For high impact mutations, 1,147 genes were found to display 1,556 mutations in the PTSD-symptom group vs. 1,501 genes displaying 2,107 mutations in the control group (Fig. 1A). For moderate impact mutations, 1,985 genes were found to display 5,645 mutations in the PTSD-symptom group vs. 3,219 genes displaying 9,246 mutations in the control group (Fig. 1B). When looking at the average mutation frequency/number per subject, no significant differences were found between the tested groups, either in the case of high impact mutations, or in the case of moderate impact mutations (Fig. S1).

Cytoskeletal-related genes comprise the largest group of mutated genes among the PTSD-symptom and control cohorts

Based on our previous findings associating AD brain mutations with autism, intellectual disability, inflammatory response, cytoskeleton and DNA repair genes [5], putatively mutated genes in this cohort were crossed with known databases of these gene/protein groups (Supplemental, Figs. S2-21). We have identified the largest number of high impact mutated genes in the cytoskeletal protein

group (187), with 23 genes being specific for PTSD-symptom (Fig. 2, Venn diagram). As our previous analyses regarding gene/protein associations utilized the STRING tool [5], we performed a STRING analysis here, revealing several key mutated protein interactions including *TSC1*, *FMR1*, *GSK3B*, and *EZR*, specific to the PTSD-symptom population. The Tuberous Sclerosis 1 (*TSC1*) gene encodes the growth inhibitory protein hamartin, negatively regulating mammalian target of rapamycin complex 1 (mTORC1) signaling, with mutations in this gene previously associated with Tuberous Sclerosis [37]. The FMRP Translational Regulator 1 (*FMR1*) encodes an RNA-binding protein, and may be involved in mRNA trafficking from the nucleus to the cytoplasm, thus being implicated in Fragile X Syndrome [38]. The Glycogen Synthase Kinase-3 Beta (*GSK3B*) gene product is a serine-threonine kinase, serving as a negative regulator of glucose homeostasis [39]. This protein is involved in various processes including energy metabolism, inflammation, ER-stress, mitochondrial dysfunction, and apoptotic pathways [39]. Mutations in the *GSK3B* gene were linked with Parkinson's disease (PD) and AD [40, 41], with GSKB3 directly linked to tau hyperphosphorylation [42]. The Ezrin (*EZR*) gene encodes a cytoplasmic peripheral membrane protein, playing a key role in cell surface structure adhesion, migration and organization, as well as implicated in different human cancers [43].

When looking at the frequency of moderate impact mutations, a high number of cytoskeletal mutated genes was also discovered (442), including 74 genes specific for the PTSD-symptom group (Fig. 2).

Increased mutations in inflammatory genes in the PTSD-symptom cohort

Most of the high impact mutated genes, in all tested databases were shared (Supplemental, Figs. S2-11). Only the inflammation database showed more high impact putatively mutated genes

specific in the PTSD-symptom cohort as compared to controls (14 vs. 13) (Fig. 3). Further analysis identified the putatively mutated tumor necrosis factor (*TNF*), despite a low coverage of 2/7 in that region, in one person in the PTSD-symptom cohort. Importantly, *TNF* plays central roles in the immune response [44]. In this respect, other genes that exhibited PTSD-associated mutations are described below. Interleukin 1 Receptor Type 2 (*IL1R2*) encodes a cytokine receptor that belongs to the interleukin 1 receptor family [45]. It should be noted that cytokines in general serve as major mediators of the immune response, controlling different cellular functions including proliferation, differentiation and cell survival/apoptosis, as well as being involved in several pathophysiological processes [46]. Caspase 1 (*CASPI*) and Caspase 4 (*CASP4*) gene products play a central role in the execution-phase of cell apoptosis, with caspase 4 cleaving and activating its own precursor protein, as well as caspase 1 precursor [47, 48].

Moderate impact mutations in pro-inflammatory genes did not show similar trends to the high impact mutations described above (Supplemental Fig. S16-17).

Discussion:

The current paper reveals somatic mutations in the blood of PTSD patients, with suggestive unique patterns/genes, paving the path to future investigations and potential novel biomarkers affecting disease mechanisms.

Interestingly, in terms of gene expression, the study that originally collected the samples and assessed gene expression revealed an increased expression of the low-density lipoprotein receptor-related protein 8 (*LRP8*) as a PTSD-symptom-specific transcript [26]. *LRP8* is a cell surface receptor for Reelin (*RELN*) and apolipoprotein E (APOE)-containing ligands, important for brain development, with *APOE4* presenting the highest risk gene for AD [49] (Identifier: ENSP00000303634, *LRP8*). Additionally, Reelin-mediated atherosclerosis was shown to be promoted by isoforms E2 and E4 of APOE, hence increasing the risk for AD [50]. The other PTSD-symptom gene discovered in the original study is Golgi membrane protein 1 (*GOLM1*) [26], a cellular response protein to viral infection, belonging to the *GOLM1/CASC4* family (Identifier: ENSP00000373364, *GOLM*). These results suggest an association of PTSD with viral infection [51], which may also account, in part, for a potentially increased mutation rate [52]. Interestingly, *GOLM1* was previously found to be significantly increased in an aged mouse model of AD [53]. In this respect, gene expression levels are not directly linked with higher mutation rates, with neither *LRP8* nor *GOLM1* found here among the mutated genes. Similarly, we did not find mutations in IGF-BP2, β 2 microglobulin ($\beta 2M$) [10] and ADNP, suggested in our introduction to change in blood samples as a consequence of AD, given that serum levels correlate with reduced cognition and AD [11, 12]. Notably, ADNP/NAP (regulating cytoskeletal dynamics) [5] control *ApoE* expression in a sex-dependent manner [54].

Importantly, in the current study several cytoskeleton-related genes were found to carry a high impact mutation, only in the PTSD-symptom cohort, including *TSC1*, *FMR1*, *GSK3B* and *EZR*. Regardless, it should be noted that the current study is a somewhat pioneering study, with many of the mutated genes appearing only in a single or a few individuals, and having a low coverage. This suggests that these mutations should be validated and examined in larger cohorts. Interestingly, *TSC1*, *FMR1*, *GSK3B* and *EZR* are linked with either the neurodegenerative AD or the neurodevelopmental autism spectrum disorder (ASD) [41, 55-61]. In this respect, PTSD may be associated with the risk of developing dementia, specifically of the common AD type [17, 62]. Alterations of hormones, regulating the production and deposition of amyloid beta (A β) plaques, a diagnostic feature of AD dementia, have also been suggested to cause PTSD [63, 64]. Additionally, several pathways possibly linking trauma and autism were previously suggested, with ASD potentially serving as a vulnerability marker for PTSD, specifically by increasing the risk for exposure to traumatic events. Then, once PTSD has appeared, it may exacerbate ASD symptoms [65]. Importantly, ASD and PTSD may share underlying common molecular mechanisms, leading to neurological abnormalities associated with both disorders, as well as cognitive and behavioral outcomes such as cognitive rigidity, anger and aggression [65]. Furthermore, the reciprocal neuro-immune interactions, with immune cells/factors affecting brain cells [66, 67] and the brain affecting immune responses [68], are of great interest. These interactions are directly associated with changes in circulating cytokine amounts (e.g. IL-6) as a consequence of trauma [69]. Here, high impact mutations have been discovered in *TNF* (a key player in the immune response), as well as *IL1R2* only in the PTSD-symptom cohorts, and not the control cohorts, thus implicating somatic mutations/immune-genetics in susceptibility to PTSD. Conforming to these findings, previous independent studies looking at blood biomarkers suggested

that individuals suffering from PTSD display increased levels of proinflammatory markers, including interleukin-1 β (IL-1 β), interleukin-6 (IL-6), TNF- α , and C-reactive protein, compared with healthy controls [70-73]. Additionally, *CASPI* and *CASP4* genes were also found to be mutated solely in the PTSD-symptom cohort. These caspases are involved in the processing and secretion of pro-inflammatory molecules and are often referred as “pro-inflammatory caspases” [47, 48], thereby indicative of a possible inflammatory state in PTSD patients. The connection between a systemic pro-inflammatory state and PTSD was previously emphasized by several studies [74]. For example, increased levels of cytokines, as those observed in PTSD, may cause inflammation, damaging the brain and further increasing the risk of dementia [17, 63]. Interestingly, opposing findings were also reported, with no significant correlations found between inflammatory markers and severity of PTSD symptoms [72].

Future investigations with larger cohorts, deeper coverage and validation methods should further assess the impact of blood as a surrogate source for mutation biomarkers. These future investigations should further investigate similarities of blood and brain-identified cytoskeletal and aging-related mutations, thus enabling the identification of populations at risk. In line with that, a recent study in thousands of civilian and military Europeans identified significant PTSD gene expression associations [75]. Specifically, in the civilian and military cohorts, the Zinc Finger Protein 140 (ZNF140) was predicted to be upregulated in whole blood, and the splicing regulator Small Nuclear Ribonucleoprotein U11/U12 Subunit 35 (SNRNP35) was predicted to be downregulated in the dorsolateral prefrontal cortex, further linked to stress and glucocorticoids [75]. However, this study did not analyze for potential mutations and study limitations should take into consideration potential sequencing bias [76].

Interestingly, when searching PubMed, several RNA-seq gene expression databases obtained from human peripheral blood leukocytes in PTSD cohorts were found. These databases were either limited (GSE83601)[77], did not represent a soldier cohort (GSE97356)[78], or included PTSD patients (rather the symptomatic cases), and cannot be claimed as ethnically different from the Canadian cohort used in our study (GSE64814; RNA-seq from peripheral blood leukocytes of U.S. Marines, N=188, obtained both pre- and post-deployment to conflict zones)[79]. Future studies should target additional populations to provide a further global aspect of the research outcome. In practical terms, our findings may further suggest the use of preventative treatments, such as drugs targeting the cytoskeletal system, as we proposed before, with NAP [5], and ADNP-regulating peptide hormones including pituitary adenylate cyclase-activating polypeptide (PACAP) [14]. Notably, the previously demonstrated efficacy for NAP in amnestic mild cognitive impairment population [80, 81], coupled with patient stratification-based on similar and extended studies as described above, will facilitate a personalized, precision medicine for PTSD and prodromal AD.

To conclude, our previous discovery of potential brain somatic mutations as driving AD focused on ADNP/NAP targeting microtubule end binding proteins [5]. In this respect, ADNP/NAP take a major regulatory role in neuronal and immunological functions [54, 82-84]. This finding is enhanced by our further discovery of numerous somatic mutated genes revealing preponderance in cytoskeletal/autism/intellectual disability AD-postmortem brain mutations [5], which are associated with synaptic plasticity in the brain [54, 85], as well as the functionality of the immune synapse [86, 87]. Interestingly, original studies, also at the brain ultrastructural level, revealed microtubule reduction in AD and aging that is independent of tau filament formation, focusing on microtubule cytoskeleton in general [88]. Our current findings enhance the applicability of the

previous postmortem brain discoveries, with PTSD-symptomatic patients carrying specific potentially treatable gene mutations, mirroring to some degree brain dysfunctions, and possibly leading toward precision medicine.

Declarations:

Ethics approval and consent to participate: The dataset used in the current study was obtained according to the research protocol, previously accepted under the Human Research Ethics Committee (HREC) of Defense Research and Development Canada (DRDC) - Protocol 2017-019 [26].

Consent for publication: All authors declare their consent for publication.

Availability of data and materials: The dataset supporting the conclusions of this article is available at GEO with the accession number: GSE109409.

Authors' contributions: Shlomo Sragovich performed the data analysis and mining. Michael Gershovits performed the bioinformatics mutational analysis. Professors Jacqueline CK Lam and Victor OK Li contributed to the discussion and background. Professor Illana Gozes led the project, provided funding, analyzed data, and wrote the paper.

Acknowledgements:

Shlomo Sragovich is a former Levi Eshkol Ph.D. fellow, supported by the Israel Ministry of Science and Technology, the Tel Aviv University GRTF, The Naomi Foundation, The Eldee Foundation/Bloomfield Family of Montreal awards for student exchange (Tel Aviv University/McGill University), and The BioInnovation Fellowship & Mentorship by Teva. Professor Illana Gozes the former, Lily and Avraham Gildor Chair for the Investigation of Growth Factors is supported by the following grants: MAFAT, AMN Foundation, ERA-NET neuron ADNPinMED and Drs. Ronith and Armand Stemmer, French Friends of Tel Aviv University).

Conflict of Interest/Disclosure Statement:

Professor Illana Gozes is the Chief Scientific Officer of Coronis Neurosciences. NAP (CP201) use is under patent protection (US patent nos. US7960334, US8618043, and USWO2017130190A1).

References:

- [1] Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, Sherman MA, Vitzthum CM, Luquette LJ, Yandava CN, Yang P, Chittenden TW, Hatem NE, Ryu SC, Woodworth MB, Park PJ, Walsh CA (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. *Science* **359**, 555-559.
- [2] Verheijen BM, Vermulst M, van Leeuwen FW (2018) Somatic mutations in neurons during aging and neurodegeneration. *Acta Neuropathol* **135**, 811-826.
- [3] Leija-Salazar M, Piette C, Proukakis C (2018) Review: Somatic mutations in neurodegeneration. *Neuropathol Appl Neurobiol* **44**, 267-285.
- [4] Rohrback S, Siddoway B, Liu CS, Chun J (2018) Genomic mosaicism in the developing and adult brain. *Dev Neurobiol* **78**, 1026-1048.
- [5] Ivashko-Pachima Y, Hadar A, Grigg I, Korenkova V, Kapitansky O, Karmon G, Gershovits M, Sayas CL, Kooy RF, Attems J, Gurwitz D, Gozes I (2019) Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study. *Mol Psychiatry*.
- [6] Soheili-Nezhad S, van der Linden RJ, Olde Rikkert M, Sprooten E, Poelmans G (2020) Long genes are more frequently affected by somatic mutations and show reduced expression in Alzheimer's disease: Implications for disease etiology. *Alzheimers Dement*.
- [7] Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, Stevens C, Reichert J, Mulhern MS, Artomov M, Gerges S, Sheppard B, Xu X, Bhaduri A, Norman U, Brand H, Schwartz G, Nguyen R, Guerrero EE, Dias C, Autism Sequencing C, i P-BC, Betancur C, Cook EH, Gallagher L, Gill M, Sutcliffe JS, Thurm A, Zwick ME, Borglum AD, State MW, Cicek AE, Talkowski ME, Cutler DJ,

Devlin B, Sanders SJ, Roeder K, Daly MJ, Buxbaum JD (2020) Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. *Cell* **180**, 568-584 e523.

[8] Park JS, Lee J, Jung ES, Kim MH, Kim IB, Son H, Kim S, Kim S, Park YM, Mook-Jung I, Yu SJ, Lee JH (2019) Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation. *Nat Commun* **10**, 3090.

[9] Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, Fisher DS, Blundell JR (2020) The evolutionary dynamics and fitness landscape of clonal hematopoiesis. *Science* **367**, 1449-1454.

[10] Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, Rumble R, Szoek C, Taddei K, Taddei T, Trounson B, Ames D, Masters CL, Martins RN, Alzheimer's Disease Neuroimaging I, Australian Imaging B, Lifestyle Research G (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. *Arch Neurol* **69**, 1318-1325.

[11] Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I (2016) Blood-Borne Activity-Dependent Neuroprotective Protein (ADNP) is Correlated with Premorbid Intelligence, Clinical Stage, and Alzheimer's Disease Biomarkers. *J Alzheimers Dis* **50**, 249-260.

[12] Yang MH, Yang YH, Lu CY, Jong SB, Chen LJ, Lin YF, Wu SJ, Chu PY, Chung TW, Tyan YC (2012) Activity-dependent neuroprotector homeobox protein: A candidate protein identified in serum as diagnostic biomarker for Alzheimer's disease. *J Proteomics* **75**, 3617-3629.

[13] Hadar A, Milanesi E, Squassina A, Niola P, Chillotti C, Pasmanik-Chor M, Yaron O, Martasek P, Rehavi M, Weissglas-Volkov D, Shomron N, Gozes I, Gurwitz D (2016) RGS2 expression predicts amyloid-beta sensitivity, MCI and Alzheimer's disease: genome-wide transcriptomic profiling and bioinformatics data mining. *Transl Psychiatry* **6**, e909.

[14] Sragovich S, Ziv Y, Vaisvaser S, Shomron N, Hendl T, Gozes I (2019) The autism-mutated ADNP plays a key role in stress response. *Transl Psychiatry* **9**, 235.

[15] Song H, Sieurin J, Wirdefeldt K, Pedersen NL, Almqvist C, Larsson H, Valdimarsdottir UA, Fang F (2020) Association of Stress-Related Disorders With Subsequent Neurodegenerative Diseases. *JAMA Neurol*.

[16] Gunak MM, Billings J, Carratu E, Marchant NL, Favarato G, Orgeta V (2020) Post-traumatic stress disorder as a risk factor for dementia: systematic review and meta-analysis. *Br J Psychiatry*, 1-9.

[17] Yaffe K, Vittinghoff E, Lindquist K, Barnes D, Covinsky KE, Neylan T, Kluse M, Marmar C (2010) Posttraumatic stress disorder and risk of dementia among US veterans. *Arch Gen Psychiatry* **67**, 608-613.

[18] Samuelson KW, Neylan TC, Lenoci M, Metzler TJ, Cardenas V, Weiner MW, Marmar CR (2009) Longitudinal effects of PTSD on memory functioning. *J Int Neuropsychol Soc* **15**, 853-861.

[19] Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR, Weiner MW, Schuff N (2010) Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. *Arch Gen Psychiatry* **67**, 296-303.

[20] Schuff N, Neylan TC, Fox-Bosetti S, Lenoci M, Samuelson KW, Studholme C, Kornak J, Marmar CR, Weiner MW (2008) Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. *Psychiatry Res* **162**, 147-157.

[21] Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S (2009) Smaller global and regional cortical volume in combat-related posttraumatic stress disorder. *Arch Gen Psychiatry* **66**, 1373-1382.

[22] O'Donnell ML, Creamer M, Pattison P (2004) Posttraumatic stress disorder and depression following trauma: understanding comorbidity. *Am J Psychiatry* **161**, 1390-1396.

[23] Shalev AY, Freedman S, Peri T, Brandes D, Sahar T, Orr SP, Pitman RK (1998) Prospective study of posttraumatic stress disorder and depression following trauma. *Am J Psychiatry* **155**, 630-637.

[24] Desmarais P, Weidman D, Wassef A, Bruneau MA, Friedland J, Bajsarowicz P, Thibodeau MP, Herrmann N, Nguyen QD (2020) The Interplay Between Post-traumatic Stress Disorder and Dementia: A Systematic Review. *Am J Geriatr Psychiatry* **28**, 48-60.

[25] Dean KR, Hammamieh R, Mellon SH, Abu-Amara D, Flory JD, Guffanti G, Wang K, Daigle BJ, Jr., Gautam A, Lee I, Yang R, Almli LM, Bersani FS, Chakraborty N, Donohue D, Kerley K, Kim TK, Laska E, Young Lee M, Lindqvist D, Lori A, Lu L, Misganaw B, Muhie S, Newman J, Price ND, Qin S, Reus VI, Siegel C, Somvanshi PR, Thakur GS, Zhou Y, Consortium PSB, Hood L, Ressler KJ, Wolkowitz OM, Yehuda R, Jett M, Doyle FJ, 3rd, Marmar C (2019) Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. *Mol Psychiatry*.

[26] Boscarino C, Nalpathamkalam T, Pellecchia G, Li W, Thiruvahindrapuram B, Merico D (2019) Using Next-Generation Sequencing Transcriptomics To Determine Markers of

Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers. *G3 (Bethesda)* **9**, 463-471.

[27] Vogt D, Smith BN, King LA, King DW, Knight J, Vasterling JJ (2013) Deployment risk and resilience inventory-2 (DRRI-2): an updated tool for assessing psychosocial risk and resilience factors among service members and veterans. *J Trauma Stress* **26**, 710-717.

[28] McDonald SD, Calhoun PS (2010) The diagnostic accuracy of the PTSD checklist: a critical review. *Clin Psychol Rev* **30**, 976-987.

[29] Dickstein BD, Weathers FW, Angkaw AC, Nievergelt CM, Yurgil K, Nash WP, Baker DG, Litz BT, Marine Resiliency Study T (2015) Diagnostic Utility of the Posttraumatic Stress Disorder (PTSD) Checklist for Identifying Full and Partial PTSD in Active-Duty Military. *Assessment* **22**, 289-297.

[30] Bovin MJ, Marx BP, Weathers FW, Gallagher MW, Rodriguez P, Schnurr PP, Keane TM (2016) Psychometric properties of the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (PCL-5) in veterans. *Psychol Assess* **28**, 1379-1391.

[31] Hellmuth JC, Stappenbeck CA, Hoerster KD, Jakupcak M (2012) Modeling PTSD symptom clusters, alcohol misuse, anger, and depression as they relate to aggression and suicidality in returning U.S. veterans. *J Trauma Stress* **25**, 527-534.

[32] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

[33] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a

MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**, 1297-1303.

[34] Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotnik K (2001) dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res* **29**, 308-311.

[35] Bhagwat M (2010) Searching NCBI's dbSNP database. *Curr Protoc Bioinformatics Chapter 1*, Unit 1 19.

[36] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The Ensembl Variant Effect Predictor. *Genome Biol* **17**, 122.

[37] Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. *Biochem J* **412**, 179-190.

[38] Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. *Neuron* **60**, 201-214.

[39] Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. *Pharmacol Ther* **148**, 114-131.

[40] Credle JJ, George JL, Wills J, Duka V, Shah K, Lee YC, Rodriguez O, Simkins T, Winter M, Moechars D, Steckler T, Goudreau J, Finkelstein DI, Sidhu A (2015) GSK-3beta dysregulation contributes to parkinson's-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and alpha-synuclein. *Cell Death Differ* **22**, 838-851.

[41] Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer's disease. *J Neurochem* **104**, 1433-1439.

[42] Teixeira CM, Pallas-Bazarr N, Bolos M, Terreros-Roncal J, Avila J, Llorens-Martin M (2018) Untold New Beginnings: Adult Hippocampal Neurogenesis and Alzheimer's Disease. *J Alzheimers Dis* **64**, S497-S505.

[43] Li J, Wei K, Yu H, Jin D, Wang G, Yu B (2015) Prognostic Value of Ezrin in Various Cancers: A Systematic Review and Updated Meta-analysis. *Sci Rep* **5**, 17903.

[44] Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MM, Flynn JL, Chan J (2001) Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. *Infect Immun* **69**, 1847-1855.

[45] Peters VA, Joesting JJ, Freund GG (2013) IL-1 receptor 2 (IL-1R2) and its role in immune regulation. *Brain Behav Immun* **32**, 1-8.

[46] Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. *Biochim Biophys Acta* **1843**, 2563-2582.

[47] Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. *Cell Death Differ* **14**, 10-22.

[48] Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. *Cell Death Differ* **6**, 1028-1042.

[49] Belloy ME, Napolioni V, Greicius MD (2019) A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. *Neuron* **101**, 820-838.

[50] Weiner MW, Veitch DP, Hayes J, Neylan T, Grafman J, Aisen PS, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Shaw LM, Saykin AJ, Green RC, Harvey D, Toga AW, Friedl KE, Pacifico A, Sheline Y, Yaffe K, Mohlenhoff B, Department of Defense Alzheimer's Disease Neuroimaging I (2014) Effects of traumatic brain injury and posttraumatic stress

disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative. *Alzheimers Dement* **10**, S226-235.

[51] Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ (2020) The psychological impact of quarantine and how to reduce it: rapid review of the evidence. *Lancet* **395**, 912-920.

[52] Chen XP, Long X, Jia WL, Wu HJ, Zhao J, Liang HF, Laurence A, Zhu J, Dong D, Chen Y, Lin L, Xia YD, Li WY, Li GB, Zhao ZK, Wu K, Hou Y, Yu JJ, Xiao W, Wang GP, Zhu PC, Chen W, Bai MZ, Jian YX, Kristiansen K, Chen Q (2019) Viral integration drives multifocal HCC during the occult HBV infection. *J Exp Clin Cancer Res* **38**, 261.

[53] Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA (2014) Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. *Front Aging Neurosci* **6**, 75.

[54] Hacohen-Kleiman G, Sragovich S, Karmon G, Gao AYL, Grigg I, Pasmanik-Chor M, Le A, Korenkova V, McKinney RA, Gozes I (2018) Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. *J Clin Invest* **128**, 4956-4969.

[55] Zeidan-Chulia F, de Oliveira BH, Salmina AB, Casanova MF, Gelain DP, Noda M, Verkhratsky A, Moreira JC (2014) Altered expression of Alzheimer's disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. *Cell Death Dis* **5**, e1250.

[56] Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. *Nature* **488**, 647-651.

[57] Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. *Mol Autism* **1**, 12.

[58] Renoux AJ, Carducci NM, Ahmady AA, Todd PK (2014) Fragile X mental retardation protein expression in Alzheimer's disease. *Front Genet* **5**, 360.

[59] Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS (2010) GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. *PLoS One* **5**, e9706.

[60] Vega IE, Umstead A, Wygant CM, Beck JS, Counts SE (2018) Ezrin Expression is Increased During Disease Progression in a Tauopathy Mouse Model and Alzheimer's Disease. *Curr Alzheimer Res* **15**, 1086-1095.

[61] Di Benedetto D, Di Vita G, Romano C, Giudice ML, Vitello GA, Zingale M, Grillo L, Castiglia L, Musumeci SA, Fichera M (2013) 6p22.3 deletion: report of a patient with autism, severe intellectual disability and electroencephalographic anomalies. *Mol Cytogenet* **6**, 4.

[62] Rafferty LA, Cawkill PE, Stevelink SAM, Greenberg K, Greenberg N (2018) Dementia, post-traumatic stress disorder and major depressive disorder: a review of the mental health risk factors for dementia in the military veteran population. *Psychol Med* **48**, 1400-1409.

[63] Byers AL, Yaffe K (2014) Depression and dementias among military veterans. *Alzheimers Dement* **10**, S166-173.

[64] Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R, Carrillo MC (2014) Alzheimer's Disease prevalence, costs, and prevention for military personnel and veterans. *Alzheimers Dement* **10**, S105-110.

[65] Haruvi-Lamdan N, Horesh D, Golan O (2018) PTSD and autism spectrum disorder: Co-morbidity, gaps in research, and potential shared mechanisms. *Psychol Trauma* **10**, 290-299.

[66] Gozes Y, Moskowitz MA, Strom TB, Gozes I (1982) Conditioned media from activated lymphocytes maintain sympathetic neurons in culture. *Brain Res* **282**, 93-97.

[67] Brenneman DE, Schultzberg M, Bartfai T, Gozes I (1992) Cytokine regulation of neuronal survival. *J Neurochem* **58**, 454-460.

[68] Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, Green NL, Admon Y, Hakim F, Shen-Orr SS, Rolls A (2016) Activation of the reward system boosts innate and adaptive immunity. *Nat Med* **22**, 940-944.

[69] Rodney T, Taylor P, Dunbar K, Perrin N, Lai C, Roy M, Gill J (2020) High IL-6 in Military Personnel Relates to Multiple Traumatic Brain Injuries and Post-Traumatic Stress Disorder. *Behav Brain Res*, 112715.

[70] Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhaes PV, Kapczinski F, Kauer-Sant'Anna M (2015) Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. *Lancet Psychiatry* **2**, 1002-1012.

[71] Imai R, Hori H, Itoh M, Lin M, Niwa M, Ino K, Ogawa S, Ishida M, Sekiguchi A, Matsui M, Kunugi H, Akechi T, Kamo T, Kim Y (2018) Inflammatory markers and their possible

effects on cognitive function in women with posttraumatic stress disorder. *J Psychiatr Res* **102**, 192-200.

[72] Lindqvist D, Dhabhar FS, Mellon SH, Yehuda R, Grenon SM, Flory JD, Bierer LM, Abu-Amara D, Coy M, Makotkine I, Reus VI, Bersani FS, Marmar CR, Wolkowitz OM (2017) Increased pro-inflammatory milieu in combat related PTSD - A new cohort replication study. *Brain Behav Immun* **59**, 260-264.

[73] Bruenig D, Mehta D, Morris CP, Harvey W, Lawford B, Young RM, Voisey J (2017) Genetic and serum biomarker evidence for a relationship between TNFalpha and PTSD in Vietnam war combat veterans. *Compr Psychiatry* **74**, 125-133.

[74] Speer K, Upton D, Semple S, McKune A (2018) Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. *J Inflamm Res* **11**, 111-121.

[75] Huckins LM, Chatzinakos C, Breen MS, Hartmann J, Klengel T, da Silva Almeida AC, Dobbyn A, Girdhar K, Hoffman GE, Klengel C, Logue MW, Lori A, Maihofer AX, Morrison FG, Nguyen HT, Park Y, Ruderfer D, Sloofman LG, van Rooij SJH, Consortium PWGoPG, Baker DG, Chen CY, Cox N, Duncan LE, Geyer MA, Glatt SJ, Im HK, Risbrough VB, Smoller JW, Stein DJ, Yehuda R, Liberzon I, Koenen KC, Jovanovic T, Kellis M, Miller MW, Bacanu SA, Nievergelt CM, Buxbaum JD, Sklar P, Ressler KJ, Stahl EA, Daskalakis NP (2020) Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. *Cell Rep* **31**, 107716.

[76] Kim J, Zhao B, Huang AY, Miller MB, Lodato MA, Walsh CA, Lee EA (2019) Evidence that APP gene copy number changes reflect recombinant vector contamination. *bioRxiv*, 706788.

[77] Bam M, Yang X, Zumbrun EE, Zhong Y, Zhou J, Ginsberg JP, Leyden Q, Zhang J, Nagarkatti PS, Nagarkatti M (2016) Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. *Sci Rep* **6**, 31209.

[78] Kuan PF, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, Glenn ST, Cortes Gomez E, Wang J, Bromet E, Luft BJ (2017) Gene expression associated with PTSD in World Trade Center responders: An RNA sequencing study. *Transl Psychiatry* **7**, 1297.

[79] Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, Risbrough VB, Baker DG, O'Connor DT, Nievergelt CM, Woelk CH (2015) Gene networks specific for innate immunity define post-traumatic stress disorder. *Mol Psychiatry* **20**, 1538-1545.

[80] Gozes I, Stewart A, Morimoto B, Fox A, Sutherland K, Schmeche D (2009) Addressing Alzheimer's disease tangles: from NAP to AL-108. *Curr Alzheimer Res* **6**, 455-460.

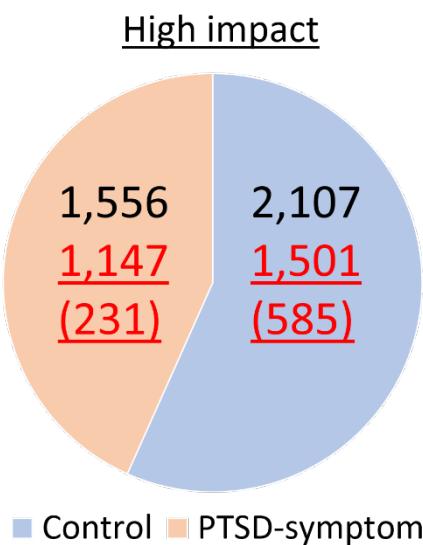
[81] Morimoto BH, Schmechel D, Hirman J, Blackwell A, Keith J, Gold M, Study AL (2013) A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. *Dement Geriatr Cogn Disord* **35**, 325-336.

[82] Kapitansky O, Giladi E, Jaljuli I, Bereswill S, Heimesaat MM, Gozes I (2020) Microbiota changes associated with ADNP deficiencies: rapid indicators for NAP (CP201) treatment of the ADNP syndrome and beyond. *J Neural Transm (Vienna)* **127**, 251-263.

[83] Mollinedo P, Kapitansky O, Gonzalez-Lamuno D, Zaslavsky A, Real P, Gozes I, Gandlerillas A, Fernandez-Luna JL (2019) Cellular and animal models of skin alterations in the autism-related ADNP syndrome. *Sci Rep* **9**, 736.

[84] Heimesaat MM, Mousavi S, Klove S, Genger C, Weschka D, Giladi E, Bereswill S, Gozes I (2020) Immune-modulatory Properties of the Octapeptide NAP in *Campylobacter jejuni* Infected Mice Suffering from Acute Enterocolitis. *Microorganisms* **8**.

[85] Oz S, Kapitansky O, Ivashco-Pachima Y, Malishkevich A, Giladi E, Skalka N, Rosin-Arbesfeld R, Mittelman L, Segev O, Hirsch JA, Gozes I (2014) The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. *Mol Psychiatry* **19**, 1115-1124.

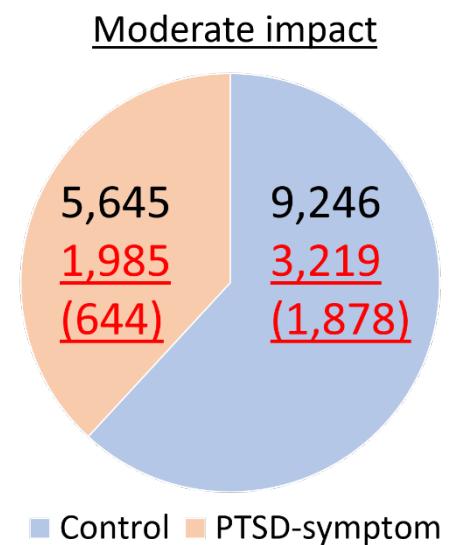

[86] Zhang X, Yu Y, Bai B, Wang T, Zhao J, Zhang N, Zhao Y, Wang X, Wang B (2020) PTPN22 interacts with EB1 to regulate T-cell receptor signaling. *FASEB J.*

[87] Taffoni C, Omi S, Huber C, Mailfert S, Fallet M, Rupprecht JF, Ewbank JJ, Pujol N (2020) Microtubule plus-end dynamics link wound repair to the innate immune response. *Elife* **9**.

[88] Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avila J, Jones PK, Castellani RJ, Smith MA, Perry G (2003) Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. *Am J Pathol* **162**, 1623-1627.

Figure Legends:

A

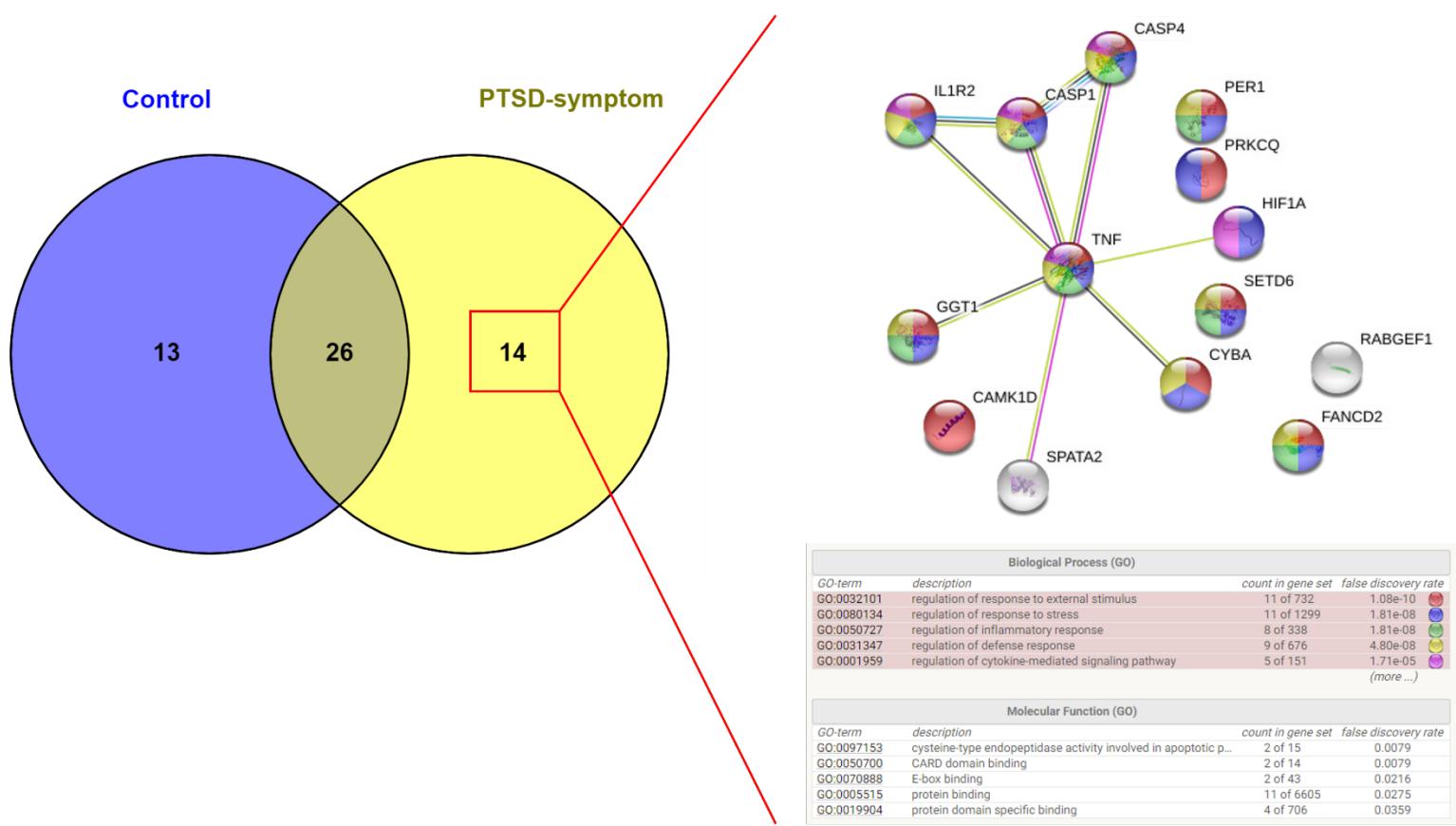

Control N=58

PTSD N=27

N=Mutations


N=Genes (specific
for the group)

B


Figure 1. Soldiers display somatic mutations in blood cells.

(A-B) The pie charts represent distribution of high and moderate impact mutations into two groups: control and PTSD-symptom (n = 58 control participants negative for symptoms of PTSD and n = 27 participants positive for PTSD symptoms).

Figure 2. Cytoskeletal-related genes in the PTSD-symptom group are most frequently mutated.

STRING analysis was performed for cytoskeletal-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for putative 23 high impact PTSD-specific genes. Enriched biological processes, molecular functions and pathways are presented for these genes, most frequently mutated, compared with the control group. An additional Venn diagram is presented for moderate impact mutations.

Figure 3. Inflammation-related genes in the PTSD-symptom group are increasingly mutated.

STRING analysis was performed for inflammation-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for putative 14 high impact PTSD-specific genes. Enriched biological processes, molecular functions and pathways are presented for these genes, most frequently mutated, compared with the control group.

Supplementary Materials:

Putative Blood Somatic Mutations in PTSD-symptomatic Soldiers: High Impact of Cytoskeletal and Inflammatory Proteins

Shlomo Sragovich¹, Michael Gershovits² Jacqueline CK Lam^{3,4,5}, Victor OK Li³

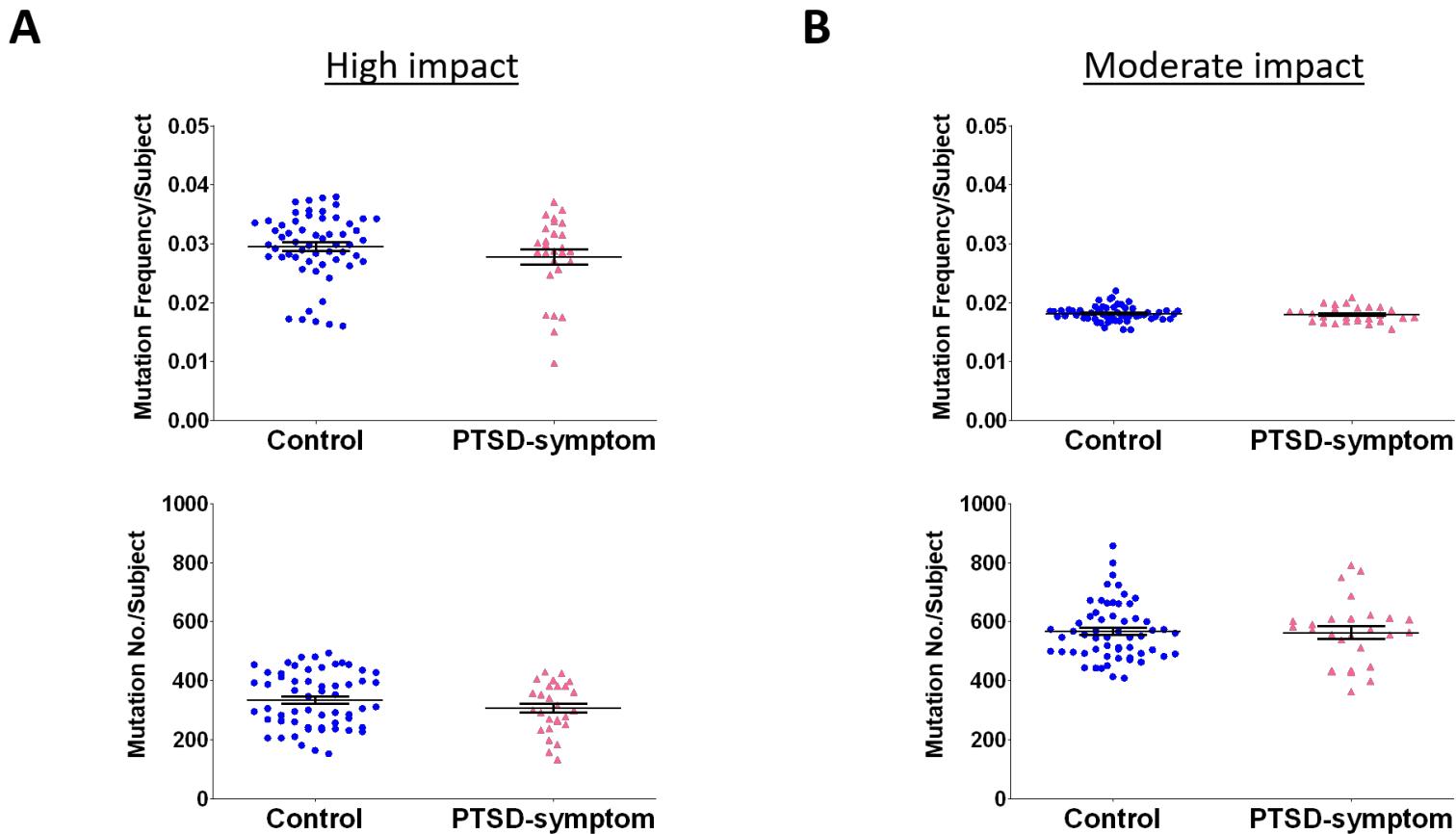
and Illana Gozes^{1*}

Running title: Blood Borne Somatic Mutations in PTSD

¹The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel; ²The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; ⁴Department of Computer Science and Technology, The University of Cambridge, Cambridge, UK; ⁵CEEPR, MIT Energy Initiative, MIT, Cambridge, Massachusetts, USA.

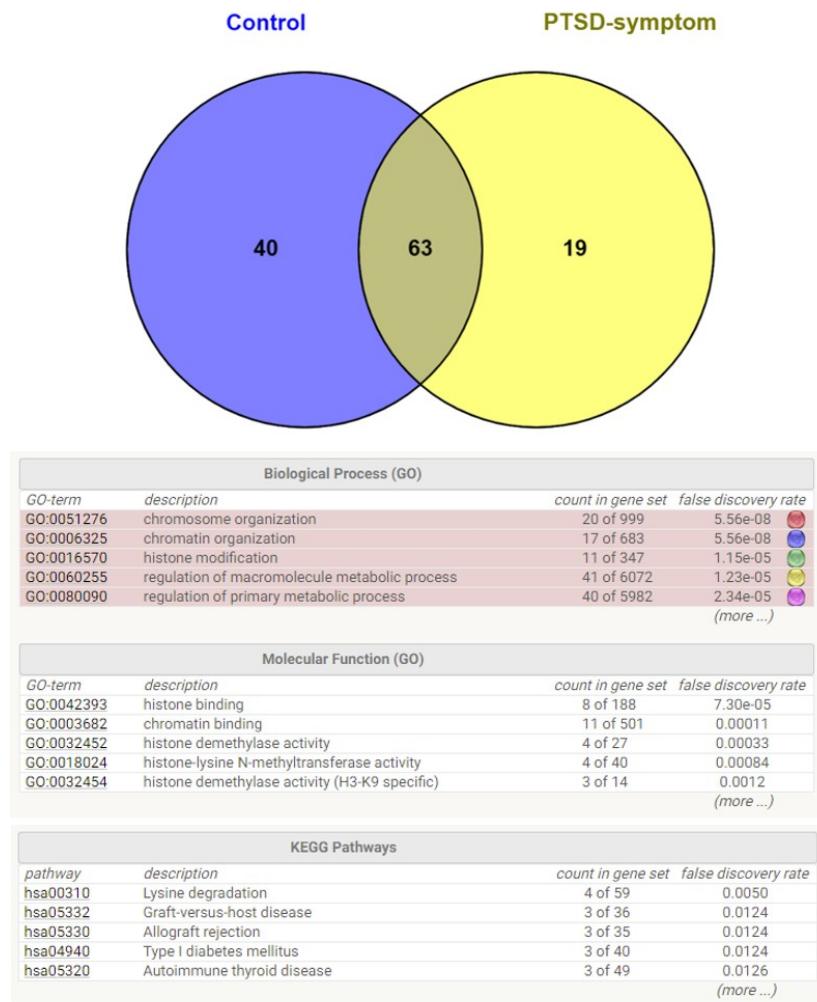
***Corresponding author:**

Illana Gozes, Ph.D.; Professor of Clinical Biochemistry


Head, the Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology
Sackler Faculty of Medicine, Tel Aviv University

Tel Aviv 69978, Israel, Phone: 972-3-640-7240, Fax: 972-3-640-8541

E-mail: igozes@tauex.tau.ac.il


Keywords: ADNP, NAP, PACAP, PTSD, Blood Biomarkers

Supplemental Figures:

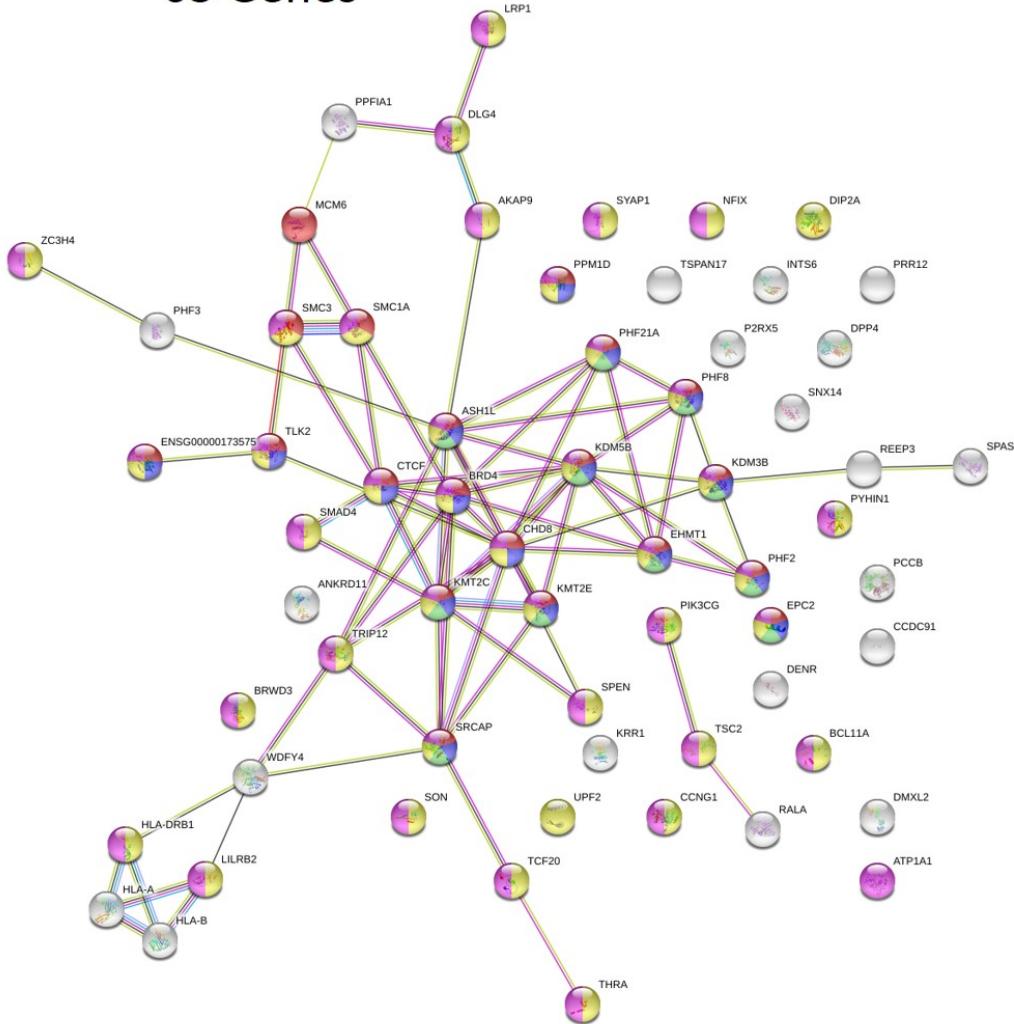


Figure S1. No significant differences were observed in either high or moderate impact mutation frequencies/numbers per subject between control and PTSD-symptom groups.

(A) high impact mutation frequency/number per subject, and (B) moderate impact mutation frequency/number per subject for each group in the peripheral blood leukocytes ($n = 58$ control participants negative for symptoms of PTSD and $n = 27$ participants positive for PTSD symptoms).

63 Genes

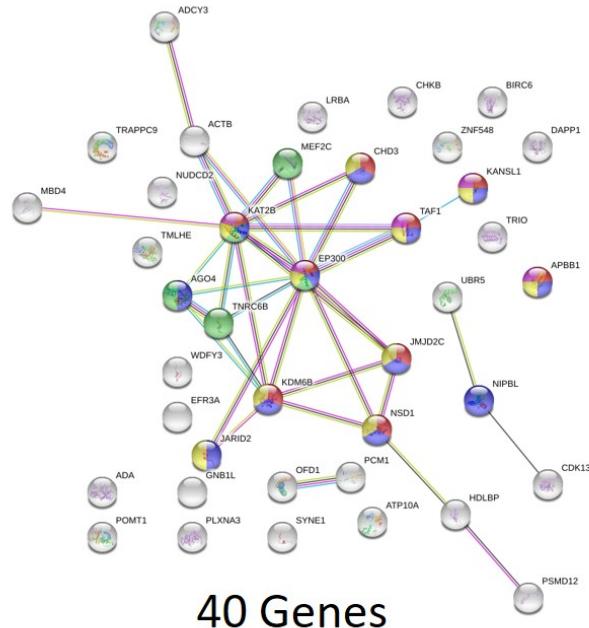
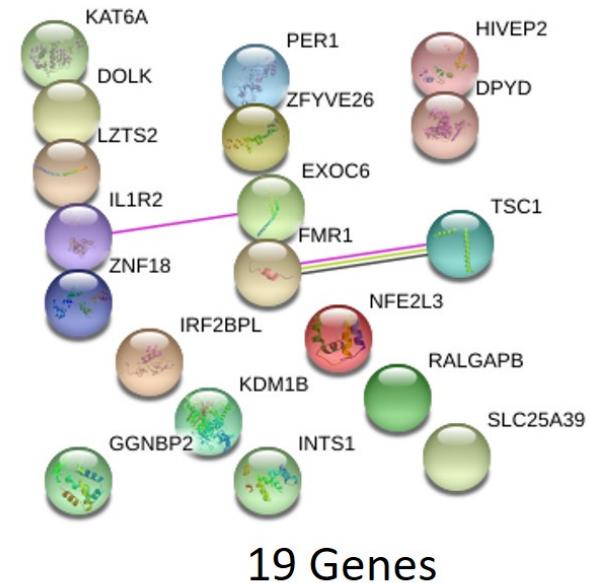


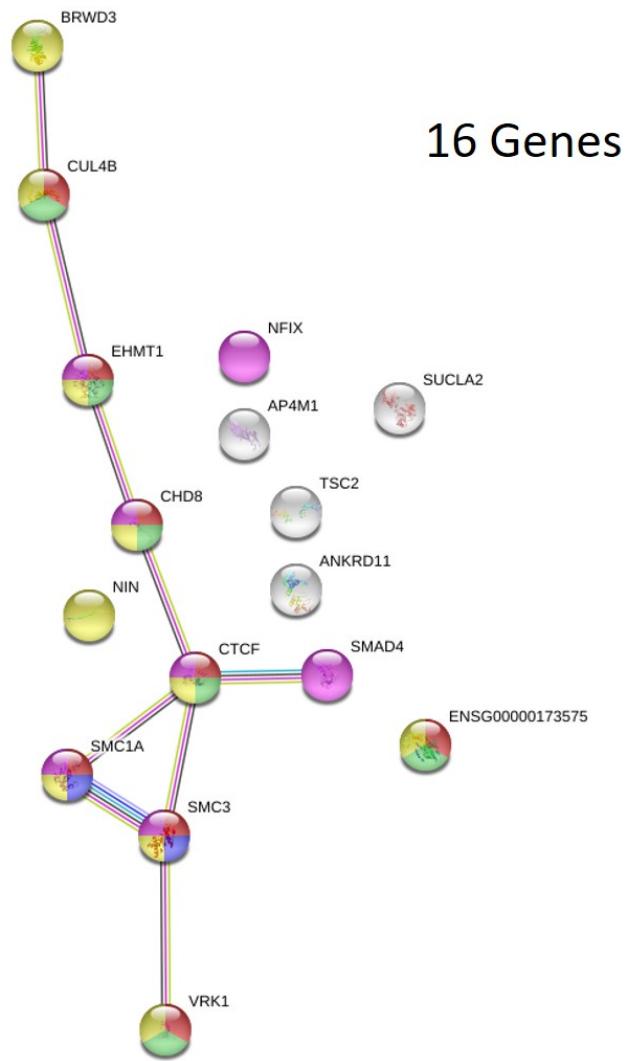
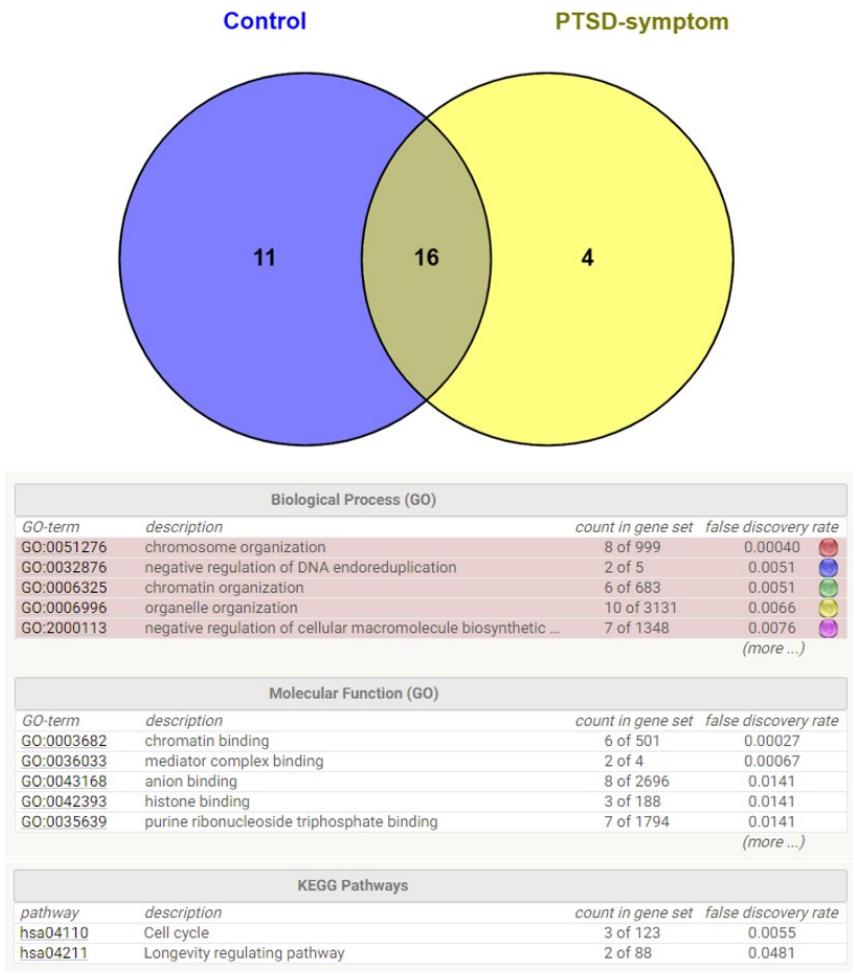
Figure S2. High Impact Shared Autism-related Genes Between Control and PTSD-symptom groups (Crossed with SFARI Database).

STRING analysis was performed for mutated autism-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 63 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.


Control

A

PTSD-symptom



B

No Biological Processes/Functions
No KEGG Pathways

Figure S3. Mutated Autism-related Genes in the Control and PTSD-symptom groups (Crossed with SFARI Database).

(A) STRING analysis was performed for 40 high impact autism-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 19 high impact autism-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes (where available).

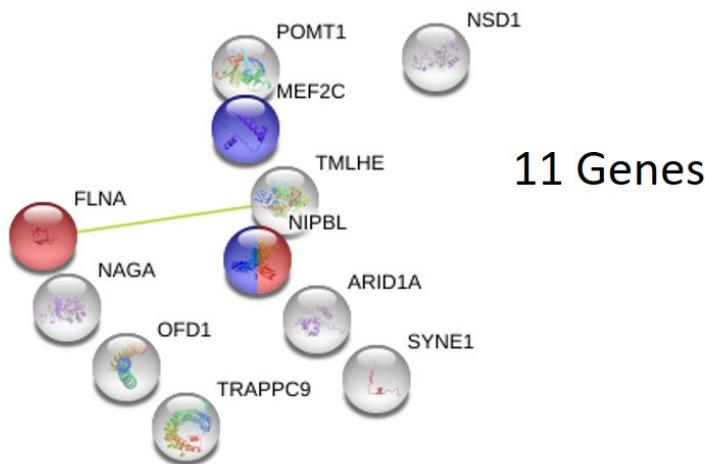
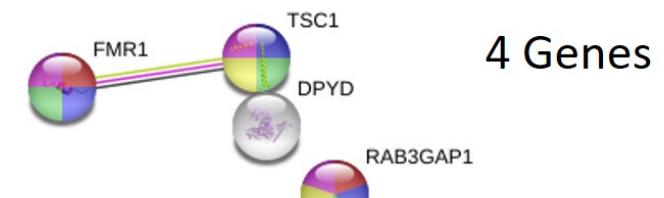


Figure S4. High Impact Shared ID/ASD-related Genes Between Control and PTSD-symptom groups (Crossed with ID_ASD Database).

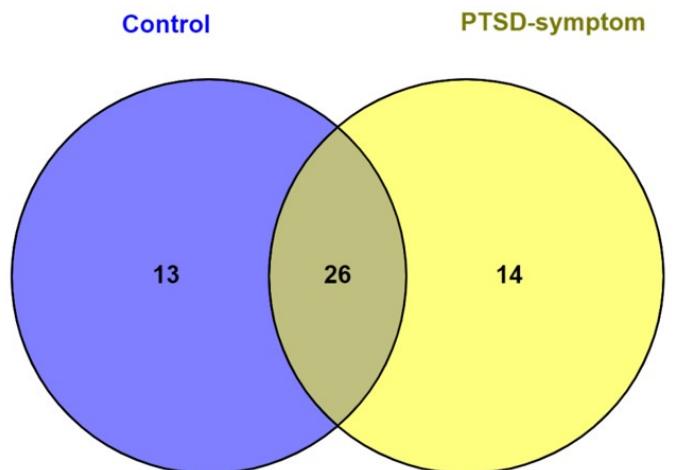
STRING analysis was performed for mutated ID/ASD-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 16 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control


A

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:2001224	positive regulation of neuron migration	2 of 14	0.0237
GO:0048703	embryonic viscerocranial morphogenesis	2 of 11	0.0237
Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0003682	chromatin binding	4 of 501	0.0155
GO:0008134	transcription factor binding	4 of 610	0.0164
GO:0140297	DNA-binding transcription factor binding	3 of 327	0.0293
GO:0044877	protein-containing complex binding	4 of 968	0.0467
GO:0042826	histone deacetylase binding	2 of 110	0.0467
(more ...)			
KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa00310	Lysine degradation	2 of 59	0.0088

PTSD-symptom


B

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:2000300	regulation of synaptic vesicle exocytosis	2 of 24	0.0070
GO:0044089	positive regulation of cellular component biogenesis	3 of 498	0.0070
GO:0031331	positive regulation of cellular catabolic process	3 of 343	0.0070
GO:0016239	positive regulation of macroautophagy	2 of 59	0.0070
GO:0010638	positive regulation of organelle organization	3 of 552	0.0070
(more ...)			

Figure S5. Mutated ID/ASD-related Genes in the Control and PTSD-symptom groups (Crossed with ID_ASD Database).

(A) STRING analysis was performed for 11 high impact ID/ASD-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 4 high impact ID/ASD-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.



Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006954	inflammatory response	13 of 482	9.90e-12
GO:0006952	defense response	17 of 1234	9.90e-12
GO:0031347	regulation of defense response	12 of 676	8.20e-09
GO:0050727	regulation of inflammatory response	9 of 338	1.16e-07
GO:0080134	regulation of response to stress	13 of 1299	5.87e-07
(more ...)			

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0097367	carbohydrate derivative binding	12 of 2163	0.0015
GO:0004525	ribonuclease III activity	2 of 3	0.0017
GO:0005041	low-density lipoprotein particle receptor activity	2 of 13	0.0090
GO:0043394	proteoglycan binding	2 of 32	0.0230
GO:0005540	hyaluronic acid binding	2 of 27	0.0230
(more ...)			

26 Genes

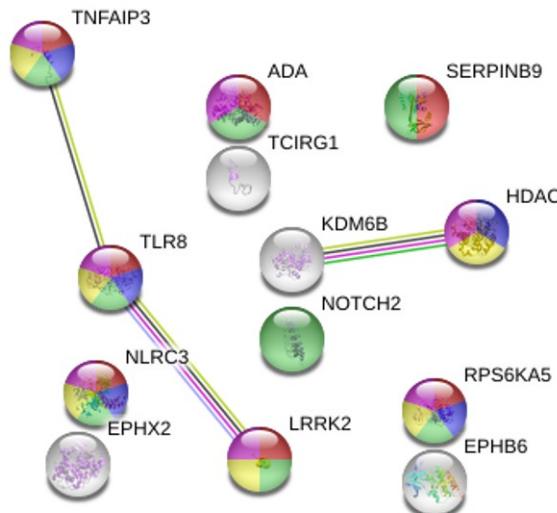
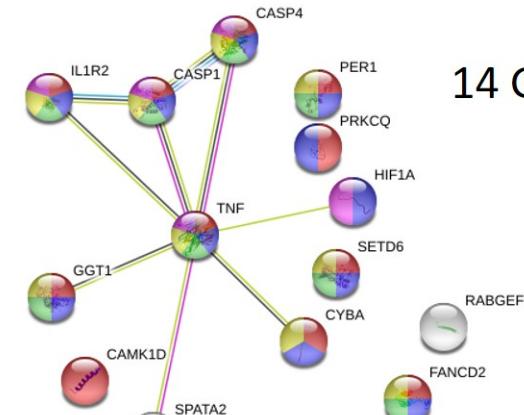


Figure S6. High Impact Shared Inflammation-related Genes Between Control and PTSD-symptom groups (Crossed with Inflammatory Response Database).

STRING analysis was performed for mutated Inflammation-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 26 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control


A

13 Genes

PTSD-symptom

B

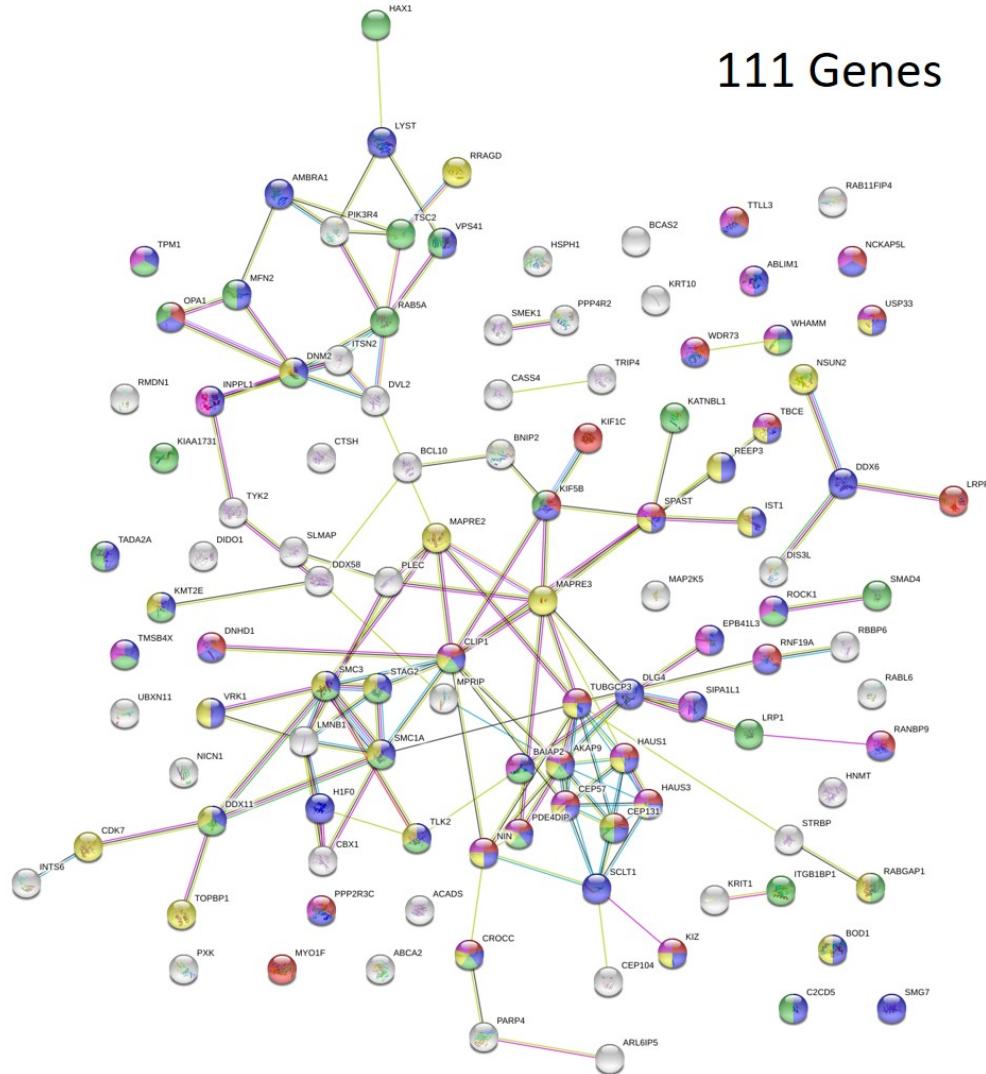
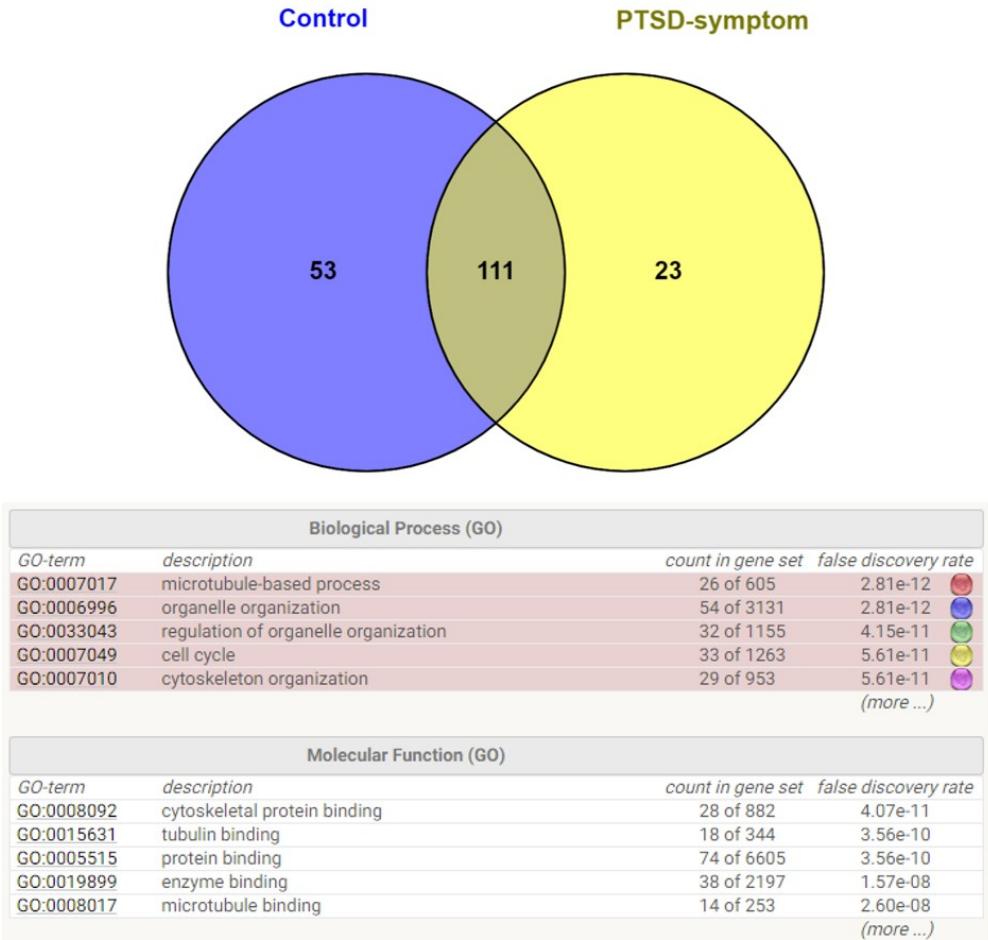
14 Genes

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0031347	regulation of defense response	7 of 676	0.00013
GO:0001818	negative regulation of cytokine production	5 of 245	0.00028
GO:002682	regulation of immune system process	8 of 1391	0.00030
GO:0001817	regulation of cytokine production	6 of 615	0.00051
GO:0051241	negative regulation of multicellular organismal process	7 of 1098	0.00066
(more ...)			

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa05165	Human papillomavirus infection	3 of 317	0.0438
hsa04668	TNF signaling pathway	2 of 108	0.0469

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0032101	regulation of response to external stimulus	11 of 732	1.08e-10
GO:0080134	regulation of response to stress	11 of 1299	1.81e-08
GO:0050727	regulation of inflammatory response	8 of 338	1.81e-08
GO:0031347	regulation of defense response	9 of 676	4.80e-08
GO:0001959	regulation of cytokine-mediated signaling pathway	5 of 151	1.71e-05
(more ...)			

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0097153	cysteine-type endopeptidase activity involved in apoptotic p...	2 of 15	0.0079
GO:0050700	CARD domain binding	2 of 14	0.0079
GO:0070888	E-box binding	2 of 43	0.0216
GO:0005515	protein binding	11 of 6605	0.0275
GO:0019904	protein domain specific binding	4 of 706	0.0359

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa04621	NOD-like receptor signaling pathway	4 of 166	0.00042
hsa05418	Fluid shear stress and atherosclerosis	3 of 133	0.0046
hsa04217	Necroptosis	3 of 155	0.0048
hsa05134	Legionellosis	2 of 54	0.0126
hsa05014	Amyotrophic lateral sclerosis (ALS)	2 of 50	0.0126
(more ...)			

Figure S7. Mutated Inflammation-related Genes in the Control and PTSD-symptom groups (Crossed with Inflammatory Response Database).

(A) STRING analysis was performed for 13 high impact inflammation-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 14 high impact inflammation-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.

111 Genes

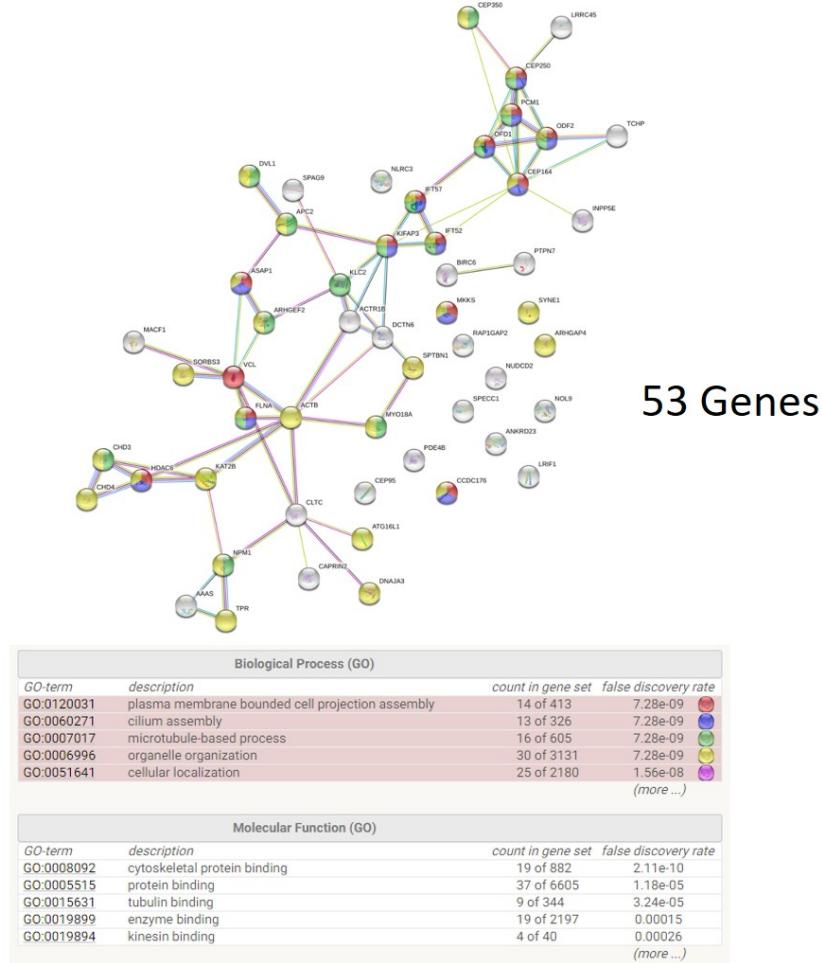
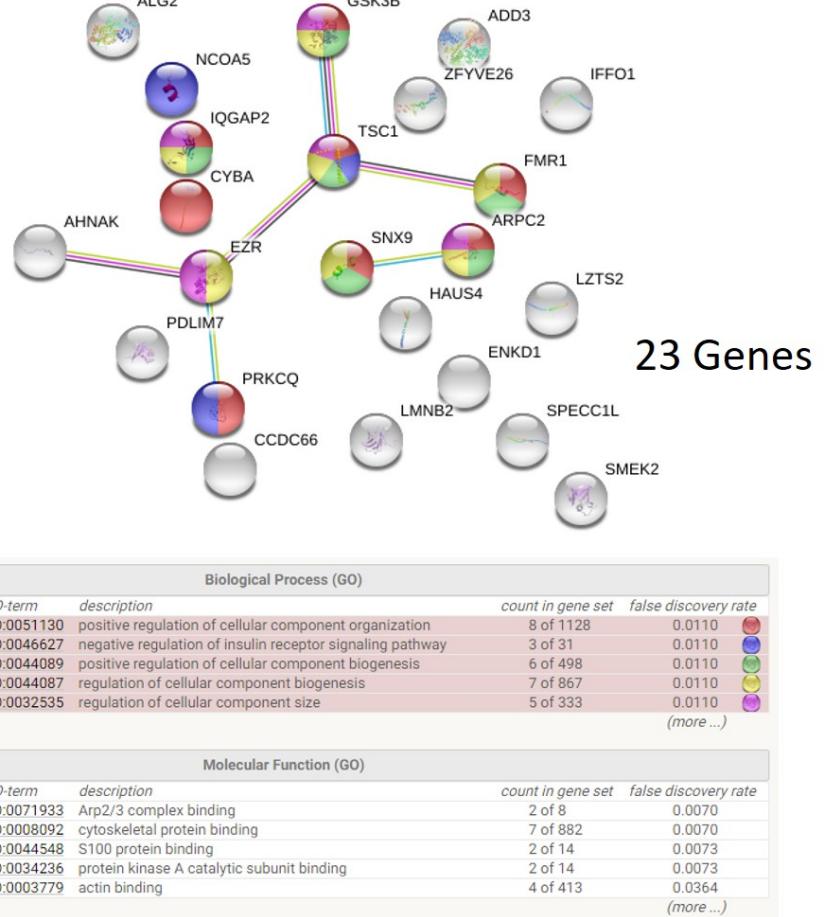
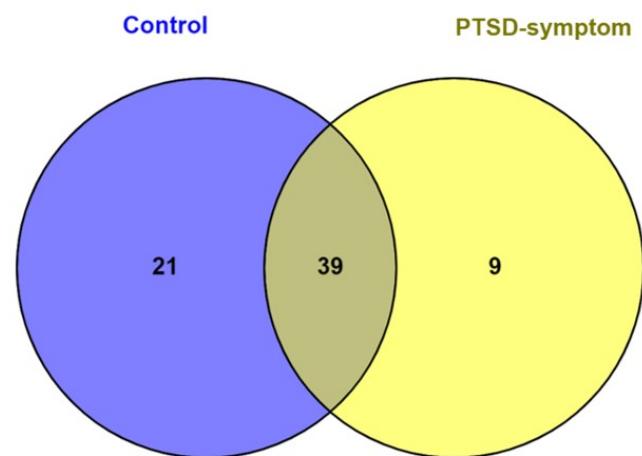


Figure S8. High Impact Shared Cytoskeleton-related Genes Between Control and PTSD-symptom groups (Crossed with Cytoskeleton Database).

STRING analysis was performed for mutated cytoskeleton-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 111 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.


Control

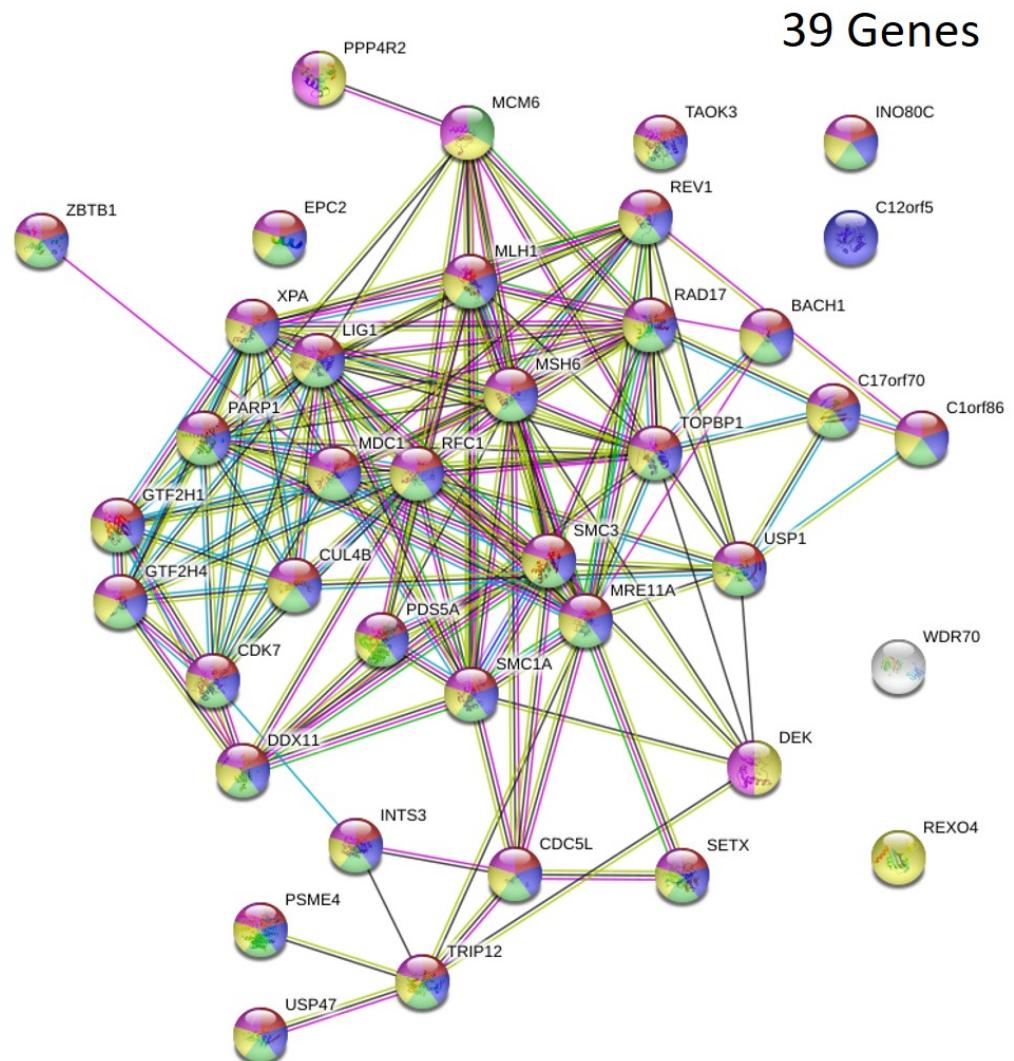
A


PTSD-symptom

B

Figure S9. Mutated Cytoskeleton-related Genes in the Control and PTSD-symptom groups (Crossed with Cytoskeleton Database).

(A) STRING analysis was performed for 53 high impact cytoskeleton-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 23 high impact cytoskeleton-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.


Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006281	DNA repair	33 of 491	1.41e-43
GO:0006974	cellular response to DNA damage stimulus	34 of 749	3.68e-40
GO:0006259	DNA metabolic process	34 of 773	6.96e-40
GO:0090304	nucleic acid metabolic process	37 of 3941	2.18e-21
GO:0044260	cellular macromolecule metabolic process	36 of 6413	1.03e-12
(more ...)			

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0008094	DNA-dependent ATPase activity	6 of 66	1.18e-06
GO:0140097	catalytic activity, acting on DNA	7 of 173	4.38e-06
GO:0003677	DNA binding	19 of 2457	4.38e-06
GO:0017111	nucleoside-triphosphatase activity	10 of 778	9.44e-05
GO:0003678	DNA helicase activity	4 of 41	9.44e-05
(more ...)			

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa03420	Nucleotide excision repair	7 of 46	2.62e-10
hsa03430	Mismatch repair	4 of 23	2.95e-06
hsa03460	Fanconi anemia pathway	4 of 51	3.67e-05
hsa03030	DNA replication	3 of 36	0.00041
hsa04110	Cell cycle	4 of 123	0.00058
(more ...)			

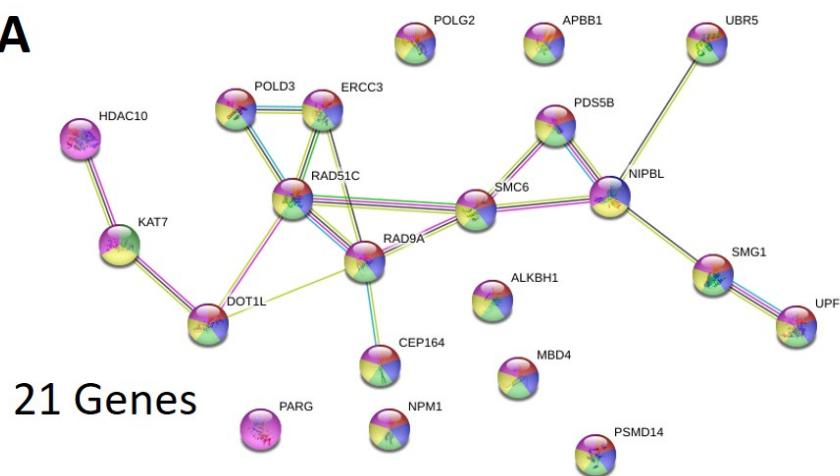
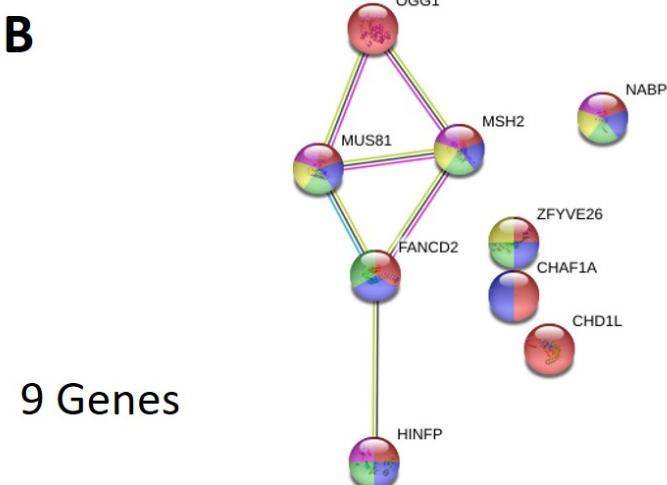


Figure S10. High Impact Shared DNA Repair-related Genes Between Control and PTSD-symptom groups (Crossed with DNA Repair Database).

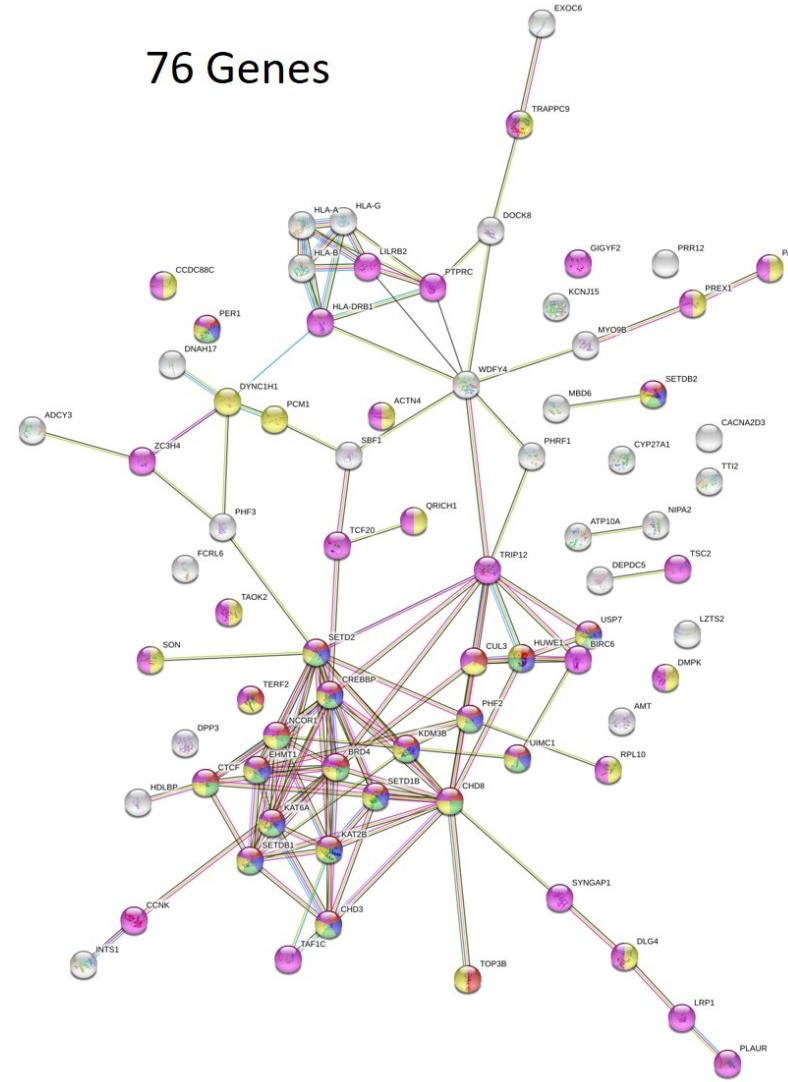
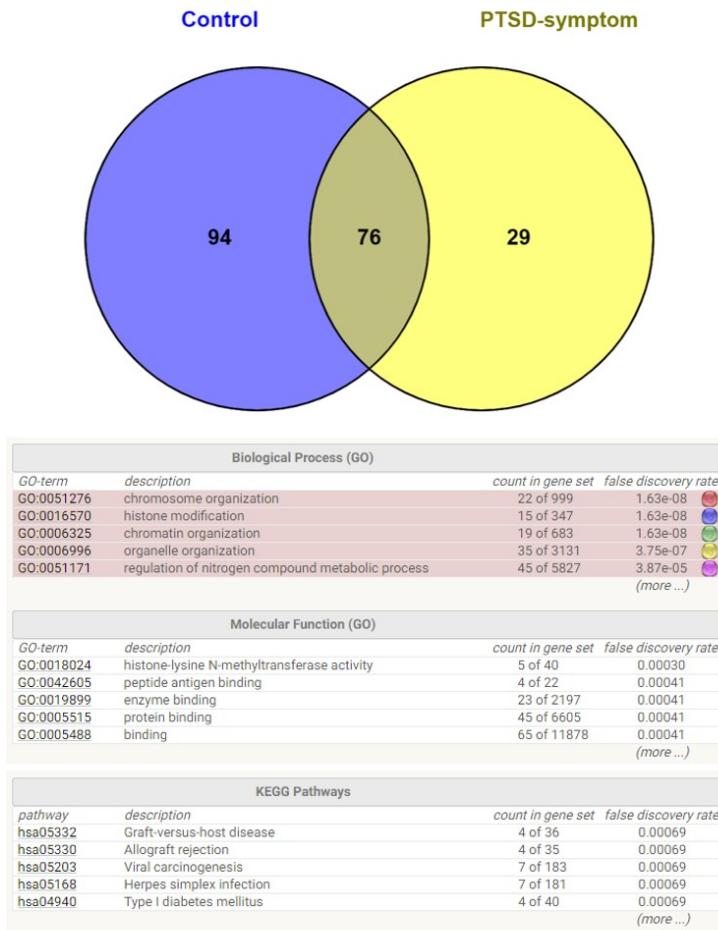
STRING analysis was performed for mutated DNA repair-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 39 high impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control


A

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006281	DNA repair	17 of 491	4.55e-21
GO:0006974	cellular response to DNA damage stimulus	18 of 749	2.30e-20
GO:0006259	DNA metabolic process	18 of 773	2.68e-20
GO:0033554	cellular response to stress	19 of 1553	6.22e-17
GO:0006139	nucleobase-containing compound metabolic process	21 of 4551	1.04e-11
(more ...)			
Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0140097	catalytic activity, acting on DNA	7 of 173	1.06e-07
GO:0004536	deoxyribonuclease activity	3 of 53	0.0029
GO:0003676	nucleic acid binding	12 of 3332	0.0029
GO:0003824	catalytic activity	15 of 5592	0.0031
GO:0003677	DNA binding	10 of 2457	0.0038
(more ...)			
KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa03440	Homologous recombination	2 of 40	0.0147
hsa03420	Nucleotide excision repair	2 of 46	0.0147
hsa03410	Base excision repair	2 of 33	0.0147
hsa03015	mRNA surveillance pathway	2 of 89	0.0243

PTSD-symptom



B

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006281	DNA repair	9 of 491	2.23e-12
GO:0007049	cell cycle	7 of 1263	1.32e-05
GO:0022402	cell cycle process	6 of 890	4.36e-05
GO:0006302	double-strand break repair	4 of 178	5.05e-05
GO:0000075	cell cycle checkpoint	4 of 193	6.23e-05
(more ...)			
Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0140097	catalytic activity, acting on DNA	3 of 173	0.0060
GO:0008094	DNA-dependent ATPase activity	2 of 66	0.0206
GO:0003684	damaged DNA binding	2 of 64	0.0206
GO:0004519	endonuclease activity	2 of 118	0.0339
KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa03460	Fanconi anemia pathway	2 of 51	0.0018

Figure S11. Mutated DNA Repair-related Genes in the Control and PTSD-symptom groups (Crossed with DNA Repair Database).

(A) STRING analysis was performed for 21 high impact DNA repair-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 9 high impact DNA repair-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.

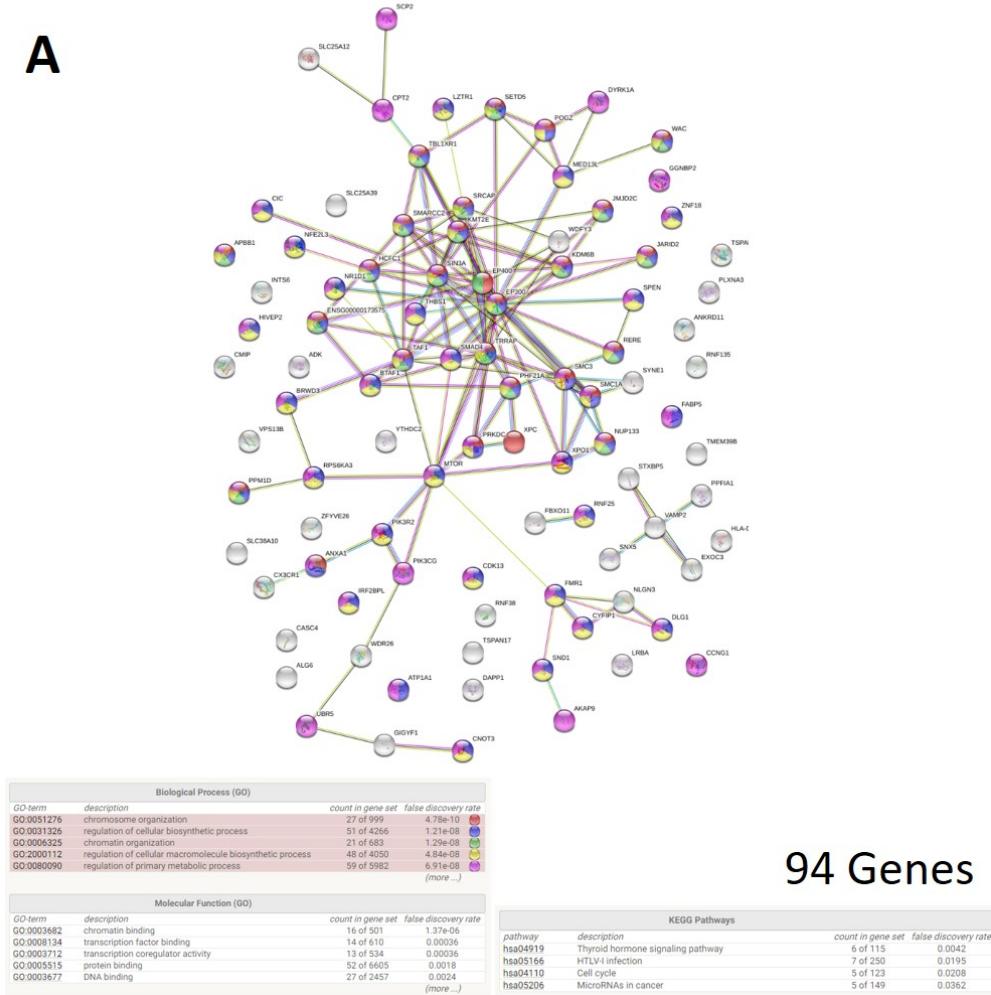
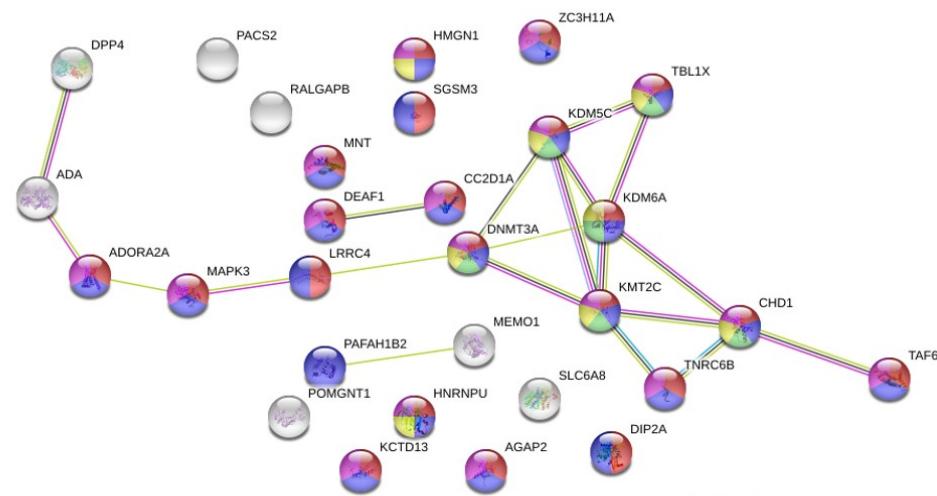


Figure S12. Moderate Impact Shared Autism-related Genes Between Control and PTSD-symptom groups (Crossed with SFARI Database).

STRING analysis was performed for mutated autism-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 76 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

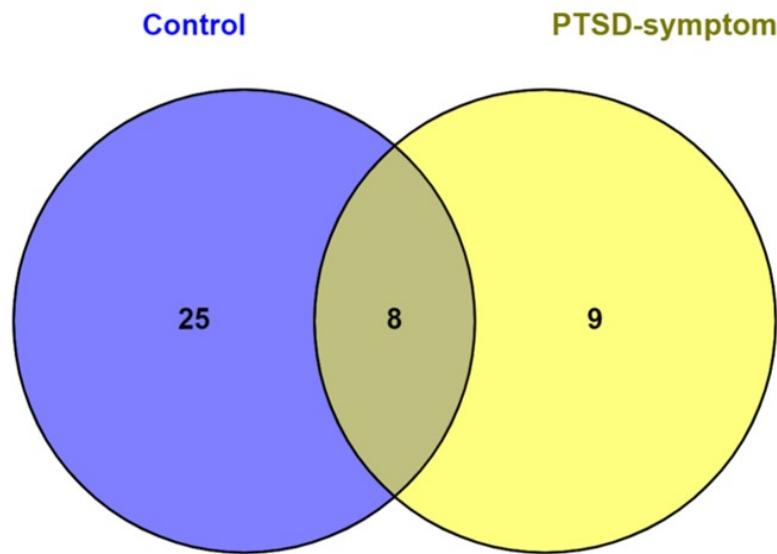

Control

A

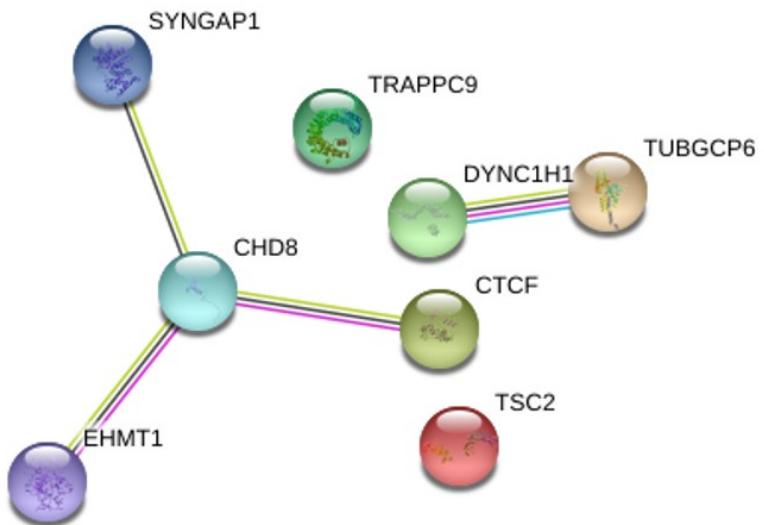
PTSD-symptom

B

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0060255	regulation of macromolecule metabolic process	21 of 6072	0.0052
GO:0019222	regulation of metabolic process	22 of 6516	0.0052
GO:0016569	covalent chromatin modification	6 of 357	0.0052
GO:0006325	chromatin organization	8 of 683	0.0052
GO:0031326	regulation of cellular biosynthetic process	17 of 4266	0.0058


(more ...)

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0003677	DNA binding	12 of 2457	0.0240
GO:0031490	chromatin DNA binding	3 of 87	0.0371


Figure S13. Mutated Autism-related Genes in the Control and PTSD-symptom groups (Crossed with SFARI Database).

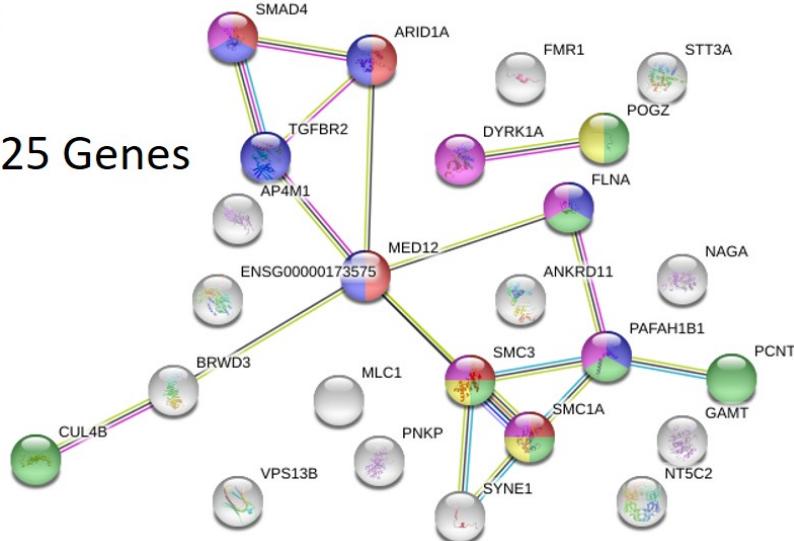
(A) STRING analysis was performed for 94 moderate impact autism-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 29 moderate impact autism-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.

No Biological Processes

8 Genes

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0002039	p53 binding	2 of 73	0.0428

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa04211	Longevity regulating pathway	2 of 88	0.0109


Figure S14. Moderate Impact Shared ID/ASD-related Genes Between Control and PTSD-symptom groups (Crossed with ID_ASD Database).

STRING analysis was performed for mutated ID/ASD-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 8 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control

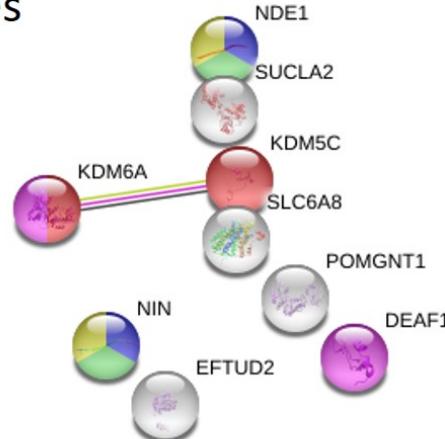
A

25 Genes

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0019827	stem cell population maintenance	5 of 118	0.00072
GO:0002009	morphogenesis of an epithelium	6 of 414	0.0058
GO:0000278	mitotic cell cycle	7 of 628	0.0058
GO:0007062	sister chromatid cohesion	3 of 39	0.0068
GO:0051493	regulation of cytoskeleton organization	6 of 477	0.0072

(more ...)

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0044877	protein-containing complex binding	9 of 968	0.00040
GO:0070840	dynein complex binding	3 of 23	0.00051
GO:0036033	mediator complex binding	2 of 4	0.0017
GO:0003682	chromatin binding	6 of 501	0.0019
GO:0046332	SMAD binding	3 of 73	0.0053


(more ...)

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa04110	Cell cycle	3 of 123	0.0248
hsa05225	Hepatocellular carcinoma	3 of 163	0.0276

PTSD-symptom

B

9 Genes

Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0070076	histone lysine demethylation	2 of 27	0.0211
GO:0051642	centrosome localization	2 of 25	0.0211
GO:0007020	microtubule nucleation	2 of 21	0.0211
GO:0007098	centrosome cycle	2 of 78	0.0236
GO:0001843	neural tube closure	2 of 86	0.0244

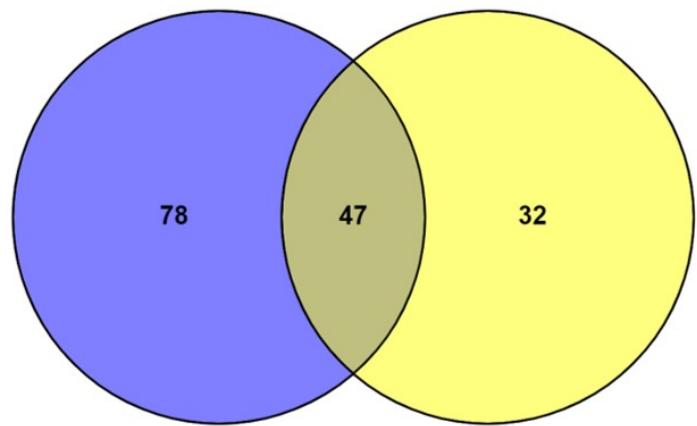

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0032452	histone demethylase activity	2 of 27	0.0082
GO:0051213	dioxygenase activity	2 of 88	0.0265

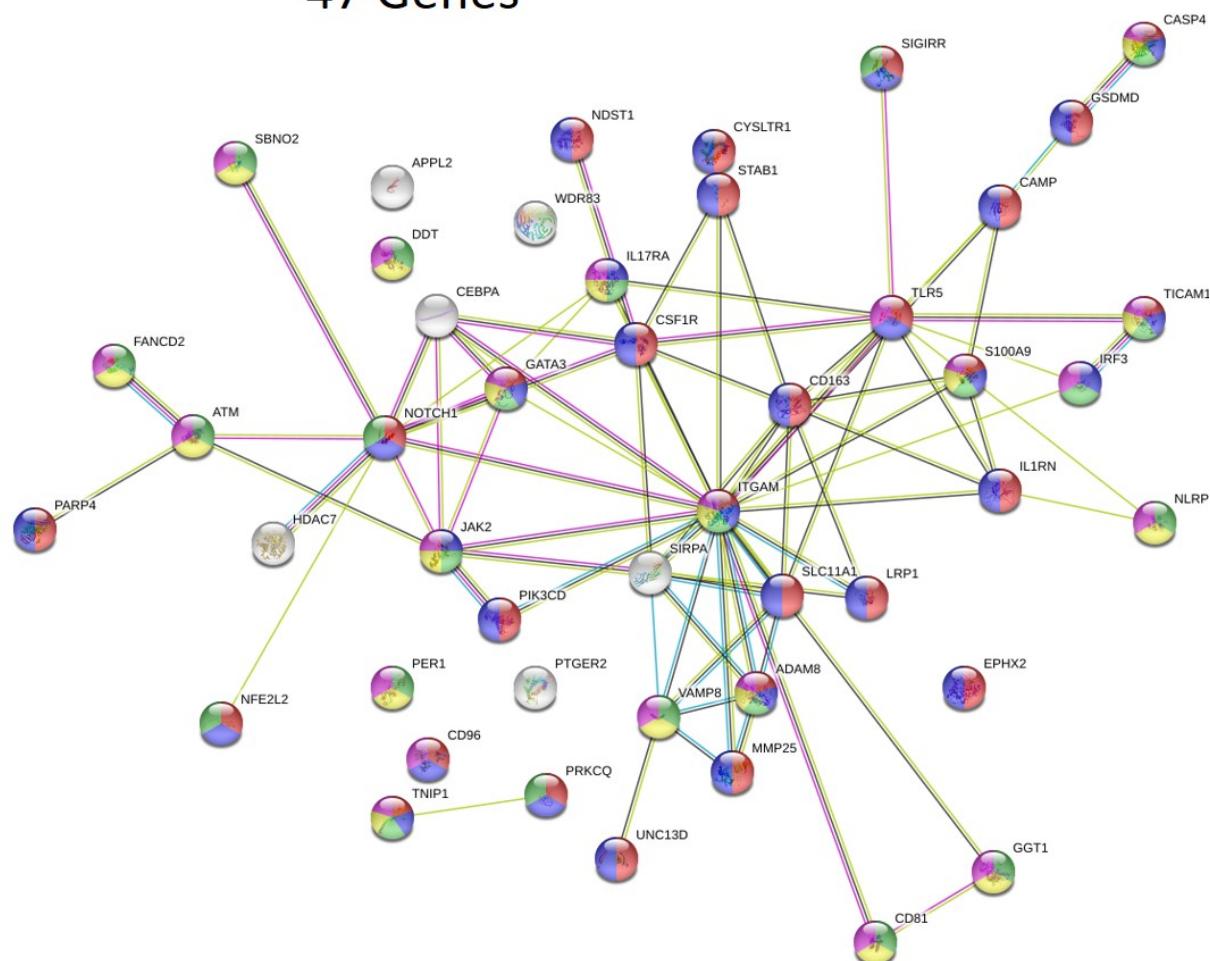
Figure S15. Mutated ID/ASD-related Genes in the Control and PTSD-symptom groups (Crossed with ID_ASD Database).

(A) STRING analysis was performed for 25 moderate impact ID/ASD-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 9 moderate impact ID/ASD-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.

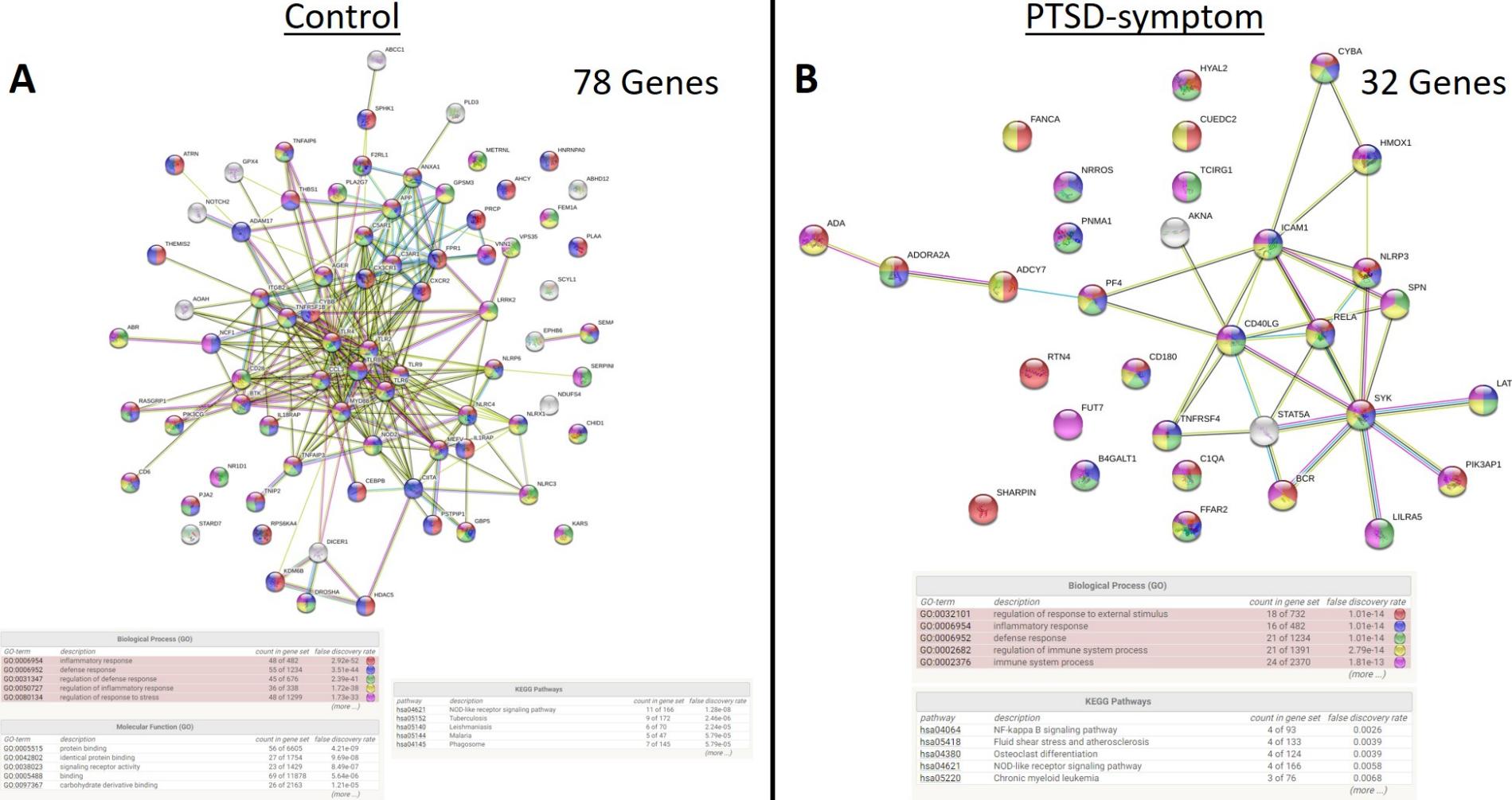
Control

PTSD-symptom

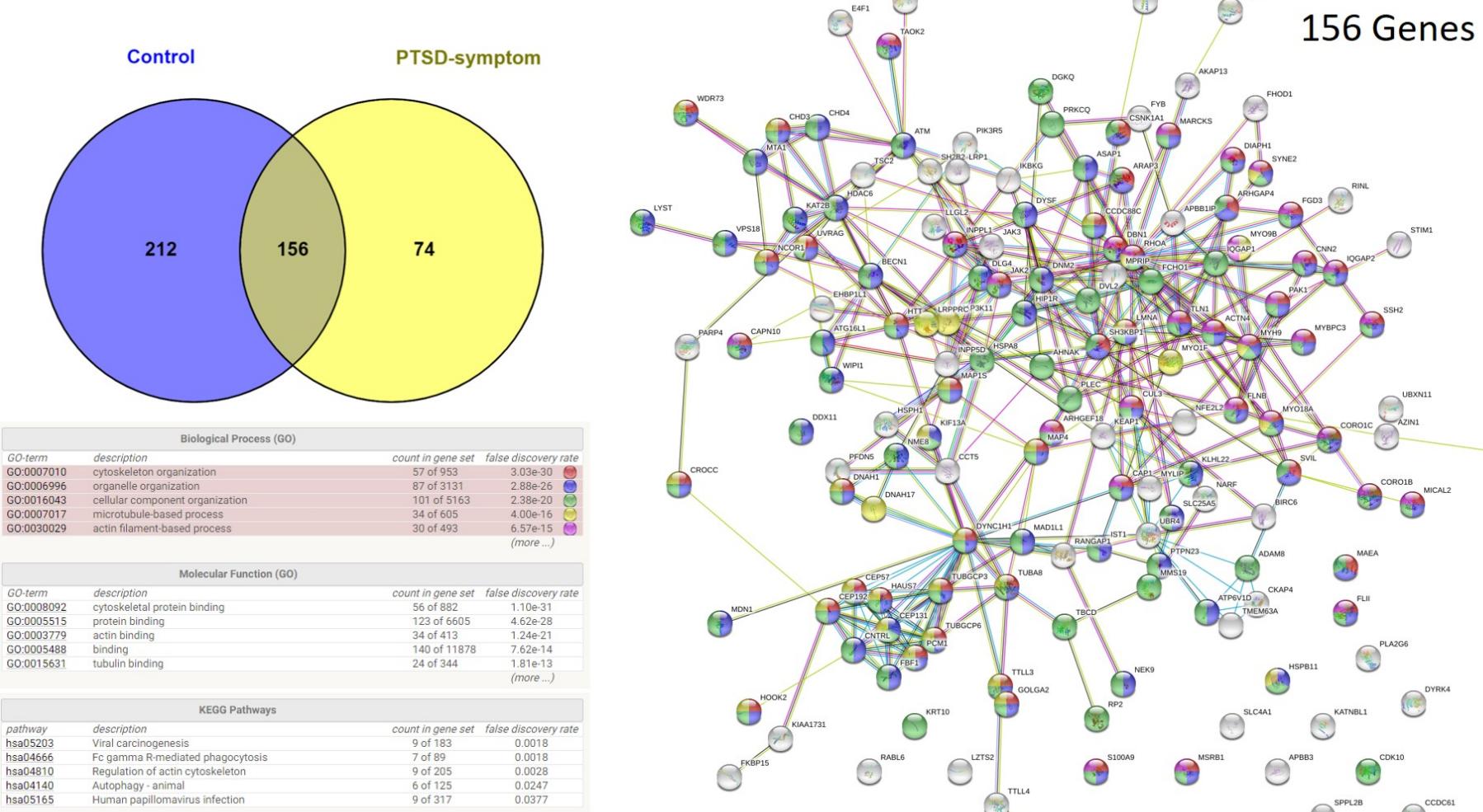
47 Genes


Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006954	inflammatory response	28 of 482	9.80e-30
GO:0006952	defense response	31 of 1234	2.35e-23
GO:0032101	regulation of response to external stimulus	23 of 732	6.68e-18
GO:0050727	regulation of inflammatory response	18 of 338	3.54e-17
GO:0031347	regulation of defense response	21 of 676	4.40e-16
(more ...)			

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0005515	protein binding	29 of 6605	0.0151
GO:0070851	growth factor receptor binding	4 of 131	0.0414
GO:0005149	interleukin-1 receptor binding	2 of 18	0.0414
GO:0005126	cytokine receptor binding	5 of 272	0.0414
GO:0005102	signaling receptor binding	11 of 1513	0.0414
(more ...)			



KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa04621	NOD-like receptor signaling pathway	6 of 166	0.00041
hsa05221	Acute myeloid leukemia	4 of 66	0.0015
hsa04658	Th1 and Th2 cell differentiation	4 of 88	0.0029
hsa05165	Human papillomavirus infection	6 of 317	0.0036
hsa04620	Toll-like receptor signaling pathway	4 of 102	0.0036
(more ...)			


Figure S16. Moderate Impact Shared Inflammation-related Genes Between Control and PTSD-symptom groups (Crossed with Inflammatory Response Database).

STRING analysis was performed for mutated Inflammation-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 47 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Figure S17. Mutated Inflammation-related Genes in the Control and PTSD-symptom groups (Crossed with Inflammatory Response Database).

(A) STRING analysis was performed for 78 moderate impact inflammation-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 32 moderate impact inflammation-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.

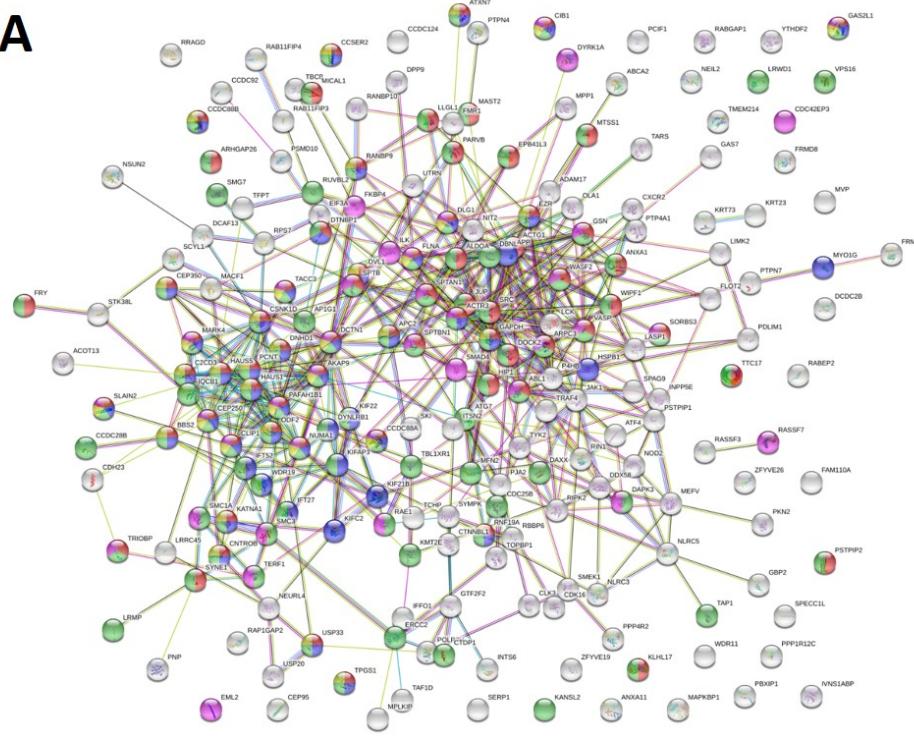


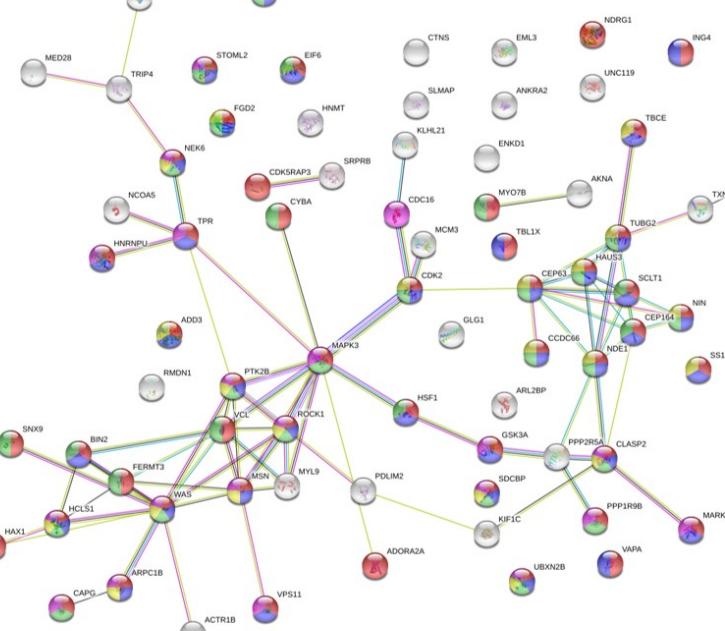
Figure S18. Moderate Impact Shared Cytoskeleton-related Genes Between Control and PTSD-symptom groups (Crossed with Cytoskeleton Database).

STRING analysis was performed for mutated cytoskeleton-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 156 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control

A

Biological Process (GO)		
GO:0007010	description cytoskeleton organization	count in gene set 68 of 953
GO:0007017	microtubule-based process	false discovery rate 3.98e-32
GO:0009996	organelle organization	49 of 505
GO:0002226	microtubule cytoskeleton organization	2.45e-24
GO:0051493	regulation of cytoskeleton organization	98 of 3131
(more ...)		1.71e-21


212 Genes

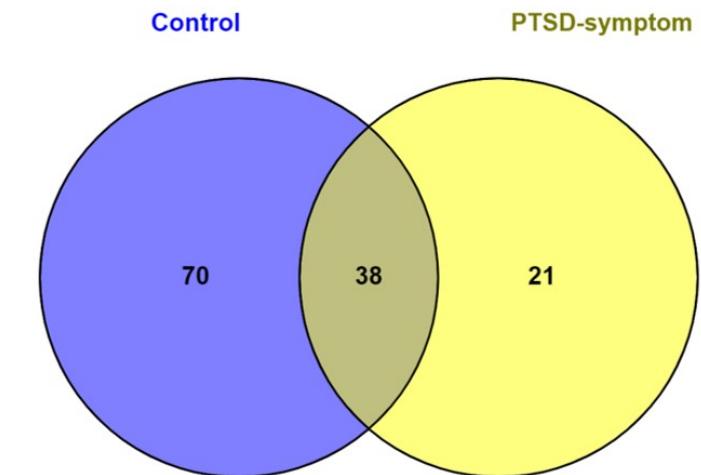
Molecular Function (GO)		
GO:0008992	description cytoskeletal protein binding	count in gene set 65 of 882
GO:0005515	protein binding	4.93e-32
GO:0003779	actin binding	145 of 6605
GO:0015631	tubulin binding	4.95e-22
GO:0008017	microtubule binding	33 of 413
(more ...)		3.37e-16

KEGG Pathways		
pathway	description	count in gene set
hsa05131	Shigellois	7 of 63
hsa04140	Beta-1,4-galactosidase	0.0116
hsa04810	Regulation of actin cytoskeleton	5 of 72
hsa04666	Fc gamma R-mediated phagocytosis	9 of 205
hsa04621	NOD-like receptor signaling pathway	6 of 89
(more ...)		0.0424

PTSD-symptom

B

Biological Process (GO)		
GO:0016043	description cellular component organization	count in gene set 49 of 5163
GO:0009996	organelle organization	2.62e-09
GO:0022467	cellular component assembly	39 of 5163
GO:0009710	cytoskeleton organization	1.21e-08
GO:0033043	regulation of organelle organization	21 of 953
(more ...)		6.84e-08

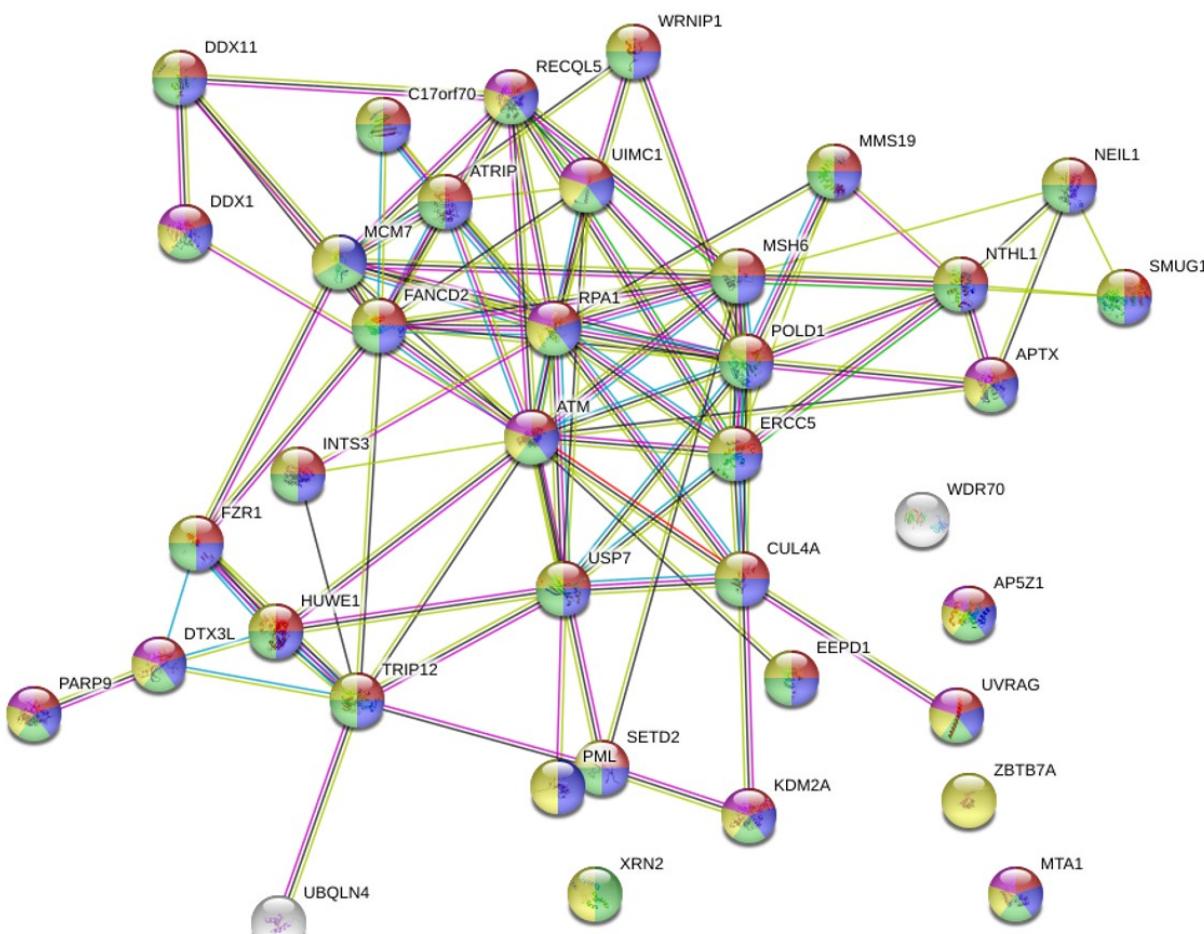

74 Genes

Molecular Function (GO)		
GO:0008992	description cytoskeletal protein binding	count in gene set 23 of 882
GO:0005515	protein binding	3.80e-11
GO:0003779	actin binding	48 of 6605
GO:0015631	tubulin binding	7.89e-06
GO:0008017	microtubule binding	12 of 413
(more ...)		7.89e-06

KEGG Pathways		
pathway	description	count in gene set
hsa05131	Shigellois	6 of 63
hsa04140	Leukocyte transendothelial migration	3.12e-05
hsa04810	Regulation of actin cytoskeleton	7 of 205
hsa05130	Pathogenic Escherichia coli infection	0.00068
hsa05100	Bacterial invasion of epithelial cells	4 of 53
(more ...)		4 of 72

Figure S19. Mutated Cytoskeleton-related Genes in the Control and PTSD-symptom groups (Crossed with Cytoskeleton Database).

(A) STRING analysis was performed for 212 moderate impact cytoskeleton-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 74 moderate impact cytoskeleton-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.


Biological Process (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0006281	DNA repair	32 of 491	5.53e-42
GO:0006974	cellular response to DNA damage stimulus	34 of 749	6.09e-41
GO:0006259	DNA metabolic process	34 of 773	1.15e-40
GO:0090304	nucleic acid metabolic process	36 of 3941	1.26e-20
GO:0006302	double-strand break repair	12 of 178	1.21e-13
(more ...)			

Molecular Function (GO)			
GO-term	description	count in gene set	false discovery rate
GO:0140097	catalytic activity, acting on DNA	11 of 173	8.72e-12
GO:0003677	DNA binding	23 of 2457	5.67e-10
GO:0004518	nuclease activity	7 of 192	5.92e-06
GO:0003684	damaged DNA binding	5 of 64	1.05e-05
GO:0004527	exonuclease activity	5 of 72	1.52e-05
(more ...)			

KEGG Pathways			
pathway	description	count in gene set	false discovery rate
hsa03410	Base excision repair	4 of 33	2.72e-05
hsa03440	Homologous recombination	4 of 40	2.77e-05
hsa03420	Nucleotide excision repair	4 of 46	3.11e-05
hsa03460	Fanconi anemia pathway	4 of 51	3.43e-05
hsa04120	Ubiquitin mediated proteolysis	5 of 134	4.99e-05
(more ...)			

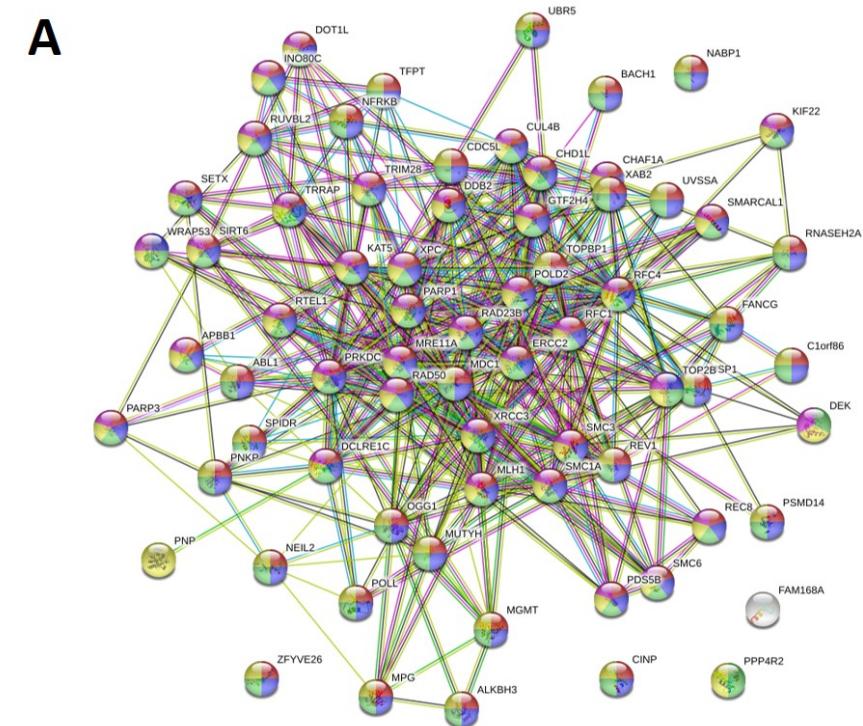


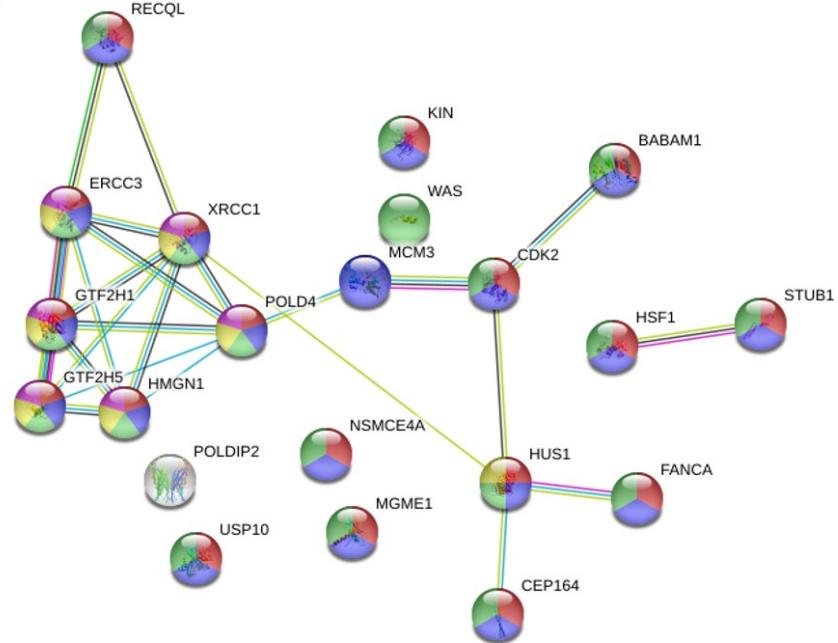
Figure S20. Moderate Impact Shared DNA Repair-related Genes Between Control and PTSD-symptom groups (Crossed with DNA Repair Database).

STRING analysis was performed for mutated DNA repair-related genes in the control and PTSD-symptom groups, as identified by a Venn diagram, and shown for 38 moderate impact genes shared between control and PTSD-symptom groups. Enriched biological processes, molecular functions and pathways are presented for these genes.

Control

A

70 Genes


Biological Process (GO)	
GO:0006281	count in gene set: 64 of 491
GO:0006259	3.94e-09
GO:0009034	64 of 773
GO:0006139	2.44e-03
GO:0005126	68 of 3941
	4.30e-42
	69 of 4551
	4.15e-40
	39 of 999
	1.79e-29
(more ...)	

Molecular Function (GO)	
GO:014097	count in gene set: 20 of 173
GO:0003676	9.47e-22
GO:0003677	40 of 2457
GO:0003676	2.18e-16
GO:0003676	44 of 3332
GO:0003676	2.05e-15
GO:1901363	50 of 5305
GO:1901363	1.52e-12
GO:0097159	50 of 5382
GO:0097159	2.24e-12
(more ...)	

KEGG Pathways	
pathway	description
hsa03420	Nucleotide excision repair
hsa03420	9 of 46
hsa03420	1.74e-11
hsa03420	9 of 13
hsa03420	4.24e-11
hsa03450	Non-homologous end joining
hsa03440	Homologous recombination
hsa03430	Mismatch repair
hsa03430	5 of 40
hsa03430	7.76e-05
hsa03430	4 of 23
hsa03430	2.78e-05
(more ...)	

PTSD-symptom

B

21 Genes

Biological Process (GO)	
GO:0006281	count in gene set: 18 of 491
GO:0006259	2.49e-23
GO:0009050	19 of 773
GO:0006281	2.46e-22
GO:0006281	19 of 3267
GO:0006281	4.90e-11
GO:0006281	7 of 110
GO:0006281	3.24e-09
GO:0006281	6 of 75
GO:0006281	2.20e-08
(more ...)	

Molecular Function (GO)	
GO:014097	count in gene set: 5 of 173
GO:0043138	0.00016
GO:0043138	2 of 11
GO:0031879	0.0065
GO:0031879	2 of 37
GO:0004386	0.0256
GO:0004386	3 of 147
GO:0004003	0.0256
GO:0004003	2 of 29
(more ...)	

KEGG Pathways	
pathway	description
hsa03420	count in gene set: 3 of 44
hsa03420	0.00036
hsa03422	3 of 40
hsa03422	0.0091
hsa03440	2 of 33
hsa03440	0.0091
hsa03410	2 of 36
hsa03410	0.0091
hsa03030	DNA replication
hsa03030	2 of 36

Figure S21. Mutated DNA Repair-related Genes in the Control and PTSD-symptom groups (Crossed with DNA Repair Database).

(A) STRING analysis was performed for 70 moderate impact DNA repair-related mutated genes in the control group, as identified by a Venn diagram. **(B)** STRING analysis was performed for 21 moderate impact DNA repair-related mutated genes in the PTSD-symptom group, as identified by a Venn diagram. For both groups, enriched biological processes, molecular functions and pathways are presented for the genes.