

1 **Effects of China's Current Air Pollution Prevention and Control Action Plan**
2 **on Air Pollution Patterns, Health Risks and Mortalities in Beijing 2014-2018**

3 Kamal Jyoti Maji ^{1,*}, Victor OK Li ^{1,#}, Jacqueline CK Lam ^{1,2,3,4 #}

4 ¹ Department of Electrical and Electronic Engineering, The University of Hong Kong

5 ² Energy Policy Research Group, Judge Business School, The University of Cambridge

6 ³ Department of Computer Science and Technology, The University of Cambridge

7 ⁴ CEEPR, MIT Energy Initiative, MIT

8 [#] Both authors have equal contributions

9 * Corresponding author: Department of Electrical and Electronic Engineering, The University of
10 Hong Kong, Hong Kong, SAR, China

11 E-mail address: kjmaji@gmail.com (K. J. Maji)

12

13

14 **Abstract:**

15 Beijing is one of the most polluted cities in the world. However, the “Air Pollution Prevention
16 and Control Action Plan” (APPCAP), introduced since 2013 in China, has created an
17 unprecedented drop in pollution concentrations for five major pollutants, except O₃, with a
18 significant drop in mortalities across most parts of the city. To assess the effects of APPCAP, air
19 pollution data were collected from 35 sites (divided into four types, namely, urban, suburban,
20 regional background, and traffic) in Beijing, from 2014 to 2018 and analysed. Simultaneously,
21 health-risk based air quality index (HAQI) and district-specific pollution (PM_{2.5} and O₃)
22 attributed mortality were calculated for Beijing. The results show that the annual PM_{2.5}
23 concentration exceeded the Chinese national ambient air quality standard Grade II (35 $\mu\text{g}/\text{m}^3$) in
24 all sites, ranging from 88.5±77.4 $\mu\text{g}/\text{m}^3$ for the suburban site to 98.6±89.0 $\mu\text{g}/\text{m}^3$ for the traffic
25 site in 2014, but was reduced to 50.6±46.6 $\mu\text{g}/\text{m}^3$ for the suburban site, and 56.1±47.0 $\mu\text{g}/\text{m}^3$ for
26 the regional background in 2018. O₃ was another most important pollutant that exceeded the

27 Grade II standard ($160 \mu\text{g}/\text{m}^3$) for a total of 291 days. It peaked at $311.6 \mu\text{g}/\text{m}^3$ in 2014 for the
28 urban site and $290.6 \mu\text{g}/\text{m}^3$ in 2018 in the suburban site. APPCAP led to a significant reduction
29 in $\text{PM}_{2.5}$, PM_{10} , NO_2 , SO_2 and CO concentrations by 7.4, 8.1, 2.4, 1.9 and $80 \mu\text{g}/\text{m}^3/\text{year}$
30 respectively, though O_3 concentration was increased by $1.3 \mu\text{g}/\text{m}^3/\text{year}$ during the five-years.
31 HAQI results suggest that during the high pollution days, the more vulnerable groups, such as
32 the children, and the elderly, should take additional precautions, beyond the recommendations
33 currently put forward by Beijing Municipal Environmental Monitoring Center (BJMEMC). In
34 2014, $\text{PM}_{2.5}$ and O_3 attributed to 29,270 and 3,030 deaths respectively, though in 2018 their
35 mortalities were reduced by 5.6% and 18.5% respectively. The highest mortality was observed in
36 Haidian and Chaoyang districts, two of the most densely populated areas in Beijing. Beijing's air
37 quality has seen a dramatic improvement over the five-year period, which can be attributable to
38 the implementation of APPCAP and the central government's determination, with significant
39 drops in the mortalities due to $\text{PM}_{2.5}$ and O_3 in parallel. To further improve air quality in Beijing,
40 more stringent regulatory measures should be introduced to control volatile organic compounds
41 (VOCs) and reduce O_3 concentrations. Consistent air pollution control interventions will be
42 needed to ensure long-term prosperity and environmental sustainability in Beijing, China's most
43 powerful city. This study provides a robust methodology for analyzing air pollution trends,
44 health risks and mortalities in China. The crucial evidence generated forms the basis for the
45 governments in China to introduce location-specific air pollution policy interventions to further
46 reduce air pollution in Beijing and other parts of China. The methodology presented in this study
47 can form the basis for future fine-grained air pollution and health risk study at the city-district
48 level in China.

49

50 **Keywords:** Beijing; Air Pollution Policy; Sessional-Daily Variation; Trends; Mortality;
51 Vulnerable Group

52

53 **1. Introduction**

54 Over the past decades, China has experienced rapid industrialization and economic growth and
55 become the world's second-largest economy (WB, 2019). Due to air pollution from industries,

56 urbanization and higher energy consumption, the country has to subsequently take up serious
57 health burden, and associated economic loss (Lelieveld et al., 2015; Zhang et al., 2017; Guan et
58 al., 2019). The Global Burden of Disease (GBD) study estimated that PM_{2.5} exposure led to 852
59 thousand deaths in China in 2017 (Stanaway et al., 2018) and projected the number of deaths can
60 have reached 2.3 millions by 2030 and 2.7 millions by 2060 (Xie et al., 2019; OECD, 2016). The
61 health burden will significantly impact China's economy, costing about 2% in 2030 and 2.6 % in
62 2060 of China's GDP (OECD, 2016; Xie et al., 2019). After the 2008 Summer Olympics had
63 been completed in Beijing, air pollution received the highest awareness in China from the public,
64 decision-makers and academic community. Special focus was put on Beijing, the capital of
65 China, which suffered from an extremely high level of PM_{2.5} pollution (Wang et al., 2010; He et
66 al., 2016).

67 To overcome the air pollution challenge, China's State Council initiated the "Air Pollution
68 Prevention and Control Action Plan" (APPCAP) in 2013 which set the targets to reduce air
69 pollution in most polluted cities across China by 2017 (CSC, 2013). To implement the national
70 APPCAP and further improve air quality, Beijing Municipal Government additionally
71 formulated and released the "Beijing Clean Air Action Plan: 2013-2017", which set a target for
72 the yearly average concentration of PM_{2.5} to fall below the threshold of 60 $\mu\text{g}/\text{m}^3$ by 2017
73 (CCICED, 2013). It is of great interest to the government, policymakers and the overall general
74 public to know whether or not Beijing's air quality meets the set targets. However, air quality
75 study in Beijing is complicated by the use of coal for heating and domestic cooking, transport of
76 air pollutants from neighbouring provinces, adverse meteorological conditions during the winter
77 and the high oxidizing power that associates with the complex chemical composition (Li et al.,
78 2017; Lu et al., 2018).

79 Several studies were conducted to investigate the air pollution in Beijing with limited
80 observational pollutants data, in which the main focus was on the urban site or an entire area
81 with an average of all monitoring stations data (Wang et al., 2018). Zhang et al., (2018) observed
82 the decrease of PM_{2.5} concentration at the urban and the regional background site by 3.40 and
83 1.16 $\mu\text{g}/\text{m}^3/\text{year}$ from 2014 to 2015, based on a single monitoring station in each location. The
84 fine particle explosive growth events, caused by the rapid increase in PM_{2.5} mass concentration
85 over a few hours, steadily decreased from 39 events in 2013 to 19 events in 2017 (Liu et al.,
86 2019), and the number of winter haze days also decreased from 47 days in 2012 to 15 days in

87 2017 (Dang and Liao, 2019). Based on one urban monitoring data, Cheng et al. (2019) reported
88 that the annual average maximum daily 8-hour average (MDA8-h) O_3 concentration increased
89 from $61.4 \mu\text{g}/\text{m}^3$ in 2006 to $96.7 \mu\text{g}/\text{m}^3$ in 2017 with an increasing rate of $3.55 \mu\text{g}/\text{m}^3/\text{year}$. The
90 increasing trend of ozone in Beijing is also reported by Huang et al., (2018). From 2013 to 2015,
91 the 90th percentile of annual average MDA8-h O_3 of Beijing increased from 183.4 to $202.6 \mu\text{g}/\text{m}^3$
92 (BMEPB, 2015). However, during these three years, the annual mean NO_2 concentration
93 decreased from 56 to $50 \mu\text{g}/\text{m}^3$ across the urban site (BMEPB, 2015).

94 The Beijing Municipal Environmental Monitoring Center (BJMEMC) empowered the Chinese
95 citizens by providing the real-time hourly observations data of six air pollutants from 35
96 monitoring sites to protect their health. Globally, the important indicator to inform the public to
97 take proper outdoor activities is the Air Quality Index (AQI). However, the AQI neglects the
98 synergistic health effects of exposure to multiple air pollutants. Employing the Health-risk based
99 Air Quality Index (HAQI) method associated with exposure to multiple air pollutants and by
100 comparing the AQI and HAQI, Hu et al., (2015) showed that AQI underestimated the health
101 risks associated with exposures to multiple pollutants, especially during the extremely high air
102 pollution days. The air pollution exposure and health impact assessment are state-of-the-art
103 infrastructures to protect citizens from atmospheric pollution and safeguard their health (Shi et
104 al., 2019). However, most of these health risk studies were undertaken at the city-level and
105 underestimated the more fine-grained scale, district-based air pollution control policy
106 development within Beijing itself. The ground-based air quality measurements serve the best
107 data for pollution-attributed district-based mortality estimation (Yin et al., 2017; Maji et al.,
108 2019).

109 The major objective of this study is to examine the temporal and the spatial variation of six
110 official pollutants based on real-time monitoring data collected at 35 sites across four typical
111 sites in Beijing, for the period of 2014 - 2018. The second objective includes trend analysis,
112 based on the Mann-Kendall test. The health risks associated with six official pollutants are
113 evaluated based on HAQI and the number of district-based pollution-attributed ($PM_{2.5}$ and O_3)
114 premature deaths is also estimated for 16 districts in Beijing. This study provides a robust
115 methodology of analyzing air pollution trends, health risks and mortality in China, the crucial
116 evidence generated forms the basis for policy-makers in China to introduce location-specific air
117 pollution policy interventions to further reduce air pollution in Beijing. The methodology

118 presented in this study can form the basis for future fine-grained air pollution and health risk
119 study at the city-district level in China.

120 **2. Methodology**

121 **2.1. Monitoring sites and data sources**

122 Five-year time series (January 2014 to December 2018) of hourly concentrations of PM_{2.5}, PM₁₀,
123 O₃, SO₂, NO₂ and CO for Beijing city was downloaded from 35 monitoring stations operated by
124 the BJMEMC (<http://beijingair.sinaapp.com/>), which had obtained the data from <http://pm25.in>.
125 Before 2nd April 2014, no data was available for CO, O₃, SO₂ and NO₂. According to the
126 monitoring function, the 35 monitoring stations are divided into 4 categories: the urban
127 environmental monitoring site (12 stations), the suburban environmental monitoring site (11
128 stations), the regional background transmission site (control site) (7 stations) and the traffic
129 pollution monitoring site (5 stations) (BJMEMC, 2019). Each station contains automated
130 monitoring systems utilized to measure the concentrations of PM_{2.5} and PM₁₀ based on the
131 National Environmental Protection Standards (NEPS) HJ 655-2013 (MEP, 2013a), and O₃, SO₂,
132 NO₂ and CO based on the NEPS HJ 193-2013 (MEP, 2013b). All four typical sites are listed in
133 Table S1 and the locations are shown in Fig.1.

134 The potential quality of all the available data was assessed based on the criteria developed in
135 previous studies (Song et al., 2017; Silver et al., 2018). After screening, if <90% of hourly data
136 was available for the whole time series, it was removed. Based on the above criteria, all the data
137 from the Mentougou suburban site was removed. The hourly data was used to calculate daily,
138 seasonal and yearly averages for the four-type of sites in Beijing. To analyze the five-year time
139 series for monotonic, linear trends, the Mann-Kendall (M-K) test was used to assess the
140 significance of trends, and the Theil-Sen estimator was used to calculate the magnitude of the
141 trend. The R package ‘openair’ was used to perform for air quality data analysis (R Core Team,
142 2019; Carslaw and Ropkind, 2012). The M-K nonparametric test is utilized to test for a
143 significant trend. Advantages of the M-K test are: (1) no distributional assumption is made; (2)
144 no assumption of any specific functional form for the behaviour of the data through time is
145 made; and (3) the M-K test is resistant to the effects of outlying observations. The results are not
146 unduly affected by particularly high or low values that occur during the time series.

147 **Fig. 1.** Location of the 35 air quality monitoring sites in Beijing (Tian et al., 2019)

148

149 2.2. Health-risk based Air Quality Index (HAQI)

150 Health-risk based air quality indices (HAQI) were proposed in a few studies to include exposure-
151 response characteristics (Hu et al., 2015; Shen et al., 2017). To define a HAQI, the total excess
152 risk (ER) of exposure to multiple pollutants based on Cairncross's concept (Cairncross et al.,
153 2007) was used. In a general form, the excess risk (ER_i) for pollutant i was estimated based on
154 the relative risk (RR_i) of the pollutant, using the following expression:

155 $ER_i = RR_i - 1$

156 (1)

157 where $RR_i = \exp[\beta_i(Z_i - Z_{i,0})]$, the exposure-response coefficient (β_i) describes the increased
158 risk of a population associated with a certain health response (such as mortality) when exposed
159 to the pollutant i , Z_i is the concentration of the pollutant and $Z_{i,0}$ is the threshold concentration,
160 below which the pollutant demonstrates no adverse health effects.

161 For this study, RR values were chosen from the Chinese studies on long-term exposure to air
162 pollution and non-accidental daily mortality of all ages. The RR values are 1.06, 1.0111, 1.0169,
163 1.02 and 1.0255 per 10 $\mu\text{g}/\text{m}^3$ increase in concentrations of $\text{PM}_{2.5}$, PM_{10} , SO_2 and NO_2 ,
164 respectively, the value is 1.02 per 20 $\mu\text{g}/\text{m}^3$ increase in O_3 concentration and 1.0255 per one
165 mg/m^3 increase in CO concentration (Yang et al., 2013; Zhang et al., 2017; Turner et al., 2016;
166 Atkinson et al., 2018; T. Li et al., 2018).

167 It was assumed that the air pollution concentration below Chinese Ambient Air Quality
168 Standards (CAAQS) Grade II, posed little or no health risk. Therefore, the CAAQS 24-hour
169 Grade II standard for the six pollutants were used as $Z_{i,0}$ (<https://cleanairasia.org/node/8163/>).

170 However, some studies indicated these values could be regarded as the threshold values, as
171 below which a zero adverse response would be expected (WHO, 2005).

172 Total ER of all pollutants ER_{total} is the sum of ER_i for the individual pollutants as shown in Eq.
173 (2):

174 $ER_{total} = \sum_{i=1}^n ER_i = \sum_{i=1}^n (RR_i - 1)$

175 (2)

176 The equivalent relative risk (RR_i^*) and equivalent concentration (Z_i^*) is defined as Eq. (3) based
177 on the assumption that the ER of a pollutant i is equal to ER_{total} (Hu et al., 2015):

178 $ER_{total} = RR_i^* - 1 = \exp[\beta_i(Z_i^* - Z_{i,0})] - 1$

179 (3)

180 The equivalent concentration of i (Z_i^*), incorporating the health effects from all pollutants was
181 used to calculate HAQI based on Eq. (4) and (5):

182 $HAQI_i = \frac{(AQI_{high} - AQI_{low})}{(C_{high} - C_{low})} \times (Z_i^* - Z_{i,0}) + AQI_{low}$

183 (4)

184 $HAQI = \max(HAQI_i) \quad i = 1 \text{ to } 6$

185 (5)

186 where AQI_{high} is the index breakpoint corresponding to Z_{high} . AQI_{low} is the index breakpoint
187 corresponding to Z_{low} . Z_{high} is the concentration breakpoint that is larger than Z_i^* . Z_{low} is the
188 concentration breakpoint that is smaller than Z_i^* . The reference concentrations for the pollutants
189 in different health categories were provided by the Ministry of Ecology and Environment in
190 China (Hu et al., 2015, see Table S2 in Supplementary Material).

191 2.3. Health impact assessment

192 To avoid overestimation of mortality attributed to ambient air pollution, two independent
193 pollutants PM_{2.5} and O₃ were used in the present study. In the first stage, the long-term mortality
194 attributable to pollutant i exposure was calculated based on the epidemiological hazard ratio or
195 relative risk RR_i , which could link the pollutant concentration to negative health effects. Then
196 pollutant-attributed premature deaths were estimated using the equation (Zheng et al., 2017):

197 $\Delta Mort_i = [1 - 1/RR_i] \times B_0 \times E_{pop}$

198 (6)

199 where $\Delta Mort_i$ is the excess premature death due to pollutant i exposure for a specific age
200 group; B_0 is the baseline death rate of a specific health outcome at a specific age and E_{pop} is the
201 exposed population number.

202 The Log-Linear model, a commonly used method to estimate the relative risk RR_i for O_3 , were
203 drawn from the past (Pascal et al., 2013; Lin et al., 2017). The model is expressed as:

204 $RR_i(Z) = \exp(\beta_i Z), \quad \text{where } Z = \max(0, Z_i - Z_{i,0})$

205 (7)

206 where Z_i represents the ambient concentration of pollutant i and with $Z_{i,0}$ represents the
207 threshold concentration of the pollutant, assuming no health risk association below $Z_{i,0}$. β_i is the
208 exposure-response coefficient for pollutant i , can be derived from an epidemiological study. To
209 estimate non-accidental O_3 -attributed mortality, RR_i value from cohort study by Turner et al.,
210 (2016) was used. District-specific age-specific population and the baseline mortality rate were
211 extracted from Beijing Statistical Yearbook (BMBS, 2018). The present study used $75.2 \mu\text{g}/\text{m}^3$
212 as a threshold concentration for O_3 , also recommended by Lelieveld et al., (2015).

213 As $PM_{2.5}$ did not follow the LL exposure-response model, the integrated exposure-response
214 (IER) model was developed by Burnett et al. (2014) for relative risk estimation. The cause-
215 specific RR was calculated through Eq. (8);

216
$$RR_{IER}(Z_a) = \begin{cases} 1 + \alpha(1 - \exp^{-\gamma(Z_a - Z_0)^\delta}), & \text{if } Z_a > Z_0 \\ 1, & \text{else} \end{cases} \quad (8)$$

217 where Z_a is the annual average ambient $PM_{2.5}$ concentration; Z_0 is the threshold concentration
218 below which no additional health impacts are calculated; and α , γ and δ are the parameters used
219 to describe the different shapes of the relative risk curve among various diseases (Burnett et al.,
220 2014). The theoretical minimum risk exposure level of $2.4 \mu\text{g}/\text{m}^3$ is used for the health risk
221 assessment. The age and cause-specific baseline death rates for 2014 to 2017 were downloaded
222 from the GBD study (GBD, 2019). Following the GBD approach, premature deaths due to five

223 causes (IHD, Stroke, COPD, Lung Cancer and ALRI) attributed to $PM_{2.5}$ exposure were
224 calculated for the age group ≥ 25 years and <5 years and for O_3 -related non-accidental mortality,
225 the age group ≥ 25 years were selected.

226 **3. Results and discussion**

227 **3.1. Annual and seasonal variation of air pollutants**

228 Table 1 summarizes the annual average concentration of $PM_{2.5}$, O_3 , NO_2 and SO_2 in four typical
229 sites in Beijing. The annual $PM_{2.5}$ concentrations exceeded the Chinese national ambient air
230 quality standards (CNAQS) Grade II ($35 \mu g/m^3$) in all sites in 2014 to 2018 and varied from
231 $88.5 \pm 77.4 \mu g/m^3$ (suburban) to $98.6 \pm 89.0 \mu g/m^3$ (traffic) in 2014, although the range decreased
232 to $50.6 \pm 46.6 \mu g/m^3$ (suburban) to $56.1 \pm 47.0 \mu g/m^3$ (regional background) in 2018. The average
233 seasonal $PM_{2.5}$ concentration was in the order of winter > autumn > spring > summer in the year
234 2014-2017 (Table 1). In the winter on average higher $PM_{2.5}$ was observed in the regional
235 background ($104.8 \mu g/m^3$) and traffic site ($105.4 \mu g/m^3$) and in the summer on average lower
236 $PM_{2.5}$ is observed in the suburban site ($54.3 \mu g/m^3$) and regional background site ($54.2 \mu g/m^3$).
237 In 2018, the average $PM_{2.5}$ concentration in the spring is higher than winter in all sites due to
238 smog events in March 2018 (Mullin, 2018). The average $PM_{2.5}$ concentration in the spring was
239 $69.2-73.5 \mu g/m^3$ and $73.7-55.7 \mu g/m^3$ in the winter in 2018. Predominantly, high $PM_{2.5}$ in the
240 winter in Beijing was mainly attributed to the adverse meteorological conditions like low
241 temperature and lower boundary layer height, less precipitation and weaker wind and solid fuel
242 (coal) combustion for indoor heating (Che et al., 2014; Liu et al., 2019).

243 The annual average of MDA8-h ozone concentrations (AMDA8-h) was $112.8 \pm 65.8 \mu g/m^3$,
244 $115 \pm 63.5 \mu g/m^3$, $117 \pm 62.6 \mu g/m^3$ and $83.6 \pm 50.3 \mu g/m^3$ in the urban, the suburban, the regional
245 background and the traffic sites in 2014. AMDA8-h O_3 was almost stable from 2015 to 2017 in
246 Beijing (ranging from $94.6 \pm 60.5 \mu g/m^3$ in 2015 to $94.8 \pm 57.1 \mu g/m^3$ in 2017) and further
247 increased to $82.8 \pm 50.5 \mu g/m^3$ (traffic) to $105.4 \pm 60.9 \mu g/m^3$ (suburban) in 2018. O_3 concentration
248 was a little higher in suburban area than others and the lowest was observed in the traffic site. In
249 the traffic site, the dilution of O_3 is due to the higher photochemical reactions with NO_2 and CO ,
250 exhaust from vehicles. The seasonal O_3 concentration was in the order of
251 summer > spring > autumn > winter in all the years. In 2014, the average daily maximum 8-h
252 (MDA8-h) ozone was $125.9 \mu g/m^3$ (traffic) to $167.7 \mu g/m^3$ (suburban) in the summer and 39.9

253 $\mu\text{g}/\text{m}^3$ (traffic) to $46.8 \mu\text{g}/\text{m}^3$ (suburban) in the winter. The MDA8-h ozone has a range from
254 $133.1 \mu\text{g}/\text{m}^3$ (traffic) to $167.2 \mu\text{g}/\text{m}^3$ (suburban) in the summer and $45.7 \mu\text{g}/\text{m}^3$ (traffic) to 60.6
255 $\mu\text{g}/\text{m}^3$ (background site) in the winter in 2018 (Table 1). The 90th percentile of annual MDA8-h
256 ozone concentrations in Beijing was quite high, at $204.5 \mu\text{g}/\text{m}^3$ in 2014, and $197.1 \mu\text{g}/\text{m}^3$ in
257 2018, which exceeds Grade II Standard ($160 \mu\text{g}/\text{m}^3$) by 23.2%. Lu et al., (2019) pointed out that
258 the ozone concentration in the summer could be attributed to high temperature and low-humidity
259 conditions, inducing an increase of biogenic volatile organic compounds emissions and enhanced
260 ozone production rate.

261 The annual average NO_2 concentration exceeded the CNAQS Grade II ($40 \mu\text{g}/\text{m}^3$) in all the
262 years in the urban (range: $55.9 \pm 30.8 \mu\text{g}/\text{m}^3$ in 2014 to $43.6 \pm 26.2 \mu\text{g}/\text{m}^3$ in 2018) and the traffic
263 (range: $82.1 \pm 32.7 \mu\text{g}/\text{m}^3$ in 2014 to $64.4 \pm 28.7 \mu\text{g}/\text{m}^3$ in 2018) sites, whilst NO_2 never exceeded
264 the standard in regional background site (range: $37.9 \pm 19.8 \mu\text{g}/\text{m}^3$ in 2014 to $32.5 \pm 17.6 \mu\text{g}/\text{m}^3$ in
265 2018). In traffic site, relatively high NO_2 was observed due to NO_x exhaust from vehicles.
266 Generally, NO_2 concentration is higher in the winter and lower in the summer season in all site
267 (Table 1). The annual average SO_2 concentration never exceeded even the CNAQS Grade I (20
268 $\mu\text{g}/\text{m}^3$) and gradually decreased from 12.3 - $16.0 \mu\text{g}/\text{m}^3$ in 2014 to 5.9 - $7.6 \mu\text{g}/\text{m}^3$ in the year 2018.

269 **Table 1.** Annual average pollution concentrations from 2014 to 2018 in four-type of sites in
270 Beijing (US, SUB, RBS and TS represent the urban site, the suburban site, the
271 regional background site and the traffic site; concentration unit is in $\mu\text{g}/\text{m}^3$)

272

273 3.2. Daily variation

274 The daily average $\text{PM}_{2.5}$, MDA8-h O_3 , NO_2 and SO_2 concentration ($\mu\text{g}/\text{m}^3$) from 2014 to 2018
275 across four typical sites is shown in Fig.2a. $\text{PM}_{2.5}$ shows a similar trend across all four typical
276 sites and most of the highest peaks were observed from January to February. $\text{PM}_{2.5}$ values
277 remained flat from May to August, then they gradually increased from October to December. In
278 2014, from January-February, the daily $\text{PM}_{2.5}$ concentration dropped gently from a maximum of
279 378.6 - $419.4 \mu\text{g}/\text{m}^3$ to a minimum of 12.2 - $14.6 \mu\text{g}/\text{m}^3$ in May-August, then it slowly increased to
280 330.6 - $393.6 \mu\text{g}/\text{m}^3$ during October-December. Whereas in 2018 relatively lower $\text{PM}_{2.5}$
281 concentrations were observed during this time, and the maximum $\text{PM}_{2.5}$ concentration was
282 168.7 - $184.3 \mu\text{g}/\text{m}^3$ between January-February, the minimum was 10.0 - $12.4 \mu\text{g}/\text{m}^3$ in May-

August and it peaked again at 211.6-258.4 $\mu\text{g}/\text{m}^3$ in October-December. The most extreme events occurred during November 27th to December 1st and December 19-26th, 2015 was related to the Southeast Asian haze, and the highest PM_{2.5} concentration shoots up to 537.0 $\mu\text{g}/\text{m}^3$ on December 25 (Koplitz et al., 2016; Z. Liu et al., 2019; Dang and Liao, 2019). The Taklimakan Desert in Northwest China witnesses frequent dust storm events, which bring about significant impacts on the downstream air quality (Li et al., 2018), and for that reason, the non-seasonal PM_{2.5} concentration peak was observed during March to May in Beijing (BBC, 2017). The traffic site recorded the maximum number of days (190 days) which exceeded Grade II standard of PM_{2.5} concentration (75 $\mu\text{g}/\text{m}^3$) while suburban site recorded the minimum number of days (169 days) in 2014, and the corresponding number of days decreased to 80 and 71, respectively, in 2018. The total number of days exceeding the Grade II standards for daily average PM_{2.5} during the period 2014-2018 was 626, accounting for 34% of the total number of days. It is important to note that urban and suburban sites have a total of 49 days (with 18 days in 2014 and 15 days in 2015) and 41 days (with 16 days in 2014 and 12 days in 2015), in which PM_{2.5} concentrations were higher than 250.0 $\mu\text{g}/\text{m}^3$, the AQI of these days should be considered as highly unhealthy.

Fig.2b shows the MDA8-h O₃ concentrations across four-type of sites during 2014-2018. Generally, the monthly variability of ground-level O₃ concentrations peaked in May to August (summer) and was the lowest in January, February and December (winter). In 2014, The peak and valley values of ground-level MDA8-h O₃ concentrations in the urban site were 311.6 $\mu\text{g}/\text{m}^3$ and 6.0 $\mu\text{g}/\text{m}^3$, which were reached in May and November, respectively. Whereas in 2018, the maximum of 290.6 $\mu\text{g}/\text{m}^3$ was reached in the suburban site in June and the minimum of 7.3 $\mu\text{g}/\text{m}^3$ was reached in the urban site in December. Relatively low MDA8-h O₃ was observed in the traffic site due to high photochemical reaction rates in higher NO₂ concentration. The total number of days exceeding Grade II standards (160 $\mu\text{g}/\text{m}^3$) for O₃ was 291 during 2014-2018 (63 days in 2014 and 62 days in 2018), accounting for 16% of the total number of days.

Typically, NO₂ exhibits U-shape patterns in a year; lower values in May to August and higher values in January, November and December (Fig.2c). The traffic site showed flatter U-shapes due to continuous vehicular emission of NO_x in the site and the concentration was quite a bit higher than the other sites. In December 2014, the maximum NO₂ concentration was 116.5 $\mu\text{g}/\text{m}^3$ (suburban) to 148.3 $\mu\text{g}/\text{m}^3$ (traffic) and decreased to 77.3 $\mu\text{g}/\text{m}^3$ (regional background) to 102.5

314 $\mu\text{g}/\text{m}^3$ (traffic) in December 2018. The highest peak was observed during 1st to 6th January 2017,
315 NO₂ concentration reached 146.4-178.9 $\mu\text{g}/\text{m}^3$. The number of days exceeding Grade II
316 standards for daily average NO₂ (80 $\mu\text{g}/\text{m}^3$) during the period 2014-2018 was 152, in which the
317 lowest exceeded days (18 days) was observed in 2018.

318 Substantially, SO₂ exhibited U-shape patterns in all years; lower values in May to August, and
319 higher values in January, November and December (Fig.2d) in all sites, with higher values in
320 traffic sites. A smooth decreasing trends were observed at all sites, from maximum peaks of
321 74.0-96.2 $\mu\text{g}/\text{m}^3$ in December 2014 to 13.2-18.8 $\mu\text{g}/\text{m}^3$ in December 2018.

322 **Fig. 2.** Daily average pollution concentrations (a: PM_{2.5}; b: MDA8-h O₃; c: NO₂; d: SO₂) at the
323 four typical sites in Beijing from 2014 to 2018. (units are $\mu\text{g}/\text{m}^3$) (PM_{2.5} extreme events
324 shown in the box and green horizontal line indicating the Grade II standard).

325

326 3.3. Diurnal variation

327 Fig.3a shows the annual diurnal variation of PM_{2.5} concentrations across four different typical
328 sites from 2014 to 2018 in Beijing. The diurnal variation of PM_{2.5} concentrations was by and
329 large characterized by a “W” type double wave. The morning peak occurred around 08:00 to
330 11:00, and an afternoon valley between 15:00 to 17:00. The peak in the night appeared after
331 19:00 or midnight and then gradually decreased in the early hours of the morning. In 2014, the
332 minimum and maximum values of hourly PM_{2.5} were 81.9 $\mu\text{g}/\text{m}^3$ and 99.7 $\mu\text{g}/\text{m}^3$ at 16:00 and
333 23:00 in the urban site, whereas, in the traffic site, the observed values were 87.3 $\mu\text{g}/\text{m}^3$ and
334 110.2 $\mu\text{g}/\text{m}^3$, observed at 14:00 and 01:00. As the year progressed, overall PM_{2.5} concentration
335 was decreased and more flat diurnal variation was observed. In 2018, the minimum and
336 maximum values were 49.8 $\mu\text{g}/\text{m}^3$ (at 07:00 and 16:00) and 56.8 $\mu\text{g}/\text{m}^3$ (at 23:00) in the urban
337 site, and 50.3 $\mu\text{g}/\text{m}^3$ (at 16:00) and 59.9 $\mu\text{g}/\text{m}^3$ (at 23:00) in the traffic site.

338 The morning and evening peaks were attributable in part to the enhanced human activities during
339 the rush hours, and the afternoon valley was mainly attributable to a higher atmospheric mixing
340 layer, which enhanced air pollution diffusion (Martini et al., 2015). It can be observed from Fig.
341 3b that the diurnal variability showed a strong seasonal variability between the summer and
342 winter for the year 2014 and 2018. In the summer, the average concentration of pollutants was
343 higher during the daytime and reduced at night, which contrasted with the situation in the winter.

344 In the summer, a peak was observed between 08:00 to 12:00, though a deep valley occurred
345 between 07:00 to 15:00 in the winter. This difference was mainly due to the diverse sources of
346 pollution and their distinct formation mechanisms in different seasons. The air quality in the
347 summer was more affected by human activities, and during the night, with the decrease in human
348 activities, the concentration of pollutants dropped to a lower level. The main factors influencing
349 outdoor air quality during the winter were the transport and diffusion effects of external pollution
350 sources and the burning of indoor biomass for heating (Liu et al., 2019; Shi et al., 2019). The
351 impact of human activities was relatively small and superseded by meteorological conditions in
352 the winter. Therefore, during the night time, the lower atmospheric and stagnant wind conditions
353 aggravated the accumulation of pollutants and increased the PM_{2.5} concentrations (Lang et al.,
354 2017; Zhang & Cao, 2015). Similar seasonal diurnal variations of PM_{2.5} was noted for the year
355 (Martini et al., 2015).

356 Fig.3c shows the hourly average diurnal variation of O₃ concentrations during 2014-2018,
357 which was opposite that of the other air pollutants. Ozone concentrations reach a minimum value
358 before sunrise. Around 09:00, along with increases in solar radiation and temperature,
359 photochemical reactions become more active. Ozone concentrations begin to increase, and they
360 peak around 18:00–20:00. The highest peak concentration was observed in Summer. In winter,
361 the peak concentration of ozone appeared earlier, at around 17:00. From 06:00 to 09:00,
362 coinciding with the morning peak traffic, the concentration of NO increases rapidly. Solar
363 radiation is still weak during this period; thus, the concentration of ozone decreases due to
364 titration with NO (O₃ + NO → NO₂ + O₂). Between 21:00 and 23:00, the concentration of ozone
365 decreases rapidly due to the decrease in solar radiation and titration with NO during evening
366 peak traffic. In the urban site in 2018, the minimum and maximum values of hourly average
367 O₃ concentration were 29.4 $\mu\text{g}/\text{m}^3$ and 95.2 $\mu\text{g}/\text{m}^3$, observed at 8:00 and 19:00, respectively.
368 In the traffic site in 2018, the minimum and maximum values were 20.9 $\mu\text{g}/\text{m}^3$ and
369 75.5 $\mu\text{g}/\text{m}^3$, observed at 9:00 and 19:00, respectively. The diurnal variations of O₃ in the
370 summer and winter has undergone a huge shape metamorphosis and the hourly concentration
371 on summer days was significantly higher than those in the winter (Fig.3d). In 2018, the minimum
372 and maximum O₃ in the summer in the urban site were 45.0 $\mu\text{g}/\text{m}^3$ and 153.8 $\mu\text{g}/\text{m}^3$ and, in the
373 winter, 27.3 $\mu\text{g}/\text{m}^3$ and 50.9 $\mu\text{g}/\text{m}^3$, respectively. Overall, the amplitude of the variation in
374 ozone concentration was increased in 5-years.

375 The diurnal variation in NO₂ concentrations can be represented by two peaks (Fig.3e) except in
376 the regional background sites. The first peak was at 07:00–8:00 and the second one appeared in
377 20:00–22:00; the second peak was significantly higher than the first one. In the regional
378 background site, there was a sharp decline at 14:00–15:00 and the peak was reached at 21:00–
379 22:00. The peak in the morning could be attributed to the rush hour traffic and a peak at night
380 might be related to NO₂ accumulation caused by relatively unfavourable weather conditions and
381 high NO emissions (Cheng et al., 2018). Heavy diesel vehicles are allowed to enter the city at
382 night, resulting in a large amount of NO emissions at night (Sun et al., 2013). The shapes of the
383 diurnal variations in each site are different and the overall NO₂ concentration decreased across
384 all the sites from 2014 to 2018. The minimum and maximum values were quite different in the
385 urban site (28.7 $\mu\text{g}/\text{m}^3$ and 53.1 $\mu\text{g}/\text{m}^3$ in 2018) and traffic site (50.4 $\mu\text{g}/\text{m}^3$ and 72.7 $\mu\text{g}/\text{m}^3$ in
386 2018). The hourly concentrations of NO₂ during the winter days were significantly higher than
387 those in the summer (Fig. 3f). This phenomenon might be attributable to the difference in
388 meteorological conditions. The decrease of NO₂ concentrations in the afternoon was related to
389 the increase of boundary layer height and an increase in wind speed which results in the dilution
390 of pollutants. With the decrease in NO₂ and CO concentrations in the afternoon, O₃
391 concentrations increased and it was suggested that the maximum O₃ concentration in the
392 afternoon was mainly due to photochemical reaction under intense solar radiation conditions,
393 leading to the consumption of NO₂ and CO emissions (Shi et al., 2019). A unimodal shape is
394 observed for the annual average diurnal variations of SO₂ (Fig.3g). In the urban area, the
395 minimum hourly average values were observed at 10.8 $\mu\text{g}/\text{m}^3$ and 4.7 $\mu\text{g}/\text{m}^3$ in 2014 and 2018
396 at early morning 06:00 and the maximum values where 17.9 $\mu\text{g}/\text{m}^3$ and 7.2 $\mu\text{g}/\text{m}^3$ in 2014 and
397 2018 during 10:00-13:00. The diurnal variation in the winter was much higher than the summer
398 and each is different in shape (Fig.3h).

399 **Fig. 3.** Diurnal variations of PM_{2.5} (a and b), O₃ (c and d), NO₂ (e and f) and SO₂ (g and h) at
400 four typical sites in Beijing. (a, c, e and g for yearly average, and b, d, f and h for the
401 seasonal summer and winter variations in 2014 and 2018)

402

403 3.4. The trend of pollutants from 2014 to 2018

404 The Theil-Sen estimator was used to calculate the magnitude of the long-term trend after
405 accounting for seasonal variations in the data. Fig.4 presents yearly average changes of air
406 pollutant concentrations at the urban, the suburban, the regional background and the traffic sites
407 of Beijing from 2014 to 2018. Specifically, average yearly changes were, for PM_{2.5} (-7.7, -7.0, -
408 6.3 and -8.4 $\mu\text{g}/\text{m}^3/\text{year}$ for the urban, the suburban, the regional background and the traffic
409 sites, respectively), NO₂ (-2.7, -1.7, -1.4 and -3.9 $\mu\text{g}/\text{m}^3/\text{year}$), MDA8-h O₃ (1.7, 2.0, -0.9 and
410 2.5 $\mu\text{g}/\text{m}^3/\text{year}$), SO₂ (-2.1, -1.4, -1.9 and -2.2 $\mu\text{g}/\text{m}^3/\text{year}$), PM₁₀ (-9.6, -7.9, -5.1 and -9.7
411 $\mu\text{g}/\text{m}^3/\text{year}$) and CO (-0.07, -0.08, -0.06 and -0.11 mg/m³/year). The error on the bar shows the
412 minimum and maximum yearly change with 95% confidence interval (95% CI). Fig.4 shows that
413 the air pollution action plan has significantly ameliorated the air quality of Beijing at all four-
414 type of sites, especially for PM_{2.5} and PM₁₀, whereas, except for the regional background site,
415 MDA8-h O₃ increased significantly in all sites. The Action Plan also led to a decrease in SO₂ and
416 NO₂ but to a lesser extent than that of CO, PM_{2.5} and PM₁₀, indicating that SO₂ and NO₂ were
417 significantly affected by other less well-controlled sources. The urban and the traffic sites
418 showed a bigger decrease in PM_{2.5}, PM₁₀, NO₂ and SO₂ concentrations in comparison to the
419 other sites. After accounting for seasonal variations, MDA8-h showed a positive trend, although
420 annual average MDA8-h O₃ concentration decreased during the study period, this was due to the
421 increase of summer MDA8-h value.

422 Cheng et al., (2016) reported the increase of MDA8-h O₃ in the urban area by 2.2 $\mu\text{g}/\text{m}^3/\text{year}$,
423 and a slight decrease at background station by 0.9 $\mu\text{g}/\text{m}^3/\text{year}$ from 2004 to 2015. Vu et al.,
424 (2019) estimated the annual average levels of PM_{2.5}, PM₁₀, SO₂, NO₂ and CO decreased by 7.4,
425 7.6, 3.1, 2.5 and 94 $\mu\text{g}/\text{m}^3/\text{year}$, respectively, whereas the level of O₃ increased by 1.0
426 $\mu\text{g}/\text{m}^3/\text{year}$ during 2013 to 2017. The higher decreasing rate of PM_{2.5} was observed in the urban
427 areas in North China, by 10 $\mu\text{g}/\text{m}^3/\text{year}$ during 2013-2017 (Li et al., 2020). The ozone increases
428 in Beijing were largely due to higher background ozone driven by urban heat island effects and
429 increase in summertime biogenic emissions of VOCs and NOx (Lu et al., 2019; Cheng et al.,
430 2019; Chen et al., 2019). However, Li et al., (2019) argued that the decrease of PM_{2.5} contributes
431 more than the decrease of NO_x or VOCs emissions to ozone increasing trends in China, and this
432 is mainly due to aerosol chemistry rather than photolysis.

433

434 **Fig. 4.** The trend of pollutants from 2014 to 2018 (mean values with error bars represent 95%
435 confidence intervals; unit in $\mu\text{g}/\text{m}^3/\text{year}$ for $\text{PM}_{2.5}$, O_3 , NO_2 , SO_2 and PM_{10} , and in
436 $\text{mg}/\text{m}^3/\text{year}$ for CO).

437

438 The trend of ozone in only positive in Beijing and there are various reasons: (a) The biogenic
439 VOCs emissions alone enhance surface DMA8 ozone by more than $29.4 \mu\text{g}/\text{m}^3$ over central-
440 eastern China in July-August, mainly driven by high temperatures (X. Lu et al., 2019). (b) The
441 precursor material from long-distance transport has the largest contribution to ambient ozone in
442 some provinces in China. The emission rate of precursors in Beijing has decreased, however, the
443 VOCs from nearby areas still make the surface ozone concentration rise (Gao et al., 2019). (c)
444 Reduced $\text{PM}_{2.5}$ levels also plausibly cause an increase in O_3 level due to impacts on ozone
445 photochemistry and heterogeneous chemistry on aerosol surfaces. Primarily $\text{PM}_{2.5}$ scavenges the
446 hydroperoxy (HO_2) and NO_x radicals that would otherwise produce O_3 (Wang et al., 2019). (d)
447 Also, meteorological conditions were dominant drivers of the ground ozone concentrations, as
448 the surface temperature. Compared to the previous year's summer of 2017 had hotter and drier
449 weather conditions, which promoted ozone production and led to higher ozone levels in 2017 in
450 North China Plain (Ding et al., 2019a).

451 3.5. Health-risk-based AQI (HAQI)

452 The exposure-response coefficient characterizes the relationship of pollutants exposure and
453 corresponding additional mortality health risk due to the six pollutants when their concentrations
454 are higher than CAAQS Grade II. Although some adverse health impacts may still exist below
455 the CAAQS Grade II standard, the impact is much smaller (WHO, 2005). Fig.5a shows the
456 percentage of total average ER values for all pollutants in four regions in Beijing from 2014 to
457 2018. For the six pollutants, $\text{PM}_{2.5}$ and PM_{10} were the two major pollutants that contributed the
458 highest percentage of total ER, $\text{PM}_{2.5}$ contributed 71.5% (in the suburban area) to 81.5% (in the
459 traffic area) and PM_{10} contributed 9.9% (background site) to 14.1% (traffic site). The average
460 contributions by O_3 , NO_2 and CO were 5.4%, 4.2% and 2.6% of total ER, respectively, although
461 their health effects were also significant. The results reveal that $\text{PM}_{2.5}$ is the top threat to public
462 health regarding non-accidental mortality among the pollutants.

463 Each day (from the year 2014 to 2018) is classified into five risk categories based on AQI. The
464 classification of the category on a certain day could change if based on HAQI (Fig.5b). There is
465 no misclassification when AQI is less than 100 (AQI-based health days), as HAQI is equal to
466 AQI. The number of days having good-to-moderate (AQI: 0-100) and hazardous (AQI: > 300)
467 health risk in regional background site was 974 and 47, and in the traffic site, 894 and 67 days. In
468 this context, the air quality was healthier in the regional background site than in the traffic site.
469 For AQI-based light pollution days ($100 < \text{AQI} < 150$), 82, 9.4 and 8.5% of days and 77.5, 13.4
470 and 9.1% of days would be ‘unhealthy for sensitive groups’, ‘unhealthy’ and ‘very unhealthy’
471 pollution based on HAQI values in the urban and the traffic site, respectively. In moderate
472 pollution days (AQI: 151-200), 39.3, 25.6 and 35.2% of days and 31.7, 10.8 and 57.5% of days
473 would be ‘unhealthy’, ‘very unhealthy’ and ‘hazardous’ pollution days based on HAQI values in
474 the urban and the traffic sites, respectively. And in serious days (AQI: 201-300), above 88% of
475 the days would be ‘hazardous’ based on HAQI in all sites. In this perspective, the results detect
476 that the health risks are underestimated based on simple AQI system in many days. The public is
477 exposed to multiple pollutants on most pollution days, while AQI captures only the single
478 pollutant with the ‘greatest health risk’, neglecting the mortality risk of other pollutants. From
479 2014 to 2018, the average HAQI value decreased around 6% per year.

480 **Fig. 5.** (a) Percentage of the excessive risk of pollutants from 2014 to 2018. (b) Comparison of
481 the HAQI-classified health risk categories with the AQI-classified categories (with the
482 average number of days in different ranges; the sum of all year data was included in the
483 analysis).

484

485 3.6. Air pollutants-attributed total premature mortality

486 The $\text{PM}_{2.5}$ and O_3 exposure levels vary significantly throughout the year due to both naturogenic
487 reasons such as meteorology and to anthropogenic emissions like transport. Therefore, based on
488 the daily data the Monte Carlo simulation of $\text{PM}_{2.5}$ and O_3 were used to calculate district wise
489 pollution concentration in Beijing. Fig.6 (a and b) represents the district wise 5-year annual
490 average $\text{PM}_{2.5}$ and O_3 concentration in Beijing and shows a substantial spatial heterogeneity,
491 where $\text{PM}_{2.5}$ pollution was high in the central and southern parts and O_3 pollution was high in the
492 northern parts of Beijing. In 2014, $\text{PM}_{2.5}$ and O_3 attributed total deaths were 29.27 (95% CI:
493 18.79–35.4) thousands and 3.03 (95% CI: 1.54–5.9) thousands (Fig.6 c and e). After five years,

494 the estimated number of deaths by $PM_{2.5}$ and O_3 decreased by 5.6% and 18.5% (Fig.6 d and f). In
495 $PM_{2.5}$ -attributed mortality, ischemic heart disease (IHD), cerebrovascular disease (Stroke),
496 chronic obstructive pulmonary disease (COPD), lung cancer (LC) among adults ($age \geq 25$ years),
497 and acute lower respiratory infection (ALRI) in children ($age \leq 5$ years) contributed to 37.4, 49.0,
498 7.2, 6.3 and 0.2%, respectively. It should be noted in Table 2, that premature death is directly
499 proportional to the population size. In Fig.6 (a) shows that $PM_{2.5}$ pollution was higher in Daxing,
500 Fangshan and Tongzhou districts while the total $PM_{2.5}$ -attributed deaths in these districts were
501 smaller than those in Haidian, Fengtai and Chaoyang districts due to differences in population
502 distribution across these districts (Fig.S12 and Table 2). The highest premature deaths (due to
503 $PM_{2.5}$ and O_3) were observed in Haidian (5364 in 2014 and 4653 in 2018) and Chaoyang (5751
504 and 5049) and the lowest deaths were observed in Yanqing (484 and 462) and Mentougou (477
505 and 461). More details have been reported in Table S4 and Table S5 (Supplementary Material).
506 Even though the pollutant concentrations were substantially reduced in these five years, the total
507 attributed deaths were not reduced, as the total mortality rate, population and aged population
508 (≥ 25 years) were increased by 5.28, 0.93 and 5.01%, respectively. The cities of Tianjin and
509 Hebei in the Beijing-Tianjin-Hebei (BTH) region, showed a 2.35% decrease and a 15.7%
510 increase in premature deaths from 2010 to 2015 (Zhu et al., 2019). Zhang et al. (2019) reported a
511 17.2% decrease in total non-accidental mortality in China during 2013-2017, whereas Ding et al.,
512 (2019b) reported 20.7% decrease of cause-specific mortality during the same period, although
513 Wu et al. (2019) observed almost no decrease in the number of $PM_{2.5}$ -related premature deaths in
514 the Pearl River Delta region from 2006 to 2015.

515 **Fig. 6.** District-specific (a) annual average $PM_{2.5}$ concentration ($\mu g/m^3$), (b) annual average O_3
516 concentration ($\mu g/m^3$) in Beijing from 2014 to 2018, $PM_{2.5}$ -attributed premature
517 mortality for the year (c) 2014 and (d) 2018, and O_3 -attributed premature mortality for
518 the year (c) 2014 and (d) 2018.

519 Note: DAX, MEN, HAI, MIY, YAN, HUA, PIN, SHI, FEN, DON, SHU, FAN, CHA, XIC,
520 CHA and TON refer to the districts of Daxing, Mentougou, Haidian, Miyun, Yanqing,
521 Huairou, Pinggu, Shijingshan, Fengtai, Dongcheng, Shunyi, Fangshan, Chaoyang,
522 Xicheng, Changping and Tongzhou

523

524 **Table 2.** Cause-specific premature deaths attributed to $PM_{2.5}$ and O_3 in 16 districts in Beijing

525

526 Very few district-specific health risk assessment works have been done in the past, Yin et al.
527 (2017) estimated the maximum and minimum PM_{2.5}-attributed deaths at 1773 in Chaoyang and
528 113 in Yanqing in 2012. At the city-level, PM_{2.5}-related reported deaths were 20.9 thousands
529 (Song et al., 2017) and 25.5 thousands (Li et al., 2018) in 2015, 17.7 thousands (Anenberg et al.,
530 2019) and 18.2 thousands in 2016 (Maji et al., 2018), 25.8 thousands in 2017 (Ding et al.,
531 2019b). Ozone-related total reported deaths were 2.98 thousands in 2015 (Xiang et al., 2019) and
532 2.1 thousands in 2016 (Maji et al., 2019). This difference in estimated pollution attributed deaths
533 is mainly due to different methodologies for estimating death and ground-level ozone, and
534 exposure-response coefficient. Most of the past studies used the average mortality rate and age
535 group population values for China as a whole, which were very different from the district-based
536 values. For example, in 2017, the average mortality rate in Beijing was 6.2%, while the mortality
537 rates in Miyun and Changping districts were 9.5% and 3.4%.

538 **4. Policy implications**

539 Air quality improvement is important for the future prosperity and sustainability of China's most
540 powerful city, Beijing. This improvement in air quality did not happen by chance. It was the
541 result of an enormous investment of time, resources and political will. In 1998 Beijing declared
542 war on air pollution. The challenge was to find ways to improve air quality in one of the largest
543 and fastest-growing cities in the developing world. Air pollution issue in Beijing is partially due
544 to the energy source, especially the higher use of solid and liquid fuel problems in the current
545 stage in China. On the one hand, actions of energy conservation and low-carbon energy
546 transitions to reduce CO₂ emissions also reduce other co-emitted air pollutants, bringing co-
547 benefits for air quality (Zhang et al., 2016). In this study, we emphasize the effects of past air
548 pollution control and action plan to improve the current environmental situation in Beijing, even
549 though PM_{2.5} concentration did not achieve the national standard and O₃ concentration continued
550 to increase due to growing VOC emissions in Beijing. The Chinese government should
551 strengthen the co-governance policy design in the future to achieve maximal effects with
552 minimal economic loss. In summary, in this study, we provide a comprehensive assessment of
553 the air quality in urban, suburban and traffic areas in Beijing, and districts level health burden,
554 which is valuable for policymakers. Now the Beijing authority should develop new district-based
555 policy, on (1) motor vehicle pollution control by using green transportation, (2) coal-fired

556 pollution control by using green energy, (3) key polluted industries control by strengthening the
557 air quality standard, (4) fugitive dust pollution control by using urban green infrastructure, and
558 (5) new technology application in environmental protection, for near-term air quality targets
559 achievement.

560 **5. Conclusion**

561 In this study, data for six official air pollutants are analyzed in 35 monitoring sites (divided into
562 four types, respectively, the urban, the suburban, the regional background, and the traffic site) in
563 Beijing based on the data from 2014 to 2018. None of the 35 sites has met the Grade II Chinese
564 ambient air quality standards for PM_{2.5}. The minimum annual average PM_{2.5} was observed in the
565 Badaling monitoring site (68.8 $\mu\text{g}/\text{m}^3$) in 2014 and the Miyun Reservoir site (45.1 $\mu\text{g}/\text{m}^3$) in
566 2018, and the maximum was observed at 125.3 $\mu\text{g}/\text{m}^3$ in 2014 and 72.2 $\mu\text{g}/\text{m}^3$ in 2018 in the
567 Liuli River site. The highest peak was observed in late December 2015 during the Southeast
568 Asian haze. During the 626 days or almost half of the five-year studied period, PM_{2.5}
569 concentration had consistently exceeded the Grade II standard. O₃ also exceeded the Grade II
570 standard for 291 days, which peaks at 311.6 $\mu\text{g}/\text{m}^3$ (in May) in 2014 and 290.6 $\mu\text{g}/\text{m}^3$ (in June)
571 in 2018. Very high seasonal variations were observed for all six pollutants. The stagnant
572 meteorological conditions and the use of fossil fuels for indoor heating accounted for the high
573 PM_{2.5} concentration in the winter. The decreasing trends were observed for PM_{2.5}, PM₁₀, NO₂,
574 SO₂ and CO, whereas, O₃ increased during this time. Among the six pollutants, PM_{2.5} was the
575 major threat to public health and the health risks were underestimated based on the current
576 simple AQI reporting system. From 2014 to 2018, the change of PM_{2.5} and O₃ attributed
577 mortality is low, mainly due to the increase of total mortality rate, the population as well as the
578 aged population. The diurnal variation can be a good source of information for a person's
579 exposure assessment during an outdoor visit. Future research can focus on the chemical
580 composition and source apportionment of fine particles, urban meteorology during haze and
581 photochemistry for Beijing for a longer time. Furthermore, to improve the quality of life, the
582 authorities in Beijing may want to impose even more stringent and effective pollutant control
583 measures, specifically targeting at the most polluted districts in Beijing, such as Chaoyang and
584 Haidian, with priority given to controlling VOCs and industrial pollution in Beijing and the
585 nearby urban regions.

586
587
588
589

590 **Acknowledgements**

591 This research is supported in part by the Theme-based Research Scheme of the Research Grants
592 Council of Hong Kong, under Grant No. T41-709/17-N. We would like to acknowledge the
593 Beijing Municipal Environment Monitoring Center and National Meteorological Information
594 Center, China for publicizing air quality and meteorological data of Beijing. We would also like
595 to thank Mr Han Yang, PhD student of Electrical and Electronic Engineering, and HKU-
596 Cambridge Clean Energy and Environment Research Platform (CEERP), and HKU-Cambridge
597 AI to Advance Well-being and Society Research Platform (AI-WiSe), the University of Hong
598 Kong, for providing the valuable air quality dataset.

599
600
601
602

603 **References**

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

Anenberg, S.C., Achakulwisut, P., Brauer, M., Moran, D., Apte, J.S., Henze, D.K., 2019. Particulate matter-attributable mortality and relationships with carbon dioxide in 250 urban areas worldwide. *Scientific Reports* 9, 11552. <https://doi.org/10.1038/s41598-019-48057-9>

Atkinson, R.W., Butland, B.K., Anderson, H.R., Maynard, R.L., 2018. Long-term Concentrations of Nitrogen Dioxide and Mortality. *Epidemiology* 29, 460–472. <https://doi.org/10.1097/EDE.0000000000000847>

BBC, 2017. Dust storm chokes Beijing and northern China. (Available at: <https://www.bbc.com/news/world-asia-china-39801555>).

BJMEMC, 2019. Beijing Municipal Environmental Monitoring Center, Beijing Air Quality Automatic Monitoring System. (Available at: http://www.bjmemc.com.cn/xgzs_getOneInfo.action?infoID=1661)

BMEPB, 2015. Beijing Environmental Statement Beijing Municipal Environmental Protection Bureau (2015) (Available at: http://www.bjepb.gov.cn/2015zt_jsxl/index.html)

BMBS, 2018. Annual Data, Beijing Municipal Bureau of Statistics (Available at: <http://tjj.beijing.gov.cn/English/AD/>)

Cairncross, E.K., John, J., Zunckel, M., 2007. A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. *Atmospheric Environment* 41, 8442–8454. <https://doi.org/10.1016/j.atmosenv.2007.07.003>

Carslaw, D.C., Ropkins, K., 2012. openair — An R package for air quality data analysis. *Environmental Modelling*

622 & Software 27–28, 52–61. <https://doi.org/10.1016/j.envsoft.2011.09.008>

623 CCICED, 2013. China Council for International Corporation on environment and Development, Beijing publishes
624 2013-2017 Clean Air Action Plan. (Available at:
625 http://www.cciced.net/cciceden/NEWSCENTER/LatestEnvironmentalandDevelopmentNews/201310/t20131022_82587.html)

626

627 Chen, Z., Zhuang, Y., Xie, X., Chen, D., Cheng, N., Yang, L., Li, R., 2019. Understanding long-term variations of
628 meteorological influences on ground ozone concentrations in Beijing During 2006–2016. *Environmental
629 Pollution* 245, 29–37. <https://doi.org/10.1016/j.envpol.2018.10.117>

630 Cheng, N., Li, R., Xu, C., Chen, Z., Chen, D., Meng, F., Cheng, B., Ma, Z., Zhuang, Y., He, B., Gao, B., 2019.
631 Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological
632 influences and formation regimes. *Journal of Cleaner Production* 235, 11–20.
633 <https://doi.org/10.1016/j.jclepro.2019.06.204>

634 Cheng, N., Li, Y., Chen, C., Cheng, B., Sun, F., Wang, B., Li, Q., Wei, P., 2018. Ground-Level NO₂ in Urban
635 Beijing: Trends, Distribution, and Effects of Emission Reduction Measures. *Aerosol and Air Quality Research*
636 18, 343–356. <https://doi.org/10.4209/aaqr.2017.02.0092>

637 Cheng, N., Li, Y., Zhang, D., Chen, T., Sun, F., Chen, C., Meng, F., 2016. Characteristics of Ground Ozone
638 Concentration over Beijing from 2004 to 2015: Trends, Transport, and Effects of Reductions. *Atmospheric
639 Chemistry and Physics Discussions* 1–21. <https://doi.org/10.5194/acp-2016-508>

640 CSC, 2013. China's State Council, Notice of the State Council on Printing and Distributing an Action Plan for the
641 Prevention and Control of Air Pollution. (Available at: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm).

643 Dang, R., Liao, H., 2019. Severe winter haze days in the Beijing-Tianjin-Hebei region from
644 1985–2017 and the roles of anthropogenic emissions and meteorological parameters.
645 *Atmospheric Chemistry and Physics Discussions* 1–31. <https://doi.org/10.5194/acp-2019-306>

646 Ding, D., Xing, J., Wang, S., Chang, X., Hao, J., 2019a. Impacts of emissions and meteorological changes on
647 China's ozone pollution in the warm seasons of 2013 and 2017. *Frontiers of Environmental Science &
648 Engineering* 13, 76. <https://doi.org/10.1007/s11783-019-1160-1>

649 Ding, D., Xing, J., Wang, S., Liu, K., Hao, J., 2019b. Estimated Contributions of Emissions Controls,
650 Meteorological Factors, Population Growth, and Changes in Baseline Mortality to Reductions in Ambient
651 PM_{2.5} and PM_{2.5}-Related Mortality in China, 2013–2017. *Environmental Health Perspectives* 127, 067009.
652 <https://doi.org/10.1289/EHP4157>

653 Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., Wang, P., Beig, G., Hu, J., Ying, Q., Zhang, H.,
654 Sherman, P., McElroy, M., 2019. Ozone Pollution over China and India: Seasonality and Sources.
655 *Atmospheric Chemistry and Physics Discussions* 2, 1–29. <https://doi.org/10.5194/acp-2019-875>

656 Guan, Y., Kang, L., Wang, Y., Zhang, N.-N., Ju, M.-T., 2019. Health loss attributed to PM_{2.5} pollution in China's
657 cities: Economic impact, annual change and reduction potential. *Journal of Cleaner Production* 217, 284–294.
658 <https://doi.org/10.1016/j.jclepro.2019.01.284>

659 GBD, 2019. Global Burden of Disease, IHME Data, GBD Results Tool (Available at:
660 <http://ghdx.healthdata.org/gbd-results-tool>)

661 He, G., Fan, M., Zhou, M., 2016. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing
662 Olympic Games. *Journal of Environmental Economics and Management* 79, 18–39.
663 <https://doi.org/10.1016/j.jeem.2016.04.004>

664 Hu, J., Ying, Q., Wang, Y., Zhang, H., 2015. Characterizing multi-pollutant air pollution in China: Comparison of
665 three air quality indices. *Environment International* 84, 17–25. <https://doi.org/10.1016/j.envint.2015.06.014>

666 Huang, J., Pan, X., Guo, X., Li, G., 2018. Health impact of China's Air Pollution Prevention and Control Action

667 Plan: an analysis of national air quality monitoring and mortality data. *The Lancet Planetary Health* 2, e313–
668 e323. [https://doi.org/10.1016/S2542-5196\(18\)30141-4](https://doi.org/10.1016/S2542-5196(18)30141-4)

669 Lang, J., Zhang, Y., Zhou, Y., Cheng, S., Chen, D., Guo, X., Chen, S., Li, X., Xing, X., Wang, H., 2017. Trends of
670 PM2.5 and Chemical Composition in Beijing, 2000–2015. *Aerosol and Air Quality Research* 17, 412–425.
671 <https://doi.org/10.4209/aaqr.2016.07.0307>

672 Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution
673 sources to premature mortality on a global scale. *Nature* 525, 367–371. <https://doi.org/10.1038/nature15371>

674 Li, J., Liu, H., Lv, Z., Zhao, R., Deng, F., Wang, C., Qin, A., Yang, X., 2018. Estimation of PM2.5 mortality burden
675 in China with new exposure estimation and local concentration-response function. *Environmental Pollution*
676 243, 1710–1718. <https://doi.org/10.1016/j.envpol.2018.09.089>

677 Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H., 2019. Anthropogenic drivers of 2013–2017 trends in
678 summer surface ozone in China. *Proceedings of the National Academy of Sciences* 116, 422–427.
679 <https://doi.org/10.1073/pnas.1812168116>

680 Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., Li, L., Li, X., Wang, Yonghong, Liu, L., Daellenbach, K.R.,
681 Paasonen, P.J., Kerminen, V.-M., Kulmala, M., Wang, Yuesi, 2020. Exploring the regional pollution
682 characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017.
683 *Environment International* 134, 105283. <https://doi.org/10.1016/j.envint.2019.105283>

684 Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., Kinney, P.L., Shi, X.,
685 2018. All-cause mortality risk associated with long-term exposure to ambient PM2.5 in China: a cohort study.
686 *The Lancet Public Health* 3, e470–e477. [https://doi.org/10.1016/S2468-2667\(18\)30144-0](https://doi.org/10.1016/S2468-2667(18)30144-0)

687 Liu, Y., Zheng, M., Yu, M., Cai, X., Du, H., Li, J., Zhou, T., Yan, C., Wang, X., Shi, Z., Harrison, R.M., Zhang, Q.,
688 He, K., 2019. High-time-resolution source apportionment of PM2.5; in Beijing with multiple models.
689 *Atmospheric Chemistry and Physics* 19, 6595–6609. <https://doi.org/10.5194/acp-19-6595-2019>

690 Liu, Z., Hu, B., Ji, D., Cheng, M., Gao, W., Shi, S., Xie, Y., Yang, S., Gao, M., Fu, H., Chen, J., Wang, Y., 2019.
691 Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical
692 evolution pattern and formation mechanism. *Science of The Total Environment* 687, 1073–1086.
693 <https://doi.org/10.1016/j.scitotenv.2019.06.068>

694 Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-M., Zhang, Q., 2019. Exploring
695 2016–2017 surface ozone pollution over China: source contributions and meteorological influences.
696 *Atmospheric Chemistry and Physics* 19, 8339–8361. <https://doi.org/10.5194/acp-19-8339-2019>

697 Maji, K.J., Arora, M., Dikshit, A.K., 2018. Premature mortality attributable to PM2.5 exposure and future policy
698 roadmap for ‘airpocalypse’ affected Asian megacities. *Process Safety and Environmental Protection* 118, 371–
699 383. <https://doi.org/10.1016/j.psep.2018.07.009>

700 Maji, K.J., Ye, W.-F., Arora, M., Nagendra, S.M.S., 2019. Ozone pollution in Chinese cities: Assessment of
701 seasonal variation, health effects and economic burden. *Environmental Pollution* 247, 792–801.
702 <https://doi.org/10.1016/j.envpol.2019.01.049>

703 MEP, 2013a. MEP Technical Specifications for Installation and Acceptance of Ambient Air Quality Continuous
704 Automated Monitoring System for PM10 and PM2.5. Ministry of Environmental Protection, Beijing, China
705 (2013), p. 25 (available at: http://english.mee.gov.cn/Resources/standards/Air_Environment/).

706 MEP, 2013b. MEP, Technical Specifications for Installation and Acceptance of Ambient Air Quality Continuous
707 Automated Monitoring System for SO₂, NO₂, O₃ and CO. Ministry of Environmental Protection, Beijing,
708 China (2013), p. 27. (available at: http://english.mee.gov.cn/Resources/standards/Air_Environment/).

709 Mullian., K., 2018. Beicology: Beijing's Recent Smog Resurgence, Explained. (Available at:
710 <https://www.thebeijinger.com/blog/2018/05/05/beicology-beijings-recent-smog-resurgence-explained>)

711 OECD, 2016. The Economic Consequences of Outdoor Air Pollution. OECD.

712 https://doi.org/10.1787/9789264257474-en

713 R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
714 Computing, Vienna, Austria.

715 San Martini, F.M., Hasenkopf, C.A., Roberts, D.C., 2015. Statistical analysis of PM2.5 observations from
716 diplomatic facilities in China. *Atmospheric Environment* 110, 174–185.
717 https://doi.org/10.1016/j.atmosenv.2015.03.060

718 Shi, Z., Vu, T., Kotthaus, S., Harrison, R.M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M.,
719 Dunmore, R.E., Ren, L., Liu, D., Wang, Y., Wild, O., et al., 2019. Introduction to the special issue “In-depth
720 study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing).”
721 *Atmospheric Chemistry and Physics* 19, 7519–7546. https://doi.org/10.5194/acp-19-7519-2019

722 Silver, B., Reddington, C.L., Arnold, S.R., Spracklen, D. V, 2018. Substantial changes in air pollution across China
723 during 2015–2017. *Environmental Research Letters* 13, 114012. https://doi.org/10.1088/1748-9326/aae718

724 Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., Mao, H., 2017. Health burden attributable to
725 ambient PM2.5 in China. *Environmental Pollution* 223, 575–586. https://doi.org/10.1016/j.envpol.2017.01.060

726 Stanaway, J.D., Afshin, A., Gakidou, E., Lim, S.S., Abate, D., Abate, K.H., Abbafati, C., Abbasi, N., Abbastabar,
727 H., Abd-Allah, F., Abdela, J., Abdelalim, A., et al., 2018. Global, regional, and national comparative risk
728 assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195
729 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Stu. *The Lancet*
730 392, 1923–1994. https://doi.org/10.1016/S0140-6736(18)32225-6

731 Tian, Y., Jiang, Y., Liu, Q., Xu, D., Zhao, S., He, L., Liu, H., Xu, H., 2019. Temporal and spatial trends in air
732 quality in Beijing. *Landscape and Urban Planning* 185, 35–43.
733 https://doi.org/10.1016/j.landurbplan.2019.01.006

734 Turner, M.C., Jerrett, M., Pope, C.A., Krewski, D., Gapstur, S.M., Diver, W.R., Beckerman, B.S., Marshall, J.D.,
735 Su, J., Crouse, D.L., Burnett, R.T., 2016. Long-Term Ozone Exposure and Mortality in a Large Prospective
736 Study. *American Journal of Respiratory and Critical Care Medicine* 193, 1134–1142.
737 https://doi.org/10.1164/rccm.201508-1633OC

738 Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., Harrison, R.M., 2019. Assessing the impact of Clean Air
739 Action Plan on Air Quality Trends in Beijing Megacity using a machine learning technique. *Atmospheric
740 Chemistry and Physics Discussions* 1–18. https://doi.org/10.5194/acp-2019-173

741 Wang, L., Zhang, F., Pilot, E., Yu, J., Nie, C., Holdaway, J., Yang, L., Li, Y., Wang, W., Vardoulakis, S., Krafft, T.,
742 2018. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress,
743 Challenges and Opportunities. *International Journal of Environmental Research and Public Health* 15, 306.
744 https://doi.org/10.3390/ijerph15020306

745 Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., Ding, A., 2019. Aggravating O₃ pollution due to NO_x emission
746 control in eastern China. *Science of The Total Environment* 677, 732–744.
747 https://doi.org/10.1016/j.scitotenv.2019.04.388

748 Wang, T., Nie, W., Gao, J., Xue, L.K., Gao, X.M., Wang, X.F., Qiu, J., Poon, C.N., Meinardi, S., Blake, D., Wang,
749 S.L., Ding, A.J., Chai, F.H., Zhang, Q.Z., Wang, W.X., 2010. Air quality during the 2008 Beijing Olympics:
750 secondary pollutants and regional impact. *Atmospheric Chemistry and Physics* 10, 7603–7615.
751 https://doi.org/10.5194/acp-10-7603-2010

752 WB, 2019. World Bank national accounts data, and OECD National Accounts data files. (Available at:
753 https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=CN)

754 WHO, 2015. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global
755 update 2005. Summary of risk assessment. (Available at:
756 https://www.who.int/airpollution/publications/aqg2005/en/)

757 Wu, Z., Zhang, Y., Zhang, L., Huang, M., Zhong, L., Chen, D., Wang, X., 2019. Trends of outdoor air pollution and
758 the impact on premature mortality in the Pearl River Delta region of southern China during 2006–2015.
759 *Science of The Total Environment* 690, 248–260. <https://doi.org/10.1016/j.scitotenv.2019.06.401>

760 Xiang, J., Weschler, C.J., Zhang, J., Zhang, L., Sun, Z., Duan, X., Zhang, Y., 2019. Ozone in urban China: Impact
761 on mortalities and approaches for establishing indoor guideline concentrations. *Indoor Air* ina.12565.
762 <https://doi.org/10.1111/ina.12565>

763 Xie, Y., Dai, H., Zhang, Y., Wu, Y., Hanaoka, T., Masui, T., 2019. Comparison of health and economic impacts of
764 PM2.5 and ozone pollution in China. *Environment International* 130, 104881.
765 <https://doi.org/10.1016/j.envint.2019.05.075>

766 Yang, Y., Li, R., Li, W., Wang, M., Cao, Y., Wu, Z., Xu, Q., 2013. The Association between Ambient Air Pollution
767 and Daily Mortality in Beijing after the 2008 Olympics: A Time Series Study. *PLoS ONE* 8, e76759.
768 <https://doi.org/10.1371/journal.pone.0076759>

769 Yin, H., Pizzol, M., Xu, L., 2017. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of
770 multiple health impacts and costs. *Environmental Pollution* 226, 356–369.
771 <https://doi.org/10.1016/j.envpol.2017.02.029>

772 Zhang, H., Wang, Shuxiao, Hao, J., Wang, X., Wang, Shulan, Chai, F., Li, M., 2016. Air pollution and control
773 action in Beijing. *Journal of Cleaner Production* 112, 1519–1527.
774 <https://doi.org/10.1016/j.jclepro.2015.04.092>

775 Zhang, J., Liu, Y., Cui, L., Liu, S., Yin, X., Li, H., 2017. Ambient air pollution, smog episodes and mortality in
776 Jinan, China. *Scientific Reports* 7, 11209. <https://doi.org/10.1038/s41598-017-11338-2>

777 Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei,
778 Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M.,
779 Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., Hao, J., 2019.
780 Drivers of improved PM 2.5 air quality in China from 2013 to 2017. *Proceedings of the National Academy of
781 Sciences* 116, 24463–24469. <https://doi.org/10.1073/pnas.1907956116>

782 Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., Zhong, J., 2019. The impact of meteorological changes
783 from 2013 to 2017 on PM2.5 mass reduction in key regions in China. *Science China Earth Sciences*.
784 <https://doi.org/10.1007/s11430-019-9343-3>

785 Zhang, X., Ou, X., Yang, X., Qi, T., Nam, K.-M., Zhang, D., Zhang, Xiliang, 2017. Socioeconomic burden of air
786 pollution in China: Province-level analysis based on energy economic model. *Energy Economics* 68, 478–489.
787 <https://doi.org/10.1016/j.eneco.2017.10.013>

788 Zhang, Y.-L., Cao, F., 2015. Fine particulate matter (PM2.5) in China at a city level. *Scientific Reports* 5, 14884.
789 <https://doi.org/10.1038/srep14884>

790 Zhang, Z., Ma, Z., Kim, S.-J., 2018. Significant Decrease of PM2.5 in Beijing Based on Long-Term Records and
791 Kolmogorov-Zurbenko Filter Approach. *Aerosol and Air Quality Research* 18, 711–718.
792 <https://doi.org/10.4209/aaqr.2017.01.0011>

793 Zhu, G., Hu, W., Liu, Y., Cao, J., Ma, Z., Deng, Y., Sabel, C.E., Wang, H., 2019. Health burdens of ambient PM2.5
794 pollution across Chinese cities during 2006–2015. *Journal of Environmental Management* 243, 250–256.
795 <https://doi.org/10.1016/j.jenvman.2019.04.119>

Table 1. Annual average pollution concentrations from 2014 to 2018 in four typical sites in Beijing (US, SUB, RBS and TS represent the urban site, the sub-urban site, the regional background site and the traffic site; concentration unit is in $\mu\text{g}/\text{m}^3$)

	Sites	2014	2015	2016	2017	2018
PM _{2.5}	US	89.8 \pm 81.5	83.1 \pm 83.2	74.5 \pm 72.4	60.3 \pm 63.9	52.4 \pm 49.0
	SUB	88.5 \pm 77.4	80.5 \pm 76.1	70.6 \pm 66.4	59.0 \pm 59.3	50.6 \pm 46.6
	RBS	89.3 \pm 75.3	81.1 \pm 72.0	74.7 \pm 64.6	60.3 \pm 56.1	56.1 \pm 47.0
	TS	98.6 \pm 89.0	90.5 \pm 91.4	80.7 \pm 79.1	65.5 \pm 68.7	55.3 \pm 52.5
O ₃	US	112.8 \pm 65.8	99.6 \pm 65.7	97.3 \pm 63.4	97.7 \pm 60.1	103.3 \pm 59.6
	SUB	115.0 \pm 63.5	99.9 \pm 62.9	100.9 \pm 62.4	104.1 \pm 61.8	105.4 \pm 60.9
	RBS	117.0 \pm 62.6	102.0 \pm 62.2	101.4 \pm 59.2	97.8 \pm 53.4	103.8 \pm 54.5
	TS	83.6 \pm 50.3	76.8 \pm 51.3	78.6 \pm 52.4	79.8 \pm 52.9	82.8 \pm 50.5
NO ₂	US	55.9 \pm 30.8	52.2 \pm 30.9	51.3 \pm 30.0	48.1 \pm 28.0	43.6 \pm 26.2
	SUB	45.1 \pm 24.2	43.5 \pm 25.6	42.8 \pm 25.4	42.0 \pm 23.6	37.5 \pm 21.5
	RBS	37.9 \pm 19.8	37.1 \pm 21.6	37.1 \pm 20.8	34.9 \pm 18.1	32.5 \pm 17.6
	TS	82.1 \pm 32.7	75.7 \pm 33.3	69.8 \pm 31.4	67.2 \pm 30.2	64.4 \pm 28.7
SO ₂	US	13.7 \pm 12.9	14.0 \pm 14.6	10.5 \pm 10.6	8.1 \pm 8.8	5.9 \pm 4.0
	SUB	12.3 \pm 12.0	13.4 \pm 14.1	10.7 \pm 10.2	8.6 \pm 8.7	6.0 \pm 4.0
	RBS	14.9 \pm 11.0	13.4 \pm 13.1	10.6 \pm 9.2	8.9 \pm 8.0	6.3 \pm 4.6
	TS	16.0 \pm 14.0	17.5 \pm 17.0	13.9 \pm 12.0	6.3 \pm 5.2	7.6 \pm 4.9

Table 2. Cause-specific premature deaths attributed to PM_{2.5} and O₃ in 16 districts in Beijing

	2014						2018					
	PM _{2.5}					O ₃	PM _{2.5}					O ₃
Districts	IHD	Stroke	COPD	LC	ALRI	Non-accidental	IHD	Stroke	COPD	LC	ALRI	Non-accidental
Daxing	787	1032	180	156	4	205	874	1145	154	134	4	173
Mentougou	150	198	30	26	1	72	154	200	25	22	1	59
Haidian	1832	2410	387	334	9	392	1687	2197	284	246	6	233
Miyun	232	305	45	39	1	172	232	299	37	32	1	151
Yanqing	153	201	29	26	1	71	162	209	26	22	1	42
Huairou	187	246	37	33	1	98	192	247	31	26	1	52
Pinggu	208	274	42	37	1	102	217	283	37	32	1	110
Shijingshan	324	426	68	60	2	104	299	390	52	44	1	100
Fengtai	1161	1524	258	220	6	213	1067	1392	185	159	4	156
Dongcheng	458	602	100	86	2	173	417	545	72	62	2	137
Shunyi	499	656	103	90	2	212	547	712	92	80	2	208
Fangshan	532	696	125	108	3	141	580	759	107	91	2	189
Chaoyang	1967	2580	422	366	10	406	1812	2361	306	265	7	299
Xicheng	651	855	137	120	3	283	591	770	100	86	2	194
Changping	934	1228	187	160	4	231	978	1259	157	135	3	178
Tongzhou	693	908	161	138	4	158	754	989	136	119	3	191

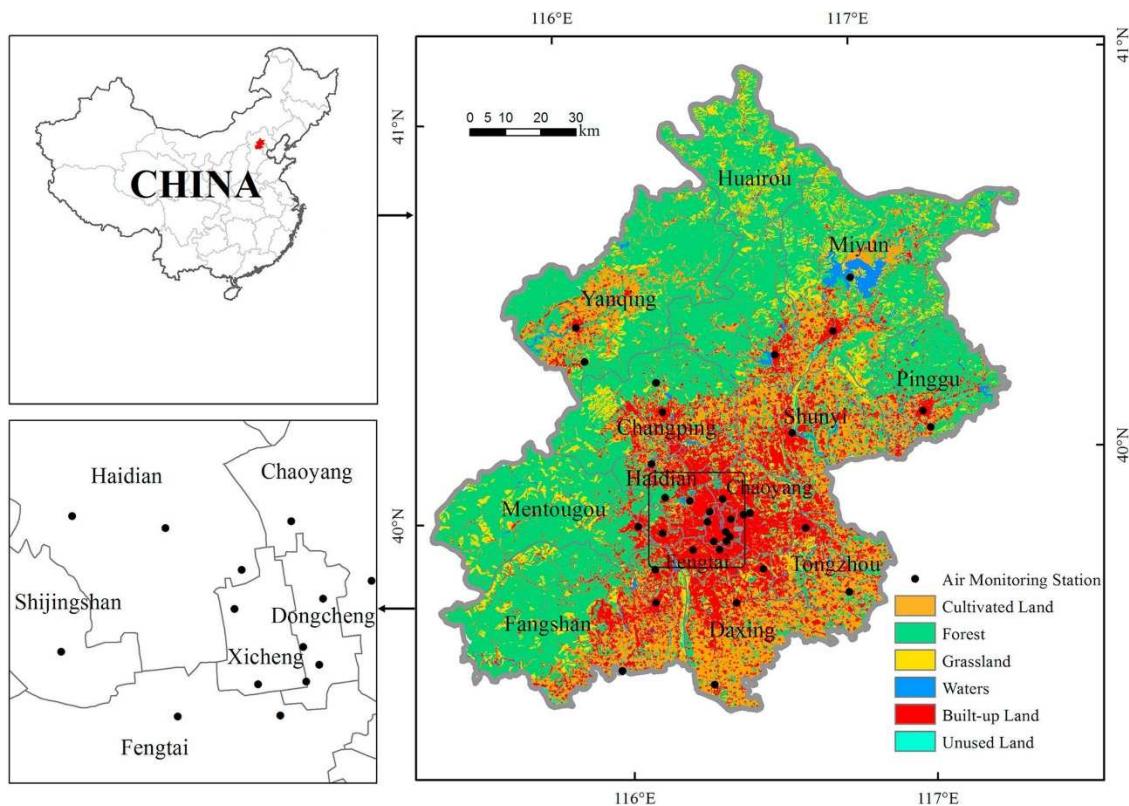
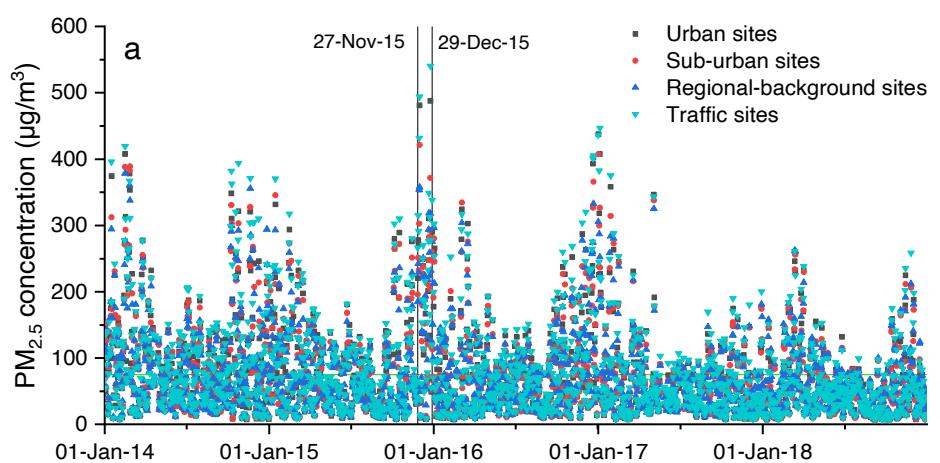
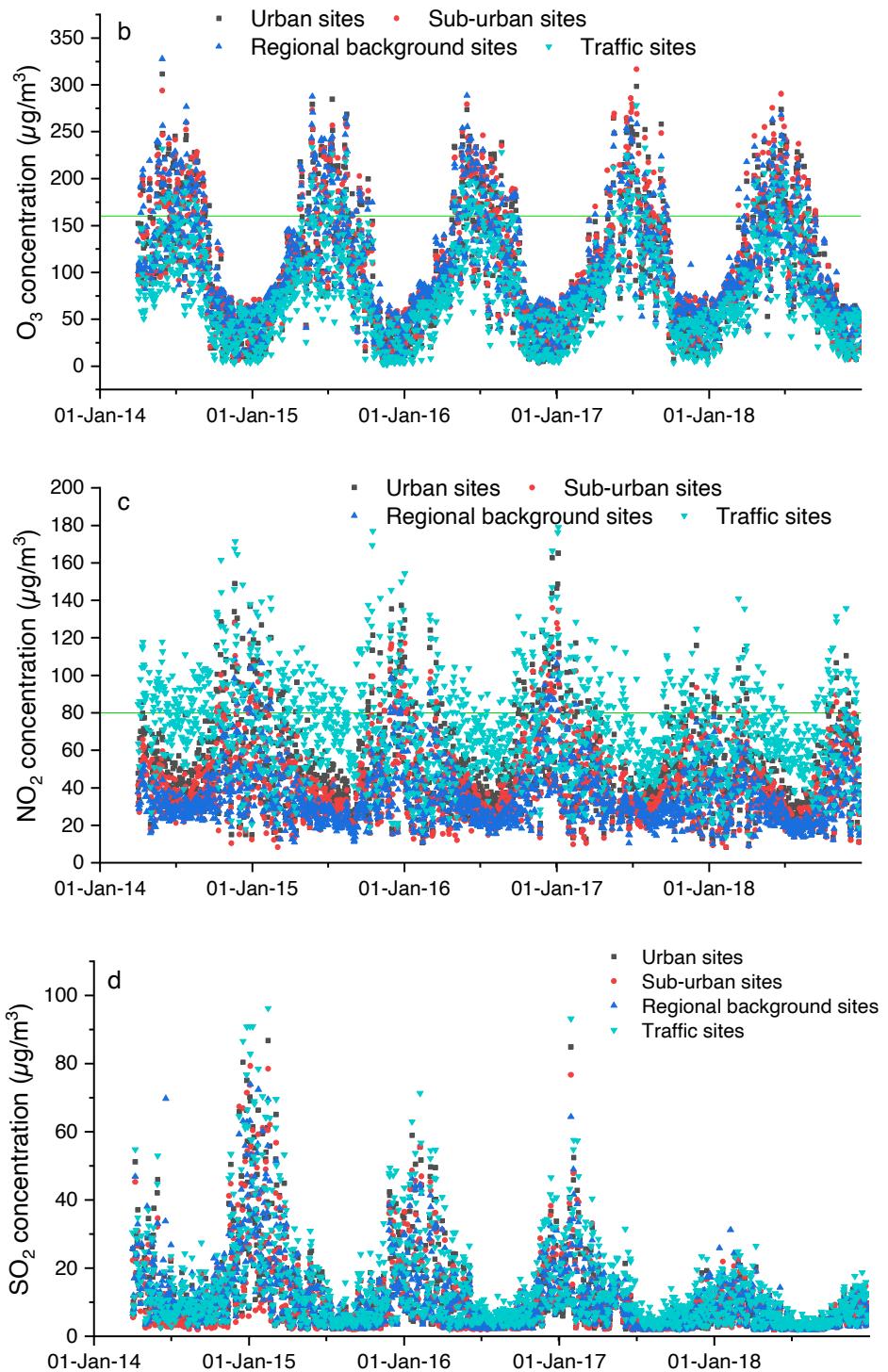
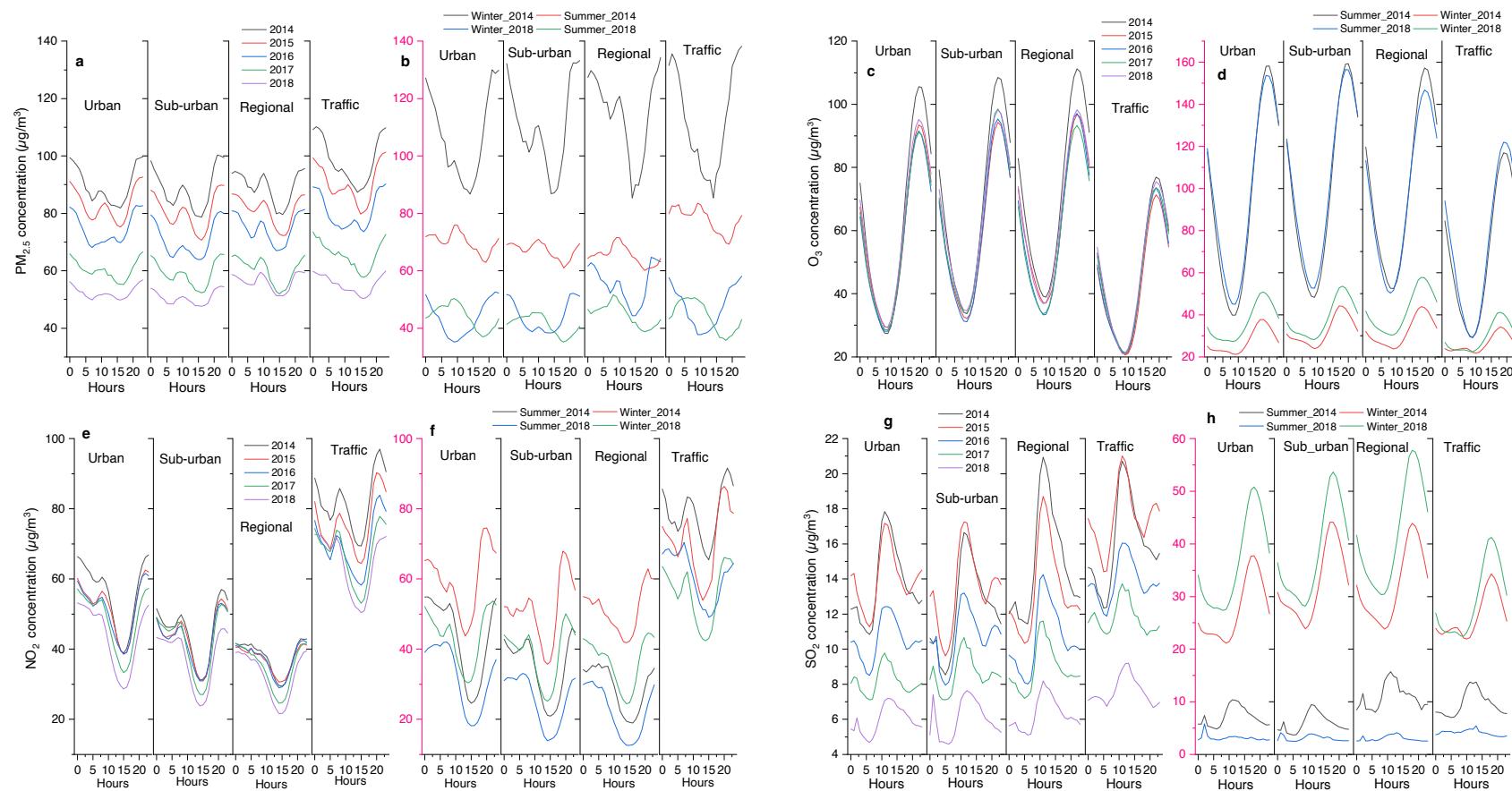
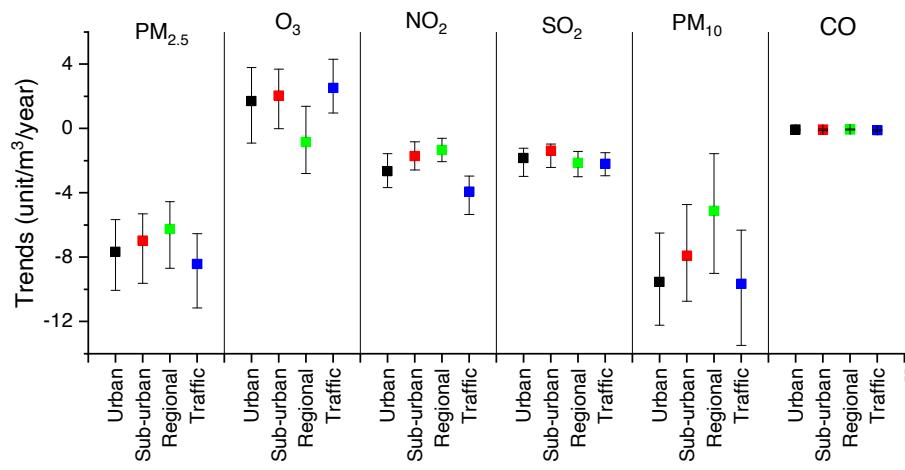
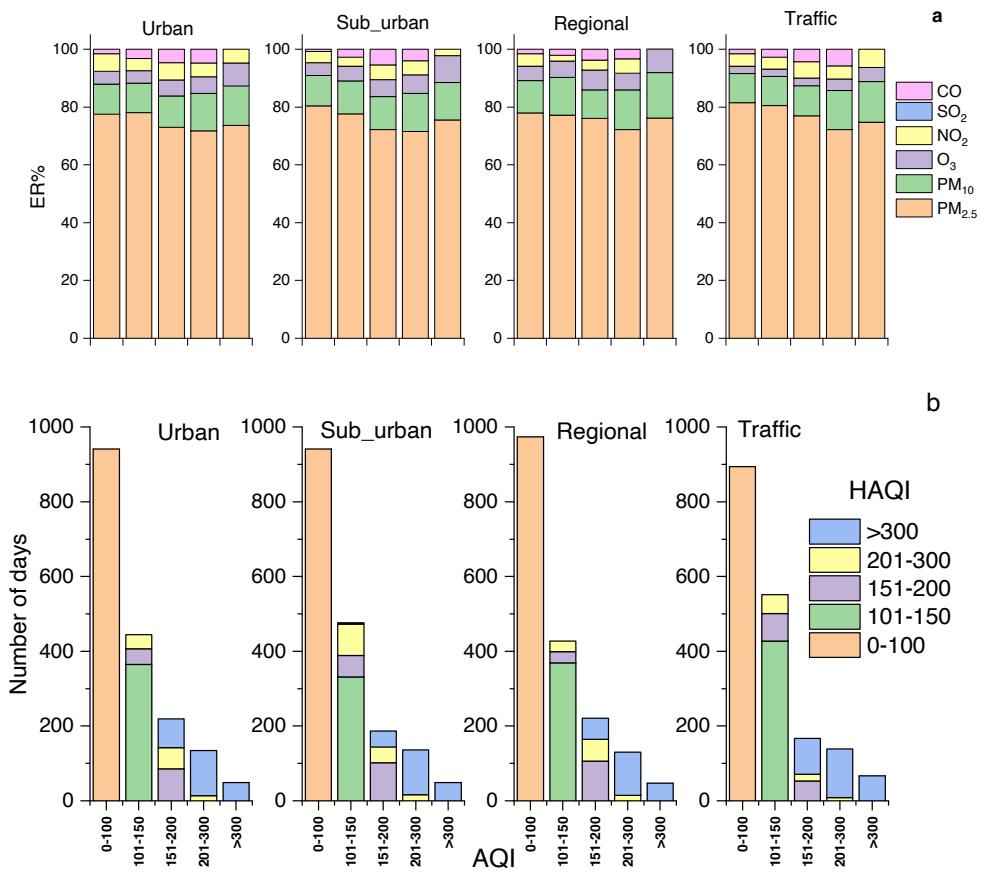





Fig. 1. Location of the 35 air quality monitoring sites in Beijing (Tian et al., 2019)




Fig. 2. Daily average pollution concentrations (a: PM_{2.5}; b: MDA8-h O₃; c: NO₂; d: SO₂) at the four typical sites in Beijing from 2014 to 2018. (units are $\mu\text{g}/\text{m}^3$) (PM_{2.5} extreme events shown in the box and green horizontal line indicating the Grade II standard).

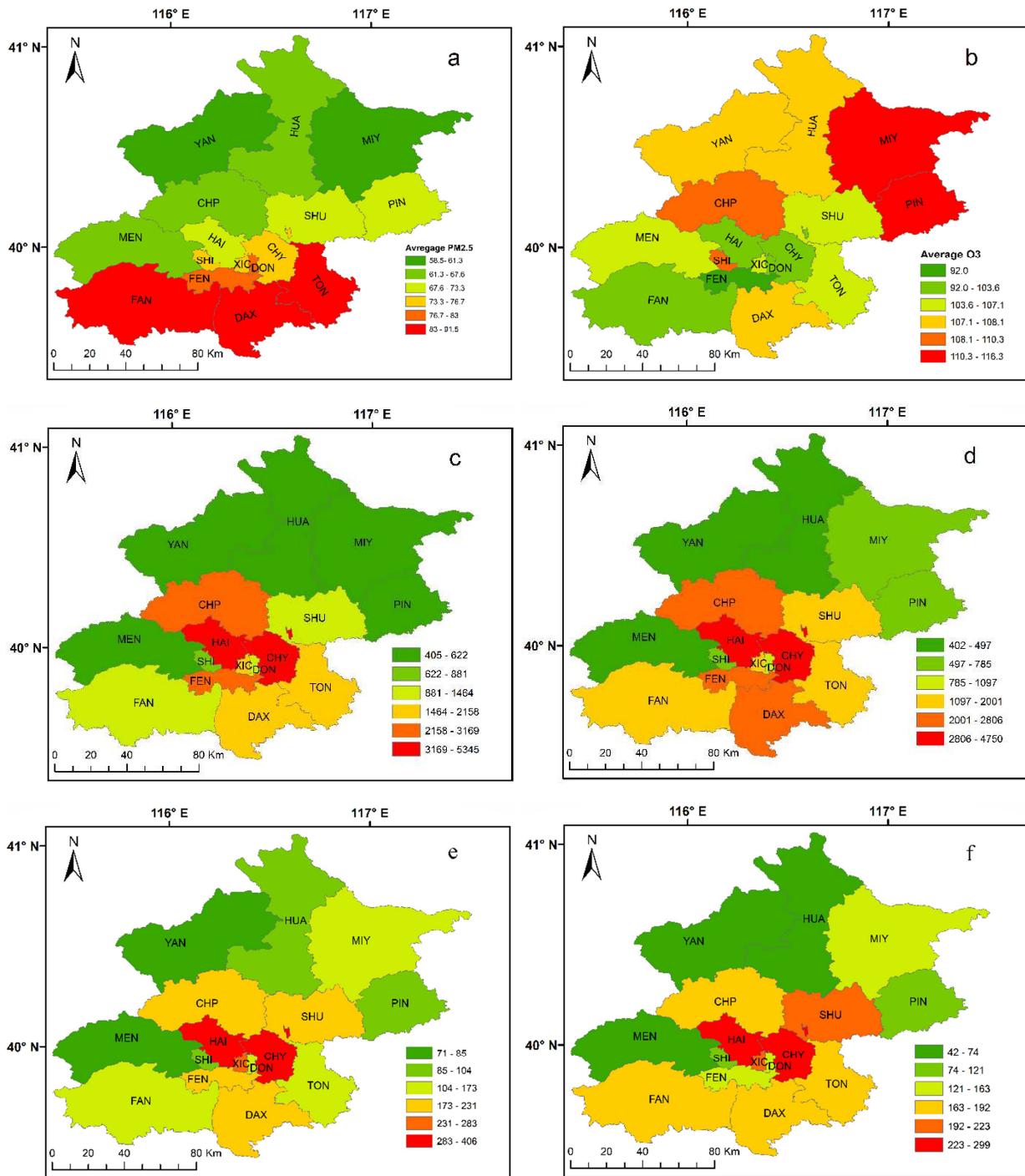

Fig. 3. Diurnal variations of $\text{PM}_{2.5}$ (a and b), O_3 (c and d), NO_2 (e and f) and SO_2 (g and h) at four typical sites in Beijing. (a, c, e and g for yearly average, and b, d, f and h for the seasonal summer and winter variations in 2014 and 2018)

Fig. 4. The trends of pollutants from 2014 to 2018 (mean values with error bars represent 95% confidence intervals; the unit for the trends is $\mu\text{g}/\text{m}^3/\text{year}$ for PM_{2.5}, O₃, NO₂, SO₂ and PM₁₀, and $\text{mg}/\text{m}^3/\text{year}$ for CO).

Fig. 5. (a) Percentage of excess risk of the pollutants from 2014 to 2018. (b) Comparison of the HAQI-classified health risk categories with the AQI-classified categories (with the average number of days in different ranges; the sum of all year data was included in the analysis).

Fig. 6. District-specific (a) annual average PM_{2.5} concentration ($\mu\text{g}/\text{m}^3$), (b) annual average O₃ concentration ($\mu\text{g}/\text{m}^3$) in Beijing from 2014 to 2018, PM_{2.5}-attributed premature mortality for the year (c) 2014 and (d) 2018, and O₃-attributed premature mortality for the year (e) 2014 and (f) 2018.

Note: DAX, MEN, HAI, MIY, YAN, HUA, PIN, SHI, FEN, DON, SHU, FAN, CHA, XIC, CHA and TON refer to the districts of Daxing, Mentougou, Haidian, Miyun, Yanqing, Huairou, Pinggu, Shijingshan, Fengtai, Dongcheng, Shunyi, Fangshan, Chaoyang, Xicheng, Changping and Tongzhou