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ABSTRACT Attempts have been made to estimate PM2.5 and PM10 values from smartphone images, given
that deploying highly accurate air pollution monitors throughout a city is a highly expensive undertaking.
Departing from previous machine learning studies which primarily focus on pollutant estimation based
on single day-time images, our proposed deep learning model integrates Residual Network (ResNet) with
Long Short-Term Memory (LSTM), extracting spatial-temporal features of sequential images taken from
smartphones instead for estimating PM2.5 and PM10 values of a particular location at a particular time.
Our methodology is as follows: First, we calibrated two small portable air quality sensors using the
reference instruments placed in the official air quality monitoring station, located at Central, Hong Kong
(HK). Second, we verified experimentally that any PM2.5 and PM10 values obtained via our calibrated
sensors remain constant within a radius of 500 meters. Third, 3024 outdoor day-time and night-time images
of the same building were taken and labelled with corresponding PM2.5 and PM10 ground truth values
obtained via the calibrated sensors. Fourth, the proposed ResNet-LSTM was constructed and extended by
incorporating meteorological information and one short path. Results have shown that, as compared to the
best baselines, ResNet-LSTM has achieved 6.56% and 6.74% reduction in MAE and SMAPE for PM2.5
estimation, and 13.25% and 11.03% reduction in MAE and SMAPE for PM10 estimation, respectively.
Further, after incorporating domain-specificmeteorological features and one short path,Met-ResNet-LSTM-
SP has achieved the best performance, with 24.25% and 20.17% reduction in MAE and SMAPE for PM2.5
estimation, and 28.06% and 24.57% reduction in MAE and SMAPE for PM10 estimation, respectively.
In future, our deep-learning image-based air pollution estimation study will incorporate sequential images
obtained from 24-hr operating traffic surveillance cameras distributed across all parts of the city in HK,
to provide full-day and more fine-grained image-based air pollution estimation for the city.

INDEX TERMS Deep learning, PM2.5 and PM10 estimation, ResNet-LSTM, Met-ResNet-LSTM, ResNet-
LSTM-SP, Met-ResNet-LSTM-SP, smartphone-taken images, sequential images, domain-specific knowl-
edge, meteorological features.

I. INTRODUCTION
PM2.5 and PM10 have presented great public health chal-
lenges given their devastating health impacts, especially for
those who are constantly living under high levels of air pol-
lution, such as China and India. Citizens in these countries
are consistently exposed to high levels of air pollution due to
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rapid industrialization and urbanization. In response to this air
pollution related health challenge, governments all over the
world have set up regular stationary air quality monitoring
systems. Stringent air quality regulatory standards are put
forward and air pollution reports are provided to inform the
public the level of air pollution on a regular basis. For exam-
ple, Pollutant Standards Index (PSI) has been introduced in
Singapore and Daily Air Quality Index (DAQI) has been
deployed in the United Kingdom (UK).
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In Hong Kong (HK), the Air Quality Health Index (AQHI)
is used by the Environmental Protection Department (EPD)
to report the level of air pollution and provide hourly health
advice to HK citizens. AQHI is calculated based on the aver-
age of the last 3-hr consecutive readings covering five types of
air pollutants, including, ozone (O3), nitrogen dioxide (NO2),
sulfur dioxide (SO2) and two types of particulate matters
(PM), with health risks of all air pollutants being taken into
account [1]. Air pollution, especially PM2.5 and PM10, are
detrimental to the environment [2] and presents tremendous
health risks to the public, especially those suffering from res-
piratory diseases, the elderly and young children [3]. PM2.5
is defined as an atmospheric particulate having a diameter
of less than 2.5 µm, whereas PM10 is one having a diameter
of less than 10 µm. PM2.5 and PM10 can be easily inhaled
into lungs and absorbed by the alveoli directly. It can affect
the respiratory and cardiovascular system and trigger asthma
attacks, respiratory inflammations, and even cancers [4]–[6].

Given its harmful health consequences, it is important to
make PM2.5 and PM10 readings throughout the city pub-
licly available so any citizens can plan their outdoor activ-
ities accordingly. However, due to the high cost of build-
ing and operating government-run AQMS, only a limited
number of AQMSs can be provided throughout a city to
provide regular air pollution readings. InHK, only 18AQMSs
across an area of 1100 sq. km are available [1]. People
residing in areas without an AQMS can only rely on mea-
surements obtained from nearest AQMSs, which may not
necessarily reflect the actual pollution readings of their own
locations.

Further, the lack of real-time pollutant measurements
presents a real challenge to public health. Air pollutant levels
in HK are updated on an hourly basis [1]. If any unexpected
events such as traffic jams or fires occur, AQMS cannot
provide timely alerts to HK citizens and inform them of
the sudden increase in pollution level until the next hourly
update.

To overcome such challenge, previous estimation studies
designed and used feature-based machine learning models
[7]–[11], such as Support Vector Regression (SVR), to esti-
mate PM2.5 values, capitalizing on features manually selected
from images (such as contrast and saturation). However,
as these feature-based models are highly dependent on how
features are constructed, their performance can be easily
distorted by any change in environmental conditions. For
example, night-time images normally have a lower intensity
when compared to day-time images. Since image features are
manually selected for air pollution estimation, conventional
machine learning methods can be less robust when compared
to deep learning-based methods, which can extract image
features automatically.

In recent years, some studies [12]–[15] have used deep
learning models to improve image estimation accuracy and
performance. Although deep learning models have been able
to extract image features automatically, they have relied only
on day-time images as inputs. Night-time image estimation

remains a challenge, given that the low image intensity during
night-time has often resulted in poor estimation accuracy.
Furthermore, these studies have only considered spatial fea-
tures extracted from single images via CNN models, while
temporal correlations of sequential images are ignored. This
is because CNN models can only learn features from single
images, but not how images are changed from one tem-
poral instance to the next, and recurrent patterns such as
day-time vs. night-time images. To improve the quality of
image-based PM estimation using night-time images, an end-
to-end ResNet-LSTM model is proposed in this study. Our
proposed model can estimate both PM2.5 and PM10 values
directly from pictures taken by smartphones. It achieves
lower estimation errors and possess a higher pollutant esti-
mation capability, after incorporating both day-time and
night-time images, when compared to other baselines such
as CNN-based models.

Main novelties of this image-based pollutant estimation
study cover the following:

• A temporally fine-grained image set is constructed
with corresponding PM2.5 and PM10 values labelled.
3024 images have been taken consecutively in a
time-sequential order at the Cyberport Waterfront
Park in HK, covering both day-time and night-time
images.

• An end-to-end ResNet-LSTM model using sequential
images as inputs is constructed and achieves the best
PM2.5 and PM10 estimation, when compared to state-of-
the-art baselines.

• Apart from taking single images as inputs, ResNet-LSTM
also incorporates sequential images taken once every
minute for estimating PM2.5 and PM10 values of a
specific location to enhance robustness.

• First deep learning model used to estimate PM2.5 and
PM10 values based on night-time images.

• A novel Met-ResNet-LSTM model is developed based
on the newly developed ResNet-LSTM model, taking
into account six meteorological features, in addition
to images taken from smartphones as inputs, which
gives even better estimation performance when com-
pared with the ResNet-LSTM model.

• After incorporating deep supervising techniques,
ResNet-LSTM-SP and Met-ResNet-LSTM-SP are con-
structed to improve estimation performance by com-
paring results of each with that of ResNet-LSTM and
Met-ResNet-LSTM.

The rest of this paper is organized as follows. Related stud-
ies are reviewed in Section II. The dataset and the methodol-
ogy are described in Section III. Section IV presents both our
experimental results and analyses, and Section V concludes
and highlights directions for future study.

II. RELATED WORK
This section reviews deep learning techniques and methods
used for PM2.5 estimation, based on images.
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A. DEEP LEARNING IN GENERAL
Krizhevsky et al. [16] first constructed a deep convolutional
neural network (CNN), AlexNet, to classify images into dif-
ferent categories in 2012. Its accuracy is higher when com-
pared to manually selected feature methods. Simonyan [17]
further increased the depth of CNN by adding very small
convolution kernels. This further improves the image clas-
sification performance based on deep learning. The deep
residual network, ResNet [18], also a CNN, was developed
to tackle the issue of degradation that occurred when the
number of neural network layers was increased in 2016. CNN
is good at extracting key information from images. The tech-
nique has been widely implemented in the field of computer
vision, such as facial recognition [19], image classification
[16]–[18] and visual tracking [20]. Zheng et al. [21] and
Hong et al. [22] used CNNmodels to analyze satellite images
and estimate ground-level PM2.5 values. Apart from CNN,
Hochreiter and Schmidhuber [23] proposed an LSTM model
to extract features from sequential data for neural machine
translation [24], [25]. Using these techniques, efforts have
been made on combining CNN with LSTM for extracting
spatial-temporal features. Chen et al. [26] used CNN-LSTM
models to forecast typhoon formation and hourly air pollution
across the city [27], [28]. These models have shown that pol-
lution estimation performance can be improved by combining
temporal features with spatial features.

B. MACHINE LEARNING FOR PM2.5 ESTIMATION
PM2.5 can affect the light scattering coefficient [29] when
a picture is taken, as it obscures the scene and blurs the
sky, which eventually degrades the visibility [30]. Estimating
pollution level based on smartphone-taken images is handy,
as this allows one to easily capture any change in air pollution
level.

Conventional machine learning approach maps ambi-
ent light scattering coefficients with PM2.5 values. The
haze-image model [31] was widely utilized to estimate scat-
tering coefficients from single images. This model learned
the formation of observed images (haze-images) from pure
scenes that carry light-scattering effects. To estimate PM2.5
values, some studies combined the dark channel model [32]
with the haze-image model to calculate light coefficients
directly from single images [33], and Yang and Chen [34]
made good use of the relative humidity to improve pollution
estimation. As compared to [33], [34], Liu et al. [7] and
Zhang et al. [8] extracted image features such as image
entropy, contrast, and saturation for further improvement.
Capitalizing on the haze-image model and extracted image
features, Liu et al. [7] deployed Support Vector Regres-
sion (SVR) to estimate PM2.5 concentrations. Zhang et al.
[8] made good use of multi-kernel learning to estimate air
quality. Liu et al. [9] adopted similar features and used a
linear least square regression to estimate PM2.5 values via
smartphone-taken images. Instead of using basic image fea-
tures, Gu et al. [10] constructed a picture-based predictor.

The entropy information from the image saturation map
was extracted and non-linear mapping was used to estimate
PM2.5 values based on the overall likelihood of naturalness.
Yue et al. [11] combined the color information loss with the
structural information loss and applied a five-parameter logis-
tic function to estimate PM2.5 values, which achieved a high
estimation performance.

After all, the performance of pollution estimation based on
the conventional machine learning approaches can be easily
distorted due to changes in meteorological conditions and
discrepancies of light intensity between the day and the night.

C. DEEP LEARNING FOR PM2.5 AND PM10 ESTIMATION
Capitalizing on strengths of the previous deep learning tech-
niques, Li et al. [35] combined the dark channel and the
haze-image models to estimate the scattering ability of a
medium, also referred to as the transmission layer in the
haze-image model. Following this, the depth of an image
was further estimated by Deep Convolutional Neural Fields
(DCNF) [36], and a non-linear mapping was designed to esti-
mate PM2.5 values based on experimental results. Since CNN
can extract important spatial features from images, efforts
have been made to construct CNN models to analyze images
directly, without selecting image features manually. CNN
models were used to analyze images and estimated PM2.5
[12]–[14] and PM10 levels [12], [14]. To further improve
classification accuracy, Ma et al. [37] and Wang et al. [38]
developed two parallel CNNmodels to analyze single images.
Ma et al. [37] used two parallel CNNs to analyze both
the original image and the transmission layer, while outputs
from these two CNNs were used to estimate PM2.5. Images
collected by Wang et al. [38] covered both skies and build-
ings, using the same weights, similar to the method outlined
in [13]. Wang et al. [38] split images into two parts, the sky
and buildings, and constructed a Double-Channel CNN to
estimate air quality. Instead of providing a rough estimation,
Liu et al. [15] used Long Short-Term Memory (LSTM) [23]
to analyze the meteorological data, and used a CNN model
to process images. Results from these two were combined to
estimate PM2.5 concentrations. However, the models did not
take sequential images into account.

The pollutant estimation models above usually took PM2.5
values from government AQMSs close to the place where
images were taken, rather than the exact measurements of
the place where images were taken, as ground truths [39].
Further, these models had yet considered how environ-
mental variations will affect image estimation performance.
Image-based estimation performance could be seriously
degraded given that images taken and PM2.5 measurements
were not co-located, and that PM2.5 concentrations could
change when environmental conditions, such as the street
canyon effect, urban morphology and traffic conditions,
change overtime. To tackle the current research gaps, we used
high accuracy calibrated portable pollutant sensors to provide
accurate PM2.5 and PM10 measurements of the exact loca-
tions where pollutant pictures have been taken. Furthermore,
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FIGURE 1. An overarching framework highlighting the novelties of ResNet-LSTM for PM2.5 and PM10 estimation based on sequential smartphone images.

we incorporated six most relevant features reflecting mete-
orological conditions of locations that these pictures were
taken into our deep learning model.

Furthermore, previous studies extracted image features,
such as entropy, saturation, or high-level features layers,
from the depth and the transmission map. However, these
features could be easily distorted by any change in environ-
mental conditions and light intensity, especially features that
are extracted from low-intensity images, such as night-time
images. In our study, we combined ResNet and LSTM to
extract spatial-temporal domain features. In contrast to [15],
in our proposed model, an LSTM model is added to the
ResNet to extract the temporal features from images. As sin-
gle night-time images are difficult to be analyzed directly,
earlier efforts were only based on single day-time images as
inputs. Instead of simply processing single images, our model
considers the sequential day-time and night-time images in
estimating PM2.5 and PM10 values of a specific location.

III. METHODOLOGY
Our overarching methodology for estimating PM2.5 and
PM10 values via sequential smartphone taken images con-
sists of four stages (see Figure 1). First, two portable air
quality sensors were calibrated using reference instruments of
the official air quality monitoring station located in Central,
HK. Second, an experimental study was conducted to ver-
ify that PM2.5 and PM10 values obtained via high-accuracy
calibrated portable sensors remain constant within a radius
of 500 meters. Third, 3024 outdoor day-time and night-time
images of the same building (within a radius of 500 meters)
were taken by a smartphone camera labelled with correspond-
ing PM values using a co-located calibrated high-accuracy
sensor. The collected data were pre-processed. Fourth, our
proposed ResNet-LSTM was further refined by incorporat-
ing meteorological features and one short path to exploit

the fullest potential of ResNet-LSTM for PM2.5 and PM10
pollutant estimation.

A. CALIBRATION OF PORTABLE SENSOR
Before data collection, calibration was performed to reduce
biases between portable sensors and a certified equipment.
As shown in Figure 1(a), two Atmospheric Sensor 520
(AS520) sensors, using the Alphasense OPC-N2 sensor
for measuring PM via the light scattering approach, were
co-located with a certified device (TEOM 1405DF). The cer-
tified device is installed by EPD, HKSAR Government and
located in the AQMS in Central, HK. Humidity, temperature,
PM2.5, and PM10 values were measured by the two portable
sensors every minute, for twelve days. The PM2.5 and PM10
ground truth values were recorded via a certified air pollution
measuring instrument, based on an oscillating microbalance
approach. This device is able to accurately measure the ambi-
ent PM concentrations, by detecting changes in oscillation
frequencies when air particulates are flowing through the
device and depositing onto an internal filter.

Calibrationmodels, including Polynomial Regression (PR)
and Support Vector Regression (SVR), were trained on the
ground truths provided by EPD, taking AS520 sensor mea-
surements as model inputs. During training, cross-validation
was conducted to select the best parameters for each calibra-
tion model. The last 10% sequential data was used as the test
set andmean absolute error (MAE)was used as the evaluation
metric. Finally, the model that achieved the lowest MAE was
selected for calibration.

B. PM2.5 AND PM10 MEASUREMENTS OVER DIFFERENT
DISTANCES
To develop a sequential image set labelledwith corresponding
PM2.5 and PM10 values, a picture focusing on one single
building located in Cyberport, HK, within a distance of 500m
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FIGURE 2. Sequential images taken by a smartphone across different time spans at the same location.

was taken once every minute, continuously and sequentially,
with PM2.5 and PM10 values obtained from the portable
sensor within the same radius of 500meters serving as ground
truths of the building. Our calibration study verified that the
variation in PM2.5 or PM10 measurements over a distance
of up to 500 meters is negligible. To verify this, we placed
two calibrated AS520 sensors (S1 and S2) across different
locations of the Cyberport Waterfront Park, HK. Sensor 1,
S1 was set as a stationary sensor, and Sensor 2, S2, was a
mobile sensor placed at a distance of 0m, 100m, 200m, 300m,
400m, and 500m from S1, as shown in Figure 1(b).
PM2.5 and PM10 values were obtained via calibrated

S1 and S2 sensors consecutively once every minute across a
30-min time span, at each of the six S2 positions. Both units
were placed 1.6m above the ground level, as PM2.5 and PM10
values at such height resembles the level where humans are
exposed to air pollution. Mean absolute difference between
the two measurements of different distances were compared,
with results shown in Section IV.

C. DATA COLLECTION
The calibrated AS520 sensor was used to measure PM2.5
and PM10 concentrations once every minute. As shown in
Figure 1(c), a smartphone co-located with the portable sensor
was used to capture images of a building when PM2.5 and
PM10 were being measured. As validated by our empirical
experiment (see Section III.B), we used PM values measured
at the location of the camera (where the portable sensor was
deployed and images of the building were taken), to represent
the actual outdoor PM values of the building. An image of
the same shot was taken once every minute from 14:30 until
19:30 daily across a ten-day period (which was taken after
the twelve-day calibration period), with the aim to cover both
day-time and night-time images at higher frequencies. Com-
pared to prior studies that primarily focused on daily/hourly
images and pollution values, the use of a high temporal
frequency dataset can enable a more representative analysis
of sequential images taken. Finally, an image set consisting
of 3024 day-time and night-time images taken within a dis-
tance of 500 meters, capturing images of the same building in
Cyberport, HK,was developed. Images taken after 18:00 after
the sunset, at the HK time, were considered as night-time

images. A set of images taken at different time spans at the
same location is shown in Figure 2.
Given that temperature, humidity and weather conditions

are important features affecting the performance of PM2.5 and
PM10 estimation, hourly meteorological data were collected
from Dark Sky, a provider of meteorological forecasting
and visualization. The dataset covers four features, including
precipitation intensity, percentage of sky covered by cloud,
UV index and pressure. Moreover, temperature and humidity
measured directly by AS520 sensor were collected.

D. IMAGE DATA AUGMENTATION
To reduce overfitting and improve estimation performance,
smartphone images had been augmented before being used
to train the model parameters (Figure 1(d)). The details are
as follows. First, these images were resized to (224, 224) to
couple with the input dimensions of ResNet (see Figure 3(b)).
Next, they were rotated by 0, 90, 180 or 270 degrees ran-
domly with an equal probability (see Figure 3(b-e)). Finally,
they were flipped horizontally for randomization (see the
flipped results in Figure 3(f-i)). Augmentation would not only
increase the size of the dataset but also improve estimation
stability, as these images should give the same PM values
even when being rotated or flipped during training.

E. NOVEL RESNET-LSTM, MET-RESNET-LSTM,
RESNET-LSTM-SP, AND MET-RESNET-LSTM-SP
1) RESIDUAL NETWORK
Deep Convolutional Neural Network (CNN) can better
extract different levels of spatial features from images,
by stacking more network layers. However, previous study
found it difficult to train deep CNN models, based on the
observation that as network depth increases, training accu-
racy gets increasingly saturated and starts to degrade rapidly
afterwards [18]. To overcome degradation, a deep residual
network was proposed to facilitate the training (optimiza-
tion) of deep CNN models [18]. Compared to other deep
CNN models such as AlexNet and VGGs, the deep resid-
ual network addresses the issue of degradation by adding
an identity mapping, as represented by the curved line in
Figure 4. Let x represent the inputs to the first layer and
H (x) represent the desired mapping function from x to the
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FIGURE 3. Image augmentation configuration: (a) original image
(b) resized image (c-e) image rotated by 90, 180, 270 degree respectively
(f-i) image flipped horizontally.

FIGURE 4. A residual block.

output of stacked layers. During model training, the prob-
lem of learning the desired mapping function H (x) can be
reformulated as learning the residual mapping function F(x),
where F(x) = H (x)−x, with an explicit reference to the layer
inputs x. Given that the original mapping function becomes
F(x)+ x, the weights of the stacked layers that correspond to
F(x) can be zero, to mimic a ‘‘shortcut connection’’ between
layers. As shown in [18], by utilizing residual networks, it is
possible to optimize the CNN model even when the number
of layers has been increased to 1202, though the use of such
a deeper network tends to result in a lower testing accuracy
due to overfitting.

In this study, ResNet18 (an 18-layer residual network)
was implemented to deeply extract spatial features from our
images, with the aims to address the degradation problem
of deep CNN model training, while avoiding overfitting due
to unnecessarily deeper network. Moreover, the last layer of
ResNet18 was modified to provide a single output in the form
of a single PM measurement. Figure 5 shows the structure
of the modified ResNet18. The block label indicates the
block-type, and the kernel size/the stride, whereas the block
number indicates the output dimension, including the width,
the height, and the channel of the output.

The images were first read by the system and resized to
the input dimension (3 × 224 × 224), where 3 corresponds
to three RGB channels, whilst the width and height are both
224. After average pooling (after the last convolutional layer),
the images were converted to a flattened vector, with a size
of 512. It was subsequently passed to a fully connected layer

and the PM2.5/10 value of the imagewas estimated. The size of
the output of the last fully connected layer was changed to 1 to
represent final estimated values, for PM2.5 or PM10 estima-
tion. Parameters of ResNet were updated through backward
propagation.

2) LONG SHORT-TERM MEMORY
Long Short-Term Memory (LSTM) is a time-sequential
model, which can extract the temporal domain features from
any sequential data [23]. Compared to Recurrent Neural
Network (RNN), LSTM addresses the long-term gradient
vanishing problem and enhances the model estimation ability.
In this study, the output from ResNet was fed into LSTM
sequentially. The cell structure of the LSTM model is shown
in Figure 6, and its formulation in (1) – (5).

ft = σ (Wfxxt +Wfhht−1 + bf ) (1)

it = σ (Wixxt +Wihht−1 + bi) (2)

ot = σ (Woxxt +Wohht−1 + bo) (3)

ct = ft ∗ ct−1 + it ∗ tanh(Wcxxt +Wchht−1 + bc) (4)

ht = ot ∗ tanh(ct ) (5)

With reference to (1) – (5),W represents the weight param-
eters, b the bias, and σ the sigmoid function. The subscripts
of W and b indicate, respectively, the weight and the bias
for three different gates. For example, Wfx is the weight of
input xt at the gate ft . c is the cell state, h the hidden state,
x the input, and tanh the hyperbolic tangent function. The
first gate is the forget gate ft for controlling the information
from the previous cell state, as shown in (1). It decides how
much information should be kept or passed to the next stage.
The second gate is the input gate it , which decides how much
new information should be used. Meanwhile, the current cell
state can be updated by combining the output from the forget
gate with the input gate, as shown in (4). Finally, the informa-
tion in the latest cell state and that from the input are used to
update the latest hidden state, while serving also as the output
of LSTM (see (5)). The parameters of LSTM were updated
through backward propagation.

3) RESNET-LSTM, MET-RESNET-LSTM, RESNET-LSTM-SP,
AND MET-RESNET-LSTM-SP
As shown in Figure 1(d), the collected data were
pre-processed before model development. First, the sequen-
tial images captured by the smartphone camera were turned
into an image vector. The vectorized data were then fed
into the proposed models for PM2.5 and PM10 estimation.
Meanwhile, the meteorological information was packed with
the image vector to estimate PM2.5 and PM10 values.

Our proposed ResNet-LSTM model is shown in
Figure 1(e) (without the dash line), based on the following
methodology. First, ten consecutive images, taken once every
single minute and the previous nineminutes, were fed into the
ResNet model. Then, ten corresponding outputs of the same
ResNet model were fed into the LSTM model subsequently.
In order to match the output of the ResNet, the input size
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FIGURE 5. Structure of the modified ResNet18.

FIGURE 6. Structure of a typical LSTM cell.

and the hidden unit size of the LSTM model were set as
512. Finally, the final hidden state of the LSTM model was
used to predict PM2.5 or PM10 values, via a fully connected
layer.

Moreover, in order to better account for the meteorolog-
ical information, we developed a new Met-ResNet-LSTM
model as shown in Figure 1(f) (without the dash line).
It consists of the proposed ResNet-LSTM model and a par-
allel LSTM model. For the parallel LSTM model, the six
meteorological features observed at every single minute
real-time and the previous nine minutes were used as inputs.
The two final hidden states from the ResNet-LSTM model
and the parallel LSTM model were concatenated and used
to estimate PM2.5 or PM10 values, via a fully connected
layer.

Furthermore, inspired by the deeply-supervised net [40],
we developed a new ResNet-LSTM-SP model. As shown
in Figure 1(e), compared to the ResNet-LSTM model, one
short path (dash line) was constructed between the output of
LSTM and the latest output from ResNet. This is based on the
intuition that the latest output generated from ResNet should
be more representative than those generated from LSTM.
More specifically, the features extracted from the latest image
(image captured once every single minute real-time) through
ResNet, were combined with the final hidden state of LSTM.
The concatenated vector, consisting of both the latest features
and the historical information, was finally passed to a fully

connected layer for estimating PM2.5 or PM10. Similarly,
as shown in Figure 1(f) (with the dash line), we developed
a new Met-ResNet-LSTM-SP model by applying one short
path to the proposed Met-ResNet-LSTM model.

The size of the input and output for each part of our model
is shown in Table 1. ResNet represents ResNet18 used in
our proposed model; LSTM-Img represents the LSTM for
the sequential images (as represented by the green ‘‘LSTM’’
boxes and the grey ‘‘Img’’ boxes shown in Figure 1(e)
and Figure 1(f)); LSTM-Met represents the LSTM for
the meteorological conditions (as represented by the light
blue ‘‘LSTM’’ boxes and the grey ‘‘Met’’ boxes shown in
Figure 1(f)); FC-RL, FC-MRL, FC-RL-SP, and FC-MRL-
SP represent the fully connected layer for the proposed
ResNet-LSTM, Met-ResNet-LSTM, ResNet-LSTM-SP, and
Met-ResNet-LSTM-SP, respectively.

TABLE 1. Model input and output dimension.

F. BASELINE SELECTION
Our proposed ResNet-LSTM model was compared with the
conventional approach and the machine learning and deep
learning approach for image-based PM estimation.

1) CONVENTIONAL METHOD
Conventional pollution estimation method adopts a haze-
image model, which is integrated with the dark channel prior
techniques. The haze-image model developed by [31] shows
how the haze image can be overlaid by pure sceneries and
scattering effects. This model has been widely applied for
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image dehazing and light scattering coefficient estimation,
as shown in (6) below:

I(x) = Ot(x)+ A(1− t(x)) (6)

where I(x) represents the observed scenery captured by the
camera, O represents the pure scenery without attenuation,
A represents the atmospheric light, and t(x) is the scattering
ability of the medium over the light pathlength. The transmis-
sion t(x) can be expressed as e−βx , where β is the scattering
coefficient of the atmosphere and x the distance between the
scenery and the observer (camera).

Based on this conventional method, a conventional base-
line is developed as follows. First, the ambient scattering
coefficient t(x) is estimated from a single image, based on
a well-known method, the dark channel prior. [32] used mul-
tiple images and found that the minimum intensity among all
R,G,B channels of a single low-haze image is close to 0,
where the dark channel of the image Odark is defined in (7).

Odark (x) = min
y∈�

( min
c∈R,G,B

Oc(y)) (7)

(3) makes the assumption that Odark −→ 0 if there is no
haze and the captured image shows pure scenery. c is used to
represent theR,G,B channels of an image, and� is a selected
portion of the image. Combining the dark channel approach
with the haze-image model, t(x) can be estimated in (8).

t(x) = 1−min
y∈�

( min
c∈R,G,B

Ic(y)
A

) (8)

Next, the ambient scattering coefficient β is calculated for
each single pixel, and the average β is calculated for the entire
image. Finally, based on the estimated ambient scattering
coefficients, linear regression models are used to estimate the
PM2.5 and PM10 values.

2) MACHINE LEARNING AND DEEP LEARNING APPROACHES
Machine learning and deep learning models that estimate the
PM2.5 and PM10 values of single images were selected for
model comparison. The feature-basedmachine learningmod-
els, including FEBM [7] and SILM [11], and the CNN-based
deep learning models, including VGG19 [17] and ResNet18
[18], were selected as baselines.

IV. RESULTS
A. SENSOR CALIBRATION
We trained a calibration model to calibrate measurements
from highly sophisticated portable sensors. Key calibration
models were applied and compared, including SVR with dif-
ferent kernels and PR of different degrees. MAE of different
models based on individual sensors are shown in Table 2.
Based on results, a PR with degree 2 model gives the best

results and hence is used as our calibration model. Although
the degree 3 model achieves a smaller MAE in the training
set, the test set gives a larger MAE when compared to the
degree 2 model.

TABLE 2. MAE (µg/m3) of PR and SVR.

FIGURE 7. Sensor calibration.

The raw PM2.5 and PM10 measurements were obtained
from our sensor (see Figure 7), which was calibrated on
a government reference instrument. After training the full
dataset, MAE of PM2.5 values was reduced to 3.0 µg/m3

for Sensor 1, and 3.09 µg/m3 for Sensor 2, and MAE of
PM10 values was reduced to 5.60 µg/m3 for Sensor 1, and
5.43 µg/m3 for Sensor 2. The calibrated measurements for
PM2.5 and PM10 are shown in Figure 7(a) and Figure 7(b),
respectively.

B. PM2.5 AND PM10 MEASUREMENTS OVER
DIFFERENT DISTANCES
Two sensors were placed at different distances apart from
each other and the readings from the two sensors were com-
pared. The distance between the two sensors was increased
from 0 to 500 meters with a 100-meter increment. The mea-
surements obtained from the two sensors were calibrated
based on the calibration model described in Section IV.A.
Mean absolute difference (MAD) in PM2.5 and PM10 values
obtained across 500 meters are shown in Table 3.
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TABLE 3. Mean absolute differences (µg/m3) in PM2.5 and PM10 values
obtained from two calibrated sensors (S1 and S2), with S2 placed at 0m,
100m, 200m, 300m, 400m, and 500m away from S1.

Based on our experimental results, the variation in PM2.5
and PM10 measurements between two sensor units (S1 and
S2), across a distance of 500 meters and under an open
setting, is small. The result supports our hypothesis that both
PM2.5 and PM10 values remain constant within a short dis-
tance across an open area. Hence, images taken with a camera
co-located with a calibrated sensor give PM2.5 and PM10
values of better quality, as compared to the data that carry only
city-wide PM2.5 measurements and labelled images, in which
both distance and environmental conditions are excluded.

C. MODEL PERFORMANCE
The experimental settings for model evaluation are as fol-
lows. First, images were taken consecutively, once every
minute, across a period of five hours per day, and over a
ten-day period. All images were labeled with measurements
of the co-located calibrated sensor. Next, the dataset was
divided into training set (70%), validation set (10%) and
test set (20%). The test set, consisting of 613 day-time and
night-time images, was taken during the last two days of a
ten-day experiment. As compared to previous studies, for the
first time, a test set consisting of both day-time images and
night-time images was constructed to provide a more com-
prehensive evaluation of estimation performance between the
proposed ResNet-LSTMmodel and the baselines for estimat-
ing PM2.5 and PM10 values.
The model performance was evaluated using MAE, sym-

metric mean absolute percentage error (SMAPE), and Pear-
son correlation (r). MAE is calculated by (9), SMAPE by
(10), and r by (11). In addition to absolute and percentage
errors, Pearson correlation is selected because it can measure
how strong an association between ground truths and pre-
dicted PM2.5 or PM10 values is, which can give us a better
evaluation on whether or not the image (and meteorology)
features are helpful in predicting PM concentrations.

MAE =
1
n

n∑
t=1

|yprt − y
re
t | (9)

SMAPE =
2
n

n∑
t=1

|yprt − y
re
t |

yprt + y
re
t

(10)

r =

∑n
t=1(y

pr
t − y

pr
t )(yret − y

re
t )√∑n

t=1(y
pr
t − y

pr
t )2

√∑n
t=1(y

re
t − y

re
t )2

(11)

where ypr refers to the predicted value, yre refers to the ground
truth value, ypr refers to the mean predicted value, yre refers

to the mean ground truth value, and n refers to the sample
size.

Experimental results have shown that our proposed
ResNet-LSTMmodels outperformed the baselines. As shown
in Table 4, deep learning models have outperformed the con-
ventional and feature-based machine learning models, espe-
cially when Pearson correlation is used for evaluation. This
suggests that feature representations automatically learned by
deep learning models are more helpful in predicting PM2.5
and PM10 concentrations, as compared to manually selected
features adopted by conventional machine learning models.
Moreover, as compared to ResNet, the best deep learning
baseline, our proposed ResNet-LSTM model has achieved
a lower MAE and SMAPE and a higher Pearson correla-
tion. This verifies that ResNet-LSTM can better capture the
temporal correlation of sequential images, thus outperform-
ing ResNet based on single images only. As compared to
the best baselines, for PM2.5 estimation, our ResNet-LSTM
has achieved a reduction in MAE and SMAPE respectively
by 6.56% and 6.74%, whereas for PM10 estimation, our
ResNet-LSTMhas achieved a reduction inMAE and SMAPE
respectively by 13.25% and 11.03%.

TABLE 4. MAE, SMAPE, and Pearson correlation of PM2.5 and PM10
estimation performed by ResNet-LSTM and baselines, trained on both
day-time and night-time images.

As shown in Figure 8, for night-time images, the esti-
mation results for both PM2.5 and PM10 of the proposed
ResNet-LSTM are flatter as compared to ResNet. This ver-
ifies that sequential images can help the model stabilize any
estimation. In addition, our proposed model ResNet-LSTM
tends to give under- and overestimations for PM2.5 values,
while PM10 values tend to be underestimated. Similar pat-
terns can be observed for ResNet, the baseline. This is likely
linked to the representativeness of our dataset, where certain
ranges of particulates concentrations have not been covered
during model training.
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FIGURE 8. PM estimation by ResNet, ResNet-LSTM versus PM real measurement.

TABLE 5. MAE, SMAPE, and Pearson correlation of PM2.5 and PM10
estimation performed by ResNet-LSTM after incorporating meteorological
features and one short path, trained on both day-time and night-time
images.

D. MODEL PERFORMANCE AFTER INCORPORATING
METEOROLOGICAL FEATURES AND ONE SHORT PATH
After incorporating the meteorological information into our
proposed ResNet-LSTM model, the estimation performance
is further improved (see Table 5). This highlights the ben-
efit of using domain-specific meteorological features for
image-based PM estimation. As compared to ResNet-LSTM,
for PM2.5 estimation, our Met-ResNet-LSTM has achieved a
reduction in MAE and SMAPE, respectively, by 3.97% and
4.78%,whereas for PM10 estimation, ourMet-ResNet-LSTM
has achieved a reduction in MAE and SMAPE, respectively,
by 4.85% and 6.13%. Moreover, Met-ResNet-LSTM has
achieved a higher Pearson correlation in PM10 estimation,
though the corresponding Pearson correlation is not further
improved after including meteorological features in PM2.5
estimation.

Although the proposed ResNet-LSTM and Met-ResNet-
LSTM models have achieved the lowest estimation errors
when compared to the baselines, it remains a challenge

to accurately predict PM values when they are changing
sharply. As shown in Figure 9(a), the real PM2.5 measure-
ments dropped sharply starting from 17:00 onwards. How-
ever, it was not until 17:36, a 36-min time lag, that the
predicted PM2.5 measurements from ResNet-LSTM started
to drop sharply. More specifically, ResNet-LSTM had not
started to drop sharply from 48.57 to 28.29 µg/m3 until
17:36. In comparison, Met-ResNet-LSTM had started to drop
sharply from 46.18 to 29.89 µg/m3 4 mins earlier, at 17:32.
Similar patterns can be observed for PM10 (see Figure 9(c)).
It takes both ResNet-LSTM and Met-ResNet-LSTM a longer
time to respond to the sudden changes in PM2.5 and PM10
concentrations, though for Met-ResNet-LSTM, such time lag
is comparably shorter.

After incorporating one short path into our proposed mod-
els, estimation errors for PM2.5 and PM10 have been fur-
ther reduced. As shown in Figures 9(b) and 9(d), adding
one short path to the model improves the model’s sensitiv-
ity to sudden changes in PM concentrations, as compared
to the previous model without any short path. Given that
the short path improves the model’s capability in detect-
ing any sudden change in PM concentrations, the overall
estimation errors have been further reduced (see Table 5).
More specifically, the performance of ResNet-LSTM is fur-
ther improved after incorporating the short path. For PM2.5
estimation, MAE and SMAPE have been further reduced
by 16.8% and 12.5%, respectively, whereas for PM10 esti-
mation, MAE and SMAPE have been further reduced by
4.67% and 5.10% respectively. Similarly, the performance of
Met-ResNet-LSTM is further improved after incorporating
the short path. For PM2.5 estimation, MAE and SMAPE
have been further reduced by 15.6% and 10.1%, respec-
tively, whereas for PM10 estimation, MAE and SMAPE has
been further reduced by 12.8% and 9.68%, respectively.
Furthermore, for both PM2.5 and PM10 estimation, as com-
pared to the non-SP counterparts, both ResNet-LSTM-SP
and Met-ResNet-LSTM-SP have achieved a higher Pearson
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FIGURE 9. MAE and SMAPE of PM estimation based on models with and without one short path.

correlation, suggesting that the image and meteorological
features can be better learnt by the deep learning models via
the short path.

E. LIMITATIONS AND FUTURE WORK
This study aims to estimate PM2.5 and PM10 concentra-
tions of a specific location in HK using sequential images
taken consecutively once every minute, addressing also the
night-time image estimation challenge. Our results show
that the proposed ResNet-LSTM and the Met-ResNet-LSTM
model can achieve a better PM2.5 and PM10 estimation when
compared to the baselines, especially after incorporating the
short path. However, a few limitations remain.

First, although deep-learning models can learn the most
important features that are proxies to PM2.5 and PM10 pol-
lutant concentrations, the estimation performance can still be
affected by other pollutants, as high O3 and NO2 values may
also degrade the visibility. For example, [41] noted that image
visibility can be affected by other pollutants, such asO3, NO2,
and humidity. In the future, we can develop a model based on
the same methodology to estimate values of other pollutants,
such as O3 and NO2, based on sequential images taken.

Moreover, though a large image set with labelled PM2.5
and PM10 measurements has been collected for this study,
the range of PM2.5 and PM10 values covered remains small.
The representativeness of the dataset may decrease the esti-
mation performance. In our experiment, images from the full
dataset covering the last two days are selected as the test
set, however, the test set consists of images labeled with
very low PM2.5 and PM10 values, which are not available
in the training set. As a result, significant overestimations
of PM2.5 and PM10 can be observed, though such overesti-
mations are partially addressed by incorporating one short
path in the model structure. As shown in Figure 9, ResNet-
LSTM-SP and Met-ResNet-LSTM-SP have achieved better
estimation results as compared to ResNet. However, if the
actual PM2.5 and PM10 values become too low, i.e., less than
10 µg/m3 and 20 µg/m3, respectively, the estimation results
are comparatively less accurate (see the gaps between the
actual and the predicted values in Figure 9). Although the
short path further reduces estimation errors, estimation errors
that associate with very low PM2.5 and PM10 values remain
large. To overcome this limitation, more sequential images
covering a wider range of PM2.5 and PM10 values across
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different time periods (e.g., different hours of day, days of
week, and seasons of year) and locations will be collected in
the future.

Furthermore, the transferability of our proposed models to
other locations should be examined in the future. We plan to
collect more images from other official traffic surveillance
cameras across different locations in HK. Sequential images
will be collected over a longer period to capture the geo-
graphical and seasonal variations of air pollution. A larger
dataset that covers multiple locations and seasons can be
constructed and be used to train and evaluate our proposed
model. After the generalization performance of the proposed
model is validated on a holdout dataset, a large city-based
estimation system will be constructed to provide air pollution
estimation in those locations where air quality monitoring
stations are not available.

V. CONCLUSION
An end-to-end ResNet-LSTM model has been proposed to
estimate PM2.5 and PM10 values from smartphone-taken
images directly. Reliable estimation can be obtained for both
day-time and night-time images. Our study consists of four
stages. First, we have calibrated two low-cost portable sen-
sors to provide reliable high accuracy pollutant measure-
ments. Second, we have conducted an experiment to show
that PM measurements within a distance of up to 500 meters
are nearly constant. Third, based on our calibrated sensors
and the empirical experiment, a comprehensive dataset con-
taining 3024 images have been constructed. It has covered
both day-time and night-time images of the same building (up
to 500 meters away), with all images taken by a smartphone
camera labeled with the ground truth PM2.5 and PM10 values
obtained from co-located calibrated sensors of the AQMS.
Finally, our proposed ResNet-LSTM model have been con-
structed.

Experimental results have shown that our proposed
ResNet-LSTM models and their extended counterparts have
outperformed the best deep learning baseline, ResNet, and
other conventional baselines. Both ResNet and our pro-
posed ResNet-LSTM have achieved lower estimation errors
when compared to conventional baselines. By exploiting
the temporal correlation of sequential images, our proposed
ResNet-LSTM models have further outperformed ResNet,
especially for the night-time image-based estimation. Built
upon ResNet-LSTM, our Met-ResNet-LSTM has attempted
to account for the meteorological effects on air pollution.
We have also incorporated one short path, and developed
ResNet-LSTM-SP and Met-ResNet-LSTM-SP. The short
path increases the ability of ResNet-LSTM and Met-ResNet-
LSTM to capture any sudden changes in pollutant concentra-
tions and improves our image-based estimation performance.

Our proposed deep-learning image-based air pollution
models is capable of providing air pollutants estimation
based on night-time images and make full-day air pollutants
estimation from smartphone- or surveillance camera-taken
images possible. In the future, our model can be extended for

estimating pollutant values from sequential images taken by
government-run traffic surveillance cameras, making full-day
estimation for PM2.5 and PM10, and other pollutants, such as
O3 and NO2, across the whole city of HK possible. Our study
aims to provide HK citizens a fine-grained pollutants estima-
tion and better health advice based on a fuller coverage of pol-
lutants levels in HK. Our image-based deep learning model
can be transferred to other cities to provide timely personal
air pollutants report and advice, wherever location-specific
and/or timely air pollution reports are not readily available.
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