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Design of COVID-19 staged alert systems to
ensure healthcare capacity with minimal closures
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Remy Pasco 5, Kelly Pierce6, Paul Rathouz7, Victoria Valencia 7, Zhanwei Du4, Michael Pignone7,

Mark E. Escott8, Stephen I. Adler8, S. Claiborne Johnston7 & Lauren Ancel Meyers 4,9✉

Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to

shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and

relaxation of restrictions amplify their public health benefits while reducing costs. We derive

optimal strategies for toggling between mitigation stages using daily COVID-19 hospital

admissions. With public compliance, the policy triggers ensure adequate intensive care unit

capacity with high probability while minimizing the duration of strict mitigation measures. In

comparison, we show that other sensible COVID-19 staging policies, including France’s ICU-

based thresholds and a widely adopted indicator for reopening schools and businesses,

require overly restrictive measures or trigger strict stages too late to avert catastrophic

surges. As proof-of-concept, we describe the optimization and maintenance of the staged

alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May

2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy

for tracking COVID-19 hospital admissions as an early indicator of hospital surges and

enacting staged measures to ensure integrity of the health system, safety of the health

workforce, and public confidence.
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Throughout the COVID-19 pandemic, community mitiga-
tion activities have proved vital to slowing viral transmis-
sion and ensuring the integrity of healthcare systems.

Along with viral testing, strategies such as social distancing,
face-mask ordinances, business closures, travel restrictions, and
stay-home orders have remained paramount, even as safe and
efficacious vaccines have become widely available and utilized. By
April of 2020, strict stay-home orders were enacted almost uni-
versally to combat initial waves of transmission. Within two
months, however, many regions lifted restrictions hoping to
alleviate socioeconomic hardship, although the risks of resurgence
were high1,2. In the US—which has reported over 583,000
COVID-19 deaths as of May 13, 20213—communities have
scrambled to tighten and relax mitigation policies in response to
threatening surges in hospitalizations.

Governmental bodies worldwide have established a variety of
COVID-19 alert systems to provide situational awareness and
policy directives for the public. They typically monitor one or
more data streams—such as COVID-19 case counts, test posi-
tivity, hospital capacity, or deaths—and trigger changes in alert
level when the data reach specified thresholds4. Although most
systems include intermediate levels that are intended to slow
transmission and reduce the need for full-blown shelter-in-place
orders, they vary considerably in complexity, key indicators, and
policy levers. France, for example, has a four-stage system; the
maximum level is triggered when weekly regional COVID-19
incidence exceeds 250 infections per 100,000 people and COVID-
19 patients in the intensive care unit (ICU) occupy at least 60% of
capacity5. New Zealand, Singapore, South Africa, and the UK
have national systems ranging from three to five alert levels that
track data on various combinations of COVID-19 incidence,
hospitalizations, death, and available healthcare capacity6,7; the
alert-level system in South Africa includes both economic and
public health considerations, while the systems in New Zealand
and Singapore focus on public health alone. Within the US, states
and cities have established various COVID-19 alert systems. New
York’s NY Forward Plan8 monitors seven indicators, including
hospital admissions, hospital census, and deaths, to determine a
re-opening with four phases. Illinois has a five-stage plan with 11
geographic regions, which tracks test positivity, COVID hospital
admissions, and the availability of hospital surge beds, ICU beds,
and ventilators9.

Such COVID-19 alert systems can provide valuable public
guidance and flexible policy levers to slow the spread and control
alarming surges. However, their public-facing dashboards rarely
provide information regarding the underlying design of the sys-
tem, the choice of data indicators, or the specific thresholds for
action. To the best of our knowledge, many are grounded in
expert opinion rather than rigorous trade-off analyses that bal-
ance COVID-19 burden with economic and social hardship.

Although COVID-19 policies may be dictated by divergent
political and cultural considerations, they universally aim to
prevent unmanageable surges that threaten the integrity of
healthcare systems, like the early pandemic waves in Wuhan,
Italy, and New York10. Overwhelming numbers of COVID-19
hospitalizations can lead to excess serious complications and
mortality for those with COVID-19 or other medical conditions
like cancer or cardiovascular disease, who may not receive timely
or safe care11. For example, influxes of COVID-19 patients have
undermined oncology services in the UK12 and colorectal medi-
cine in Italy13. Hospital surges also put healthcare workers at risk,
potentially diminishing the workforce and further undermining
the quality of care14,15. During COVID-19 surges in the US,
intensive care units neared capacity more quickly than other
medical units16–18, with trained healthcare professionals rather
than space, medical equipment, or PPE being the key limiting

resource17. Early data from China and Italy suggest that 5% of
cases who test positive for COVID-1919 and 16% of hospitalized
patients require ICU-level care20. In the fall and winter of 2020-
2021, cities throughout the US and Europe again faced over-
whelming COVID-19 healthcare surges despite community
mitigation efforts21,22. Many have deployed temporary medical
facilities, often called field hospitals or alternate care sites, to
accommodate overflow, although most are not equipped to pro-
vide ICU care23. For example, the Javits New York Medical Sta-
tion has 42 ventilators and the Navy hospital ship USNS Comfort
has 100 ICU beds as of April 202024, and Wisconsin, with over
85% of the state’s hospital beds and over 88% of the state’s ICU
beds occupied in early November 202025, began sending patients
to a field hospital at the Wisconsin State Fair Park26.

In this study, we apply stochastic optimization to recommend
policy triggers governing stages of community mitigation to
prevent overwhelming hospital surges and ensure adequate
capacity in the unlikely case that they occur. Strict community
mitigation measures, such as shelter-in-place orders, are socio-
economically detrimental and only proposed when the existing
healthcare system risks inundation. Our data-driven optimization
model is built atop a high fidelity SEIR-style (susceptible-
exposed-infectious-recovered) simulation model of SARS-CoV-2
transmission. We can rapidly solve for optimized thresholds for
daily COVID-19 hospital admissions at which community miti-
gation measures should be enhanced or relaxed. To validate the
approach, we compare the optimized policies to established
policies in terms of the expected duration of restrictive closures
and the probability that COVID-19 will overwhelm local
healthcare capacity.

Our principled framework can guide public policy, reducing
socioeconomic hardship while ensuring the integrity of the
healthcare system. Our framework was rapidly developed and
applied by a task force of scientists, public health authorities,
hospital systems, and elected officials during April and May of
2020 to create a robust COVID-19 alert system that has been used
for nearly a year to guide public policy in the Austin, Texas
metropolitan area, with a population of about 2.2 million27. Here,
we significantly extend a previously published pilot study28,
which toggled between just two stages, into a practical data-
driven framework for building staged alert systems to mitigate
competing risks in the face uncertainty and provide actionable
policy insights based on the experiences in Austin. To demon-
strate the versatility of the method, we optimize a similar alert
system for the larger Houston, Texas MSA, and extend the
method to stand up an alternate care site if mitigation measures
fail (see Supplementary Discussion 1).

Results
To solve for optimal policies, we simulate COVID-19 transmis-
sion under a staged alert system using a stochastic SEIR model,
which includes ten compartments for each of ten age-risk cate-
gories. In the model, the alert stages govern the COVID-19
transmission rate and the stages change when the seven-day
moving average in COVID-19 hospital admissions crosses
defined thresholds. Our stochastic optimization model identifies
stage-specific thresholds that minimize the total expected cost
while ensuring sufficient healthcare capacity with high prob-
ability, using Monte Carlo estimates. We provide results for the
Austin, Texas MSA, which implemented a COVID-19 alert sys-
tem built via this approach on May 13, 202029, and provide
analogous results for the Houston, Texas MSA in Supplementary
Discussion 1.

Our model includes four alert stages, blue (new normal), yellow
(moderate risk), orange (high risk), and red (very high risk), that
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progressively reduce transmission from an unmitigated baseline,
and more so among high-risk sub-populations (Table 1). The
reductions are based on the least-squares fitting of the model to
comprehensive COVID-19 hospitalization data from the Austin
MSA from February 28 through October 7, 2020 (Supplementary
Method 2).

During the June 2020 pandemic surge the three major hospital
systems in Austin estimated a total COVID-19 inpatient capacity
of 1500 beds, including a COVID ICU capacity of 331 beds. Based
on COVID-19 hospitalization and ICU counts in Austin, we
estimate that the daily proportion of COVID-19 patients in ICUs
dropped from 45% to 30% from March 19, 2020 to August 10,
2020. Even at 30%, ICU capacity would likely be breached before
general hospital capacity, as was corroborated by the June 2020
COVID-19 surge (Fig. 1). Thus, we design policies to ensure that
COVID-19 healthcare demand does not exceed the tighter con-
straint of ICU beds. While general ward beds can be converted to
ICU beds, the requisite critical care nurses, physicians, and
equipment such as ventilators can be in short supply precisely
when needed.

Based on 12-month COVID-19 projections for Austin starting
on October 7, 2020, we identify thresholds that provide at least
95% assurance that Austin will not run out of ICU capacity while
minimizing the overall socioeconomic cost, represented by a sum

of daily penalties whose magnitude grows with stricter stages of
mitigation. Increasingly strict stages of yellow, orange, and red are
triggered when the rolling seven-day average of COVID admis-
sions exceeds 10, 20, or 120 cases, respectively (Table 2).
Assuming the observed reduction in transmission from July until
October 7th, we expect that hospitalizations will rise to the point
of triggering the orange stage by November and possibly
requiring a short-lived lock-down (red) between late November
and mid-March (Fig. 1).

We compare the optimized triggers to four alternative policies—
an optimized two-stage system (with access only to the red and
yellow stages) that again respects ICU capacity, an optimized four-
stage system that instead ensures total hospital capacity is respected
with high probability (0.95), thresholds based on France’s COVID-
19 alert system, and widely cited reopening criteria developed by
the Harvard Global Health Institute (HGHI)30 (Table 2 and Fig. 2).
The policy optimized to preserve overall inpatient rather than ICU
capacity fails to ensure safe ICU capacity with an estimated 20%
chance of an unmanageable surge. The distribution of ICU patient-
days above capacity is highly skewed with a median of 0 days, a
95th percentile of 1476 days, and a 99th percentile of 2388 days.
Likewise, the France-based policy has a 38% chance of exceeding
ICU capacity with the median, 95th, and 99th percentiles of 0,
1273, and 2948 days. The other two policies err on the side of

Table 1 Structure and impact of a four-stage COVID-19 alert system.

Stages Example measures Transmission reduction Rt
Red Shelter-in-place order: mask mandate, Largest (78.2%) 1.02

no public activities, gatherings, or travel
Orange Mask mandate, no indoor dining, Moderate (69.2%) 1.45

no medium or large gatherings
Yellow Mask mandate, partial limitations on Modest (60.3%) 1.87

indoor dining and bars, no large gatherings
Blue New normal: avoid large gatherings, Lowest (51.3%) 2.29

masks and physical distancing recommended

Colors indicate stages. For each stage, the table provides example measures, which may evolve with future data on the impact of mitigation strategies and roll-out of surveillance testing. Transmission
reduction estimates and reproduction numbers are derived from COVID-19 hospital admissions data from the Austin, Texas MSA during a period that included a stay-home order, a re-opening phase
that led to an early summer surge, followed by reduced transmission with the implementation of face-mask requirements and reinstatement of other distancing measures, and an uptick in spread as fall
began (February 18 to October 7, 2020). To allow comparison, reproduction number estimates are given relative to a fully susceptible population. The model assumes high-risk sub-populations are
sheltered to a greater degree, as detailed in the Supplementary Method 2.

a b

Fig. 1 COVID-19 healthcare projections for Austin under the optimized staging policy, from October 7, 2020 through September 30, 2021. The
strategy was derived to minimize the expected days in costly alert stages while respecting intensive care unit (ICU) capacity. In both plots, the light curves
indicate 300 stochastic simulations, the single solid curve is a representative central projection, the red points correspond to the reported COVID-19
admissions and ICU census for all Austin area hospitals through October 20, 2020, and the vertical black line indicates the start of the projection period.
a The COVID-19 alert level changes when the seven-day moving average of daily COVID-19 hospital admissions crosses optimized thresholds, as indicated
by the colored horizontal bands for the red, orange, yellow, and blue alert stages. b The policy provides a 95% guarantee that the number of COVID-19 ICU
patients does not exceed the estimated local capacity of 331 beds (black horizontal line). The background colors represent the proportion of the simulated
scenarios in each alert stage on each day. For example, on January 1, 2021, 15% of projections are in the most restrictive red stage, and the remaining 85%
are in the orange stage.
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caution, providing strong guarantees that COVID-19 will not
overwhelm ICU capacity, but at the cost of longer duration of lock-
downs. Under the optimal strategy, we would expect a median
scenario to have two weeks of stage-red restrictions (14 [90% PI:
0–16] days). The median lock-down periods increase to nine weeks
and six weeks under the optimized two-stage system and Harvard-
based policy, respectively.

Discussion
As US states relaxed and reinstated community mitigation mea-
sures during the early months of the COVID-19 pandemic, pol-
icymakers sought clarity on which data to track and when to take
action. In April of 2020, we developed this data-driven optimi-
zation framework out of necessity, as the civic, healthcare, and
public health leadership in the Austin metropolitan area raced to
implement a robust policy that would ensure the integrity of area
hospitals while minimizing socioeconomic damage and comply-
ing with state-mandated reopening orders. The solution we
derived for Austin, which continues to guide policy as of May
2021, is to track daily new COVID-19 hospital admissions as an
early indicator of hospital surges and enact staged restrictions
when the 7-day moving average crosses predetermined
thresholds27,31. For plausible COVID-19 scenarios in Austin
(Results) and Houston (Supplementary Discussion 1), we find
that limited stay-at-home (red) periods should suffice to respect
healthcare capacity.

In developing this approach, we addressed two early policy
challenges that still persist in many jurisdictions. The first is
identifying a source of data that provides reliable and timely
COVID-19 situational awareness. The two most widely collected
and cited indicators—case counts and death counts—give unre-
liable signals. Spikes and dips in confirmed case counts reflect the

rapidly changing capacity and purview for testing, perhaps more
than the pace of the pandemic itself, which may be compounded
by long turn-around times32,33 and delayed data reporting due to
aged IT infrastructure and an over-tasked workforce34,35. Setting
aside possible under-reporting of deaths, COVID-19 mortality
data should more clearly indicate whether policies are having the
desired effect on repressing transmission, but not until several
weeks after the fact, given the 3-week average course of fatal
disease, and given the time taken to report such deaths. COVID-
19 hospitalization counts may provide similar fidelity with a
shorter lag, but inferring transmission rates from such data may
be complicated by variable duration of hospital stays, depending
on the changing demographics of COVID-19 cases and the
availability of alternative post acute-care facilities. Of the various
data streams, we find that COVID-19 hospital admissions provide
the clearest early signal of recent transmission and imminent
hospital surges. However, hospital admissions are not typically
reported on city, county, state, or national COVID-19 dash-
boards. Austin’s efforts to collect and publicize this data27 serve as
an exemplar of local leadership providing decision-makers and
the public with a reliable real-time indicator of changing
pandemic risks.

The second persistent challenge is articulating clear policy
goals that reflect the universal desire to prevent suffering and loss
of both life and livelihood while ensuring consistency with state
and federal requirements. Early deliberations led Austin’s lea-
dership to posit a two-part goal. The first goal is to prevent
overwhelming surges in hospitalizations that would potentially
increase morbidity and mortality for any patients requiring care
and increase risks to the healthcare workforce. The second goal is
to minimize the duration of economically restrictive policies.
Designing policies to achieve concise and widely acceptable
objectives, like these, allows policymakers to anticipate potential

Table 2 Performance comparison across five COVID-19 staging policies.

Policies

COVID-19 hospital admissions (7-day average)

Optimal (ICU
capacity)

Optimal two-stage
(ICU capacity)

Optimal hospital
(overall capacity)

Percent ICU (France) Incidence (Harvard)

Indicator data Percent ICU beds
occupied by COVID-19

New cases per 100 000
(7-day average)

Thresholds
blue (low risk) <10 — <10 — <1
yellow (moderate risk) 10–20 <90 10–20 <30% 1–10
orange (high risk) 20–120 — 20–200 30%–60% 10–25
red (very high risk) >120 >90 >200 >60% >25

Median days in red stage
[90% PI]

14 [0–16] 65 [47–78] 0 [0–0] 39 [23–55] 42 [28–71]

Probability ICU demand exceeds
capacity

2.7% 1.7% 20.0% 38.0% 0.0%

Median peak ICU demand
(patients)

255 268 275 312 122

95th percentile of peak
ICU demand

317 309 412 426 157

Median unserved ICU demand
(patient–days) [90% PI]

0 [0–0] 0 [0–0] 0 [0–1476] 0 [0–1273] 0 [0–0]

99th percentile of unserved ICU
demand (patient-days)

374 9 2388 2948 0

From left to right, the three optimal policies are derived to prevent overwhelming ICU demand using either a four-level or two-level alert system or to prevent overwhelming inpatient demand using a
four-level system. As benchmarks, we evaluate policies implemented in France5 and proposed as gating criteria for relaxing measures and opening schools30. For Austin, the orange and red thresholds
for the Percent ICU (France) policy translate to 99 and 199 COVID-19 ICU cases, respectively; the yellow, orange, and red thresholds for the Incidence (Harvard) policy translate to 220, 2200, and 5500
new cases, respectively, assuming that one in ten cases is reported. We implemented each policy in our stochastic SEIR model fit to hospitalization data for the Austin MSA, assuming the reported
COVID-19 ICU and inpatient capacities of 331 and 1500 beds, respectively. Outcomes are based on 300 stochastic simulations of COVID-19 transmission and healthcare burden from October 7, 2020
through September 30, 2021 under each policy.
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limitations and provide transparent and intuitive justifications for
the public.

Cities, states, and countries worldwide have enacted staged
COVID-19 mitigation policies. However, few provide detailed
rationales for the choice of data indicators or the trigger condi-
tions for changing stages. They may, in fact, be grounded in
rigorous assessments of both data reliability and probability of
achieving explicit policy goals. However, our comparative eva-
luation of two examples—France’s ICU-capacity-based triggers
and the Harvard Global Health Institute’s incidence-based trig-
gers—suggest that such systems may be sensible but sub-optimal.
They may err in the direction of either failing to prevent over-
whelming surges of COVID-19 hospitalizations or imposing
unnecessarily early or long restrictions.

Throughout the COVID-19 pandemic, various branches of the
US government, including city and state authorities, have engaged
in highly polarized disputes regarding COVID-19 mitigation36.
We designed this optimization framework during the spring of
2020, amidst considerable national tension over the White
House’s Opening Up America Again plan37. In that climate, we
aimed to provide an adaptive decision framework that would be
universally acceptable to all stakeholders, including our city, state,
and federal governments, to ensure that the policies would not
face political or legal challenges. Given the horrific images from
hospitals in Italy and New York in early 202038,39, there was
broad consensus that local authorities should take measures to
prevent overwhelming healthcare surges while opening up the
economy as much as possible. This led us to align our alert sys-
tems towards two goals—ensuring hospital capacity is not over-
run while minimizing the duration of restrictive measures.

Since Austin implemented the recommended staged alert sys-
tem in May 2020, city leadership has proactively socialized the
framework through a public-facing dashboard that tracks hospital
admissions and visualizes the key thresholds27, and through daily
public messaging via news outlets and social media40. Behind the
scenes, the city’s COVID-19 task force has continually pressure
tested and updated the alert system, as our understanding of the
virus, local healthcare resources, and behavioral responses have
changed. For example, in October 2020, the major hospital sys-
tems reduced their estimate of COVID-19 ICU capacity from 331

beds to 200 beds, stemming from an increase in non-COVID
patients and staffing challenges. We quickly updated our opti-
mization analysis and determined that the triggers for transi-
tioning to the strictest orange and red stages should be reduced.
However, to avoid undermining public trust, the city did not
immediately announce the policy change. Instead, they waited
until hospitalizations began trending upwards, but with ample
time to cultivate community buy-in before the triggers hit. In
accordance with the revised triggers, Austin transitioned to the
most stringent alert stage (red) on December 23, 2020, and
relaxed to the orange and then yellow stages on February 9, 2021,
and March 13, 2021, respectively, when hospital admissions
dropped below the corresponding thresholds.

Austin’s staged system was optimized to prevent catastrophic
healthcare surges while minimizing the duration of costly mea-
sures. As designed, the shift to red in December prevented an
overwhelming surge in COVID-19 ICU utilization, but just
barely. The ICU census in the metropolitan area peaked just
below the local capacity of 200 beds on January 12, 2021 (Sup-
plementary Discussion 2). As an indirect byproduct of flattening
the hospitalization curve, the system has also mitigated overall
morbidity and mortality. As of March 22, 2021, Travis County
(Austin) reported 73 COVID-19 deaths per 100,000 residents,
which was considerably lower than the statewide death rate of 161
per 100,00041. Other major metropolitan areas in Texas fared
worse, with Harris County (Houston), Dallas County (Dallas),
Bexar County (San Antonio) reporting 120, 143, and 162
COVID-19 deaths per 100,000 people, respectively. Texas’ hard-
est hit regions include the Rio Grande Valley with 281 (Hidalgo
County) and 335 (Cameron County) COVID-19 deaths per
100,000 people, and West Texas with 300 (El Paso) and 249
(Lubbock) COVID deaths per 100,000 people. The staged alert
system also seems to have achieved the goal of reducing socio-
economic costs. Across 22 different trauma service areas of
Texas42, the Austin area spent the fewest days under state-
ordered restrictions on elective surgeries and restaurant/bar/retail
occupancy during the winter surge (Executive Order G32)43.

There are important limitations to our approach. If the
reporting of hospitalization data is delayed, biased, or incon-
sistent, the system may be prone to false or delayed alarms44.

a b

Fig. 2 Projected intensive care unit (ICU) surges and days under lock-down for the optimized strategy versus four alternative strategies. Optimal is the
recommended strategy. The Optimal two-stage strategy is optimized to respect ICU capacity under a two-stage alert system, and the Optimal hospital
strategy respects total hospital capacity under a four-stage alert system. The Percent ICU strategy is based on France’s mitigation policy5 and the Incidence
strategy is based on reopening criteria proposed by the Harvard Global Health Institute30. a The maximum daily number of COVID-19 patients in ICUs
versus the number of days under the most restrictive red alert level. Each point represents the result of a single stochastic simulation under one of the five
policies (indicated by color). The plot includes 300 points per policy; the vertical black line indicates the estimated COVID-19 ICU capacity of 331 beds for
the Austin area. The vertical stratification of the green and purple points stems from a model assumption that stages must be in place for a minimum of 14-
days before they can shift. The Optimal policy is designed to minimize the use of costly stages while having 95% of the peak-demand values within ICU
capacity. On the rare occasion that hospital admissions transiently exceed the red threshold, a return to orange is often triggered as soon as the 2-week
minimum passes. b The expected proportion of days spent in each stage, colored in the same manner as Fig. 1 and the 95th percentile of unmet ICU
demand measured in patient-days above capacity, in gray with values indicated on the right y-axis.
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Second, our analyses make strong assumptions about the
reduction in transmission under various alert stages. Although
these are directly estimated from data during various pandemic
periods in Austin, the future impact of staged restrictions may
change with public willingness to comply with guidelines on
distancing, face coverings, and hygiene. If future restrictions lead
to greater reductions in transmission than assumed in our model,
then the policies would be conservative. That is, their guarantee
against overwhelming ICU surges would exceed 95%, at the
expense of longer than necessary restrictions. If behavior is more
lax than expected, then the policy may fail to protect the
healthcare system, potentially requiring personnel and resources
from state or federal agencies, transferring of patients to other
jurisdictions, or use of alternate care sites. Third, our model
assumes that hospital and ICU capacity for COVID-19 patients is
fixed. However, other events or diseases, such as natural disasters
or seasonal influenza may cause substantial reductions in
COVID-19 capacity. While predictable fluctuations can be
incorporated into the model a priori, unpredictable events may
pose significant risks. In fact, we have been validating our model
assumptions on a weekly basis throughout the pandemic. Our
Austin COVID-19 healthcare dashboard45 provides daily esti-
mates of the current reproduction number and three-week out
projections for hospital and ICU demand. As behavior and
conditions in the city have evolved, we have adjusted our model
and re-derived the optimal trigger policy thresholds. In all but
one case, we determined that the originally derived triggers were
robust even if no longer optimal per our model. The one
exception was an October 2020 update of local ICU capacity,
based on increased occupancy by non-COVID cases, that suggests
a need to trigger the orange and red stages earlier than originally
prescribed.

Our framework for designing policy provides a path for any
city to reduce the need for strict shelter-in-place orders while
ensuring the integrity of the health system, safety of the health
workforce, and public confidence. It can be flexibly tailored to
determine policy triggers based on local demographics, health
risks, behavioral responses to COVID-19, and healthcare capa-
city, as demonstrated for the city of Houston, Texas (see Sup-
plementary Discussion 1). Describing the strategy is easy—track
daily new COVID-19 hospital admissions as a reliable indicator
of an impending surge in hospitalizations and trigger changes in
policy when the seven-day moving average crosses predetermined
thresholds. Implementation of this strategy is harder but can be
done quickly with little additional cost. It requires adding daily
hospital admission counts to COVID-19 dashboards, firming up
estimates for local COVID-19 ICU hospital surge capacity, and
using straightforward models to determine early warning indi-
cators for when a surge is coming.

As of May of 2021, SARS-CoV-2 vaccines are rolling out
unevenly across the globe and the virus continues to wreak havoc
on several continents. The continual emergence of new viral
variants may cause future resurgences, even in highly vaccinated
communities. Thus, staged alert systems will continue to be an
important option for mitigating the risks of COVID-19, as well as
future pandemics, particularly if they are carefully tailored to the
changing state of the pandemic and effectively communicated to
encourage public compliance.

Methods
Our SEIR simulation model assumes that pre-symptomatic, symptomatic, and
asymptomatic cases have different levels of infectiousness. Contact rates vary by
age group, differ on weekdays and weekends, and decrease during school holidays
and closures. We account for micro-stochastics using binomially distributed
numbers of transitions between compartments and macro-stochastics by randomly
sampling parameter values from specified distributions; see Supplementary
Methods 2, 3. We train, i.e., optimize, a policy on one set of 300 Monte Carlo

simulations and require 95% stay within capacity, but report results using 300
independent, i.e., out-of-sample, test scenarios. Supplementary Method 1 details
the optimization model and its probabilistic constraint. The prediction intervals
and the percentiles we report are based on order statistics from the 300 test sce-
narios. The simulation and optimization models and the optimization algorithm
are implemented in Python.

We model four alert stages, each corresponding to a different level of trans-
mission reduction. A day spent in the blue stage incurs a unit socioeconomic cost,
and each day spent in the next most restrictive stage increases the cost by a factor
of 10. The trigger policy works as follows: as hospitalizations rise, we move to a
stricter stage of physical distancing when the seven-day moving average of daily
admissions surpasses a threshold. As hospitalizations fall, we relax restrictions
when the seven-day moving average falls below the same threshold. These rules are
coupled with a requirement that we spend at least two weeks in a stage.

Institutional Review Board (IRB) approval was not required for two reasons.
First, the implementation of the staged alert system was deemed to be public health
practice, and hence not subject to IRB approval46. Second, hospitalization admis-
sions and census data used to inform the staged alert system are publicly
available27, and the use of anonymized patient experience data (Supplementary
Method 2) was approved as exempt human subjects research by the IRB of The
University of Texas at Austin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The hospital admissions and census data that supported this study can be found at the
GitHub repository: https://github.com/haoxiangyang89/COVID_Staged_Alert. The
remaining data used in our analysis are also available at the GitHub repository and
further made available and described in the Supplementary Information.

Code availability
The codes for performing the required analysis, and detailed instructions on installing
and running the codes, are available at the repository https://github.com/
haoxiangyang89/COVID_Staged_Alert. The DOI for the GitHub repository is https://
doi.org/10.5281/zenodo.475927847.
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