

1 **Can smart energy information interventions help householders save**
2 **electricity? A SVR machine learning approach**
3

4 Andong Wang, Jacqueline CK Lam*, Shiguang Song, Victor OK Li* and Peiyang Guo

5 Department of Electrical and Electronic Engineering, The University of Hong Kong,
6 Pokfulam Road, Hong Kong, China

7 * Corresponding Authors

8 **Keywords:**

9 smart energy monitors (SEMs), smart energy management system (SEMS), smart energy
10 information interventions, electricity-saving behaviours, machine learning, SVR

11 **Highlights:**

- 12 • A machine-learning approach for in-depth quantitative analysis of the electricity saving
13 effects of smart information interventions via Smart Energy Management System (SEMS)
14 in Hong Kong
- 15 • An investigation of the statistical correlation between electricity saving effects of different
16 types of smart information interventions and household characteristics in Hong Kong
- 17 • A generic and scalable approach for SVR machine-learning-driven and SEMS-induced
18 electricity consumption behavioural studies across different geographical scales and
19 sample sizes

20

21 **Abstract:**

22 Smart energy monitors (SEMs), which enable householders to measure electricity usages of
23 different appliances in real-time, have been widely deployed by utilities across many different
24 countries. However, the actual electricity saving effects of smart information interventions via
25 the SEM connected to the smart energy management system (SEMS) remain inconclusive, due
26 to failures of the existing statistical models in capturing non-linear relationships. To address
27 the non-linearity challenge and to observe the effects of smart information interventions on
28 electricity savings among the public housing householders in Hong Kong, we initiate a
29 longitudinal electricity consumption behavioural study in Hong Kong. We propose a machine-
30 learning approach to capture any non-linearity identified from our SVR machine learning
31 model. In particular, we identify the correlation between the different combinations of three
32 smart information interventions and the percentage of electricity savings at the household-level
33 in Hong Kong. Smart Energy Management System (SEMS), consisting of a smartphone app
34 and a SEM installed respectively on the smartphone and the participant household of our
35 participants in a public housing estate in Hong Kong, have been developed and deployed by
36 the HKU AI-WiSe team. An innovative technological intervention cum environmental
37 behavioural study was conducted on representative of 14 households residing in a public
38 housing estate in Hong Kong, across a one-year period, from 2018 to 2019. Three types of
39 smart information interventions were introduced to our household participants, including their
40 (1) current electricity consumption profile (2) historical electricity consumption profile, and (3)
41 ranking in electricity savings as compared to other participating households. Our study

42 concludes that the overall average electricity savings across all 14 households is 7.1%.
43 However, as different households have displayed different electricity consumption
44 characteristics, the electricity savings vary significantly across 14 households, from slightly
45 negative or almost zero savings, to significantly positive savings. Our results show that with
46 respect to the three types of smart information interventions, Type (1) and Type (2) carry a
47 stronger saving effect when compared to the ranking-based smart information intervention. We
48 conclude our study by identifying the right electricity policies for the HKSAR Government to
49 promote household electricity savings via SEMs and SEMS in HK. To the best of our
50 understanding, our study represents the very first attempt to capture the non-linear statistical
51 relationship between smart information interventions and household electricity savings via the
52 machine-learning SVR approach. Our approach is generic and scalable; it can be applicable to
53 other related electricity consumption experimental studies, across any geographical scales and
54 sample sizes.

55 **1. Introduction**

56 Residential electricity consumption took up 27.2% of the total global electricity consumption,
57 [1]. In 2016, residential consumption took up 16.3% and 37% of the total electricity
58 consumption in China and USA, respectively [2]. Given the new trends in energy conservation,
59 smart grid and renewable energy development, new initiatives on smart energy monitors (SEM)
60 and smart meters were rolled out in many countries [3]. As early as 2009, the Department for
61 Energy and Climate Change (DECC) in the UK announced its plan to install smart meters for
62 all UK households by 2020 [4]. SEMs have transformed the current energy management and
63 billing practices, bringing greater transparency and dynamics to the existing energy
64 management system [5].

65 Earlier studies attempted to answer the following question: Can smart energy information
66 interventions help householders save electricity? (see Table 5, Appendix) Up till now, no
67 conclusive answers have been reached. Some studies indicated that information interventions
68 carry a negative effect on energy savings [8], or a zero effect [14], whereas in some other cases,
69 the extent of energy savings were highly dependent on the types of information interventions
70 [15, 30]. However, no comprehensive literature has yet explored thoroughly the effects of smart
71 energy interventions on energy savings. Questions such as, can smart energy information
72 interventions help householders save electricity? Which type(s) of smart intervention(s) are
73 needed, and to what extent can electricity be saved, remain to be answered.

74 Furthermore, most existing quantitative analyses have relied upon linear modelling, which may
75 be problematic as the correlation between energy information interventions and energy-saving
76 behaviours can be complex and non-linear. [6] and [7] both conducted an in-depth qualitative
77 face-to-face interview. However, such approach is time-consuming and difficult to implement
78 when a larger sample is considered.

79 To overcome the limitations of existing methodologies, we propose a machine learning model
80 to perform statistical analysis. We conducted an experimental project, Smart Energy
81 Management System (SEMS) and Smart Energy Information Interventions on Household
82 Energy-Saving Behaviours in Hong Kong, across 14 households in a public housing estate in
83 Hong Kong, from 2018-2019, in order to collect the empirical data. Our study represents the
84 very first attempt to use a machine learning approach to study in-depth the effects of smart
85 energy interventions on energy-saving behaviours at the household level in Hong Kong. Our

86 results show that the newly proposed model can be used to accurately evaluate the effects of
87 smart energy information interventions and to capture any non-linear relationships between
88 electricity savings and smart energy information interventions, as well as the statistical
89 correlation between electricity savings and other key factors, such as household characteristics.

90 Section 2 provides a review on the related works on energy information interventions. Section
91 3 describes our SEMS experimental design and machine-learning analysis methodology.
92 Section 4 shows the statistical analysis, including the householders' electricity savings in
93 relation to different combinations of smart information interventions. Section 5 discusses the
94 limitations of our study, summarizes our research significance and novelties, proposes the
95 directions for future research, and identifies the key implications on future electricity policy
96 decision-makings for Hong Kong.

97 2. Studies on Energy Information Intervention

98 Energy information interventions and their effects on electricity consumption behaviours
99 (including smart energy information interventions) were studied for over a decade. Table 5
100 summarizes the most relevant and the most updated studies of the field. Attempts were made
101 to make electricity consumption more visible via various means, including informative bills
102 [8], websites [9], and most recently, SEMs. Building on such platforms, different kinds of
103 smart/non-smart energy information interventions were introduced. [6] and [7] provided
104 information across three different levels (total consumption, total consumption + consumption
105 of selective individual appliances, and total consumption + consumption of all individual
106 appliances + historical data) to three experimental groups, respectively. [10] sent social
107 comparison-based home energy reports (HER) to users, compared their own electricity
108 consumptions with that of their neighbours (HER: the householder's last annual consumption,
109 the rating of his/her energy saving behaviour as compared to his/her neighbours, the average
110 consumption of all neighbours, and the top most efficient 20% of his/her neighbours). [11] and
111 [12] used similar intervention strategies as [10].

112 However, no consensus was reached on whether and to what extent different types of energy
113 information interventions can save electricity. The review as documented in Table 5 showed
114 that the extent of energy/electricity savings is associated with the types of information
115 intervention. Some earlier studies on energy information intervention, such as [13], with a
116 review of 38 consumption information feedback studies conducted across a period of 25 years,
117 found that 21 studies display positive effects of information intervention (energy savings
118 ranging from 5 - 15%). However, some studies indicated that information intervention carries
119 a negative effect on energy savings [8], or no effect at all [14], whereas in some other cases,
120 the energy-saving effect is highly dependent on the types of information intervention
121 introduced [15, 30].

122 Further, most energy information intervention studies adopted simple linear statistical models
123 for quantitative analyses (see the column Method of Analysis in Table 5). However, some
124 existing studies indicated that the statistical relationships between information interventions
125 and energy savings can be non-linear and complex. Simple linear models may be insufficient
126 to capture the non-linearity, if any, that exists between energy information interventions and
127 energy savings. In addition, three issues are yet to be addressed properly:

128 The first is the long short-term effect. The findings from [16] suggested that energy information
129 intervention can produce different effects on energy savings over the short-term and the long-

130 term. [12] showed that the effect of intervention becomes marginal one year after the SEMs
131 have been installed.

132 The second is the type of information intervention introduced. [15], [30], [31], [32], and [33]
133 indicated that different interventions resulting in different effects of intervention. For example,
134 [15] and [30] ascertained that information intervention induced by “social norms” (the real-
135 time average energy consumption of similar households in the participants’ neighbourhood)
136 had motivated participants to save more energy.

137 The third is the confounding effect. Apart from energy information interventions, confounding
138 factors can affect the householders’ energy savings. [6] and [7] conducted in-depth interviews
139 covering 15 randomly-picked participating households. Both findings suggested that variables
140 such as stylishness of energy monitors, presentation/visualization of the energy information,
141 characteristics of the householders, and ways the energy monitor users are engaged with the
142 devices, can affect the electricity saving outcomes. [17], [18], [15], [30], and [33] adopted
143 different approaches to identify the confounding factors. Factors such as age, gender, education,
144 occupation, number of persons living in the household, household income, and size of the
145 apartment, were identified as the key confounding factors. It is therefore important for future
146 smart information intervention studies to take these relevant confounding factors into account
147 when determining the effects of smart information interventions.

148 Our literature review above points to the need for a better model to capture the nonlinear
149 relationship between smart energy information interventions and electricity savings. With the
150 rapid development of AI, machine learning can potentially be a more powerful tool to tackle
151 such nonlinear causal relationship.

152 3. Methodology

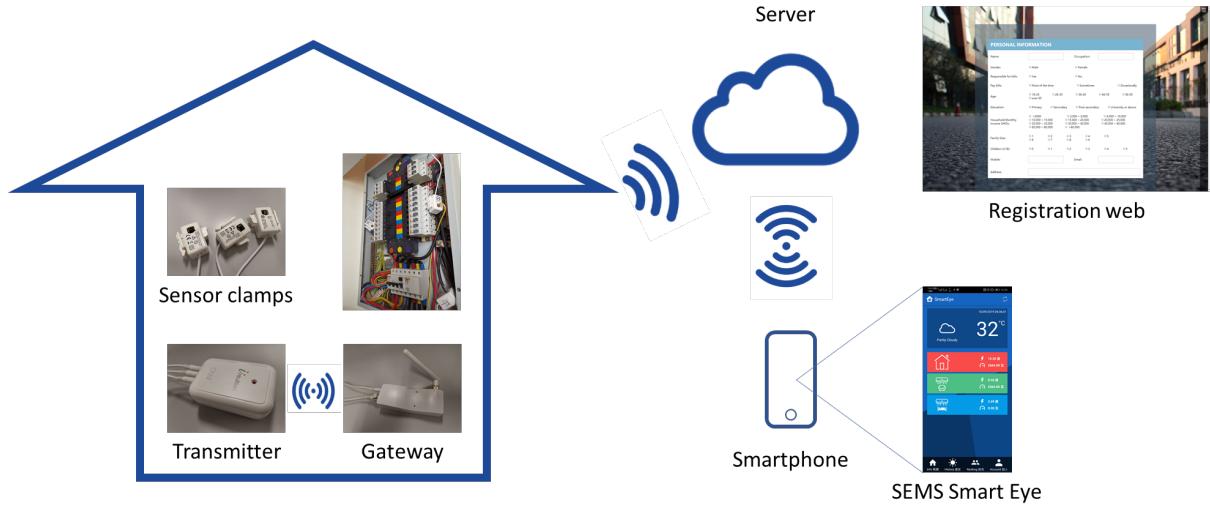
153 We first introduce the SEMS design and our experimental methodology, followed by an outline
154 of our machine-learning approach, including data pre-processing and model development.
155 Using the machine-learning model, the following three research questions will be addressed:

- 156 1. Will smart energy interventions introduced via SEMS change the householder users’
157 percentage of electricity savings?
- 158 2. If the answer to the above (Q1) is YES, which type of intervention (Interventions 1, 2, and
159 3) and combinations of interventions (e.g. 1+2, 1+3, 2+3, or 1+2+3) will have a significant
160 effect on household-level electricity savings?
- 161 3. How would the confounding factors (household characteristics such as age, gender,
162 household income, family size, etc.) influence the aggregate effect of smart information
163 interventions?

164 **Definition 1.** In this paper, “smart intervention” refers to the display of electricity consumption
165 information to the household participants via a smartphone application. Hence, “different types
166 of smart interventions” refers to the different types of intervention information being displayed
167 to the household participants. Here, “Intervention 1” is defined as the display of the current
168 electricity consumption to the household participants; “Intervention 2” is defined as the display
169 of the historical electricity consumption to the household participants (over the last 7 days, the
170 last 4 weeks, and the last 12 months); “Intervention 3” is defined as the display of consumption
171 ranking to the household participants; “Interventions 1+2” is defined as the display of both
172 current and historical electricity consumptions to the household participants.

173 3.1 SEMS Design

174 We designed and developed SEMS for our experimental study. A schematic SEMS is shown
175 in Fig. 1. The SEMS consists of both hardwares and softwares. The hardware consists of a set
176 of sensor clamps, transmitter, gateway, and smartphone at each household, and a server at HKU,
177 while the software includes the server software, a registration web, and a smartphone app.



178

179 Fig. 1. A schematic representation of the SEMS

180 For the hardware setting, a wireless SEM built by the OWL Intuition was used to measure
181 electricity consumption in our experiment, which consists of three sensor clamps, a transmitter,
182 and a gateway (see Fig. 1). The sensor clamps and transmitter are installed at the fuse box in
183 each participating household. Each sensor is clamped to the wire corresponding a particular
184 appliance and logs our household participant's electricity consumption data (current power in
185 W and daily accumulated used electricity in kWh) every 12 seconds. The sensors are connected
186 via wires to the transmitter which transfers the data to the gateway wirelessly. The gateway,
187 connected to the householder's internet router, subsequently uploads the data to our server via
188 the internet.

189 The server stores the uploaded data and computes the hourly, daily, weekly, and monthly
190 consumption data for each household. Participant registration and background survey are
191 administered via the registration website. The smartphone app, SEMS Smart Eye (with
192 Android and iOS versions), will display three different types of electricity consumption
193 information to our registered household participants.

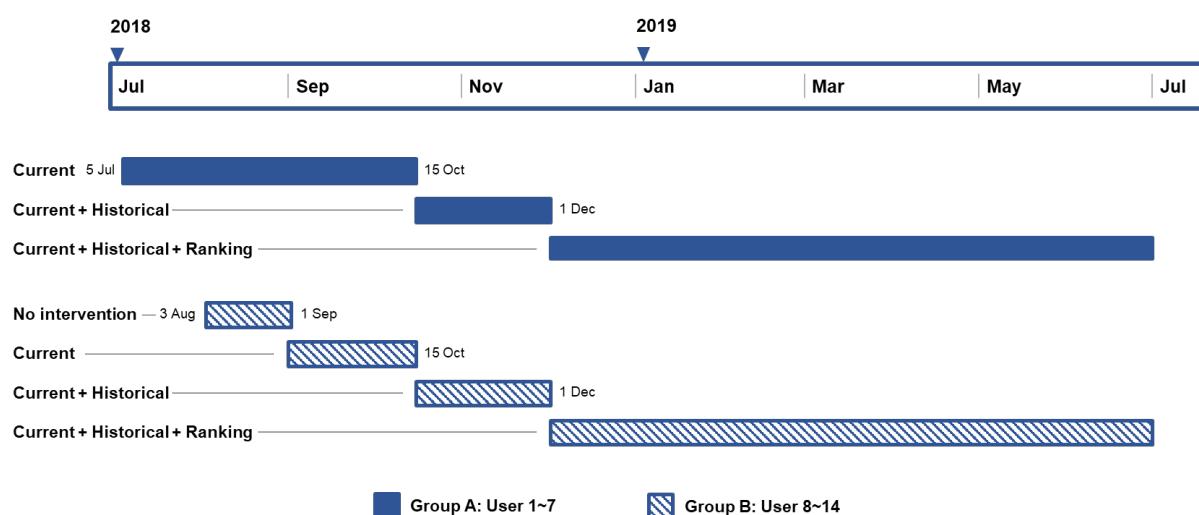
194 3.2 Data Collection

195 14 households, all residing in one public housing estate, had participated in our one-year
196 experiment in Hong Kong, during 2018-2019. Due to land scarcity and high property price in
197 Hong Kong, 45% of the population have resided in public housing estates, 30.6% have lived
198 in public-rental housing, whilst 14.8% have lived in home ownership scheme subsidised
199 housing [34]. Hence, one can infer from our household-based SEMS study the potential of
200 smart information interventions on electricity savings, for the households residing in the public
201 housing estates in Hong Kong.

202 With the assistance of the World Green Organization (WGO) in Hong Kong, we recruited 14
203 household participants in one public housing estate in Kowloon, Hong Kong. 20,000 flyers

were distributed to all households in the public housing estate to attend a participant recruitment talk. Eventually, 14 households agreed to take part in the SEMS experiment. Based on the demographic information provided by the 14 households¹, the average family size was 2.4 persons, with 57% of the participants having children. Their monthly income ranges from 10,000 to 15,000 HKD, and their average dwelling size is 23.2 square meters. All participating households are equipped with at least one set of air conditioner (AC). We also surveyed the householders' knowledge about household appliance electricity consumption and Hong Kong's electricity charging policy (see Table 6, Appendix). The result shows that all participating householders understand that AC consumes more electricity than other appliances, and over half of the householders are familiar with their utility's electricity charging policy.

Fig. 2 outlines our experimental study methodology. 14 participating households were divided into two groups. Group B was given a period of no smart intervention while Group A started their experiment immediately without any smart intervention. Our experiment lasted from July 2018 to August 2019. Three types of interventions were introduced during the period: the first intervention displayed only the current electricity consumption profile information to the users (Intervention 1); the second intervention displayed both the current plus historical electricity consumption profile information (current + historical) (Interventions 1+2); the third intervention displayed the electricity savings ranking, in addition to the display of both current and historical electricity consumption profile information (current + historical + ranking) (Intervention 1+2+3).



224

225 Fig. 2. Schedule and methodology of our SEMS experimental study

226 Table 6 outlines the variables of our machine learning model. Four types of data were collected
227 in our experiment, covering electricity consumption, temperature, demographic data, and
228 participant background survey. The background survey was conducted with each householder
229 when he/she first registered on our SEMS website.

¹ Given the concerns about privacy and security, only 14 households, had eventually agreed to participate during the period of study. In reality, we had invited more than 200 households in the public housing estates, via the WGO. Our engineering-cum-behavioural study, after carefully modelled by SVR, can still be able to provide sound statistical inference w.r.t. the electricity saving behaviours of householders living in public housing estates in HK, particularly the effects of different smart energy information interventions on the group's electricity saving behaviours in HK.

230 3.3 Data Pre-processing

231 We pre-processed the total household electricity consumption data. The same method was used
 232 to pre-process AC electricity consumption data.

233 Data cleansing was performed as the first step based on [19]. We visualized the hourly and the
 234 daily consumption data and removed the database of those household participants of low data
 235 quality (data which are truncated or showing unreasonably high or low values). In addition, we
 236 set rules to screen out the electricity data during the period of non-occupancy. If the daily
 237 consumption value was lower than a normal value and the range of hourly consumption values
 238 of a particular day were within a certain threshold, we took such day as “unoccupied”. If there
 239 were too many unoccupied days across the participant’s electricity consumption profile data,
 240 all data of this participant were removed. The clean-up profile of 7 participants (1, 6, 9, 10, 11,
 241 12, 14) were selected for further processing next stage.

242 We then reconstructed our cleansed data to generate training, testing, and validation datasets
 243 for machine learning. Table 1 describes the input and the output data; the inputs to the machine
 244 learning model include, household electricity consumption, temperature, month, demographic
 245 information, the variables covered in our background survey, and the smart information
 246 intervention vector. The output to our model is the electricity consumption of the targeted week.
 247 We found that it is best to use the weekly electricity consumption profile, as the daily
 248 consumption profile displays a high uncertainty due to daily fluctuations, while the monthly
 249 profile may lose too much information. If there is a missing day in the week, the electricity
 250 consumption of that day will be taken as the average of the consumption of the rest of the days
 251 of that week. 290 samples were generated during the second-stage data pre-processing.

252

Table 1 Variable Description

Input/Output Variable		Definition	Data Dimension
Input	Total Consumption	Electricity Weekly Total Consumption of the Last Three Weeks (kWh)	3×1
	Temperature	Average Temperature of the Week (°C)	1×1
	Month	1 (January), 2 (February) ...	1×1
	Demographic Variable ²	Gender Paying Bills Frequency of Bill Payment Age Education Income Family Size Children Dwelling Size Living Room Size	11×1

² For the definitions on demographic variables, please refer to Table 6 in the Appendix.

Working Power of the Living Room
AC

Background Variable ³	Knowledge of Electricity Charging Policies in Hong Kong (Answer to Question 2)		1×1
Intervention Vector ⁴			3×1
Output	Total Electricity Consumption	Weekly Electricity Consumption (kWh)	1×1

253 We used the weekly consumption profile data of the last three weeks (three values, see the
254 rationale of adopting this feature in the model output in Section 3.4).

255 We noticed that the householder's electricity consumption was the result of the very complex
256 non-linear process involving many different variables. As such, we attempted to control the
257 confounding factors by taking into account the householders' demographic information,
258 temperature and seasonal information, their familiarity with electricity charging policies in the
259 Support Vector Regression (SVR) model (Section 3.4). These factors are potentially significant
260 factors that may affect electricity consumption behaviours, based on our literature review. We
261 assumed that all the significant influencing factors are covered in our SVR model.

262 We conducted the same pre-processing on the AC electricity consumption profile data. We
263 also used the weekly electricity consumption profile data. The only difference between our AC
264 electricity consumption profile data and the total electricity consumption profile data was the
265 time duration, the former had a shorter time duration than the latter, lasting only from July 2018
266 to October 2018. Few participating households have switched on their ACs since October 2018.

267 **3.4 Model Development**

268 The pre-processed data of the weekly total electricity consumption was fed into a Support
269 Vector Regression (SVR) machine learning model. We attempted several machine learning and
270 deep learning models, including SVR, Random Forest (RF), Neural Network (NN), and Long
271 Short-Term Memory (LSTM), and found that SVR had achieved the best performance, and had
272 the simplest model structure. We built our SVR model using the scikit-learn package of Python.
273 Conceptually, our proposed SVR model can be represented as the following:

274
$$y^{(i)} = f_{SVR}(x^{(i)})$$

275 where $x^{(i)}$ is a 20×1 vector representing 20 input features (see Table 1); $y^{(i)}$ is a real number
276 representing the value of the electricity consumption of the target week; superscript (i) is used
277 to represent the i th sample.

³ This survey intends to understand whether the household participant is familiar with the electricity charging policies in Hong Kong. Question (1) is removed as all answers are identical. For the descriptions of Question (1) and (2), please refer to Table 6 in the Appendix.

⁴ This is a one-hot vector. Each number in the vector represents the smart Intervention j ($j=1, 2, 3$) introduced to the participating householder. For instance, $[1; 0; 0]$ indicates that Intervention 1 (only showing current consumption profile) is introduced to the participant; $[1; 1; 0]$ represents that Interventions 1+2 (showing both current and historical consumption profile) has been introduced ([20], [21] and [22]). Finally, data normalization across features of the remaining 290 samples are performed.

278 Next, we fine-tuned the hyper-parameters. We used an 80/10/10 split for training, validation,
 279 and testing. Finally, we chose the Radial Basis Function (RBF) kernel, set the penalty
 280 parameter C of the error term and the epsilon value to 30 and 0.1, respectively.

281 As shown in Table 1, we used the electricity consumption profile of the previous three weeks
 282 to predict the electricity consumption of the target week. A question remained concerning how
 283 much previous consumption data is needed for our model. To answer this question, we tested
 284 the model accuracy with electricity consumption data of the last L weeks, with L=1-4. The R²
 285 values are shown in Table 2, and is largest when L=3. In addition, the R² value of 0.86 on the
 286 test dataset indicates that the SVR model has learnt the non-linear relationship between the
 287 input and the output data well.

288 Table 2. Comparison of the R² values of last L week(s)

Last L week(s)	R ²
L=1	0.72
L=2	0.79
L=3	0.86
L=4	0.54

289

290 We also adopted the same model structure for modelling the pre-processed data of AC (we also
 291 used the electricity consumption data of the last 3 weeks).

292 3.5 Intervention Analysis

293 Sections 3.5 and 3.6 address the three research questions put forward at the beginning of
 294 Section 3. We mainly focused on the data analysis of the weekly total consumption. The same
 295 method can be applied to weekly AC consumption.

296 **Definition 2.** Intervention Effect, IE, is defined as the electricity savings due to a smart
 297 intervention introduced to the participant householder, as a percentage of the total electricity
 298 consumption in the absence of any smart interventions.

299 Based on our SVR model f_{SVR} , the counter-factual outcomes are simulated to quantify the net
 300 effect of intervention.

301 To answer the first question, we set the intervention vector as [0; 0; 0] (0 represents no smart
 302 intervention) as our model input. We fed the re-constructed input data to the model f_{SVR} and
 303 re-estimated weekly consumption values. Next, we compared the difference between the
 304 estimated counter-factual outcome (hypothetical weekly consumption of no smart intervention)
 305 and the factual outcome (observed weekly consumption with smart intervention) to evaluate
 306 the IE of Intervention Existence (IE_{exist}) [22]:

$$307 IE_{exist}^{} = \frac{y_{no\ intervention}^{} - y_{real}^{}}{y_{real}^{}}$$

308 where superscript $< k >$ represents the k th user; $y^{}$ represents a vector consisting of the
 309 real values of the weekly electricity consumption (the vector length is the number of samples
 310 of the k th user), while $y_{no\ intervention}^{}$ represents the vector of the estimated weekly electricity

311 consumption values when no smart intervention is introduced (the same length as $y_{real}^{<k>}$);
 312 $IE_{exist}^{<k>}$ represents the vector having the same vector length as $y_{no\ intervention}^{<k>}$ and $y_{real}^{<k>}$.

313 Next, we calculated the average and standard deviation of $IE_{exist}^{<k>}$, namely, $\mu_{IE_{exist}^{<k>}}$ and $\sigma_{IE_{exist}^{<k>}}$.
 314 The 90% confidence interval of $IE_{exist}^{<k>}$ is represented as follow:

$$315 \quad [\mu_{IE_{exist}^{<k>}} - \frac{t\alpha\sigma_{IE_{exist}^{<k>}}}{2}, \quad \mu_{IE_{exist}^{<k>}} + \frac{t\alpha\sigma_{IE_{exist}^{<k>}}}{2}]$$

316 where α is 10%; critical value $t_{\frac{\alpha}{2}}$ is derived from the corresponding Student's t-Distribution.

317 A similar method was applied to address the second question. We aimed to study the effects of
 318 different combinations of interventions. Accordingly, we will study the effect of Intervention
 319 j ($j=[1, 2, 3, 1+2, 1+3, 2+3$, and $1+2+3$]). To activate a particular type of intervention, say
 320 $j=1+2$, we set the intervention vector as $[1; 1; 0]$ for all samples. Next, we re-estimated the
 321 weekly consumption using the model f_{SVR} . Next, we compared the difference between the
 322 estimated the counter-factual outcome $y_{Intervention\ j}^{<k>}$ (the hypothetical weekly consumption of
 323 Intervention j) and $y_{no\ intervention}^{<k>}$ to evaluate the IE of Intervention j ($IE_{Intervention\ j}$):

$$324 \quad IE_{Intervention\ j}^{<k>} = \frac{y_{no\ intervention}^{<k>} - y_{Intervention\ j}^{<k>}}{y_{no\ intervention}^{<k>}}$$

325 where $j=[1, 2, 3, 1+2, 1+3, 2+3$, and $1+2+3$].

326 Similarly, the 90% confidence interval of $IE_{Intervention\ j}^{<k>}$ is calculated as follow:

$$327 \quad [\mu_{IE_{Intervention\ j}^{<k>}} - \frac{t\alpha\sigma_{IE_{Intervention\ j}^{<k>}}}{2}, \quad \mu_{IE_{Intervention\ j}^{<k>}} + \frac{t\alpha\sigma_{IE_{Intervention\ j}^{<k>}}}{2}]$$

328 3.6 Smart energy information intervention effects and household characteristics

329 To address the third research question, we studied the statistical correlation between the IEs
 330 and the household characteristics of the participants and identify the driver(s) of both the
 331 individual and the aggregate IEs represented in electricity savings.

332 For each participating household k , we calculated its average IE of Intervention Existence
 333 $\mu_{IE_{exist}^{<k>}}$. Next, we concatenated the householder k 's 11-dimensional demographic information
 334 variables (see the row "Demographic Variables" in Table 1) and its 1-demensional background
 335 survey answer (see the row "Background survey" in Table 1) to form a 12-dimensional vector
 336 $D^{<k>}$. After collecting the above data from all households, we calculated Spearman's Rank
 337 Correlation Coefficient R_S^l between $\mu_{IE_{exist}^{<k>}}$ and D (which measures the rank-order correlation).
 338 By observing the R_S^l values of all different household characteristics, we identified the
 339 predominant driver(s) of both individual and aggregate IEs.

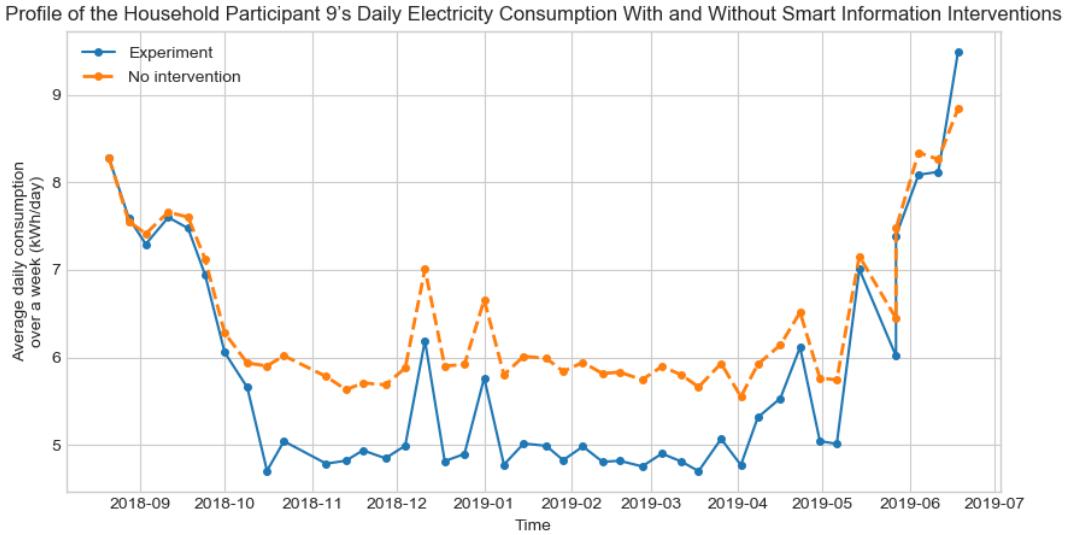
340 4. Results

341 4.1 SVR Model Simulation and Smart Intervention Analysis

342 Fig. 3 shows the results of the estimated counter-factual electricity consumption (no
 343 intervention) when compared to the real electricity consumption profile data for Householder
 344 Participant 9. The profile presented in Fig. 3 indicates the average daily electricity consumption
 345 across a week (kWh/day). The blue line represents the real electricity consumption profile data
 346 with smart information interventions, while the orange line represents the estimated counter-

347 factual electricity consumption without any smart information interventions. In most cases, the
 348 orange line lies above the blue line, indicating that for Household Participant 9, the smart
 349 information interventions generate a positive effect on his/her electricity consumption
 350 behaviour, implying that he/she saves more energy from the smart interventions. The value of
 351 the gap between the two lines can be used to indicate the strength of IE.

352



353

354 Fig. 3. Profile of the household participant's daily electricity consumption (based on a 7-day
 355 average) with and without smart information interventions, generated from the SVR model

356 We simulated the results of total electricity consumption across seven household participants.
 357 We also simulated the effects of individual smart interventions and their combined effects in
 358 Section 3.5. Fig. 4 shows the intervention results for individual participants. There are a total
 359 of eight plots shown in the figure, covering, IE of Intervention Existence, of Intervention 1, of
 360 Intervention 2, of Intervention 3, of Intervention 1+2, of Intervention 1+3, of Intervention 2+3,
 361 and of Intervention 1+2+3 respectively. In each black box, the top line represents the $\mu + t_{\alpha/2} \sigma$
 362 value, while the bottom line represents the $\mu - t_{\alpha/2} \sigma$ value, i.e., the upper and the lower bound
 363 of the 90% confidence interval. The location of the square markers shows the μ value (average
 364 value) for each Intervention. They are $\mu_{IE_{exist}^{<k>}}$, $\mu_{IE_{Intervention\ 1}^{<k>}}$, $\mu_{IE_{Intervention\ 2}^{<k>}}$, $\mu_{IE_{Intervention\ 3}^{<k>}}$,
 365 $\mu_{IE_{Intervention\ 1+2}^{<k>}}$, $\mu_{IE_{Intervention\ 1+3}^{<k>}}$, $\mu_{IE_{Intervention\ 2+3}^{<k>}}$, and $\mu_{IE_{Intervention\ 1+2+3}^{<k>}}$ (see Section 3.5
 366 for term definition). $\mu > 0$ indicates that the smart intervention has a positive effect on the
 367 household participant's electricity-saving behaviour. On the contrary, $\mu < 0$ represents a
 368 negative effect. The larger the absolute value of μ , the more significant the effect of smart
 369 intervention. If the μ value is closer to zero, we can infer that the smart intervention has a near
 370 zero effect on the household participant's electricity saving behaviour.

371 While the μ value indicates the significance of the effect of intervention, the values of the top
 372 $\mu + t_{\alpha/2} \sigma$ and the bottom $\mu - t_{\alpha/2} \sigma$ of the black box can be used to indicate the uncertainty range
 373 of the effect of intervention of a particular householder. For example, for Household Participant
 374 11, as shown in the plot of IE of Intervention Existence (see Section 3.5 for term definition),

375 even though μ is larger than zero (indicating that in general, the smart interventions tend to
376 create a positive electricity saving effect on Participant 11), the uncertainty is high, as the value
377 of $\mu - t_{\frac{\alpha}{2}}\sigma$ is slightly lower than zero. This implies that within a 90% confidence interval, the
378 smart interventions have no electricity saving effect or a slightly negative effect on Household
379 Participant 11. Table 3 shows the average μ over seven household participants when three
380 different types of interventions were introduced.

381 Our results have shown that, for most household participants, smart interventions have
382 achieved a significant positive effect on electricity savings. The average μ of Intervention
383 Existence is 7.1% (see Table 3), the overall IE is positive.

384 Among the three individual interventions (Intervention 1, Intervention 2 and Intervention 3),
385 Intervention 2 (only showing historical consumption data to household participants) has
386 achieved the best positive effect. However, the average μ value of Intervention 2 is only
387 slightly higher than that of Intervention 1 (only showing current consumption data to
388 participants). The average μ value of Intervention 3 (only showing consumption savings
389 rankings to participants) is much lower than that of Intervention 1 and Intervention 2. In the
390 fourth plot in Fig. 4, most square markers are close to zero and the uncertainty of the electricity
391 savings of Intervention 3 for most participants is high. This implies that Intervention 3 tends to
392 have a minimal or an almost zero effect on the household participant's electricity saving
393 behaviour.

394 In addition, we have also examined the effects of different combinations of smart information
395 interventions. As shown in Table 3, Intervention 1+2 has a more significant effect than
396 Intervention 1+3 and Intervention 2+3, whilst Intervention 1+2+3 has the most significant
397 effect. Meanwhile, the denominator of the average μ of Intervention Existence is different from
398 that of the others (see Section 3.5). This explains why the average μ of Intervention 1+2+3 is
399 lower than 7.1%.

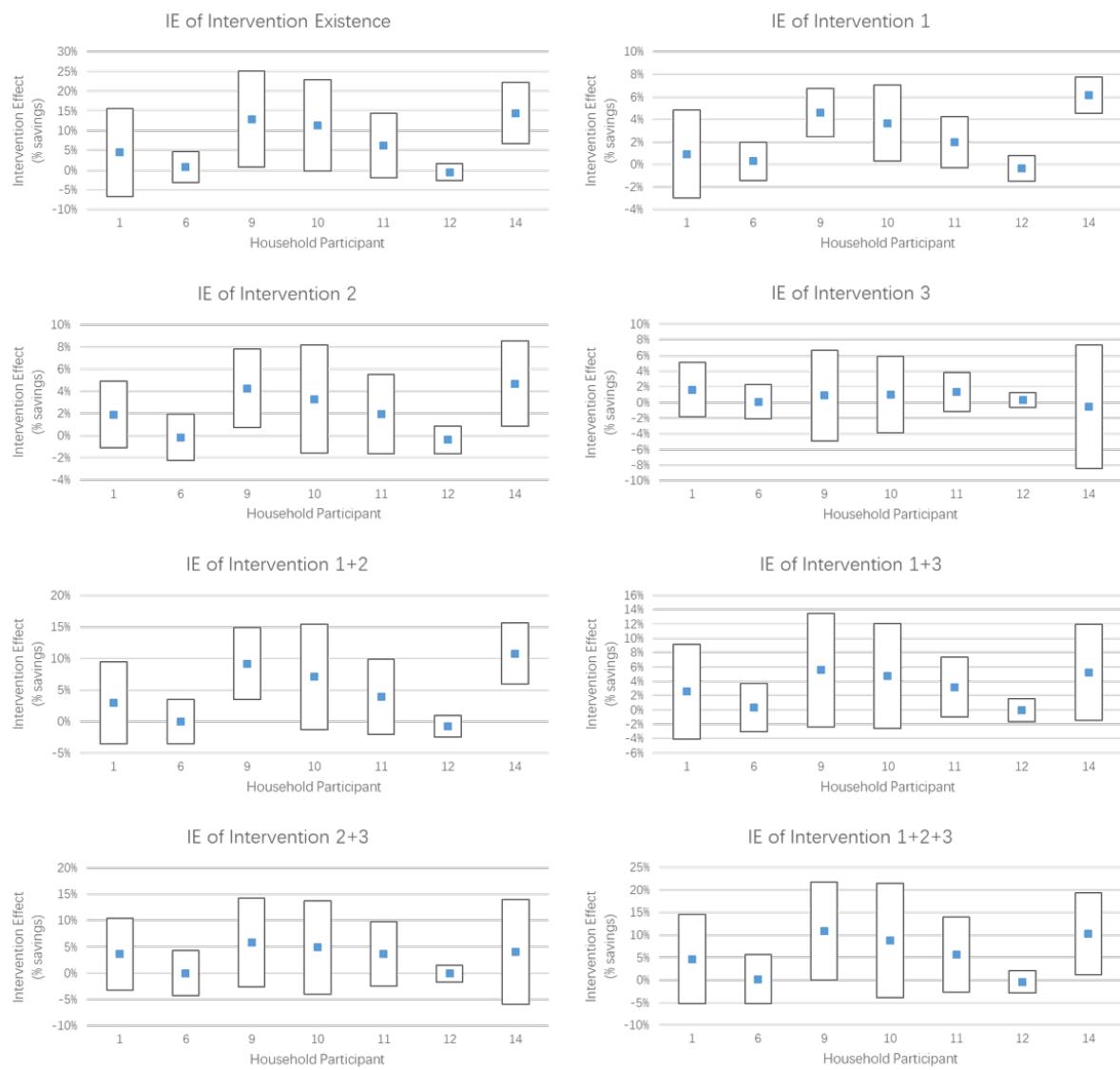


Fig. 4. IEs of different types and combinations of smart information interventions⁵

Table 3. Average IEs (μ) of Seven Household Participants Under Different Smart Information Interventions

⁵ Please refer to Section 3.5 for the definitions on IE of Intervention Existence, IE of Intervention 1, of Intervention 2 or of Intervention 3, and the y-axis.

IE	Average μ (Total)
Intervention Existence	7.1%
Intervention 1 (current)	2.5%
Intervention 2 (historical)	2.3%
Intervention 3 (ranking)	0.7%
Interventions 1+2 (current + historical)	4.7%
Interventions 1+3 (current + ranking)	3.1%
Interventions 2+3 (historical + ranking)	3.1%
Interventions 1+2+3 (current + historical + ranking)	5.7%

405 Besides the total weekly electricity savings, we also modelled the weekly AC electricity
 406 savings and conducted the same intervention analysis. Table 4 shows the average μ of different
 407 smart interventions. As our model covered the period from July 2018 to October 2018,
 408 Intervention 3 was excluded. The values of μ appear to be very small. We could infer that the
 409 smart information interventions tend to carry a very small effect on the participating
 410 householders' AC electricity saving behaviours. Interestingly, as shown in Fig. 3, during the
 411 period from July and October 2018, the red and the black electricity profiles almost overlapped
 412 with each other, indicating that the smart information interventions based on historical and
 413 current display of AC information carry a weak positive effect on AC electricity savings, as
 414 AC takes up most of the electricity consumption during the summer season. Other simulation
 415 results also exhibit the same pattern. The weak electricity saving effect of AC in relation to
 416 smart information intervention (either the current or the historical display) may be associated
 417 with the extremely high temperature and humidity during the summer season in Hong Kong.
 418 For people living in a highly humid and tropical metropolis, cooling is necessary during the
 419 summer season. There is not much room to save electricity during the summer even when smart
 420 information has been provided to the householders in Hong Kong.

421 Table 4 Average IEs (μ) on the Weekly AC consumption for Seven Household Participants
 422 under Different Smart Interventions

IE	Average μ (AC)
Intervention Existence	1.8%
Intervention 1 (current)	0.7%
Intervention 2 (historical)	0.6%

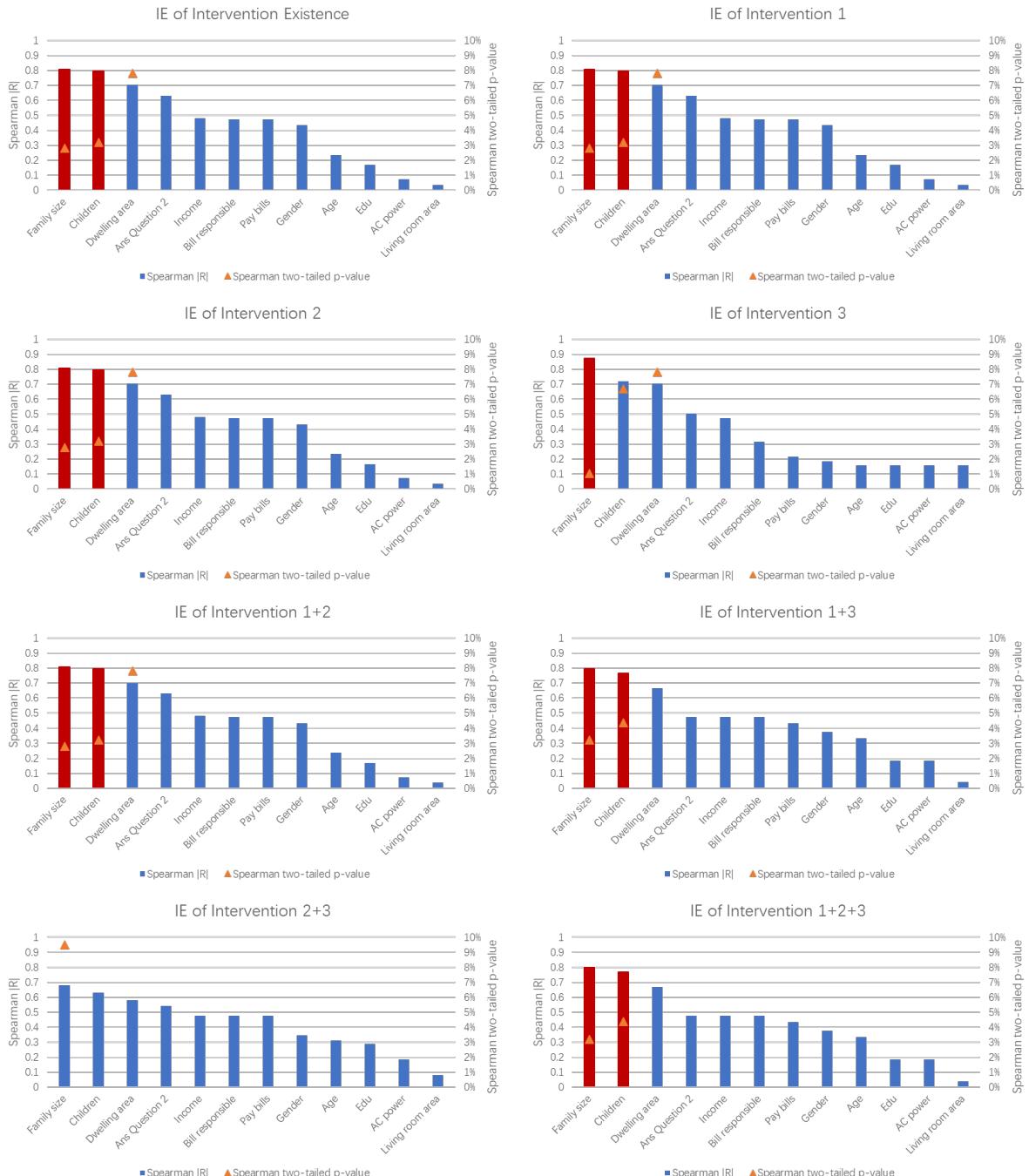
423 **4.2 Statistical correlation between IE and household characteristics**

424 Fig. 5 shows the results of correlation analysis between IEs and household characteristics. We
 425 used the absolute values of the Spearman's Rank Correlation Coefficient R_S^l (refer to the x-axis
 426 on the left), 0 represents no rank correlation relationship, while 1 represents the observations
 427 carry an identical rank. We also showed the results of a two-sided p-value (refer to the x-axis
 428 on the right). IEs are shown in Fig. 5, covering, IE of Intervention Existence, Intervention 1,
 429 Intervention 2, Intervention 3, Intervention 1+2, Intervention 1+3, Intervention 2+3, and
 430 Intervention1+2+3. As shown in Section 4.1, Intervention 1 and Intervention 2 carry two
 431 strongest positive effects while Intervention 3 has an almost zero effect. For the two significant
 432 interventions, our results show that the IEs have displayed similar correlation relationships
 433 across different household characteristics. The correlation coefficients and the p-values of

434 different characteristics versus percentage of electricity savings, under different IEs are almost
435 identical. The correlation relationship between IE of Intervention 3 and the household
436 characteristics, however, is very different from the rest of the other IEs.

437 Our results show that the household characteristics, namely, family size and children, are
438 highly significantly correlated with IE. Here, we show both the absolute R values and the p-
439 values of two household characteristics, are, about 0.8 or 5%, respectively, indicating a strong
440 statistical correlation. Besides, our household participants dwelling size and their prior
441 knowledge of the electricity charging schemes imposed by the utilities in HK is correlated to
442 IE. Nevertheless, age, education status, size of the living room, and power of AC, all tends to
443 have insignificant correlations with the Intervention Effect.

444 The IE of the households of a small family size without having children tends to be big. This
445 implies that for the households of a small family size, especially for those without children,
446 there is a bigger flexibility to change ones' lifestyle and electricity consumption patterns.
447 Additionally, we can observe from the electricity consumption data that for the households of
448 a smaller dwelling size, there is less electricity consumption, possibly due to the relatively
449 smaller set of household appliances installed among these smaller flat size families; fewer
450 appliances also make electricity monitoring and control easier, hence more electricity savings.
451 With regard to Question (2), which is used to understand a household participant's familiarity
452 with the electricity charging policy in Hong Kong, household participants who are familiar
453 with the electricity charging policies tend to reduce more electricity, or a higher IE.



454

455 Fig. 5. Statistical correlation between IE and household characteristics

456 (The red bar indicates $p\text{-value} \leq 5\%$)

457 **5. Discussion and Conclusion**

458 **5.1 Novelties and Limitations, and Future Study**

459 To the best of our understanding, this study represents the first attempt in HK and
 460 internationally to use a machine-learning approach for in-depth quantitative analysis of the
 461 electricity saving effect of three types of smart energy information interventions in Hong Kong.
 462 This approach is applicable to any sample size and any geographical region in the world, for
 463 quantifying the electricity saving effects of smart information interventions, and the
 464 uncertainties of the effects of smart interventions, and for analysing the statistical correlation

465 between IE and household characteristics. Besides, using the intervention vector defined in this
466 article, we can quantify both the individual and the aggregate electricity saving effects of
467 different smart information interventions.

468 Compared with the previous related quantitative studies based on linear modelling [10, 11, 12,
469 14, 15, 17, 18, 23, 29, 30, 31, 33], our approach is superior as it can unravel any non-linear
470 relationship between smart information interventions and the electricity savings. For example,
471 [30] used linear regression models to integrate the confounding factors such as attitude,
472 subjective norm, perceived behavioural control, and behavioural intention. However,
473 confounding factors may not influence the information intervention effect linearly.
474 Furthermore, our approach can predict different counterfactual scenarios by modifying the
475 inputs to the intervention vector, which were not possible using existing statistical modelling.
476 Our approach can be used to evaluate the electricity saving IE of an individual smart
477 intervention, or different combinations of smart interventions quantitatively, in order to find
478 the best intervention(s) that drive(s) household electricity savings.

479 Similar to the results of other studies summarized in Table 5, our experimental/empirical study
480 also shows that on average, our intervention strategies can trigger electricity savings. However,
481 IEs vary from strategy to strategy, from a near zero effect to a significantly large positive effect
482 on electricity savings. For the three types of smart information interventions introduced via our
483 SEMS to our participating households, we find that both historical and current electricity
484 consumption information profile display are the single two most effective intervention
485 strategies in cutting electricity consumption, while ranking information has a very little effect.
486 We conduct correlation analysis and find that family size, children, dwelling size, and the
487 participant's knowledge of electricity charging policy in HK is significantly correlated with the
488 IE of household electricity savings.

489 Interestingly, our experimental findings concerning the most effective intervention(s) are very
490 different from some recent studies. Different from [15] (2013), [30] (2017), and [33] (2019),
491 information of "social norms", the real-time average electricity consumption display of similar
492 neighbourhood was reported to carry a more significant effect on household electricity
493 reduction as compared to other types of information intervention. In our experiment, ranking
494 information is similar to "social norms" in [15, 30, 33]. However, we did not observe a
495 significant energy saving effect with the ranking information intervention. This disparity might
496 be attributable to the different cultural and social-economical background of the participants.
497 In reality, ranking information achieved certain effects, but such effects might not be directly
498 translated to electricity saving. [17] pointed that such information might help increase the sense
499 of community engagement but failed to induce a significant electricity saving directly. Another
500 possible explanation might be related to the order of intervention introduced: the ranking
501 information intervention was implemented in our study as the last strategy. It is possible that
502 by that time, our participants might had already been adhered to the first two interventions and
503 their behaviours become fixed. After all, our experiment shows that if providing current and
504 historical consumption is already effective enough for cutting electricity among the
505 householders in the public housing estates, ranking information may not be needed eventually.

506 The limitations of our study include the small sample size and the limited ability due to context-
507 specificity of our policy implications. However, our integrated experimental and machine-

508 learning methodology, SVR, is generic and scalable and can be extended to similar research of
509 different geographical locations and sample sizes.

510 Our study can be improved by a follow-up study to test the performance of different
511 machine/deep learning models based on a larger sample size, if the stigma of using SEM among
512 the householders in the public housing estates can be removed. In addition, more efforts should
513 be placed on enhancing the interpretability of the models, as currently most of the machine
514 learning/deep learning models are in black-boxes and uncertainties over how variables are
515 connected with each other remain.

516 5.2 Implications on local energy policy decision-making

517 Our interdisciplinary study investigating the effects of different types of smart energy
518 information interventions on household electricity saving behaviours in Hong Kong, carry
519 significant implications on smart energy management and how electricity policies can be
520 redirected to promote household-level electricity savings behaviours via SEMs. Firstly, even
521 across our carefully designed small sample size study, the types of IEs that are effective for
522 cutting electricity vary from household to household. Further experimental studies at a larger
523 geographical scale and sample size may provide even more convincing evidence. In addition,
524 the intervention effect can be highly location- and culture-specific. Governments across the
525 world cannot just copy the experimental results of one another. They must first conduct their
526 own empirical studies, and based on the results obtained, determine what types of smart
527 interventions can significantly drive household-level saving behaviours in their own
528 jurisdictions, before designing relevant electricity policies to promote SEMs in their own
529 household sector.

530 Second, the type of smart information presented matters a lot in the ultimate household
531 electricity savings. Based on the results above, certain types of smart information interventions
532 (e.g. information showing one's ranking of electricity savings among all participated
533 households) produces a zero effect or a near-zero positive effect on household electricity saving
534 behaviours. To ensure that significant electricity savings can be achieved via smart policy
535 interventions at the household-level in HK, it is wise to select the type(s) of smart policy
536 intervention(s) that achieve(s) the biggest savings, or a combination of intervention strategies
537 that achieves the maximum savings.

538 Finally, our findings suggest that smart information intervention tends to produce more
539 significant electricity saving effect on household participants who care about electricity savings.
540 Smart information interventions via SEMS may reinforce the electricity householders' existing
541 electricity saving behaviours. This implies that increasing public awareness towards
542 sustainability and low-carbon societies can be critical in fostering the public's positive
543 electricity saving behaviours in the long-term.

544 Acknowledgement

545 We acknowledge the assistance of the World Green Organization, for the promotion and
546 household participant management of our SEMs experiment, which has led to the successful
547 installation of smart energy management system, including the smart energy monitors and the
548 smartphone apps, across 14 households residing in a public housing estate in Hong Kong
549 managed by the Hong Kong Housing Authority. We acknowledge the professional assistance
550 of EV Power Ltd., for installing and testing the safety of the SEMs installed in these 14
551 participating households. We also acknowledge the funding support of the Research Grants

552 Council of HK, under Grant No. 17403614, for the project entitled, "Technology
553 Empowerment and Household Energy Consumption Behaviours in Hong Kong: An
554 Interdisciplinary Study".

Table 5 Review of Studies on Energy Information Intervention

Author(s)	Year of publication	Country /Region	Experimental Study Period	Experiment type ⁶	Sample size	Intervention strategy	Statistical model	Energy saving	Confounding Factor Included
Andrea H. McMakin et al. [23]	2002	USA	1998 12 months	non-smart	1231 people	Intervention 1	linear regression; qualitative study	+10%	N/A
Andrea H. McMakin et al. [23]	2002	USA	1999 4 months	non-smart	175 people	Intervention 1	linear regression; qualitative study	-2%	N/A
Henk Staats et al. [24]	2004	Europe	1994 8 months	non-smart	150 people	Intervention 1+2+3	directly comparison between experimental group and control group	+4.6%	N/A
Hunt Allcott [11]	2011	USA	2009 12 months	non-smart	600,000 households	Intervention 3 and others	linear regression	+ 2%	N/A

⁶ There are two experiment types, namely, smart and non-smart. “Smart” represents the use of smart phone or monitors for energy information intervention, with the installation of a smart energy meter/monitor which provides energy usage information to users in high time resolution such as every minute or every hour. “Non-smart” represents the use of other forms (e.g. letter and phone call) of energy information intervention, usually without the use of smart energy meter/monitor, which gives feedback to users in low time resolution and frequency, such as weekly or monthly feedback.

Andor et al. [10]	2018	Germany	2015 12 months	non-smart	11,630 households	Intervention 2+3	linear regression	+0.7%	N/A
Matsukawa et al. [28]	2004	Japan	1998 3 months	smart	319 households	Intervention 1	linear regression	+1.8%	N/A
Hydro One Networks [25]	2006	Canada	2004 12 months	smart	400 people	Intervention 1	N/A	+6.5%	N/A
San Diego Gas & Electric [27]	2007	USA	2007 12 months	smart	300 people	Intervention 1	quantitative study	+13%	N/A
National Grid/Nstar/Western Massachusetts electric company [26]	2008	USA	2007 6 months	smart	3512 people	Intervention 1	N/A	N/A	N/A
Tom Hargreaves et al. [6, 7]	2010 & 2013	UK	2008 12 months	smart	15 households	Intervention 1+2	qualitative study	N/A	gender, age, number of occupants, household income, building type, ownership, year house built
Tim Harries et al. [17]	2013	UK	2012 4.5 months	smart	316 people	Intervention 1+2+3	linear regression; qualitative study	+3%	number of occupants, household income, age, gender, social class

Nilsson et al. [14]	2014	Sweden	2010 6 months	smart	72 households	Intervention 1+2	linear regression	0%	age, sex, living status, household size, income, dwelling size, education, and occupation
Schultz et al. [15]	2015	USA	2013 3 months	smart	431 households	Intervention 1+2+3	ANCOVA	+0% to 9%	household income, environmental knowledge, motivation for electricity savings, and baseline usage
Schleich et al. [18]	2017	Austria	2010 12 months	smart	1525 households	Intervention 1	linear regression	+5%	income, education, and employment status
Kyle Anderson et al. [30]	2017	South Korea	2014 11 months	smart	495 students	Intervention 2+3	linear regression	-5% to +14%	baseline energy use, attitude, subjective norm, perceived behavioural control, and behavioural intention
Lisa Legault et al. [31]	2018	USA	2013 3 months	smart	329 students	Intervention 2+3 and others	ANOVA	N/A	mean family income

MAK Fu Ki [32]	2018	Hong Kong	2017, 8 months	smart	200 students	Intervention 3 and others	other statistical model; qualitative study	N/A	residential hall characteristics, temperature, relative humidity, residential occupying time, cost of electricity, and room composition
Stefano De Dominicus et al. [33]	2019	USA	2013, about 24 months	smart	390 households	Intervention 1+2+3	ANCOVA	+4.57%	household income, family size, housing characteristic, and political affiliation
Wemyss et al. [12]	2019	Switzerland	2016 8 months	smart	82 households	Intervention 1+3	ANOVA	0% to +8%	N/A
Verena Tiefenbeck et al. [29]	2019	Switzerland	2016 3 months	smart	265 hotel rooms	Intervention 1+2+3	linear regression	+11.4%	hotel infrastructure and setting

Table 6 Description of Variables Inputted to the SVR Model

Variable	Description	
Electricity consumption	Total	Total electricity consumption (in hourly, daily, weekly, and monthly consumption in kWh)
	Living room air conditioner (AC)	Electricity consumption of the AC in the living room (in hourly, daily, weekly, and monthly consumption in kWh)
Temperature	Hourly temperature in Hong Kong in Centigrade	
Demographic	Job occupation (Open-ended)	retired, unemployed, house cleaner, hair stylist, etc.
	Gender	Male or Female
	Pay Bills	Is the household participant responsible for the electricity bills?
	Frequency of Bill Payment	How often does the household participant pay bills?
	Age	18-25, 26-35, 36-45, 46-55, 56-65, and > 65
	Education	Primary, secondary, post-secondary, and university or above
	Income (HKD/month)	<2000, 2000-6000, 6000-10000, 10000-15000, 15000-20000, 20000-25000, 25000-30000, 30000-40000, 40000-60000, 60000-80000, > 80000
	Family size	Number of family members in a participating household
	Children	Number of children under the age of 18
	Dwelling size	ft ²
	Living room size	ft ²
	Power of living room AC	W
Initial survey	Question (1) ⁷ Question (2) ⁸	

⁷ In HK, which of the following appliances consume most electricity in an hour (power)? A. Refrigerator; B. Lighting; C. Heater; D. Television; E. Air conditioner

⁸ In HK, is electricity charged at a higher tariff at a progressive rate? A. True; B. False

561 **Reference**

562 [1] "Explore energy data by category, indicator, country or region (World)", from
563 <https://www.iea.org/statistics/?country=WORLD&year=2016&category=Energy%20consumption&indicator=ShareOilProductsConsBySector&mode=table&dataTable=ELECTRICITYANDHEAT> (accessed 1 August 2019)

566 [2] "Explore energy data by category, indicator, country or region (China)", from
567 <https://www.iea.org/statistics/?country=CHINA&year=2016&category=Energy%20consumption&indicator=ShareOilProductsConsBySector&mode=table&dataTable=ELECTRICITYANDHEAT> (accessed 1 August 2019)

570 "Explore energy data by category, indicator, country or region (USA)", from
571 <https://www.iea.org/statistics/?country=USA&year=2016&category=Energy%20supply&indicator=CoalProdByType&mode=table&dataTable=ELECTRICITYANDHEAT> (accessed 1 August 2019)

574 [3] Weiss, Markus, et al. "Leveraging smart meter data to recognize home appliances." 2012
575 IEEE International Conference on Pervasive Computing and Communications. IEEE, 2012.

576 [4] DECC 2009. Smarter Grids: The Opportunity, Department of Energy and Climate Change,
577 London.

578 [5] Faruqui, Ahmad, Sanem Sergici, and Ahmed Sharif. "The impact of informational feedback
579 on energy consumption—A survey of the experimental evidence." Energy 35.4 (2010): 1598-
580 1608.

581 [6] Hargreaves, Tom, Michael Nye, and Jacquelin Burgess. "Making energy visible: A
582 qualitative field study of how householders interact with feedback from smart energy
583 monitors." Energy policy 38.10 (2010): 6111-6119.

584 [7] Hargreaves, Tom, Michael Nye, and Jacquelin Burgess. "Keeping energy visible?
585 Exploring how householders interact with feedback from smart energy monitors in the longer
586 term." Energy policy 52 (2013): 126-134.

587 [8] Darby, Sarah. "The effectiveness of feedback on energy consumption." A Review for
588 DEFRA of the Literature on Metering, Billing and direct Displays 486.2006 (2006): 26.

589 [9] Wilhite, Harold, and Rich Ling. "Measured energy savings from a more informative energy
590 bill." Energy and buildings 22.2 (1995): 145-155.

591 [10] Andor, M., Gerster, A., Peters, J., & Schmidt, C. M. (2018). Social norms and energy
592 conservation beyond the US.

593 [11] Allcott, H. (2011). Social norms and energy conservation. Journal of public Economics,
594 95(9-10), 1082-1095.

595 [12] Wemyss, D., Cellina, F., Lobsiger-Kägi, E., de Luca, V., & Castri, R. (2019). Does it last?
596 Long-term impacts of an app-based behavior change intervention on household electricity
597 savings in Switzerland. Energy Research & Social Science, 47, 16-27.

598 [13] Abrahamse, Wokje, et al. "The effect of tailored information, goal setting, and tailored
599 feedback on household energy use, energy-related behaviors, and behavioral antecedents."
600 Journal of environmental psychology 27.4 (2007): 265-276.

601 [14] Nilsson, A., Bergstad, C. J., Thuvander, L., Andersson, D., Andersson, K., & Meiling, P.
602 (2014). Effects of continuous feedback on households' electricity consumption: Potentials and
603 barriers. Applied Energy, 122, 17-23.

604 [15] Schultz, P. W., Estrada, M., Schmitt, J., Sokoloski, R., & Silva-Send, N. (2015). Using in-
605 home displays to provide smart meter feedback about household electricity consumption: A
606 randomized control trial comparing kilowatts, cost, and social norms. Energy, 90, 351-358.

607 [16] Buchanan, Kathryn, Riccardo Russo, and Ben Anderson. "Feeding back about eco-
608 feedback: How do consumers use and respond to energy monitors?." Energy Policy 73 (2014):
609 138-146.

610 [17] Harries, T., Rettie, R., Studley, M., Burchell, K., & Chambers, S. (2013). Is social norms
611 marketing effective? A case study in domestic electricity consumption. European Journal of
612 Marketing, 47(9), 1458-1475.

613 [18] Schleich, J., Faure, C., & Klobasa, M. (2017). Persistence of the effects of providing
614 feedback alongside smart metering devices on household electricity demand. Energy Policy,
615 107, 225-233.

616 [19] Guo, Peiyang, Jacqueline CK Lam, and Victor OK Li. "Drivers of domestic electricity
617 users' price responsiveness: A novel machine learning approach." Applied energy 235 (2019):
618 900-913.

619 [20] Liu, Yang, et al. "A statistical model to evaluate the effectiveness of PM2. 5 emissions
620 control during the Beijing 2008 Olympic Games." Environment international 44 (2012): 100-
621 105.

622 [21] Pham, Trang, et al. "Predicting healthcare trajectories from medical records: A deep
623 learning approach." Journal of biomedical informatics 69 (2017): 218-229.

624 [22] Han, Yang, Jacqueline CK Lam, and Victor OK Li. "A Bayesian LSTM Model to Evaluate
625 the Effects of Air Pollution Control Regulations in China." 2018 IEEE International
626 Conference on Big Data (Big Data). IEEE, 2018.

627 [23] McMakin, A. H., Malone, E. L., & Lundgren, R. E. (2002). Motivating residents to
628 conserve energy without financial incentives. Environment and Behavior, 34(6), 848-863.

629 [24] Staats, H., Harland, P., & Wilke, H. A. (2004). Effecting durable change: A team approach
630 to improve environmental behavior in the household. Environment and behavior, 36(3), 341-
631 367.

632 [25] Mountain, D. (2006). The impact of real-time feedback on residential electricity
633 consumption: The Hydro One pilot. Mountain Economic Consulting and Associates Inc.,
634 Ontario, 10, 98-105.

635 [26] Opinion Dynamics, Corporation. Interim report for: power cost monitoring pilot program
636 evaluation; February 13, 2008

637 [27] Deremer, K. (2007). Advice letter 1938-E, revisions to demand response programs. 2007.

638 [28] Matsukawa, I. (2004). The effects of information on residential demand for electricity.

639 The Energy Journal, 1-17.

640 [29] Tiefenbeck, V., Wörner, A., Schöb, S., Fleisch, E., & Staake, T. (2019). Real-time

641 feedback promotes energy conservation in the absence of volunteer selection bias and monetary

642 incentives. *Nature Energy*, 4(1), 35.

643 [30] Anderson, K., Song, K., Lee, S., Krupka, E., Lee, H., & Park, M. (2017). Longitudinal

644 analysis of normative energy use feedback on dormitory occupants. *Applied energy*, 189, 623-

645 639.

646 [31] Legault, L., Bird, S., Powers, S. E., Sherman, A., Schay, A., Hou, D., & Janoyan, K. (2018).

647 Impact of a motivational intervention and interactive feedback on electricity and water

648 consumption: a smart housing field experiment. *Environment and Behavior*,

649 0013916518811433.

650 [32] Mak, F. K. (2018). Encouragement of electricity saving behaviour with real-time smart

651 meters in a university student residential hall (Doctoral dissertation).

652 [33] De Dominicis, S., Sokoloski, R., Jaeger, C. M., & Schultz, P. W. (2019). Making the smart

653 meter social promotes long-term energy conservation. *Palgrave Communications*, 5(1), 51.

654 [34] <https://www.censtatd.gov.hk/hkstat/sub/sp460.jsp?productCode=B1010003> (accessed 30

655 March 2020)