

Graphical Abstract

1 Novel molecular level insights into forward osmosis

2 membrane fouling affected by reverse diffusion of draw

3 solutions based on thermodynamic mechanisms

4 Jiaheng Teng ^a, Hanmin Zhang ^{a*}, Chuyang Tang ^b, Hongjun Lin ^c

⁵ ^aKey Laboratory of Industrial Ecology and Environmental Engineering (Ministry of
⁶ Education, MOE), School of Environmental Science and Technology, Dalian University of
⁷ Technology, Linggong Road 2, Dalian, 116024, China

^b Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China

10 ^c College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua,
11 321004, China

12 *Corresponding author. zhhanmin@126.com

13 **Abstract**

14 Forward osmosis membrane bioreactor (FOMBR) has a more intricate membrane
15 fouling mechanism than MBR because of the **special** existence of the reverse diffusion of
16 draw solution. The mechanisms of membrane fouling affected by reverse diffusion of draw
17 solution and ion content in gel layer were investigated from thermodynamic perspective and
18 molecular level in this study. Phase-contrast microscopy **non-invasively** observed that the
19 molecular chain structure of the gel layer **containing** low content of reverse diffused solute
20 (NaCl) was sparse, while the alginate molecular chains with high NaCl content were parallel
21 and compact. Density functional theory (DFT) **further** simulated the formation mechanism of
22 different alginate chain structures, that is, the reverse diffused solute shortened the distance
23 between hydrogen bonds and reduced the interaction energy at the terminals of alginate
24 chains. This proved that the NaCl trapped in alginate layer directly affected its structure.
25 Heating experiments indicated that gel layer acted as a "chemical potential barrier" that
26 prevented bound water from turning into free water. Accordingly, the "chemical potential
27 barrier" described by Flory-Huggins theory was proposed, which was confirmed to account
28 for the filtration of alginate gels affected by reverse diffusion of draw solution. To the best of
29 our knowledge, this is the first membrane fouling study that explores the effect of reverse
30 diffusion of draw solution on the "chemical potential barrier" of gel layer from perspective
31 of molecular chain structure. This study investigated FOMBR fouling mechanism at
32 molecular level and provided a new strategy for FOMBR system fouling quantification.

33 **Keywords**

34 FOMBR membrane fouling; reverse diffusion of draw solution; molecular chains
35 observation; chemical potential barrier; density functional theory

36 **1. Introduction**

37 Stringent regulations and global water shortages place a great demand for efficient water
38 treatment technologies [1-3]. For dealing to these intractable challenges, developing an efficient
39 membrane bioreactor (MBR) technology is a realistic option [4]. FOMBR is viewed as a
40 promising alternative of MBR since it demonstrates better removal efficiency and requires no
41 external pressure [5-7]. Unfortunately, both MBR and FOMBR are subjected to membrane
42 fouling, which increases the cleaning frequency and shortens the membrane life span [8-10].
43 What is different between FOMBR fouling and MBR fouling is that reverse diffusion of draw
44 solute exerts a seriously adverse impact on the fouling behavior and property of fouling layer
45 [11-13]. Up to now, most of efforts have been focused to study the flux decline behavior, while
46 limited attention has been paid to the effects of reverse diffusion of draw solution on the
47 formation thermodynamic process and properties of fouling layer [11, 14]. Therefore, there is an
48 imperative requirement for in-depth understanding of FOMBR fouling, especially the
49 thermodynamic mechanisms of membrane fouling affected by reverse diffusion of draw solution
50 [15].

51 Gel layer is generally considered as the principal cause to MBR fouling, and its specific
52 filtration resistance (usually at level of 10^{16} - 10^{17} m \cdot kg $^{-1}$) can be a few orders of magnitude
53 higher than that of cake layer even though the former has much thinner thickness [16-19]. In
54 MBR, the formation of gel layer is a spontaneous process from the thermodynamic viewpoint
55 because the macromolecular foulants (soluble microbial products (SMP) and extracellular
56 polymeric substances (EPS)) tend to adsorb/mix as much water as possible to form a stable
57 swelling gel layer [20-24]. Recent studies have shown that the gel layer formed by this process
58 is non-porous, impervious and homogeneous. Thus, filtration through a gel layer is considered

59 to drag the bound water from gel layer to become free water in the permeate. It is required to
60 overcome water chemical potential gap ($\Delta\mu$) between permeate (high water chemical potential)
61 and gel layer (low water chemical potential) when dragging bound water from gel layer to the
62 permeate during filtration process [21, 25-27]. The osmotic pressure gap ($\Delta\pi$) on both sides of
63 FO membrane provides a driving force to overcome this water chemical potential gap ($\Delta\mu$).
64 While gel layer is equivalent to a “chemical potential barrier” which offsets a part of driving
65 force, resulting in a great decrease in filtration efficiency [17, 25]. Moreover, the reverse
66 diffused solute is partially trapped in gel layer. As a result, the ion content of gel layer in
67 FOMBR is much higher than that in MBR, leading to significant changes in the formation
68 process and properties of gel layer [28]. Singh et al. suggested that the interaction of gels with
69 ion increased the viscosity of gel layers [29]. Derjaguin-Landau-Verwey-Overbeek (DLVO)
70 theory has pointed out that the high ionic strength compresses the electric double layer and
71 weakens the electrostatic repulsion force between gel molecules, thereby contributing to the
72 formation of a dense gel layer [30-32]. FOMBR fouling involves a complex interaction between
73 reverse diffused solute and foulants, which is far more complicated than pressure-driven MBR
74 fouling. Therefore, further research on the interaction mechanism of the binary complex system
75 composed of reverse diffused solute and foulants is of great significance to improving our
76 insights into FOMBR fouling [5, 33].

77 The purpose of this study is to explore the underlying mechanism of FO membrane fouling
78 affected by reverse diffusion of draw solution. Phase-contrast microscopy was used to observe
79 the original molecular chain structure in fresh gel layer formed in draw solutions with different
80 ionic strength. The molecular chain structure of gel layer with different content of reverse
81 diffused solute were accurately predicted by the classical quantum mechanics method called

82 DFT. The **simulation** results might help further explain formation **mechanisms** of different
83 molecular chain structures of gel layer. Finally, the membrane fouling of gel layer affected by
84 reverse diffusion of draw solution was elucidated by combining molecular chain structure of gel
85 layer with Flory-Huggins lattice theory from the perspective of water chemical potential. This
86 research will not only provide insights into FO membrane fouling mechanism but also blaze a
87 new way in the investigation into membrane fouling.

88 **2. Materials and methods**

89 **2.1. Samples preparation**

90 It is generally accepted that fouling layer is a mixture of many compounds, and the fouling
91 behavior of real fouling layer could be satisfactorily simulated by a model foulant when
92 studying the mechanism of membrane fouling [27, 34-36]. In previous studies, sodium alginate
93 (SA) is frequently used as a model compound for gel layer in membrane fouling study due to its
94 availability and high ability to form a gel layer, and sludge floc suspensions were most
95 commonly used to form a cake layer [20, 37-39]. The alginate solutions (1.0 g/L) were prepared
96 by dissolving 2.0 g SA powder into 2000 mL deionized (DI) water with continuous magnetic
97 stirring for 2 h until the SA powder completely dispersed. The sludge floc suspensions (1.0 g/L)
98 were obtained by centrifuging the active sludge at 5000 g for 5 min and sediment was diluted
99 with a buffer solution (2 mM K₃PO₄, 4 mM KH₂PO₄ and 10 mM KCl) at pH 7 [38]. The active
100 sludge obtained at stable operation stage of a lab-scale FOMBR. The alginate solutions and the
101 sludge floc suspensions samples were used for fouling tests.

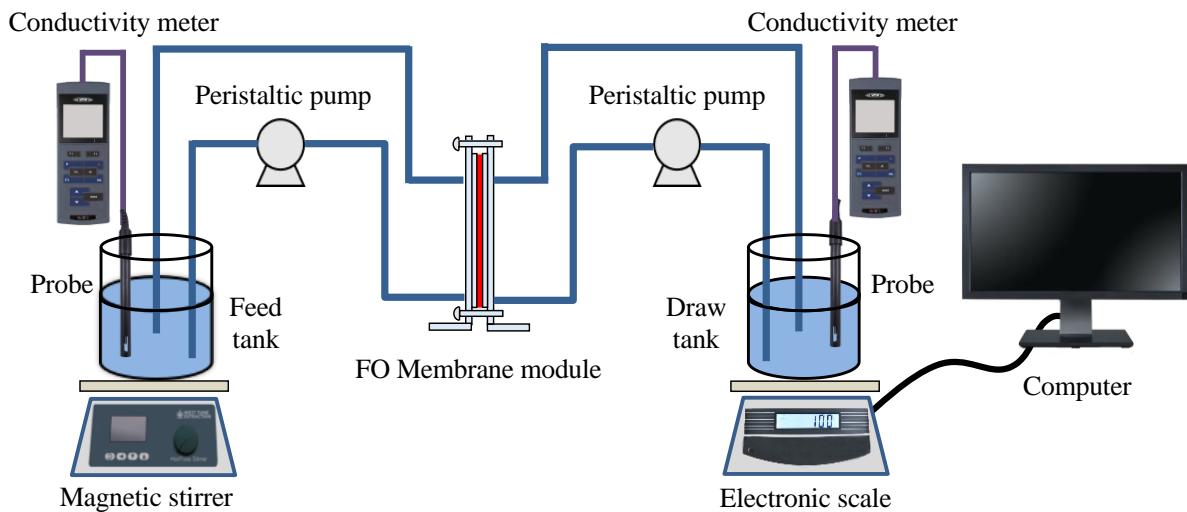
102 **2.2. Batch fouling tests**

103 Batch FO fouling tests were conducted to compare the fouling behavior between **model gel**

104 foulants (alginate solutions) and sludge floc suspensions affected by reverse diffusion of draw
105 solution. As shown in Fig. 1, an external FOMBR was used to explore the membrane fouling
106 behaviors affected by reverse diffusion of draw solution in this paper. The membrane module is
107 placed outside the bioreactor, and the model gel foulants and sludge floc suspensions flow
108 through the FO membrane in a circulating manner. To study the effect of reverse diffusion of
109 draw solution on FO membrane fouling, same volume (500mL) of foulants (prepared according
110 to [section 2.1](#)) were filtered in draw solution with different ionic strength (1, 2, 3, 4 mol/L NaCl
111 solutions). By plotting the relationship between flux and permeate volume instead of the flux
112 versus time [\[40\]](#). Moreover, to eliminate the continuous dilution of draw solution caused by the
113 penetration of water during the filtration process, baseline experiments were carried out before
114 batch fouling tests.

115 The weight of permeate was recorded in real-time with a balance connected to a computer,
116 and each fouling test was conducted 3 times. The working temperature maintained at about 25 °C.
117 According to literature, the membrane flux (J , $\text{L}/(\text{m}^2 \cdot \text{h})$, LMH) could be calculated by [\[41\]](#):

$$118 \quad J = \frac{\Delta V}{A_m \Delta t} \quad (1)$$


119 where ΔV is the permeate volume (L), Δt is the time interval (h), and A_m is the FO
120 membrane effective area (m^2). The conductivity values of feed solution and draw solution were
121 obtained at intervals of 60 s, and the conductivity value is then used to calculate ion
122 concentration. The osmotic pressure (π) of the solution was calculated based on the empirical
123 equation [\[42\]](#):

$$124 \quad \pi = 4.5032C^2 + 43.6426C \quad (2)$$

125 where C is the ion concentration (mol/L).

126 The osmotic pressure gap ($\Delta\pi_{\text{drive}}$) between draw solution and feed solution provides a driving
127 force for FO membrane filtration:

128
$$\Delta\pi_{\text{drive}} = \pi_{\text{draw}} - \pi_{\text{feed}} \quad (3)$$

129

130 **Fig.1.** Schematic of the lab-scale external FOMBR.

131 **2.3. Novel non-invasive microscopic observation method of gel layer microstructure**

132 In this study, all alginate fouling layer samples used for subsequent experimental
133 characterizations were formed by filtering 500 mL of foulants. Fresh gel layers are thin and
134 transparent, and their microstructure cannot be directly observed by a conventional optical
135 microscope [8]. Moreover, other observation methods such as SEM require freeze-drying the
136 fouling layer for 24 hours and spray gold in vacuum before characterization. This process
137 unavoidably destroy the original structure of gel layer, which necessitates the development of a
138 novel method that can observe the microstructure of a transparent material without harming its
139 original structure [43]. Phase-contrast microscope is a better alternative choice. It has been

140 extensively used to observe unstained cells owing to its capability of checking out the extremely
141 fine structure in transparent materials through the diffraction and interference of light without
142 damaging samples [44]. In this study, microscope images of fresh alginate gel layers were
143 observed by an Olympus IX83 inverted microscope (Olympus America Inc., PA, USA) in phase
144 (ph) mode.

145 **2.4. Analytical methods**

146 **2.4.1. Chemical analyses**

147 Fresh alginate layers were further dried in a vacuum freeze dryer (LC-10LCN, China) for
148 24h before their functional groups were characterized by Nicolet iN10 Fourier Transform
149 Infrared Spectrometer (FTIR). The spectra in the range of 4000-500 cm^{-1} were collected by
150 overhead and removable multi reflective attenuated total reflection accessory (ATR). The
151 chemical composition of alginate layers was determined by an X-ray photoelectron spectrometer
152 (XPS) (ESCALAB 250Xi, Thermo Fisher Scientific, USA) with Al-K X-ray as the excitation
153 source.

154 **2.4.2. Thermal stability of alginate gel layers**

155 Thermal stability of alginate gel layers was measured by a thermogravimetric analyzer
156 (Q200, TA Instruments, Germany). Fresh gel samples were placed in an Al_2O_3 crucible and
157 heated to 600°C at a heating rate of 10°C/min under the nitrogen atmosphere. Moreover, heating
158 experiments were conducted to investigate the ability of gel layers to bind with water. Fresh gel
159 layers were placed in a constant temperature oven (WRF-Q800, China) for 1 hour at 35°C, and
160 their weight changes were recorded.

161 **2.4.3. Inductively coupled plasma optical emission spectrometer (ICP) analysis**

162 As the reverse diffused draw solute is trapped in gel layer, it is bound to produce a certain
163 osmotic pressure. Gel layer samples were completely dissolved in deionized (DI) water by
164 magnetically stirring for 2 hours. An inductively coupled plasma optical emission spectrometer
165 (Nex ION 300D, PerkinElmer, USA) was utilized to detect the concentration of NaCl that was
166 trapped in gel layers, followed by the calculation the osmotic pressure of the ions trapped in
167 alginate gel layers according to [Eq.2](#).

168 **2.5. DFT calculations**

169 Density functional theory (DFT) is a classical quantum mechanical method used to study
170 the properties of molecules, which is one of the most commonly used methods on computational
171 chemistry [\[45, 46\]](#). The DFT computational of molecular structure and binding energy can
172 provide accurate prediction for the interaction between reverse diffused solute (NaCl) and
173 sodium alginate chains. Quantum chemical calculations were performed with the Gaussian 09
174 program by using DFT/B3LYP hybrid method. In this study, a short alginate chain model
175 containing 10 uronic units and a long alginate chain model containing 20 uronic units were
176 established, and each alginate chain contained six uronic rings [\[47\]](#). The 6-31 G basic set was
177 used to optimize the molecular geometry and yield energy data. Based on quantum chemistry
178 calculation results, the effect of reverse diffusion of draw solution on the interactions between
179 alginate chains was explored at the molecular level.

180 **2.6. Flory-Huggins lattice theory**

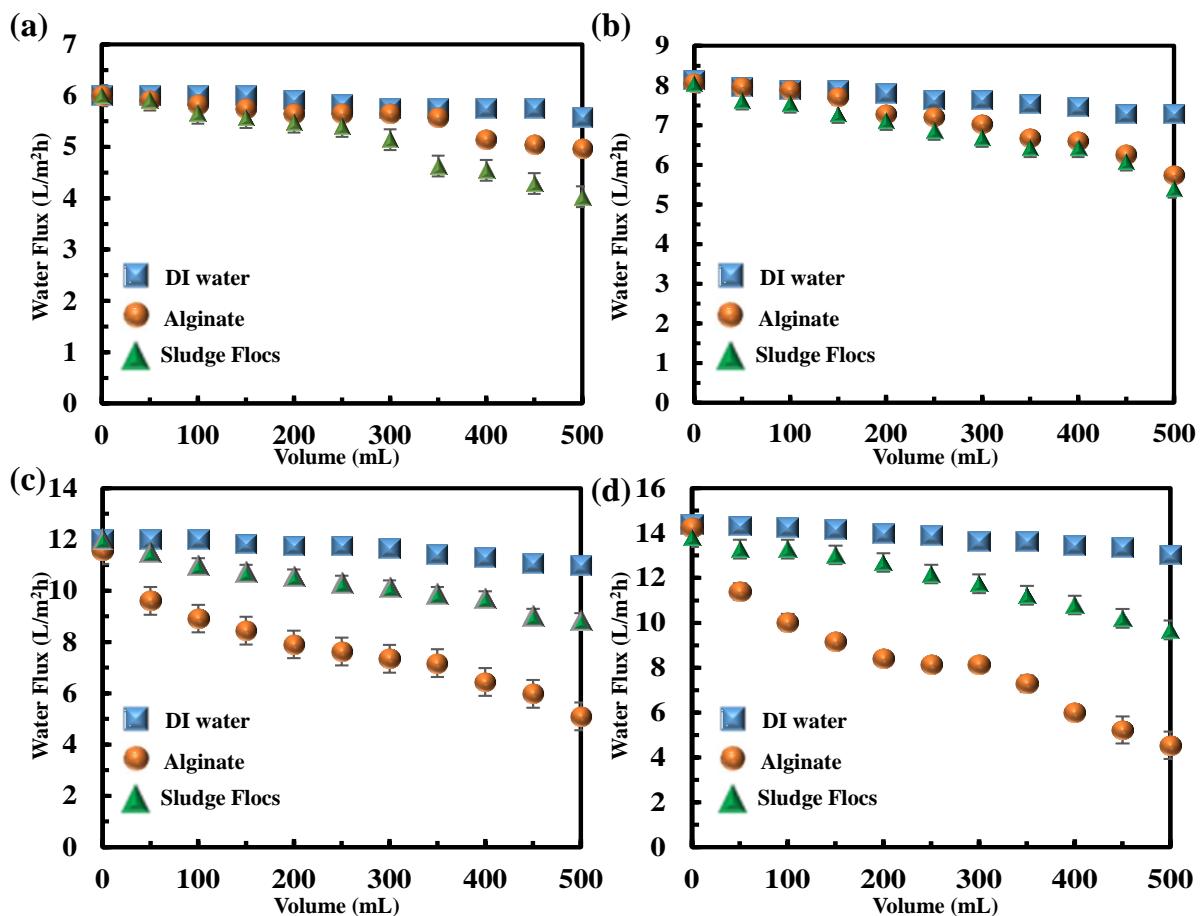
181 The lattice theory proposed by Paul Flory and Maurice Huggins is a mathematical model
182 that describes the thermodynamics of polymer solutions [\[48, 49\]](#). In previous studies,

183 Flory-Huggins lattice theory was proposed to describe the water chemical potential change in
184 the formation process of gel layer [47, 50]. According to Flory-Huggins theory, the change in
185 Gibbs free energy during filtration can be described by [48, 51]:

186
$$\Delta G = RT \left[n_1 \ln \phi_1 + n_2 \ln \phi_2 + n_1 \phi_2 \chi \right] \quad (4)$$

187 where n and ϕ represent mole number and volume fraction, respectively; the subscripts of 1
188 and 2 mean solvent and solute, respectively; χ is the Flory-Huggins interaction parameter. As
189 $\phi_1 + \phi_2 = 1$, the chemical potential change ($\Delta\mu$) of this process is given as follows:

190
$$\Delta\mu = RT \left[\ln(1 - \phi_2) + (1 - N^{-1}) \phi_2 + \chi \phi_2^2 \right] \quad (5)$$

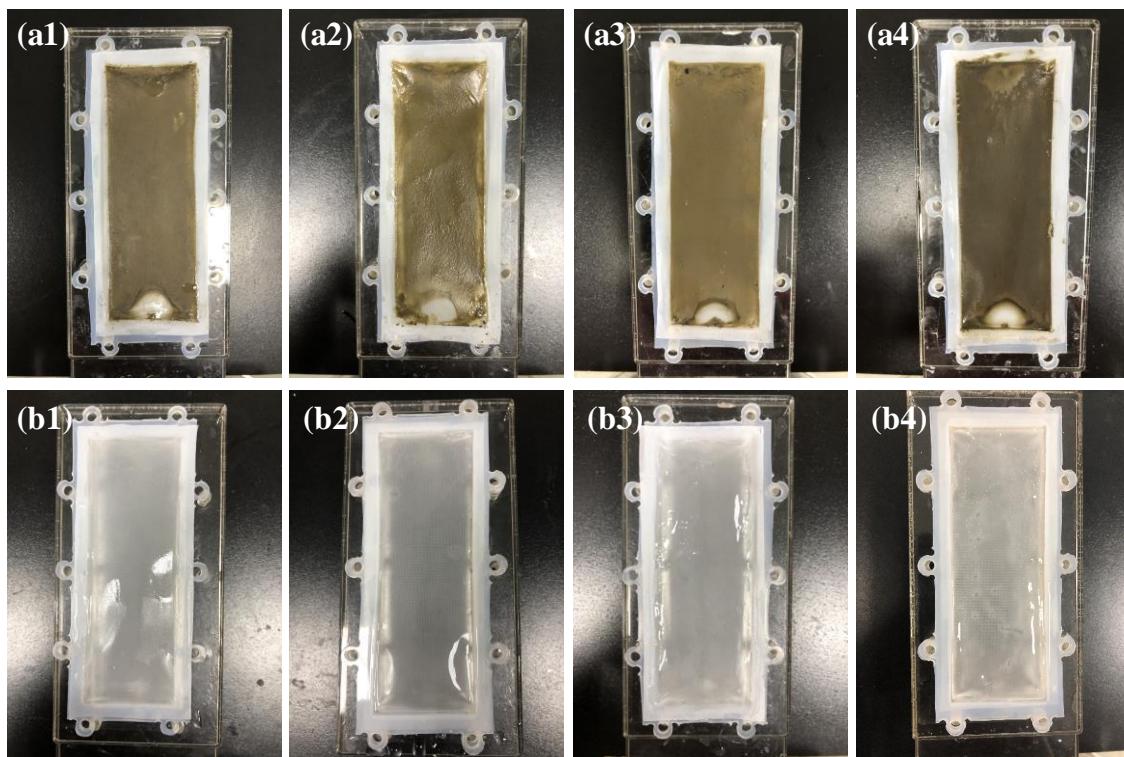

191 where N is the degree of polymerization of cross-linked polymer, which is usually assumed to
192 infinity.

193 **3. Results and discussion**

194 **3.1. Effects of reverse diffusion of draw solution on filtration behavior**

195 [Fig. 2](#) shows the effects of reverse diffusion of draw solutions with different ionic strength
196 (1M, 2M, 3M, 4M NaCl solutions) on the filtration behavior of different feed solution (DI water,
197 sludge floc suspensions, and alginate solutions). In this study, same volume and same mass
198 concentration of foulants (500mL, 1.0 g/L) were filtered in each filtration tests, which therefore
199 the draw solution was diluted to same degree. As indicated by [Fig. 2](#), the DI water flux decline
200 ratio approximated to 9.0% for all cases (8.3%, 9.0%, 8.5% and 9.5%, respectively), which was
201 mainly ascribed to dilution of draw solution [52]. As for sludge floc suspensions, the water flux
202 decline ratio was near 30% under all the circumstances (27.8%, 29.8%, 27.5% and 29.9%,
203 respectively), suggesting that the membrane fouling caused by sludge floc suspensions are

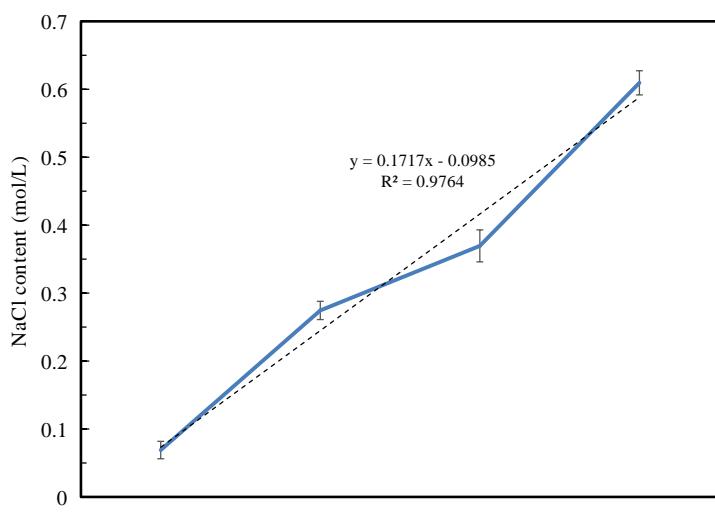
204 moderate. Obviously, the reverse diffusion of draw solution has negligible effects on the
 205 filtration behaviors of DI water and sludge floc suspensions. In contrast, the flux decline ratio of
 206 alginate solutions increased dramatically (17.2%, 28.8%, 56.9% and 69.2%, respectively) with
 207 the increase of the ionic strength of draw solutions. Thus, it is considered that that the filtration
 208 behavior of alginate solutions was considerably affected by reverse diffusion of draw solution,
 209 and extremely severe alginate fouling occurred at draw solutions with high ionic strength.



210

211 **Fig. 2.** Effects of reverse diffusion of draw solutions with different ionic strength ((a) 1 M,
 212 (b) 2 M, (c) 3 M and (d) 4 M NaCl solutions) on the filtration behavior of DI water, sludge floc
 213 suspensions and alginate solutions.

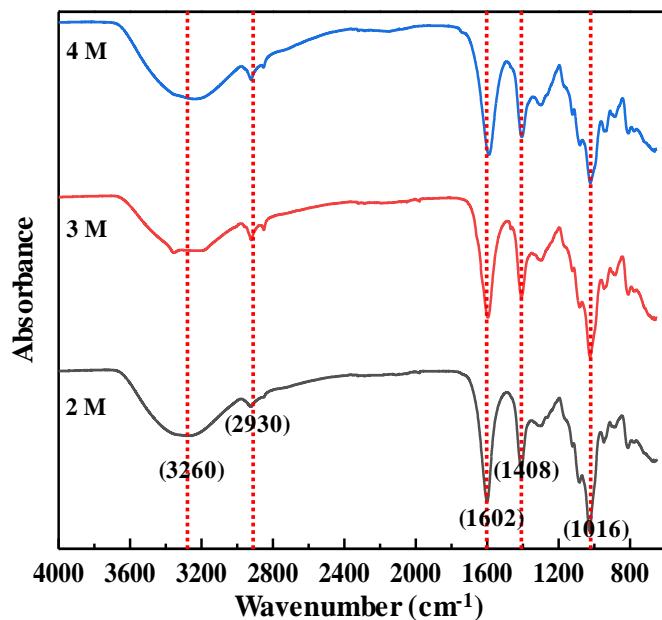
214 **Fig. 3** shows the optical images of fouling layers formed on FO membrane surface in draw
 215 solutions with different ionic strength, the appearance of these layers is completely different. It


216 can be seen from [Fig. 3\(a1\)-\(a4\)](#) that the cake layers formed by sludge floc suspensions are
217 loose and powdery. The weights of cake layers are 0.316 ± 0.015 g, 0.293 ± 0.025 g, 0.299 ± 0.023 g,
218 and 0.306 ± 0.011 g, respectively, which are not significantly different. Contrary to sludge floc
219 suspensions, the alginate retained on FO membrane surface shows typical gelling properties ([Fig.](#)
220 [3\(b1\)-\(b4\)](#)). The weights of gel layers gradually increase (0.237 ± 0.013 g, 0.666 ± 0.020 g,
221 1.139 ± 0.170 g, and 1.518 ± 0.110 g, respectively) with the rising concentration of draw solutions.
222 It should be noted that the filtration experiments were performed under the conditions of same
223 volume (500mL) and same mass concentration (1.0 g/L) of foulants. Thus, it is considered that
224 the reverse diffusion of draw solution significantly affects the FO membrane fouling behavior of
225 alginate gel foulants, which directly causes severe FO membrane fouling. Overall, the main
226 effect of reverse diffusion of draw solution on FO membrane fouling is that its significant
227 impacts on gel layer fouling rather than cake layer fouling.

228
229 **Fig. 3.** Optical images of foulant layers in draw solutions with different ionic strength. (a)

230 Sludge flocs layer, and (b) alginate layer. 1, 2, 3, and 4 refer to 1M, 2M, 3M, and 4M NaCl
231 solutions, respectively.

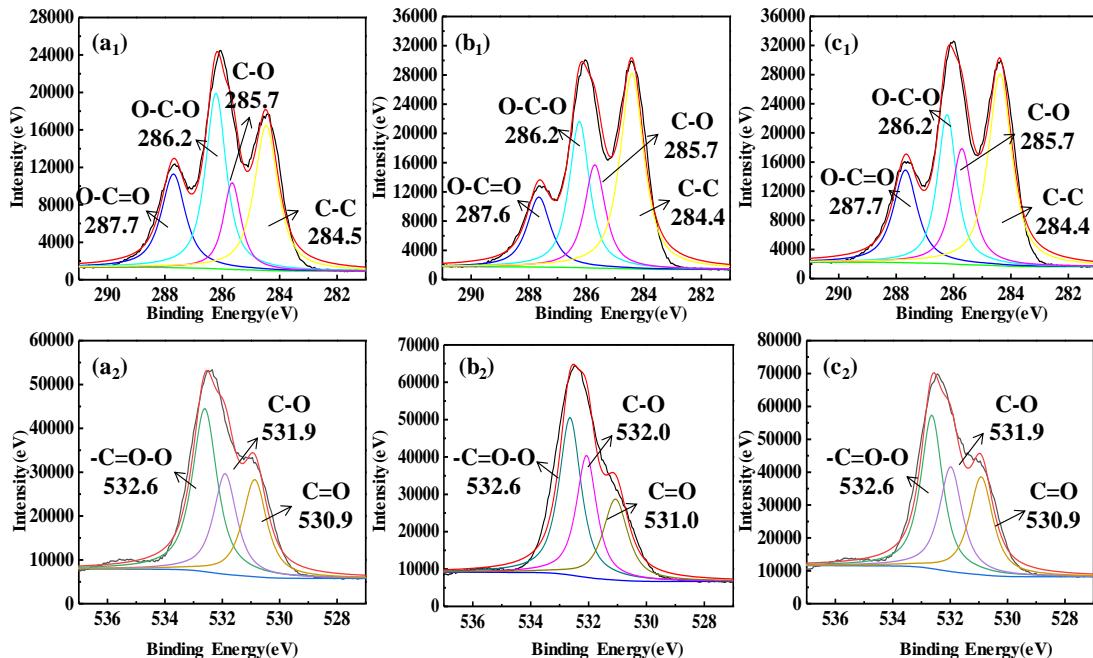
232 **Fig. 4** shows the content of NaCl trapped in different SA layers formed by same volume of
233 SA solutions filtered through draw solutions with different ionic strength. The content of NaCl
234 trapped in SA gel layers increased almost linearly from 0.0690 ± 0.01283 mol/L to
235 0.6090 ± 0.01778 mol/L, indicating that reverse diffusion of draw solution directly affected the
236 NaCl content in gel layers. Due to the inevitable reverse diffusion of draw solution during FO
237 process, the ion content in FOMBR gel layer was much higher than that in MBR gel layer. A
238 recent study showed that, adding a small amount of NaCl (0-250mM) to the alginate solution
239 significantly changed the fouling layer from a sparse structure to a dense structure and greatly
240 improved the filtration resistance, which indicated that NaCl played a vital role in the structure
241 change of the alginate fouling layer [28]. Thus, the critical effects of ion content in gel layers on
242 FOMBR fouling behavior should be highlighted [28, 53, 54].



243
244 **Fig. 4.** The content of NaCl trapped in different SA layers due to the reverse diffusion of draw
245 solutions with different ionic strength.

246 **3.2. Characterizations of alginate layers formed in draw solutions with different ionic
247 strength**

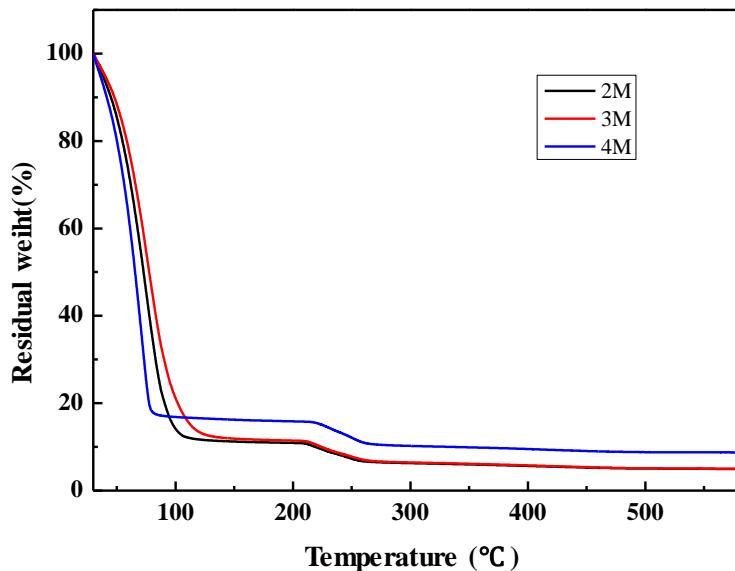
248 **3.2.1. Functional groups analyses**


249 [Fig. 5](#) represents the ATI-FTIR spectra of alginate gel layers formed in three draw solutions
250 with different ionic strength. Five typical alginate characteristic peaks and the corresponding
251 functional groups are $\sim 3260 \text{ cm}^{-1}$ ($-\text{OH}$), $\sim 2930 \text{ cm}^{-1}$ ($-\text{C}-\text{H}$), $\sim 1602 \text{ cm}^{-1}$ ($>\text{C}=\text{O}$), ~ 1408
252 cm^{-1} ($-\text{COO}-$) and $\sim 1016 \text{ cm}^{-1}$ ($-\text{C}-\text{O}$), respectively [55]. The FTIR spectra of all alginate
253 layers are similar to each other, which probably suggests that the FTIR technique may not detect
254 difference in the functional group compositions of these samples.

255
256 [Fig. 5](#). FTIR spectra of alginate layers formed in draw solutions with different ionic strength.

257 [Fig. 6](#) shows the XPS spectra of C1s and O1s of gel layers formed in draw solutions with
258 different ionic strength. In [Fig.6\(a1\)-\(c1\)](#), C1s signals at 287.7, 286.2, 285.7, and 284.5 eV
259 correspond to the O-C=O, O-C-O, C-O and C-C bonds, respectively [56]. The O1s signals at
260 532.6, 531.9, and 530.9 eV represent the -C=O-O, C-O and C=O bonds, respectively, as

261 indicated by Fig. 6(a2)-(c2). It can be seen that the proportion of groups only changed slightly,
 262 and the binding energy of the C and O chemical bonds of the alginate did not move. Some
 263 studies suspected that different fouling behaviors were caused by the difference in the functional
 264 groups of foulants [57]. These chemical characterization results clarified that the reverse
 265 diffusion of draw solution or the ion content in gel layers could not significantly affect the
 266 functional group of alginate gel layer. In other words, the tiny differences in functional groups
 267 may not be the underlying cause for the dramatically different fouling behavior (Figs. 2 and 3).
 268 Further research is required.

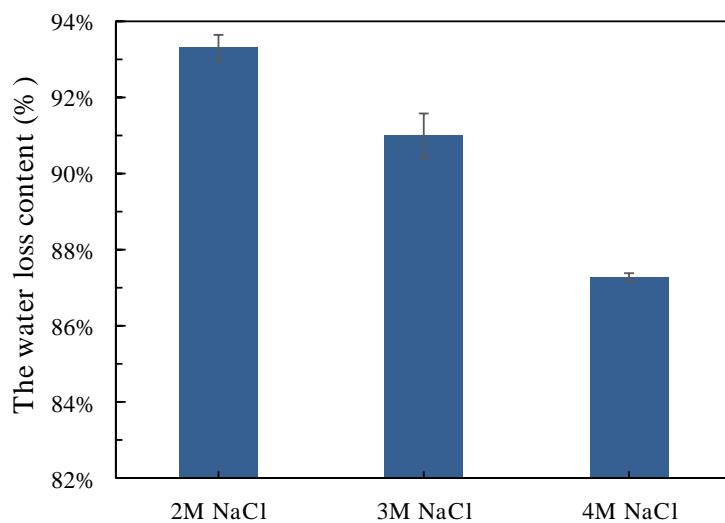


269
 270 **Fig. 6.** XPS spectra of alginate layers formed in draw solutions with different ionic strength.
 271 (a) 2 M, (b) 3M and (c) 4 M NaCl solutions, and the post-fixes of 1, 2 refer to C1s and O1s
 272 spectra, respectively. Compared with FTIR spectra, XPS reveals more detailed information on
 273 the functional groups and chemical bonds.

274 **3.2.2. Gel layer properties analyses**

275 Fig. 7 shows the thermogravimetric analysis (TGA) results of different gels. It can be seen

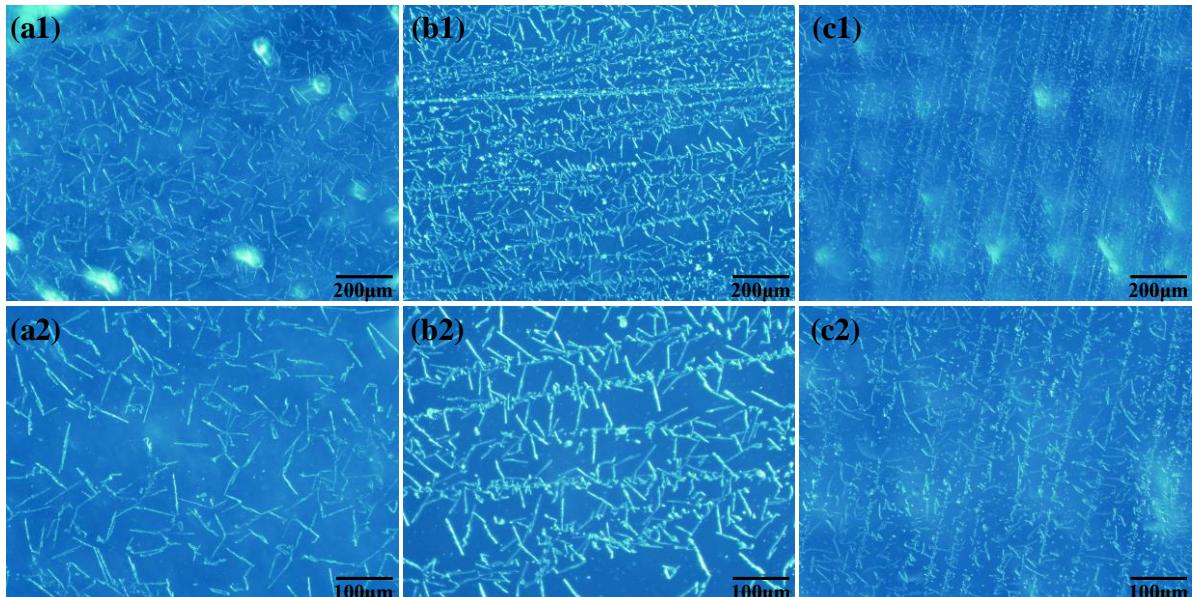
276 that the TGA curve of these samples can be divided into two stages. When the temperature
277 <100 °C, the weights of all samples decreased sharply, which was ascribed to the evaporation of
278 water. When the temperature rose above 200 °C, a slight decrease of the weights was observed
279 due to the evaporation of the alginate. [Fig. 7](#) shows that there is difference in the thermal
280 stability of alginate gel layers formed in three draw solutions with different ionic strength.
281 According to reports, the thermal stability of alginate is affected by ions, which may be caused
282 by the changes in the ability of gel layers to bind with water resulted from the cross-linking
283 effect [[58-60](#)].



284

285 **Fig. 7.** TGA analysis of alginate gels formed in draw solutions with different ionic strength.

286 The ability of gel layers to bind with water can be verified by heating experiments [[61](#)].
287 The chemical potential of bound water in gel layers is much lower than that of free water, and
288 this chemical potential gap needs to be overcome in order to drag the bound water in gel layers
289 to the free water side [[27](#)]. [Fig. 8](#) shows the amount of water loss in different gel layers under
290 the same heating conditions, and the water loss decreased linearly with the NaCl content in gel
291 layers. This result indicated that the bound water was more difficult to drag out from dense gel
292 layers that contained a large amount of NaCl. In other words, considerable energy was


293 demanded in order to overcome the huge chemical potential gap to drag out bound water from
294 dense gel layer with high NaCl content during the filtration, resulting in **significant** decline in
295 FO membrane filtration efficiency [28]. Therefore, the effect of reverse diffusion of draw
296 solution on the filtration behavior of alginate gel layer could be attributed to the ability of gel
297 layer to bind with water. Previous studies reported that the ability of gel layer to bind with water
298 was directly determined by the gel layer structure [27, 28, 62].

299
300 **Fig. 8.** Water loss of alginate gel layers formed in draw solutions with different ionic strength
301 under heating conditions (heating time: 1 h, oven temperature: 35 °C).

302 **Fig. 9** presents the phase-contrast microscope images of molecular chain structures of fresh
303 alginate gel layers formed in draw solutions **with** different ionic strength. To the best of our
304 knowledge, this paper is the first direct microscopic observation study on the molecular chain
305 structures of fresh fouling layers [8]. It is clear that the NaCl trapped in alginate gel layer had an
306 appreciable effect on the arrangement of alginate chains in gel layer (Fig. 9). A lot of short
307 alginate chains were sparsely distributed in alginate gel layer with low NaCl content (Fig. 9(a)),
308 making the water in gel layer unable to be firmly bound. This was because short alginate chains
309 moved away from each other due to the mutual exclusion of the polar carboxylic acid groups in
310 alginate chains with low NaCl content [27, 28]. Short alginate chains cross-linked and produced

parallel and compact long alginate chains in [Figs. 9\(b\) and \(c\)](#), indicating that the large amount of NaCl trapped in alginate gel layers promoted the growth and symmetrical distribution of alginate chains. Long and dense alginate chains contributed to the formation of a compact molecular chain structure, which acted as the skeleton of gel layer and bound with the free water in feed solution to form [a gel layer](#) [\[47\]](#). Hence, the results of [Fig.8](#) and [Fig.9](#) suggest that due to change of the molecular chain structure, the bound water is more difficult to drag out from the dense gel layer containing a large amount of NaCl. In view of this, fouling behavior of alginate solution in draw solution with different ionic strength ([Figs. 2 and 3](#)) could be reasonably attributed to the change in the structure of alginate chains in gel layer [\[38, 50, 63\]](#).

Fig. 9. Phase-contrast microscopy images of the molecular structure in alginate fouling layers formed in draw solutions with different ionic strength. (a) 2M, (b) 3M and (c) 4M NaCl solutions, and the 1, 2 represent 200 times and 400 magnifications, respectively.

Accordingly, exploring the forces that control this molecular structure transformation might provide essential fouling mechanisms for FO processes. In this paper, DFT analysis was used to [simulate the interactions of alginate chains with varied content of NaCl](#). DFT simulation was performed to further determine the possible molecular structure changes ([Fig. 9](#)) of alginate gel

328 layers [46].

329 **3.3. DFT simulation of alginate chains cross-linking behaviors**

330 A computational model of two short alginate chains was constructed to explicate the
331 intermolecular interaction [20, 47]. Fig. 10 shows that the energy of two alginate chains in
332 vertical (-341.93 kcal/mol) and linear (-308.51 kcal/mol) states was very close and low, which
333 illustrates when NaCl was absent in gel layers, the alginate chains can be arranged freely due to
334 the mutual exclusion of the polar carboxylic acid groups in alginate chains. DFT simulation
335 results could well explain the distribution of alginate chains in Fig. 9(a).

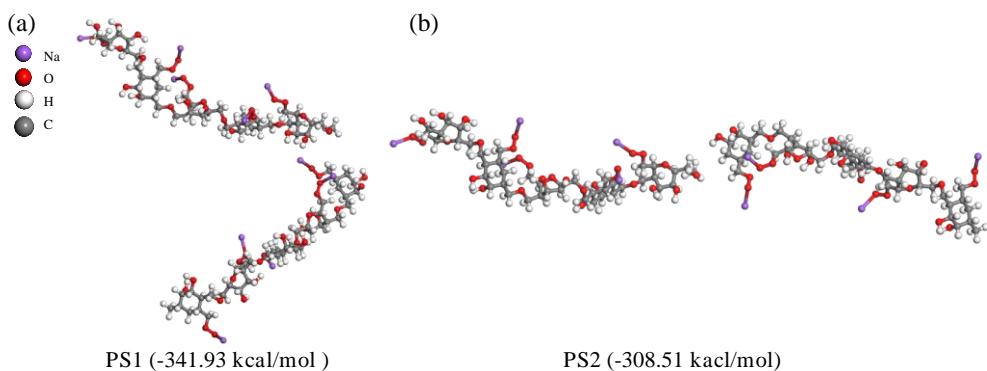
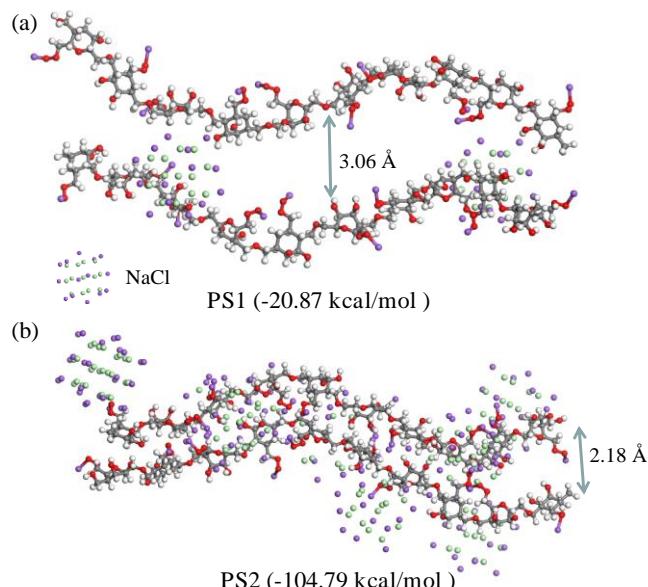
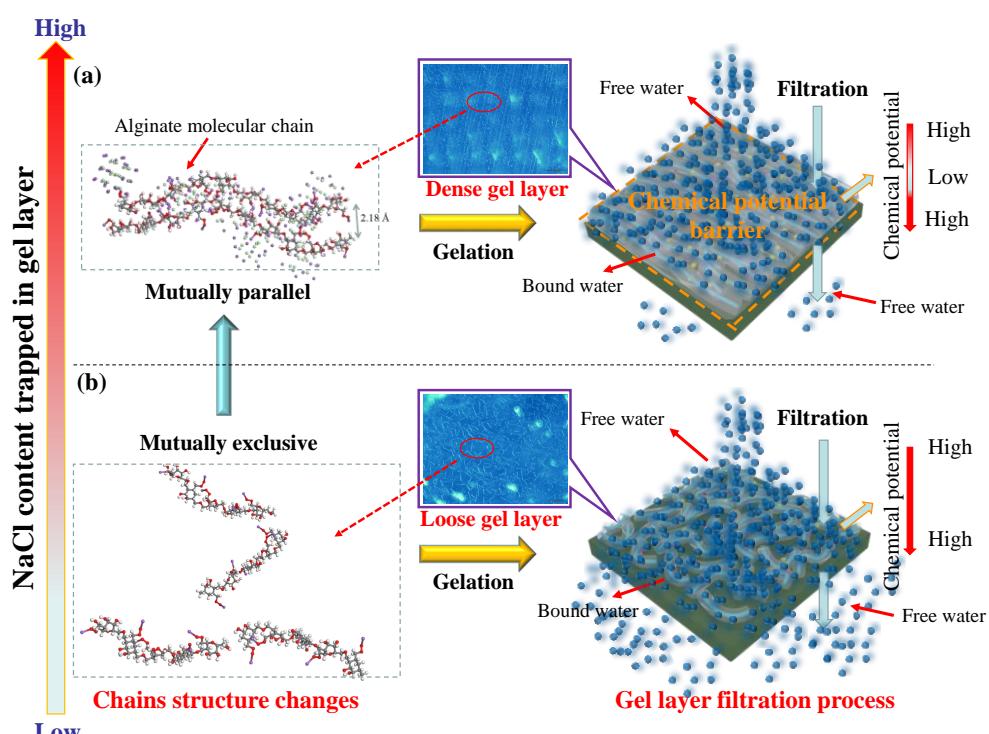



Fig. 10. Two optimized geometries for two single alginate chains that contained 10 uronic units but no NaCl.

Fig. 11 shows the states between two long alginate chains at low and high NaCl content.

DFT calculations revealed the relative low energy of two parallel long alginate chains, indicating that the parallel state was energetically stable. The reason was that when NaCl present, the intermolecular interactions of two hydrogen bonds formed by the hydroxyl and carboxyl groups of the aldaldehyde rings at terminals of alginate chains ensured the aldaldehyde rings tightly connected but parallel to each other [47]. At low NaCl content, the distance between the two hydrogen bonds of two alginate chains was 3.06 Å and the energy was -20.87 kcal/mol (Fig. 11(a)). However, the distance between the two alginate chains was 2.18 Å, with lower energy

347 (-104.79 kcal/mol) at high ionic strength (Fig. 11(b)). To summarize, the simulation results
348 demonstrated that the NaCl trapped in gel layers could shorten the distance between hydrogen
349 bonds and lower the energy of alginate chain terminals.


350
351 Fig. 11. Two optimized geometries of long alginate chains containing 20 uronic units: (a)
352 low NaCl content and (b) high NaCl content.

353 Figs. 10 and 11 provide structural and energy information of alginate molecular chains **with**
354 **varied content of NaCl**. It is clear that alginate chains were mutually repulsive at extremely low
355 NaCl content or in the absence of NaCl, while the presence of NaCl ensured that the terminal
356 aldehyde-aldehyde rings were tightly connected and parallel to each other due to the hydrogen
357 bonds existing between the carboxyl groups at the terminals of alginate chains [28]. As the NaCl
358 content in gel layer increased, the distance and the energy between hydrogen bonds formed by
359 two carboxyl groups decreased. Consequently, two long alginate chains stayed in closer
360 proximity to each other and thus formed a regular and dense alginate layer. According to the
361 formation mechanism of alginate chain structures with varied content of NaCl revealed by DFT
362 simulation, the reverse diffusion of draw solutions or the ion content in gel layers had a critical

363 influence on the molecular chain structure and interaction of alginate gel layers (Fig. 9).
 364 According to the formation mechanism of alginate chain structures with varied NaCl content
 365 revealed by DFT simulation, the reverse diffusion of draw solutions or the ion content in gel
 366 layers had a critical influence on the molecular chain structure and interaction of alginate gel
 367 layer (Fig. 9).

368 **3.4. Mechanistic insights into FO membrane fouling behaviors**

369 The above-mentioned advanced techniques including phase-contrast microscope and DFT
 370 simulation provided detailed structure information of alginate gel layers formed in draw
 371 solutions with different ionic strength. Based on these results, Fig. 12 introduces a schematic
 372 diagram of the effect mechanisms of reverse diffusion of draw solution on the fouling behavior
 373 of alginate layer.

374
 375 **Fig. 12.** Schematic diagram of the cross-linking process of alginate chains affected by reverse
 376 NaCl and the filtration process of alginate layers governed by Flory-Huggins mechanism.

377 It can be seen from Fig.12(b) that the gel layers (shown in Figs. 3(b1) and (b2)) formed on
 378 the FO membrane surface were very loose at low content of reverse diffused NaCl due to the
 379 repulsion between carboxylic acid groups on the alginate chains. These loose gel structures
 380 could not effectively bind with water, so making it impossible to substantially lower the water
 381 flux (Figs. 2(a) and (b)) [25, 64]. However, a large amount of NaCl trapped in gel layers reduced
 382 the repulsion between the alginate chains and shortened the distance between hydrogen bonds at
 383 the two terminals of alginate chains, thereby providing a highly cross-linked polymeric network
 384 (Fig. 12(a)) [28]. According to the Flory-Huggins lattice theory expressed by Eq. (5), the
 385 chemical potential change accompany by the formation of gel layer is dependent on
 386 polymerization degree, and highly cross-linked network corresponds to higher chemical
 387 potential change. From thermodynamic viewpoint, filtration through a gel layer can be regarded
 388 as the inverse process of gel formation. Therefore, filtration through a denser gel layer (Fig.
 389 12(a)) is considered as dragging water from gel layer (much low chemical potential) to permeate
 390 side (high chemical potential) [24, 65]. In other words, dense gel layer functioned as a
 391 “chemical potential barrier”, which offset a part of chemical potential gap between draw
 392 solution and feed solution, resulting in water penetration becomes difficult. During the FO
 393 membrane filtration process of gel, the osmotic pressure gap ($\Delta\pi_{\text{gel}}$) was used to overcome the
 394 water chemical potential gap ($\Delta\mu_{\text{gel}}$) between draw solution and gel layer [17]:

$$395 \Delta\mu_{\text{gel}} = -V_B \Delta\pi_{\text{gel}} \quad (6)$$

396 where V_B represents the molar volume of solvent and is generally considered to be equal to the
 397 molar volume of the dilute solution (V), $\Delta\pi_{\text{gel}}$ is the part of osmotic pressure gap ($\Delta\pi_{\text{drive}}$) that
 398 is used to overcome the chemical potential gap between gel layer and combination of free water
 399 and pure polymers ($\Delta\mu_{\text{gel}}$). Substituting Eq. (5) into Eq. (6), According to Flory-Huggins theory,

400 $\Delta\pi_{\text{gel}}$ can be calculated by:

401
$$\Delta\pi_{\text{gel}} = -\Delta\mu_{\text{gel}}/V_B = -RT \left[\ln(1-\phi_2) + (1-N^{-1})\phi_2 + \chi\phi_2^2 \right]/V_B \quad (7)$$

402 For FO membrane filtration processes, the trapped NaCl in gel layer also contributes
403 osmotic pressure (π_{NaCl}), which can be calculated by Eq. 2. Therefore, during gel layer filtration,
404 the net osmotic pressure gap ($\Delta\pi_{\text{net}}$) can be described by:

405
$$\Delta\pi_{\text{net}} = \Delta\pi_{\text{drive}} - \Delta\pi_{\text{gel}} - \pi_{\text{NaCl}} \quad (8)$$

406 The above Eqs were perfect for the description of the chemical potential since previous
407 studies have calculated the chemical potential of agar gels and based on these Eqs [17, 19]. The
408 calculation results suggested that the chemical potential gap between gel layer and permeate was
409 huge, so the $\Delta\pi_{\text{gel}}$ used to overcome this chemical potential gap may be extremely high [17,
410 61]. $\Delta\pi_{\text{gel}}$ can be quantitatively assessed by Eq. (7) provided that **several thermodynamic**
411 **parameters are determined**. Due to the χ value of alginate has not been reported and is difficult
412 to be estimated, it is hard to conduct quantitative simulation of variation of the Flory-Huggins
413 induced chemical potential gap with the degree of polymerization [27]. **The degree of**
414 **polymerization of the polymer chains increased with the rising content of NaCl**. Although it is
415 **hard to conduct a quantitative simulation of the variation of the Flory-Huggins induced**
416 **$\Delta\mu_{\text{gel}}$ with the degree of polymerization**. The general profile of relation between Flory-Huggins
417 **induced the $\Delta\mu_{\text{gel}}$ and polymerization degree could be depicted by Eq. (5)**. According to Eq. (5)
418 **and Eq. (7)**, $\Delta\mu_{\text{gel}}$ decrease with the degree of polymerization, which corresponded to $\Delta\pi_{\text{gel}}$
419 **increase, resulting in more flux decline**. The real existence of the $\Delta\pi_{\text{gel}}$ induced by
420 Flory-Huggins mechanism was confirmed by quantifying the changes in osmotic pressure
421 during FO membrane filtration.

422 In the filtration experiment of alginate solutions in 4 mol/L NaCl draw solution ($\Delta\pi_{\text{drive}}$ is

423 24662.16 kPa). After filtration of 500 mL foulants, the $\Delta\pi_{\text{drive}}$ was diluted to 22705.49 kPa, as
424 can be calculated by converting the conductivity gap between draw solution and feed solution,
425 and its driving force decreased by 7.9% compared with that in the initial stage. However, water
426 flux decreased by about 69.2%, suggesting that the $\Delta\pi_{\text{net}}$ at this time was only 7595.95 kPa
427 (30.8% \times 24662.16 kPa). This meant that the osmotic pressure gap offset by gel layer should be
428 15109.54 kPa (22705.49 kPa-7595.95 kPa). It is important to note that the osmotic pressure of
429 the gel layer includes the π_{NaCl} caused by reverse diffused NaCl and the $\Delta\pi_{\text{gel}}$. The
430 concentration of NaCl trapped in the gel layer was then measured to be 0.60 mol/L by the
431 inductively coupled plasma, and the π_{NaCl} was 2780.67 kPa. Thus, the $\Delta\pi_{\text{gel}}$ to overcome the
432 chemical potential gap of this gel layer was calculated to be 12328.87 kPa (15109.54
433 kPa-2780.67 kPa) by Eq. (8), accounting for 54.30% of the $\Delta\pi_{\text{drive}}$ of 4 mol/L NaCl draw
434 solution. Seen from the calculation results, the osmotic pressure gap required to overcome the
435 chemical potential gap between gel layer and draw solution was extremely high, which offsets a
436 lot of driving force. Filtration experiments show that the $\Delta\pi_{\text{gel}}$ increased with the degree of
437 polymerization of the polymer chains rising, resulting in decrease of the net osmotic pressure
438 gap, corresponding to flux decrease. The increase trend of the $\Delta\pi_{\text{gel}}$ depicted by Eq. (7) was
439 consistent with filtration experiment results. Therefore, the Flory-Huggins theory not only
440 provided a description of mechanism of chemical potential gap during the FO filtration process,
441 but also explained the fouling tendency of alginate solution with reverse diffusion of solution.

442 4. Conclusions

443 Filtration tests showed that the reverse diffusion of draw solutions had critical effects on
444 FOMBR filtration behavior of alginate solutions. Phase-contrast microscope images and DFT
445 calculation results proved at the molecular level that the content of ions trapped in gel layers

446 directly determined the molecular chain structure of gel layers. Moreover, heating experiments
447 confirmed that gel layers with high NaCl content required more energy to drag out bound water,
448 indicating that gel layer acted as a "chemical potential barrier" that prevented bound water from
449 turning into free water. The above results established for the first time that the gel layer (the
450 "chemical potential barrier") was primarily affected by changes of the layer's molecular chain
451 structure. Subsequently, the "chemical potential barrier" described by Flory-Huggins theory was
452 proposed to elucidate the FOMBR fouling behavior affected by reverse diffusion of draw
453 solutions **from the perspective of chemical potential changes. This hand-in-hand method of**
454 **combining experimental characterizations and theoretical calculations provided a**
455 **comprehensive understanding of the effect of reverse diffusion of draw solution on alginate**
456 **fouling properties.**

457 **Acknowledgments**

458 This work was financially supported by China National Key Project of Science and Technology
459 "Major Science and Technology Program for Water Pollution Control and Treatment"
460 (2018ZX07601001).

461 **Reference**

462 [1] C.W. King, M.E. Webber, Water Intensity of Transportation, Environ. Sci. Technol., 42
463 (2008) 7866-7872.

464 [2] F. Meng, S. Zhang, Y. Oh, Z. Zhou, H.-S. Shin, S.-R. Chae, Fouling in membrane
465 bioreactors: An updated review, Water Res., 114 (2017) 151-180.

466 [3] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes,
467 Science and technology for water purification in the coming decades, Nature, (2008).

468 [4] A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, The forward osmosis membrane
469 bioreactor: A low fouling alternative to MBR processes, Desalination, 239 (2009) 10-21.

470 [5] S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis:
471 Opportunities and challenges, J. Membr. Sci., 396 (2012) 1-21.

472 [6] X. Wang, V.W.C. Chang, C.Y. Tang, Osmotic membrane bioreactor (OMBR)
473 technology for wastewater treatment and reclamation: Advances, challenges, and prospects for
474 the future, J. Membr. Sci., 504 (2016) 113-132.

475 [7] P. Nasr, H. Sewilam, Forward osmosis: an alternative sustainable technology and
476 potential applications in water industry, Clean Technologies and Environmental Policy, 17 (2015)
477 2079-2090.

478 [8] Y. Wang, F. Wicaksana, C.Y. Tang, A.G. Fane, Direct Microscopic Observation of
479 Forward Osmosis Membrane Fouling, Environ. Sci. Technol., 44 (2010) 7102-7109.

480 [9] H. Zhang, Y. Ma, T. Jiang, G. Zhang, F. Yang, Influence of activated sludge properties
481 on flux behavior in osmosis membrane bioreactor (OMBR), J. Membr. Sci., 390-391 (2012)
482 270-276.

483 [10] E.R. Cornelissen, D. Harmsen, K.F. de Korte, C.J. Ruiken, J.-J. Qin, H. Oo, L.P.
484 Wessels, Membrane fouling and process performance of forward osmosis membranes on
485 activated sludge, J. Membr. Sci., 319 (2008) 158-168.

486 [11] C. Boo, S. Lee, M. Elimelech, Z. Meng, S. Hong, Colloidal fouling in forward osmosis:
487 Role of reverse salt diffusion, J. Membr. Sci., 390-391 (2012) 277-284.

488 [12] Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven
489 membrane processes: A review, J. Membr. Sci., 499 (2016) 201-233.

490 [13] S. Zou, Y. Gu, D. Xiao, C.Y. Tang, The role of physical and chemical parameters on

491 forward osmosis membrane fouling during algae separation, *J. Membr. Sci.*, 366 (2011)
492 356-362.

493 [14] J.S. Yong, W.A. Phillip, M. Elimelech, Coupled reverse draw solute permeation and
494 water flux in forward osmosis with neutral draw solutes, *J. Membr. Sci.*, 392-393 (2012) 9-17.

495 [15] W.A. Phillip, J.S. Yong, M. Elimelech, Reverse Draw Solute Permeation in Forward
496 Osmosis: Modeling and Experiments, *Environ. Sci. Technol.*, 44 (2010) 5170-5176.

497 [16] X.-M. Wang, T.D. Waite, Impact of gel layer formation on colloid retention in
498 membrane filtration processes, *J. Membr. Sci.*, 325 (2008) 486-494.

499 [17] J. Chen, M. Zhang, F. Li, L. Qian, H. Lin, L. Yang, X. Wu, X. Zhou, Y. He, B.-Q. Liao,
500 Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its
501 underlying mechanism, *Water Res.*, 102 (2016) 82-89.

502 [18] X.-m. Wang, T.D. Waite, Role of Gelling Soluble and Colloidal Microbial Products in
503 Membrane Fouling, *Environ. Sci. Technol.*, 43 (2009) 9341-9347.

504 [19] J. Teng, L. Shen, G. Yu, F. Wang, F. Li, X. Zhou, Y. He, H. Lin, Mechanism analyses
505 of high specific filtration resistance of gel and roles of gel elasticity related with membrane
506 fouling in a membrane bioreactor, *Bioresour. Technol.*, 257 (2018).

507 [20] J. Teng, Y. Chen, G. Ma, H. Hong, T. Sun, B.-Q. Liao, H. Lin, Membrane fouling by
508 alginic acid in polyaluminum chloride (PACl) coagulation/microfiltration process: Molecular
509 insights, *Sep. Purif. Technol.*, 236 (2020) 116294.

510 [21] H. Hong, M. Zhang, Y. He, J. Chen, H. Lin, Fouling mechanisms of gel layer in a
511 submerged membrane bioreactor, *Bioresour. Technol.*, 166 (2014) 295-302.

512 [22] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, A critical
513 review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics,

514 roles in membrane fouling and control strategies, *J. Membr. Sci.*, 460 (2014) 110-125.

515 [23] R. Bai, H.F. Leow, Microfiltration of activated sludge wastewater—the effect of
516 system operation parameters, *Sep. Purif. Technol.*, 29 (2002) 189-198.

517 [24] T. Sakai, J.-i. Horinaka, T. Takigawa, A new method to estimate the sol-gel transition
518 entropy in physically gelling systems, *Polymer Journal*, 47 (2014) 244-248.

519 [25] Q. Lei, M. Zhang, L. Shen, R. Li, B.-Q. Liao, H. Lin, A novel insight into membrane
520 fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism,
521 *SCI. Rep.*, 6 (2016) 33343.

522 [26] W. Mönch, J. Dehnert, E. Jaufmann, H. Zappe, Flory-Huggins swelling of polymer
523 Bragg mirrors, *Applied Physics Letters*, 89 (2006) 164104-164104.

524 [27] M. Zhang, H. Hong, H. Lin, L. Shen, H. Yu, G. Ma, J. Chen, B.Q. Liao, Mechanistic
525 insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra
526 analyses and DFT calculations, *Water Res.*, 129 (2017) 337-346.

527 [28] X. You, J. Teng, Y. Chen, Y. Long, G. Yu, L. Shen, H. Lin, New insights into
528 membrane fouling by alginate: Impacts of ionic strength in presence of calcium ions,
529 *Chemosphere*, 246 (2020) 125801.

530 [29] G. Singh, L. Song, Quantifying the effect of ionic strength on colloidal fouling
531 potential in membrane filtration, *J. Colloid Interf. Sci.*, 284 (2005) 630-638.

532 [30] S. Bhattacharjee, M. Elimelech, Surface Element Integration: A Novel Technique for
533 Evaluation of DLVO Interaction between a Particle and a Flat Plate, *J. Colloid Interf. Sci.*, 193
534 (1997) 273-285.

535 [31] J. Teng, L. Shen, Y. He, B.Q. Liao, G. Wu, H. Lin, Novel insights into membrane
536 fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane

537 surface, Chemosphere, 210 (2018) 769.

538 [32] S. Bhattacharjee, C.-H. Ko, M. Elimelech, DLVO Interaction between Rough Surfaces,
539 Langmuir, 14 (1998).

540 [33] B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: Fouling
541 reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337-345.

542 [34] S. Meng, Y. Liu, Alginate block fractions and their effects on membrane fouling, Water
543 Res., 47 (2013) 6618-6627.

544 [35] M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: Role of
545 biofilm-enhanced osmotic pressure, J. Membr. Sci., 295 (2007) 11-20.

546 [36] M. Herzberg, S. Kang, M. Elimelech, Role of Extracellular Polymeric Substances
547 (EPS) in Biofouling of Reverse Osmosis Membranes, Environ. Sci. Technol., 43 (2009)
548 4393-4398.

549 [37] J. Ji, J. Qiu, F.-s. Wong, Y. Li, Enhancement of filterability in MBR achieved by
550 improvement of supernatant and floc characteristics via filter aids addition, Water Res., 42 (2008)
551 3611-3622.

552 [38] J. Teng, M. Zhang, K.-T. Leung, J. Chen, H. Hong, H. Lin, B.-Q. Liao, A unified
553 thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs)
554 in a membrane bioreactor, Water Res., 149 (2019) 477-487.

555 [39] H.J. Lin, K. Xie, B. Mahendran, D.M. Bagley, K.T. Leung, S.N. Liss, B.Q. Liao,
556 Sludge properties and their effects on membrane fouling in submerged anaerobic membrane
557 bioreactors (SAnMBRs), Water Res., 43 (2009) 3827-3837.

558 [40] C.Y. Tang, T.H. Chong, A.G. Fane, Colloidal interactions and fouling of NF and RO
559 membranes: A review, Adv. Colloid Interf. Sci., 164 (2011) 126-143.

560 [41] H.T. Nguyen, N.C. Nguyen, S.-S. Chen, H.H. Ngo, W. Guo, C.-W. Li, A new class of
561 draw solutions for minimizing reverse salt flux to improve forward osmosis desalination,
562 *Science of The Total Environment*, 538 (2015) 129-136.

563 [42] M. Park, J.H. Kim, Numerical analysis of spacer impacts on forward osmosis
564 membrane process using concentration polarization index, *J. Membr. Sci.*, 427 (2013) 10-20.

565 [43] Z. Wang, Z. Wu, X. Yin, L. Tian, Membrane fouling in a submerged membrane
566 bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer
567 characterization, *J. Membr. Sci.*, 325 (2008) 238-244.

568 [44] G.E. Palade, Studies on the Endoplasmic Reticulum: II. Simple Dispositions in Cells in
569 *Situ*, *The Journal of Biophysical and Biochemical Cytology*, 1 (1955) 567-582.

570 [45] Y.-X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials
571 anthraquinone and its derivatives on monolayer graphene and h-BN, *Journal of Materials*
572 *Chemistry A: Materials for Energy and Sustainability*, 2 (2014) 8910-8917.

573 [46] M. Shkir, S. Muhammad, S. AlFaify, Experimental and density functional theory
574 (DFT): A dual approach to study the various important properties of monohydrated l-proline
575 cadmium chloride for nonlinear optical applications, *Spectrochim. Acta A*, 143 (2015) 128-135.

576 [47] M. Zhang, H. Hong, H. Lin, L. Shen, H. Yu, G. Ma, J. Chen, B.-Q. Liao, Mechanistic
577 insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra
578 analyses and DFT calculations, *Water Res.*, 129 (2018) 337-346.

579 [48] P.J. Flory, Thermodynamics of High Polymer Solutions, *J. Chem. Phys.*, 9 (1941) 660.

580 [49] M. L. Huggins, Thermodynamic Properties of Solutions of Long Chain Compounds,
581 2006.

582 [50] Y. Long, X. You, Y. Chen, H. Hong, B.-Q. Liao, H. Lin, Filtration behaviors and

583 fouling mechanisms of ultrafiltration process with polyacrylamide flocculation for water
584 treatment, *Science of The Total Environment*, 703 (2020) 135540.

585 [51] P.J. Flory, Molecular theory of rubber elasticity, *Polymer*, 20 (1979) 1317-1320.

586 [52] B. Mi, M. Elimelech, Chemical and physical aspects of organic fouling of forward
587 osmosis membranes, *J. Membr. Sci.*, 320 (2008) 292-302.

588 [53] X. Song, M. Xie, Y. Li, G. Li, W. Luo, Salinity build-up in osmotic membrane
589 bioreactors: Causes, impacts, and potential cures, *Bioresour. Technol.*, 257 (2018).

590 [54] D. Xiao, C.Y. Tang, J. Zhang, W.C.L. Lay, R. Wang, A.G. Fane, Modeling salt
591 accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and
592 system operation, *J. Membr. Sci.*, 366 (2011) 314-324.

593 [55] M.G. Sankalia, R.C. Mashru, J.M. Sankalia, V.B. Sutariya, Reversed chitosan-alginate
594 polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and
595 physicochemical characterization, *European Journal of Pharmaceutics and Biopharmaceutics*, 65
596 (2007) 215-232.

597 [56] Z.-H. Hu, A.M. Omer, X.k. Ouyang, D. Yu, Fabrication of carboxylated cellulose
598 nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution, *Int.*
599 *J. Biol. Macromol.*, 108 (2018) 149-157.

600 [57] K. Kimura, T. Kakuda, H. Iwasaki, Membrane fouling caused by lipopolysaccharides:
601 A suggestion for alternative model polysaccharides for MBR fouling research, *Sep. Purif.*
602 *Technol.*, 223 (2019) 224-233.

603 [58] Y. Pan, W. Wang, L. Liu, H. Ge, L. Song, Y. Hu, Influences of metal ions crosslinked
604 alginic acid based coatings on thermal stability and fire resistance of cotton fabrics, *Carbohydr.*
605 *Polym.*, 170 (2017) 133-139.

606 [59] Y. Liu, J.-S. Wang, P. Zhu, J.-C. Zhao, C.-J. Zhang, Y. Guo, L. Cui, Thermal
607 degradation properties of biobased iron alginate film, *J. Anal. Appl. Pyrol.*, 119 (2016) 87-96.

608 [60] Q. Lei, F. Li, L. Shen, L. Yang, B.-Q. Liao, H. Lin, Tuning anti-adhesion ability of
609 membrane for a membrane bioreactor by thermodynamic analysis, *Bioresour. Technol.*, 216
610 (2016) 691-698.

611 [61] Q. Lei, M. Zhang, L. Shen, R. Li, B.Q. Liao, H. Lin, A novel insight into membrane
612 fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism,
613 *SCI. Rep.*, 6 (2016) 33343.

614 [62] Y. Chen, J. Teng, B.-Q. Liao, R. Li, H. Lin, Molecular insights into the impacts of
615 iron(III) ions on membrane fouling by alginate, *Chemosphere*, 242 (2020) 125232.

616 [63] Y. Chen, L. Shen, R. Li, X. Xu, H. Hong, H. Lin, J. Chen, Quantification of interfacial
617 energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN
618 artificial neural networks, *J. Colloid Interf. Sci.*, 565 (2020) 1-10.

619 [64] W. Borchard, U. Steinbrecht, Theory of swelling of a crosslinked substance in
620 equilibrium with a solvent in various phases, *Colloid & Polymer Science*, 269 (1991) 95-104.

621 [65] J. Teng, M. Wu, J. Chen, H. Lin, Y. He, Different fouling propensities of loosely and
622 tightly bound extracellular polymeric substances (EPSSs) and the related fouling mechanisms in a
623 membrane bioreactor, *Chemosphere*, 255 (2020) 126953.

624

Conflict of Interest

The authors declared that they have no conflicts of interest to this work.

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Author Statement

Jiaheng Teng: Investigation, Methodology, Writing - original draft.

Hanmin Zhang: Conceptualization, Funding acquisition, Project administration, Writing - review & editing.

Chuyang Tang: Investigation, Data curation, Formal analysis.

Hongjun Lin: Investigation, Data curation, Formal analysis.