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Violation of all two-party facet Bell inequalities by almost-quantum correlations
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The characterization of the set of quantum correlations is a problem of fundamental importance in quantum
information. The question whether every proper (tight) Bell inequality is violated in quantum theory is an
intriguing one in this regard. Here we make significant progress in answering this question, by showing that
every tight Bell inequality is violated by “almost-quantum” correlations, a semidefinite programming relaxation
of the set of quantum correlations. As a consequence, we show that many (classes of) Bell inequalities including
two-party correlation Bell inequalities and multioutcome nonlocal computation games, which do not admit
quantum violations, are not facets of the classical Bell polytope. To do this, we make use of the intriguing
connections between Bell correlations and the graph-theoretic Lovász-theta set, discovered by Cabello-Severini-
Winter (CSW). We also exploit connections between the cut polytope of graph theory and the classical correlation
Bell polytope, to show that correlation Bell inequalities that define facets of the lower dimensional correlation
polytope are violated in quantum theory.
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Quantum correlations, i.e., the correlations between quan-
tum systems in a Bell-type experiment, are of central
interest in quantum information theory. Their violation of
Bell inequalities shows, in a device-independent manner, that
quantum theory fundamentally differs from all classical theo-
ries. These quantum “nonlocal” correlations also allow us to
perform tasks that are impossible in classical theory, such as
generation of cryptographic key secure against post-quantum
eavesdroppers [1,2], intrinsic randomness certification and
amplification [3–6], and reduction of communication com-
plexity [7]. For fundamental reasons as well as to develop
these applications, it is of utmost importance to characterize
the set of quantum correlations, and understand how it fits in
between the polytopes of classical and general nonsignaling
correlations [8–10].

The proper (tight) Bell inequalities are those that define
facets of the classical polytope, while not also defining facets
of the no-signaling polytope [8–10]. A problem of fundamen-
tal importance in the characterization of quantum correlations
was raised by Gill in [11], namely whether every tight Bell
inequality is violated in quantum theory. The analogous ques-
tion pertaining to facets of the binary-outcome correlation
polytope (the classical polytope of two-party binary-outcome
correlations, excluding the local marginal terms) was raised
by Avis et al. in [12]. Escolá, Calsamiglia, and Winter in a
recent breakthrough result [13] answered the latter question,
showing that the binary-outcome correlation polytope does
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not share any nontrivial facet-defining inequalities (under-
stood as inequalities defining a face of dimension one less than
the set) in common with the set of quantum correlations. The
corresponding question for multiparty tight Bell inequalities
had been previously answered in a fundamental breakthrough
result by Fritz et al. [14] who identified a class of nontrivial
tight Bell inequalities (called local orthogonality inequalities)
that are not violated in quantum theory following results in
[15,16], when three or more parties are involved in the Bell
experiment. The corresponding local orthogonality principle
is a fundamental information-theoretic principle that serves
to delineate the set of correlations realizable in a physical
theory. In the multipartite Bell scenario, it only remains an
open question whether all nontrivial facet Bell inequalities
without quantum violation are of the local orthogonality form.
In the bipartite Bell experiment though, the local orthogonal-
ity constraints reduce to the no-signaling conditions, and do
not provide any nontrivial facet constraints to the quantum
correlation set.

In this paper we study the question of whether there are
tight two-party Bell inequalities with no quantum violation.
We first describe novel classes of two-party Bell inequali-
ties that do not admit quantum violation, including certain
two-party correlation Bell inequalities and their multiout-
come generalization. We then prove our central result that all
two-party Bell inequalities that define facets of the classical
Bell polytope are violated by a natural semidefinite program-
ming relaxation to the set of quantum correlations that has
been dubbed almost-quantum theory. We show how the novel
classes introduced earlier are proven to not describe facets as
a consequence of the result, as well as how it subsumes a re-
cent breakthrough on two-party XOR games with no quantum
advantage. Finally, we also show how connections discovered
by Avis et al. in [12] can be used to show that all correlation
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Bell inequalities that define facets of the lower dimensional
correlation Bell polytope are violated in quantum theory. We
end with a brief discussion and open questions.

I. PRELIMINARIES

Consider a two-party Bell experiment. Suppose one party
Alice chooses to measure one of mA inputs iA = 1, . . . , mA,
and obtains one of dA,iA outputs oA ∈ {1, . . . , dA,iA}. Similarly,
the other party Bob chooses to measure one of mB inputs iB =
1, . . . , mB, and obtains one of dB,iB outputs oB ∈ {1, . . . , dB,iB}
outputs. Such a Bell scenario is denoted by the notation
B(2; mA, �dA; mB, �dB), where �dA = (dA,1, . . . , dA,mA ) and �dB =
(dB,1, . . . , dB,mB ). In some instances, this notation can also be
shortened to B( �dA, �dB) for simplicity. The joint probability
of obtaining the outcomes (oA, oB) given the measurement
settings (iA, iB) is denoted as POA,OB|IA,IB (oA, oB|iA, iB). We
will view these n = (

∑mA
iA=1 dA,iA )(

∑mB
iB=1 dB,iB ) probabilities as

forming the components of a vector POA,OB|IA,IB = |P〉 in Rn,
where the inputs and outputs are implicit, and the probabilities
are also described as forming a box P.

In the Bell scenario B((2, 2), (2, 2)) where each party
chooses two dichotomic observables, all the facet inequal-
ities are known: up to permutation of the outcomes they
correspond to the well-known Clauser-Horne-Shimony-Holt
inequality [17]. While it is in principle possible using specific
facet-enumeration algorithms to obtain all the facet inequal-
ities of the classical polytope in any given Bell scenario, in
practice the complexity of the problem grows rapidly and
facet inequalities have been found in cases with a few more
observables and outcomes [18]. In fact, the problem of list-
ing all facet Bell inequalities has been demonstrated to be
NP-complete [19] making this an important but hard-to-solve
problem in the theory of quantum nonlocality.

The box P is a valid normalized no-signaling box, sat-
isfying the no-signaling constraints of relativity and the
normalization of probabilities, if it obeys the constraints of

(1) Non-negativity: POA,OB|IA,IB (oA, oB|iA, iB) � 0 for all
oA, oB, iA, iB,

(2) Normalization:
∑dA,iA

oA=1

∑dB,iB
oB=1 POA,OB|IA,IB (oA, oB|iA, iB) =

1 for all iA, iB,
(3) No-signaling:

dA,iA∑
oA=1

POA,OB|IA,IB (oA, oB|iA, iB) =
dA,i′A∑
o′

A=1

POA,OB|IA,IB (o′
A, oB|i′A, iB) for all iA, i′A, oB, iB,

dB,iB∑
oB=1

POA,OB|IA,IB (oA, oB|iA, iB) =
dB,i′B∑
o′

B=1

POA,OB|IA,IB (oA, o′
B|iA, i′B) for all iB, i′B, oA, iA. (1)

The boxes P that satisfy the above constraints
form the no-signaling polytope of the Bell scenario
NS[B(2; mA, �dA; mB, �dB)]. A fundamental result in polyhedral
theory, known as the Minkowski-Weyl theorem, states
that a polytope represented as the convex hull of a finite
number of points, such as NS[B(2; mA, �dA; mB, �dB)] can also
be equivalently represented as the intersection of finitely
many half-spaces. One may write the above constraints
in the form of inequalities, with the normalization and
no-signaling equalities being written as two inequalities, and
rewrite the no-signaling polytope in the following canonical
form:

NS[B(2; mA, �dA; mB, �dB)] = {|P〉 ∈ Rn : A · |P〉 � |b〉}.
(2)

Here the matrix A is an m × n matrix, with m =
n + 2mAmB + 2(mA − 1)

∑mB
iB=1(dB,iB − 1) + 2(mB −

1)
∑mA

iA=1(dA,iA − 1). This value for m comes from n
non-negativity constraints, mAmB normalization equalities,
and (mA − 1)

∑mB
iB=1(dB,iB − 1) no-signaling equalities

defining Bob’s marginal probabilities and similarly
(mB − 1)

∑mA
iA=1(dA,iA − 1) no-signaling equalities defining

Alice’s marginal probabilities. The vector |b〉 is an appropriate
defined m-dimensional vector with entries in {0, 1,−1}.
Crucially, this gives the dimensionality of the no-signaling

polytope to be

dim(NS[B(2; mA, �dA; mB, �dB)])

=
(

mA∑
iA=1

(dA,iA − 1) + 1

)

×
(

mB∑
iB=1

(dB,iB − 1) + 1

)
− 1 =: D. (3)

The boxes within the no-signaling polytope that addition-
ally satisfy the integrality constraint given by

(4) Integrality POA,OB|IA,IB (oA, oB|iA, iB) ∈ {0, 1} for all
oA, oB, iA, iB,

are said to be local deterministic boxes (LDBs). The con-
vex hull of these LDBs forms the classical or Bell polytope
denoted by C[B(2; mA, �dA; mB, �dB)]. This is the set of all cor-
relations obtainable from local hidden variable theories.

The set of quantum correlations denoted by
Q[B(2; mA, �dA; mB, �dB)] also lies within the no-signaling
polytope. This set consists of boxes P where each component
POA,OB|IA,IB (oA, oB|iA, iB) is obtained as

POA,OB|IA,IB (oA, oB|iA, iB) = Tr
[
ρ
(
EA

iA,oA
⊗ EB

iB,oB

)]
(4)

for some quantum state ρ ∈ Hd of some arbitrary di-
mension d , and sets of projection operators {EA

iA,oA
} for

Alice and {EB
iB,oB

} for Bob. Notably, the measurement
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operators satisfy the requirements of (i) Hermiticity:
(EA

iA,oA
)† = EA

iA,oA
for all iA, oA and (EB

iB,oB
)† = EB

iB,oB
for all

iB, oB; (ii) orthogonality: EA
iA,oA

EA
iA,o′

A
= δoA,o′

A
EA

iA,oA
for all iA

and EB
iB,oB

EB
iB,o′

B
= δoB,o′

B
EB

iB,oB
for all iB; and (iii) complete-

ness:
∑

oA
EA

iA,oA
= 1 for all iA and

∑
oB

EB
iB,oB

= 1 for all

iB. The set Q[B(2; mA, �dA; mB, �dB)] is convex but not a

polytope. We have the inclusions C[B(2; mA, �dA; mB, �dB)] ⊆
Q[B(2; mA, �dA; mB, �dB)] ⊆ NS[B(2; mA, �dA; mB, �dB)].

By the Minkowski-Weyl theorem, the set
C[B(2; mA, �dA; mB, �dB)] can also be equivalently represented
as the intersection of finitely many half-spaces

C[B(2; mA, �dA; mB, �dB)] = {|P〉 ∈ Rn : BGi · |P〉 � ωc(Gi ) ∀i ∈ I}, (5)

where {BGi · |P〉 � ωc(Gi ), i ∈ I} is a finite set of
inequalities. The inequalities supporting facets of
C[B(2; mA, �dA; mB, �dB)] provide a minimal set of such
inequalities, and are usually referred to as facet Bell
inequalities, or in some instances in the literature just as
the Bell inequalities. In particular, any valid inequality
for C[B(2; mA, �dA; mB, �dB)] can be derived from the facet
inequalities.

The introduction of a few notions from polytope theory
is in order here. Boxes P1, . . . , Pm in Rn are said to be
affinely independent if the unique solution to

∑m
i=1 μiPi = 0,∑m

i=1 μi = 0 is that μi = 0 for all i = 1, . . . , m. Equivalently,
the boxes are affinely independent if P2 − P1, . . . , Pm − P1 are
linearly independent. The affine hull of a set of boxes is the set
of all their affine combinations. The affine set has dimension
K , if the maximum number of affinely independent boxes it
contains is K + 1. An inequality BGi · |P〉 � ωc(Gi ) satisfied
by all boxes in C[B(2; mA, �dA; mB, �dB)] is called a valid Bell
inequality. Given a valid inequality BGi · |P〉 � ωc(Gi ), the set

F = {|P〉 ∈ Rn : BGi · |P〉 = ωc(Gi )} (6)

is called a face of the classical polytope and the inequality
is said to support F . The dimension of F is the dimen-
sion of its affine hull. If F 	= ∅ (the empty set) and F 	=
C[B(2; mA, �dA; mB, �dB)], it is a proper face. Proper faces sat-
isfy by definition dim(F ) � dim(C[B(2; mA, �dA; mB, �dB)]) −
1 = D − 1. Proper faces of maximal dimension are called
facets. A Bell inequality BGi · |P〉 � ωc(Gi) thus supports a
facet of the classical polytope if and only if D affinely in-
dependent boxes of C[B(2; mA, �dA; mB, �dB)] satisfy it with
equality.

Finding the quantum violation of a Bell inequality is also
a well-known hard problem. In the special instance of two-
party correlation Bell inequalities, also known as XOR games,
the quantum value can be directly determined by means of
a semidefinite program, as shown by Tsirelson [20]. For
more general two-party Bell inequalities, where the parties
observe more than two measurement outcomes, or where the
inequality also includes terms involving marginal probabili-
ties observed by either party, finding the quantum violation is
not as easy. In [21], a hierarchy of semidefinite programs was
formulated for optimization with noncommuting variables,
and this NPA hierarchy is ubiquitously employed to efficiently
determine upper bounds to the quantum violation for general
Bell inequalities. The hierarchy was also shown to converge
to a set Qpr[B(2; mA, �dA; mB, �dB)], which is the set consisting

of boxes P where each component POA,OB|IA,IB (oA, oB|iA, iB) is
obtained as

POA,OB|IA,IB (oA, oB|iA, iB) = Tr
[
ρ
(
EA

iA,oA
EB

iB,oB

)]
, (7)

with [EA
iA,oA

, EB
iB,oB

] = 0 for all iA, oA, iB, oB. The above differs
from Eq. (4) in that the strict requirement of tensor product
structure is replaced with the requirement of only commuta-
tion between different parties’ measurements. It is clear that
Q[B(2; mA, �dA; mB, �dB)] ⊆ Qpr[B(2; mA, �dA; mB, �dB)].

In the NPA hierarchy, one considers sets consisting
of sequences of product projection operators S1 = {1} ∪
{EA

iA,oA
} ∪ {EB

iB,oB
}, S2 = S1 ∪ {EA

iA,oA
EB

iB,oB
}, etc. The convex

sets corresponding to different levels of this hierarchy
Ql [B(2; mA, �dA; mB, �dB)] are constructed by testing for the
existence of a certificate �l associated to the set of operators
Sl by means of a semidefinite program. This certificate �l

corresponding to level l of the NPA hierarchy is a |Sl | ×
|Sl | matrix whose rows and columns are indexed by the
operators in the set Sl . The certificate �l is required to
be a complex Hermitian positive semidefinite matrix sat-
isfying the following constraints on its entries: (i) �l

1,1 =
1 and (ii) �l

Q,R = �l
S,T if Q†R = S†T . The latter condi-

tion in particular imposes that �l
1,EA

iA ,oA
EB

iB ,oB

= �l
EA

iA,oA
,EB

iB ,oB

=
�l

EA
iA ,oA

EB
iB ,oB

,EA
iA ,oA

EB
iB ,oB

= POA,OB|IA,IB (oA, oB|iA, iB).

One of the levels of the NPA hierarchy denoted
Q1+AB[B(2; mA, �dA; mB, �dB)] or Q̃[B(2; mA, �dA; mB, �dB)] has
been highlighted as being the almost-quantum set [22]. This
set corresponds to an intermediate level of the hierarchy and
is associated with the set of operators S̃ = {1} ∪ {EA

iA,oA
EB

iB,oB
},

where the latter set includes measurement operators for every
iA, oA, iB, oB. A more intuitive physical characterization of the
almost-quantum set is also known [22]. A given POA,OB|IA,IB

belongs to the almost-quantum set if there exists a normalized
quantum state ρ and projective measurements {EA

iA,oA
} and

{EB
iB,oB

} such that the correlations arise as usual via the Born
rule:

POA,OB|IA,IB (oA, oB|iA, iB) = Tr
[
ρ
(
EA

iA,oA
EB

iB,oB

)]
. (8)

However, crucially here we do not demand that the projec-
tors corresponding to different parties commute. Instead we
impose the following:

EA
iA,oA

EB
iB,oB

ρ
(
EA

iA,oA
EB

iB,oB

)† = �ρ�†, (9)

where � is any permutation of EA
iA,oA

EB
iB,oB

(such as
EB

iB,oB
EA

iA,oA
). Notice that this requirement does not ensure that
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the projectors for the two parties commute, so that the almost-
quantum set is an outer relaxation (a superset) of the quantum
set. Interestingly, the almost-quantum set has been proven to
satisfy many of the information-theoretic principles designed
to pick out quantum theory from among all no-signaling theo-
ries, such as the local orthogonality principle, no advantage
in nonlocal computation, etc. [14,23], also see [24,25] for
interesting recent results in this direction. Moreover, a number
of Bell inequalities achieve their optimal quantum violations
already at this level, including the aforementioned correlation
Bell inequalities.

II. BELL INEQUALITIES WITH NO
QUANTUM VIOLATION

In identifying Bell inequalities for which no quantum vi-
olation exists, facet Bell inequalities play a crucial role. On
the one hand, finding a facet Bell inequality with no quantum
violation implies finding the largest dimensional face of the
set of quantum correlations which one can describe analyti-
cally. On the other hand, if we relax the facet requirement, one
can readily construct many Bell inequalities with no quantum
violation by suitably tilting known facet Bell inequalities (that
do admit quantum violation) [26].

(i) For instance, consider the well-studied CHSH Bell
scenario B((2, 2), (2, 2)), where Alice measures one of two
binary observables A1, A2 and Bob similarly measures binary
observables B1, B2. The classical polytope in this scenario is a
well-characterized eight-dimensional polytope with the only
nontrivial facet [the trivial facets are the non-negativity con-
straints POA,OB|IA,IB (oA, oB|iA, iB) � 0] known to be the CHSH
inequality (up to local relabelings of inputs and outputs and
an exchange of parties) given as

〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 � 2, (10)

where as usual the correlator is 〈AiA BiB〉 =∑
k=0,1(−1)kPOA,OB|iA,iB (oA ⊕ oB = k|iA, iB) for iA, iB = 1, 2.

Tilting the above facet inequality by choosing coefficients
α11, α12, α21, α22 > 0 normalized as α11 + α12 + α21 + α22 =
1, one gets the following class of inequalities:

α11〈A1B1〉 + α12〈A1B2〉 + α21〈A2B1〉 − α22〈A2B2〉
� 1 − 2 min{α11, α12, α21, α22}. (11)

Using the Tsirelson solution for the quantum value of cor-
relation Bell inequalities with binary outcomes, a simple
characterization for the XOR games with no quantum advan-
tage was obtained in [27]. We can use the characterization
to show that (nonfacet) Bell inequalities of the form in (11)
do not admit quantum violation when the following condi-
tion is satisfied by the coefficients (in the case when α22 <

α11, α12, α21) [28]:

(α12α21 + α11α22)2

� (α11 + α12)(α11 + α21)(α12 − α22)(α21 − α22). (12)

An analogous condition holds when one of the other coef-
ficients is the minimum as well. As an example satisfying
the above condition, one may take {α11, α12, α21, α22} =
{ 9

16 , 1
4 , 1

8 , 1
16 }.

(ii) A second important consideration in finding Bell in-
equalities with no quantum violation is a recent breakthrough
result [13] showing that any two-player XOR game, for which
the corresponding Bell inequality is tight, has a quantum
advantage. Their result, automatically rules out inequalities
such as (11) under condition (12) and the XOR games with
no quantum advantage derived in [23,27] from being facet
Bell inequalities. However, binary-outcome correlation Bell
inequalities only form a small subset of possible two-party
Bell inequalities, since they restrict to the case δA,iA = dB,iB =
2 for all iA, iB and furthermore to the case that the inequality
only consider terms involving the correlators 〈AiA BiB〉. Indeed,
correlation Bell inequalities directly generalize to Bell sce-
narios where the number of outcomes for each party is d > 2
leading to Bell inequalities of the type

mA∑
iA=1

mB∑
iB=1

d∑
oA,oB=1

q(iA, iB)

× POA,OB|iA,iB (oA + oB mod d = f (iA, iB)|iA, iB) � βc,

(13)

for some function f from the inputs (iA, iB) to a value in
{1, . . . , d}. Let the root of unity be ζ = exp(2π i/d ), and
define d − 1 (game) matrices of dimension mA × mB as

�k :=
mA∑

iA=1

mB∑
iB=1

q(iA, iB)ζ k f (iA,iB )|iA〉〈iB|, (14)

for k = 1, . . . , d − 1. Then, a sufficient condition for Bell
inequalities of the form (13) to have no quantum violation was
shown by us in [28,29]. Namely, if the maximum left and right
singular vectors |u1〉 and |v1〉 of �1 are composed entirely
of roots of unity entries alone (arbitrary integral powers of
ζ ), and simultaneously if the maximum left and right singular
vectors |uk〉 and |vk〉 of �k are obtainable from |u1〉 and |v1〉
by the substitution ζ → ζ k , then the corresponding inequality
(13) admits no quantum violation. As an example consider the
inequality corresponding to the game matrix

�1 = 1

24

⎡
⎢⎣

i 2 −2 i
2 i i −2

−2 i i 2
i −2 2 i

⎤
⎥⎦,

i.e., with f (1, 1) = f (2, 2) = f (3, 3) = f (4, 4) = f (1, 4) =
f (2, 3) = f (3, 2) = f (4, 1) = 1, f (1, 2) = f (2, 1) =
f (3, 4) = f (4, 3) = 4, f (1, 3) = f (2, 4) = f (3, 1) =
f (4, 2) = 2, and similarly q(1, 2) = q(2, 1) = q(3, 4) =
q(4, 3) = q(1, 3) = q(2, 4) = q(3, 1) = q(4, 2) = 1

12 and
the remaining eight probabilities all equal to 1

24 . The
corresponding inequality has classical value βc = 3

4 and an
optimization to level Q1[B(2; 4, (4, 4, 4, 4); 4, (4, 4, 4, 4))]
shows that the quantum value is also equal to βq = 3

4 .
This is reflected in the maximum singular vectors of �1

being composed of powers of i = exp(2π i/4) only, and the
corresponding condition being satisfied by the matrices
�2,�3 as well. The fact that the sufficient condition
is inherited from the level Q1[B(2; mA, �dA; mB, �dB)] in
general [20] implies, by our central result, that none of the
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corresponding Bell inequalities with no quantum violation
define facets of the Bell polytope.

(iii) Furthermore, the fact that XOR games obey a perfect
parallel repetition theorem [30] implies that from a given
binary-outcome correlation Bell inequality with no quantum
violation, one can construct several Bell inequalities in higher-
dimensional multioutcome Bell scenarios that also do not
allow for quantum violation. Indeed, any parallel repetition
of the nonlocal computation game from [23] yields examples
of 2k-output games without quantum advantage.

(iv) Even considering Bell inequalities with marginal
terms, it is possible to construct inequalities with no quantum
violation. We give an illustrative example here in the simple
B((2, 2), (2, 2)) scenario, more involved scenarios require a
careful construction using the NPA hierarchy. Consider the
inequality parametrized by real 0 � α � 1 and given as

POA,OB|iA,iB (0, 0|0, 0) + αPOA,OB|iA,iB (1, 1|0, 0)

− POA,OB|iA,iB (0, 1|0, 1) − POA,OB|iA,iB (1, 0|1, 0)

− POA,OB|iA,iB (0, 0|1, 1) � α, (15)

where the classical maximum of α is readily obtained by
direct inspection over local deterministic strategies. A well-
known result using Jordan’s lemma [31] states that the
quantum maximum of inequalities in this Bell scenario is ob-

tainable by performing projective measurements on two-qubit
states. A direct optimization over two-qubit states reveals that
the inequality has the quantum value βq = α in the parameter
range 0.867 � α < 1. Three affinely independent local deter-
ministic strategies saturate the inequality, showing that the
inequality defines a two-dimensional face of the set of local
correlations. Together with the quantum strategy, at the critical
value of α this saturates the bound of mA + 1

2 mA(mA − 1)
derived in [13]. The local strategies are explicitly given as
follows: (i) Alice outputs (1,1) for her two inputs iA = 1, 2,
Bob outputs (1,0) for iB = 1, 2, (ii) Alice outputs (1,1), Bob
outputs (1,1), (iii) Alice outputs (1,0), Bob outputs (1,1).

III. FACET BELL INEQUALITIES ARE VIOLATED
IN ALMOST-QUANTUM THEORY

Cabello, Severini, and Winter discovered a relationship
between Bell scenarios (that also extends to more general
contextuality scenarios) and graph theory [32,33]. For a
given two-party Bell scenario B( �dA, �dB), one constructs an
orthogonality graph GB( �dA, �dB ) as follows. Each input-output
combination (oA, oB|iA, iB) corresponds to a distinct vertex
v(oA,oB|iA,iB ) of the graph, and two such vertices are connected
by an edge if the corresponding events are locally orthogonal,
where local orthogonality is the condition that distinct out-
comes are obtained for the same local input. In other words,
we have

v(oA,oB|iA,iB ) ∼ v(o′
A,o′

B|i′A,i′B ) ⇔ (iA = i′A ∧ oA 	= o′
A) ∨ (iB = i′B ∧ oB 	= o′

B). (16)

Equivalently, we may consider that each product measure-
ment operator EA

iA,oA
EB

iB,oB
corresponds to a vertex in the graph

GB( �dA, �dB ) with vertices connected by an edge if iA = i′A and
EA

iA,oA
EA

i′A,o′
A

= 0 or iB = i′B and EB
iB,oB

EB
i′B,o′

B
= 0. The number

of vertices in the graph is |V (GB( �dA, �dB ) )| = n.
Furthermore, given a graph G with vertex set V (G) and

edge set E (G) one can also find a set of unit vectors obeying
the above orthogonality conditions, called an orthonormal
representation of the graph. Formally, an orthonormal repre-
sentation of graph G is a set {|ui〉 ∈ RN : i ∈ V (G)} where
N is some arbitrary dimension, ‖|ui〉‖ = 1 for all i ∈ V (G)

and 〈ui|u j〉 = 0 for (i, j) ∈ E (G). It should be noted that in
the graph-theoretic literature, the Lovász orthogonal repre-
sentation is also defined in a complementary manner, with
nonadjacent vertices being assigned orthogonal vectors. For
a given graph G, the Lovász theta-body TH(G) (sometimes
also called the Grötschel-Lovász-Schrijver theta-body) is a
convex set introduced [34–36] as a semidefinite programming
relaxation to the hard graph-theoretic problem of finding a
maximum weight stable set of the graph (a stable set is a set
of mutually nonadjacent vertices). The theta set is defined as
follows:

Definition 1. For a graph G = (V (G), E (G)), define the
convex set T H (G) as

TH(G) :=
{

|P〉 = (|〈ψ |ui〉|2 : i ∈ V (G)) ∈ RV (G)
+

∣∣∣∣∣‖|ψ〉‖ = ‖|ui〉‖ = 1,

{|ui〉} is an orthonormal representation of G

}
. (17)

The similarity between the set TH(G) and the set
Q1+AB[B(2; mA, �dA; mB, �dB)] has been noted in the literature,
here we give a self-contained proof that is more suited to-
wards establishing our main result. First, as shown in [14],
the normalization and no-signaling constraints on a box can
be rewritten in terms of maximum clique equalities in the

orthogonality graph, where a clique inequality is an inequality
of the form

∑
v(oA ,oB |iA ,iB )∈c

POA,OB|IA,IB (oA, oB|iA, iB) � 1, (18)
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for some clique c in the graph. Here a clique denotes a set
of mutually adjacent vertices. Now, since by definition, each
normalization constraint only considers events corresponding
to different outcomes for the same measurement setting, it
is clear that the normalization constraint corresponds to a

clique inequality that is saturated. To see that the no-signaling
condition also corresponds to such a constraint, note that using
the normalization constraint, the no-signaling conditions can
be rewritten in the form

dA,iA∑
oA=1

POA,OB|IA,IB (oA, oB|iA, iB) +
dB,iB∑

o′
B = 1

o′
B 	= oB

dA,i′A∑
o′

A=1

POA,OB|IA,IB (o′
A, o′

B|i′A, iB) = 1 for all iA, i′A, oB, iB,

dB,iB∑
oB=1

POA,OB|IA,IB (oA, oB|iA, iB) +
dA,iA∑

o′
A = 1

o′
A 	= oA

dB,i′B∑
o′

B=1

POA,OB|IA,IB (o′
A, o′

B|iA, i′B) = 1 for all iB, i′B, oA, iA. (19)

Each no-signaling condition expressed in the above form considers events that are locally orthogonal, and thus corresponds
to a saturated clique inequality. Furthermore, the normalization and no-signaling conditions correspond to maximum clique
inequalities, i.e., no other measurement event (oA, oB|iA, iB) exists that is locally orthogonal to every event in these equations.
Interestingly, it was shown in [14] that in any two-party Bell scenario B( �dA, �dB), the normalization and no-signaling conditions
encompass all the maximum clique inequalities, i.e., every maximum clique inequality corresponds to a normalization or a
no-signaling constraint. On the other hand, when one considers Bell scenarios involving three or more parties, other maximum
clique inequalities exist, and these are the constraints identified by the local orthogonality principle.

In a formal sense, Q1+AB[B(2; mA, �dA; mB, �dB)] is equivalent to the set TH(G) defined for an appropriate orthogonality
graph GB( �dA, �dB ), with the additional constraint that the maximum clique inequalities corresponding to the normalization and
the no-signaling conditions be set to equalities. In other words, define Cn,ns as the set of maximum cliques in the orthgonality
graph GB( �dA, �dB ) that correspond to the normalization and no-signaling constraints in the Bell scenario. Define the convex set
THn,ns(GB( �dA, �dB ) ) as

THn,ns
(
GB( �dA, �dB )

)
:=

{
|P〉 = [|〈ψ |ui〉|2 : i ∈ V

(
GB( �dA, �dB )

)] ∈ Rn
+

∣∣∣∣∣
‖|ψ〉‖ = ‖|ui〉‖ = 1 ∀i
{|ui〉} is an orth. repn. of GB( �dA, �dB )∑

i∈c |〈ψ |ui〉|2 = 1, for all c ∈ Cn,ns

}
. (20)

The set Q1+AB[B(2; mA, �dA; mB, �dB)] is then equivalent to
THn,ns(GB( �dA, �dB ) ):

Theorem 2 (see [32,37,38]). For any two-party Bell
scenario B( �dA, �dB), it holds that Q1+AB[B( �dA, �dB)] =
THn,ns(GB( �dA, �dB ) ).

At this point it is important to note the dimension mis-
match between the sets Q1+AB[B(2; mA, �dA; mB, �dB)] and
TH(G). Namely, while TH(G) is a full-dimensional con-
vex set (of dimension n), Q1+AB[B(2; mA, �dA; mB, �dB)] is of
much smaller dimension (being of dimension D). Therefore,
one may wonder whether any statements about the facets
of TH(G) hold true for the smaller dimensional set, since
facets of Q1+AB[B(2; mA, �dA; mB, �dB)] would be faces of much
smaller dimension in TH(G). Nevertheless, we use techniques
used in the study of the facets of TH(G) to show the fol-
lowing statement about the facets of the almost-quantum
set.

Theorem 3. In bipartite Bell scenarios, irrespective of the
number of inputs and outputs for each party, the only full-
dimensional linear facets of the almost-quantum set are also
facets of the no-signaling polytope. In other words, for a facet
Bell inequality of the form∑

oA,oB,iA,iB

q(iA, iB)V (oA, oB, iA, iB)P(oA, oB|iA, iB) � ωc, (21)

where ωc denotes the classical value of the inequality, the
almost-quantum value ωq̃ is strictly larger than ωc, i.e., ωq̃ >

ωc.
Proof. The proof follows analogously to that of an analo-

gous claim made for the general Lovász theta set TH(G). It is
noteworthy that the set TH(G) has been characterized in mul-
tiple ways in the literature. We begin with a complementary
characterization of the set THn,ns(GB( �dA, �dB ) ) inherited from a
characterization of TH(G) [39,40] that is particularly suited
to our problem:

THn,ns
(
GB( �dA, �dB )

) =

⎧⎪⎪⎨
⎪⎪⎩|P〉 ∈ Rn

+

∣∣∣∣∣
∑

i∈V (GB( �dA , �dB ) ) |〈φ|wi〉|2|P〉i � 1

{|wi〉} is an orth. repn. of GB( �dA, �dB )
‖|φ〉‖ = ‖|wi〉‖ = 1 ∀i∑

i∈c |P〉i = 1, for all c ∈ Cn,ns

⎫⎪⎪⎬
⎪⎪⎭. (22)
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Here G denotes the graph complement of G, i.e., the graph with the same vertex set as G and the complementary edge set (u ∼ v

in G ⇔ u 	∼ v in G). This representation of THn,ns(GB( �dA, �dB ) ) = Q1+AB[B(2; mA, �dA; mB, �dB)] is useful since it characterizes
the facets of the set, in particular every facet is of the form

∑
i∈V (GB( �dA , �dB ) )

|〈φ|wi〉|2|P〉i = 1 for some unit vector |φ〉 ∈ RN

and orthonormal representation {|wi〉 ∈ RN } of G. It is also worth noting that the normalization and no-signaling constraints∑
i∈c |P〉i = 1 also fall in this category, if we choose |wi〉 = |φ〉 for every vertex i ∈ c and |wi〉 = |φ〉⊥, for some arbitrary unit

vector |φ〉 and an orthogonal unit vector |φ〉⊥ ⊥ |φ〉.

Let F = {|P〉| ∑i∈V (GB( �dA , �dB ) )
|〈φ|wi〉|2|P〉i = 1} be a facet

of Q1+AB[B(2; mA, �dA; mB, �dB)]. Let |P∗〉 ∈ int(F ). We have
the following:∑

i∈V (GB( �dA , �dB ) )
|〈φ|wi〉|2|P∗〉i � 〈φ|φ〉

⇒ 〈φ|

⎛
⎜⎝ ∑

i∈V (GB( �dA , �dB ) )
|P∗〉i|wi〉〈wi|

⎞
⎟⎠|φ〉 � 1. (23)

Saturation of the above inequality implies that |φ〉 is a
maximum eigenvector of (

∑
i∈V (GB( �dA , �dB ) )

|P∗〉i|wi〉〈wi|) corre-

sponding to eigenvalue 1. In other words⎛
⎜⎝ ∑

i∈V (GB( �dA , �dB ) )
|P∗〉i|wi〉〈wi|

⎞
⎟⎠|φ〉 = |φ〉,

×

⎛
⎜⎝ ∑

i∈V (GB( �dA , �dB ) )
|P∗〉i〈wi|φ〉

⎞
⎟⎠|wi〉 j

=

⎛
⎜⎝ ∑

i∈V (GB( �dA , �dB ) )
|P∗〉i|〈wi|φ〉|2

⎞
⎟⎠|φ〉 j for j = 1, . . . , N,

(24)

where in obtaining the last equation we have used the first
inequality of (23). Now as F is a facet, it is not a convex
combination of other facet-defining inequalities in Eq. (22),
so that the above equality implies

〈wi|φ〉|wi〉 = |〈wi|φ〉|2|φ〉 ∀i ∈ V (GB( �dA, �dB ) ). (25)

This gives that for each i ∈ V (GB( �dA, �dB ) ), either 〈wi|φ〉 = 0 or

|wi〉 = 〈wi|φ〉|φ〉
⇒ |wi〉 = ±|φ〉, (26)

without loss of generality we may take |wi〉 = |φ〉. Therefore,
for every i ∈ V (GB( �dA, �dB ) ), either 〈wi|φ〉 = 0 or |wi〉 = |φ〉.
Defining the set I as I := {i ∈ V (GB( �dA, �dB ) )| |wi〉 = |φ〉}, we

obtain that {|wi〉} is an orthonormal representation of G where
|wi〉 takes value |φ〉 for every i ∈ I, while |wi〉 belongs to the
subspace of RN that is orthogonal to |φ〉 when i /∈ I. This
therefore implies that all the vertices in I are mutually nonad-
jacent in G, i.e., that I is a stable set of G or in other words I is
a clique of G. The inequality

∑
i∈V (GB( �dA , �dB ) )

|〈φ|wi〉|2|P〉i = 1

supporting facet F of Q1+AB[B(2; mA, �dA; mB, �dB)] thus con-
stitutes the saturation of a clique inequality of the form

∑
i∈I |P〉i = 1. Now from [14,41] we know that in any two-

party Bell scenario, the clique inequalities are exhausted by
the no-signaling and normalization constraints. Therefore,
no other proper facet-defining Bell inequality exists that is
also a facet of Q1+AB[B(2; mA, �dA; mB, �dB)], i.e., every two-
party facet Bell inequality is violated in almost-quantum
theory.

Thm. (3) thus shows that every two-party facet Bell in-
equality, irrespective of the number of inputs and outputs for
each party, admits a violation in almost-quantum theory. It is
worth noting that an alternative route to deriving the result in
Thm. (3) is to parametrize box |P〉 in terms of D parameters,
being probabilities POA,OB|IA,IB (oA, oB|iA, iB), from which other
probabilities that define the box can be obtained via normal-
ization and no-signaling conditions, as done for example in
[21]. The result on facets of TH(G) from [39,40,42] applied
to the theta-set of the orthogonality graph of this subset of
events in the Bell experiment, can then be used to derive Thm.
(3).

Corollary 4. Any two-party facet Bell inequality, irre-
spective of the number of inputs and outputs for each
party, for which the quantum value is achieved at level
1 + AB of the NPA hierarchy, admits a violation in quan-
tum theory. In particular, two-party XOR games that
define facet Bell inequalities always admit a quantum
advantage.

Proof. Two-party XOR games form a class of Bell inequal-
ities for which the quantum value is achieved at level 1 + AB,
in fact already at level 1 of the NPA hierarchy, by the results
of Tsirelson [20]. Therefore, binary-outcome correlation Bell
inequalities that do not admit quantum violation, do not define
facets of the classical Bell polytope.

This Corollary neatly recovers the result by Escolá et al.
[13]. Besides, as we have seen it also recovers a central result
of [28], namely that d-outcome nonlocal computation games
do not define facets of the Bell polytope. Finally, other unique
games with no quantum advantage considered in [28] are also
shown to not correspond to facet-defining Bell inequalities.
An important question remains.

Open Can the method be extended to other levels of the
NPA hierarchy, to identify whether any two-party facet Bell
inequality also defines a facet of the set of quantum correla-
tions?

Such a facet, if it exists, could provide the crucial insight
towards identifying a fundamental information-theoretic prin-
ciple that explains why nature chose quantum theory over
almost-quantum theory [22]. The result shown here does not
indicate the answer to the question in either direction, since
it is at present unknown how rare are the linear inequali-
ties which admit almost-quantum violation but no quantum
violation.
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IV. ALL TWO-PARTY FACET-DEFINING INEQUALITIES
OF THE BELL CORRELATION POLYTOPE ARE

VIOLATED IN QUANTUM THEORY

Avis et al. [12] posed the question whether there are
any facets of the binary-outcome correlation polytope (the
classical polytope of two-party binary-outcome correlations
〈AiA BiB〉 ∈ {+1,−1}, excluding the local marginal terms) that
are not violated in quantum theory. In other words, is there
any nontrivial facet of the set of classical bipartite two-point
correlation vectors (expectation values of the form 〈AiA BiB〉 ∈
{+1,−1}) that is not violated in quantum theory? Note that
these sets are of smaller dimension than the sets considered
in the previous sections, since they only involve the two-point
correlation terms and not the local marginal terms 〈AiA〉 and
〈BiB〉.

The question raised by Avis et al. [12] was recently an-
swered in the negative by Escolá et al. [13], making use of
the simple characterization of XOR games with no quantum
advantage given in [27]. Here we provide an alternative proof,
making use of a connection between the correlation polytope
and the cut polytope of graph theory [12]. In particular, this
connection links the set of binary-outcome quantum correla-
tions and the well-studied elliptope in graph theory, this latter
body being the semidefinite programming relaxation of the cut
polytope.

First, we introduce the cut polytope of complete graph
following [43]. The graph is denoted by �t , has t vertices,
and has an edge between each pair of vertices. A cut S is an
assignment of {0, 1} to each vertex in the graph. The cut vector
δ(S) for some cut S is given by δu,v (S) = 1 if vertices u, v are
assigned different values, and 0 if the vertices are assigned
the same values. The set of all convex combinations of cut
vectors Cut(�t ) = {∑S:cut pSδ(S)| ∑S:cut pS = 1, pS � 0} is
called the cut polytope of the complete graph. The vectors
of correlation functions which are possible in classical corre-
lation experiments form the cut polytope Cut(�mA,mB ) of the
complete bipartite graph �mA,mB . Tight correlation inequalities
are exactly the facet-inducing inequalities of the polytope
Cut(�mA,mB ).

The semidefinite relaxation of the cut polytope of the com-
plete graph �t is the elliptope E (�t ) also sometimes denoted
as Et×t . Formally, Et×t denotes the set of t × t correlation
matrices (positive semidefinite matrices with diagonal entries
equal to 1)

Et×t := {M ∈ Rt×t |M � 0, Mi,i = 1 for all i = 1, . . . , t}.
(27)

In general, the elliptope E (G) of a graph G = (V, E ) with
|V | vertices is the convex body consisting of vectors �x ∈ RE

such that there exist a unit vector |ui〉 ∈ R|V | for each vertex
i ∈ V satisfying �xi, j = 〈ui|u j〉. In particular, the elliptope of
the complete bipartite graph E (�mA,mB ) is the set of vectors
�x ∈ RE (�mA,mB ) satisfying the conditions of Tsirelson’s theo-
rem, so that E (�mA,mB ) is the set of bipartite binary-outcome
quantum correlations [12]. The dimensionalities of these sets
is dim(Et×t ) = (t

2

)
, and dim[E (�mA,mB )] = mAmB. Moreover,

E (�mA,mB ) is a projection of Et×t onto the lower-dimensional
space for t = mA + mB.

We now show that every two-party facet-defining correla-
tion Bell inequality, irrespective of the number of inputs and
outputs for each party, admits a violation in quantum theory.
In other words, for a facet-defining correlation Bell inequality
of the form ∑

iA,iB

αiA,iB〈AiA BiB〉 � βc, (28)

where βc denotes the classical value of the inequality, the
quantum value βq is strictly larger than βc. Formally, we show
the following.

Theorem 5. All faces of the set of quantum bipartite two-
point correlation vectors are of strictly lower dimension than
that of the facets of the set of classical bipartite two-point
correlation vectors.

The proof of Thm. (5) follows from the discussion above,
mapping the cut polytope and the correlation Bell polytope,
along with the corresponding mapping between the elliptope
and the set of two-party binary-outcome quantum correlations
[12]. Laurent and Poljak in [44], building upon the results
of [45], show that the largest dimension of a polyhedral face
(formed by the convex hull of cut vectors) of Et×t is equal
to the largest integer dt such that

(dt +1
2

)
� t − 1, i.e., dt =

�
√

8t−7−1
2 �. They further show that the largest dimension of

any face of Et×t is
(t−1

2

)
. A facet-defining correlation Bell in-

equality is, by definition, of dimension dim[E (�mA,mB ]) − 1 =
mAmB − 1. For t := mA + mB, it is readily seen that for all
values of mA, mB � 2,

mAmB − 1 > dt , (29)

so that the set of quantum bipartite two-point correlation
vectors shares no facets with the set of classical bipartite
two-point correlation vectors. It follows that all bipartite Bell
inequalities which are facets of the classical correlation poly-
tope must admit quantum violation.

V. CONCLUSIONS

In this paper we have shown that that all two-party Bell
inequalities that define facets of the classical Bell polytope,
are violated in a natural semidefinite programming relaxation
to the set of quantum correlations, termed almost-quantum
theory. We have also seen that all correlation Bell inequalities
that define facets of the lower dimensional correlation Bell
polytope, are violated in quantum theory.

We reiterate the important open question that still remains.
Open Is every facet-defining bipartite Bell inequality (of

the classical two-party Bell polytope) violated in quantum
theory?

A positive answer for the question could provide a promis-
ing route to identifying a fundamental principle singling out
the set of quantum correlations among other nonsignaling
ones. It would be interesting to see if the methods discussed
here can be extended to further levels of the convergent hierar-
chy of semidefinite programming relaxations of the quantum
set. It would also be interesting to find tight bounds on the
dimension of the faces of the quantum set, and information-
theoretic explanations behind these.
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