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Abstract—High penetration of wind energy has intensified 

system pressure in balancing supply and demand due to the 
uncertainty nature of wind velocity. To mitigate the negative 
impacts brought along by wind power integration, an optimal 
power regulation scheme for a wind farm is proposed in this work. 
Specifically, the benefits of the designed wind power regulation 
scheme is innovatively quantified via the reduction of balancing 
cost. To handle wind uncertainty while determining generation 
profile for the wind farm, a robust strategy is introduced in the 
proposed control. In addition, the aerodynamic interactions 
among wind turbines are considered. To bypass the nonlinearity 
and non-convexity involved in the optimization problem and 
achieve online application, an artificial intelligence aided control 
is newly designed. Simulation results demonstrate the good 
performance of the proposed control scheme under multiple 
operation scenarios. 
 

Index Terms—Wind farm, wind power regulation, optimal 
control, online application 

NOMENCLATURE 
 Mechanical power capture by a WT 

r Air density 
R WT rotor radius  
vw Wind speed 
Cp Power coefficient 
b WT Pitch angle 
l WT Tip speed ratio 

 WT rotor speed 
 Active power reference generated from 

MPPT algorithm 
Pwtnom Nominal power of a WT 

J WT equivalent moment inertia 
 WT aerodynamic torque 
 WT electrical torque 
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 WT gear box ratio 
 Aggregated velocity deficit of a WT 

CT WT thrust coefficient  
k Decay constant 

 Mileage payment of an AGC unit m at 
time slot k 

 Regulation mileage of unit m at time slot 
k 

S Mileage price 
 Performance score of unit m 
 Electric power converted from kinetic 

energy charging/discharging process 
 Electric power output of a WT 
 Control interval 
 Weighting factor in the multi-objective 

optimization 
Pwfnom Nominal power of the WF 

 Rotor speed that ensures the maximum 
power capture under a certain   

 Load demand at time slot k 

 Scheduled power at time slot k 

 Up regulation mileage of unit m at time 
slot k 

 Down regulation mileage of unit m at 
time slot k 

 Up AGC set points of unit m 

 Down AGC set points of unit m 

 Regulation capability of an AGC unit 

 Sequence of predicted quantiles 
l Loss function 

 Target quantile 
 Observation at time slot k+i 
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 Predicted quantile at time slot k+i 
 Training dataset 

 Ensemble collective output of an 
individual learner  

 De-correlated error of an individual 
learner 

 Weight of the i-th based network 
bi Output of the i-th based network 

 Regularizing factor 
 Output of the i-th based network 

 Output weight of the j-th hidden neuron 
in the i-th base model 

 Output of j-th hidden neuron in the i-th 
base model 

 Compensated power 
 Compensated pitch angle 

 Mechanical power captured by a WT at 
 

Pcom Active power command of a WT 
 Pitch angle command of a WT 

Pmeas Measured actual output power from a WT 

I. INTRODUCTION 
HE worldwide installation capacity of wind power has 
grown rapidly in recent years. However, the wind power 

generation is highly dependent on external environment (i.e., 
wind speed), which is difficult to predict accurately. To yield 
the maximum power production, wind turbines (WTs) usually 
operate at the maximum power point tracking (MPPT) mode. 
This control strategy intensifies the fluctuation nature of wind 
power, which in turn leads to the phenomenon that system 
operators would require more fast reserve to counterbalance the 
imbalance between generation and demand [1].  

The instantaneous power balance between supply and 
demand should be maintained to guarantee power system stable 
operation. The concept of “regulation mileage” is firstly put 
forward by PJM and then soon widely accepted by several 
independent system operators (e.g. CAISO, NYISO, ISO-NE, 
MISO and China Southern Power Grid (CSG)) to encourage the 
fast-responding generators to participate in the regulation 
market. In a performance-based balancing market, the 
regulation mileage can be regarded as essential regulation 
“products” and should be traded periodically. That is, under 
such ancillary service environment, AGC units can earn profits 
by assisting in power balance. Correspondingly, utilities pay for 
such regulation service that is counted as mileage payment. 
With increasing penetration of wind power, the balancing cost 
incurred by wind power fluctuations would be very high [2]. As 
reported in [3], the balancing costs due to wind variability and 
uncertainty amounts to about 1-4.5€/MWh when the wind 
penetration reaches up to 20%. To address this issue, some 
market policies have been made to force the owner of wind 
farms (WFs) to share the balancing costs. For example, the WF 
owner is required to pay a fixed balancing fee per MWh or MW-
month [4]. According to [5], a fine would be imposed if the 

actual wind power production deviates from the day-ahead 
forecasted. However, it is difficult to precisely quantify to 
which extent the incurred balancing cost should be shared by 
the WF in real-time operation. Besides, wind turbine generators 
can hardly be dispatched like conventional generators due to the 
stochastic nature of wind. This prompts a discussion on how to 
design a proper control strategy for WFs to enable them to be 
balancing responsible. 

Smoothing wind power fluctuations is a feasible solution to 
reduce balancing cost. In some pioneering works [6-9], the 
hard-coded algorithms (e.g., low pass filter, moving average 
filter, and power ramp limits) are utilized to generate smoothing 
references. However, the references generated via these 
methods are decoupled from system balancing needs. A 
preliminarily work along this direction is reported in our 
previous work [10], where a system perceived optimization 
technique is used to generate the smooth reference. Whereas the 
wind uncertainty and aerodynamic interactions amongst WTs 
are not considered. It should be noted that wind farms face more 
pressure when participating in the balancing market due to the 
uncertainty nature of wind speed. Furthermore, the 
aerodynamic coupling among WTs exacerbates the complexity 
of wind power regulation. Considering the nonlinearity and 
non-convexity of the WT model and wake model [11] (i.e. there 
is a wake behand a rotor, which expands and diminishes with 
distance), achieving online optimal wind power regulation is an 
essential yet challenging issue. 

Recently, several system operators require WFs to 
communicate with the dispatch center. For example, in Spanish 
market [12], a WF with rated capacity being larger than 10 MW 
is requested to connect to a delegate dispatch center. In this 
connection, this paper explores to develop an optimal power 
regulation scheme for a WF to mitigate the negative impact 
brought along by wind power fluctuations. The main 
contributions of this paper are threefold: 
i) The overall power output from the WF can be optimally 
regulated via properly exploiting the downward and upward 
power regulation capabilities of WTs.  
ii) The wind prediction accuracy is considered and a robust 
strategy is developed to handle wind power uncertainty when 
determining the generation profile of the WF.  
iii) The detailed WT model and wake model are 
comprehensively considered in the proposed control scheme. 
Moreover, the proposed control can be online implemented via 
introducing an artificial intelligence (AI) aided method. 

II. RELATED STUDIES AND PROPOSED METHODOLOGY 
To manage wind power uncertainty, an effective method is 

to combine WFs with some other resources to form a virtual 
power plant [13-16]. For example, a combined heat and power 
(CHP) plant and WF system is modeled and operated as a 
portfolio in [13] to decrease the total net imbalance. The power-
to-gas (P2G) facilities and WFs are coordinated in [14] to 
maximize the joint profit. A profit-sharing mechanism for the 
concentrating solar power (CSP) and WFs is developed in [15]. 
In these reported works, WFs are assumed to purchase reserve 
from the other flexible resources to avoid high imbalance 

ˆk iqt +
D(x,y)

( )nb x

ie

iw

s
( )i nb x
ijc

( )ij ng x

compPD

compbD
( )opt

mP
b

( )roptw b

comb

T 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

3 

penalties. Instead of relying on additional resources, the WF in 
[16] commits some of its own reserve to offset the negative 
impact of wind power uncertainty. Also, a security constrained 
optimal consensus distributed control strategy is proposed in 
[17] to effectively promote the integration of surging wind 
power. 

It should be noted that the abovementioned works focus on 
determining the day-ahead offers for the WF which has a 
relatively long cycle of energy scheduling. Moreover, the 
detailed WTs model and their operating characteristic are not 
considered. Distinguished from these existing works, this work 
aims to develop an optimal power regulation scheme for a WF 
in the real-time regulation market, where the practical 
constraints of WTs are taken into account. 

At the WF level, the main issue is to regulate the aggregated 
power generation. The wake effect among WTs may cause a 
significant power production reduction and adds extra 
difficulties to achieve optimal control. According to [18], the 
total wind power losses due to wake effects is considerable (i.e. 
the wind power loss can reach up to 23% at the worst case). To 
mitigate the negative impact of wake effect and maximize 
overall power production from WFs, different optimization 
techniques are adopted including the heuristic methods (e.g. 
particle swarm optimization (PSO) and genetic algorithm (GA) 
[19, 20]) and data-driven methods (e.g., Bayesian ascent, game-
theoretic search [21, 22]). Except for pursing wind power 
maximization, optimization objectives such as kinetic energy 
(KE) maximization, KE maximization while keeping a certain 
amount of de-loading capacity are investigated in [23, 24]. 

However, it is usually time-consuming to derive an optimal 
solution due to the nonlinearity and non-convexity of the 
formulated optimization problems. As a consequence, these 
methods cannot be applied to online application. At the WT 
level, the main issue is to follow the dispatch command via its 
self-regulation capability. Control methods developed in this 
research filed can be divided into two main categories: the rotor 
speed regulation based control and pitch angle regulation based 
control. 

To tackle abovementioned problems, a novel control scheme 
for a WF is designed in this work. Fig. 1 gives an overview of 
the proposed control scheme. At the optimization layer, a 
receding horizon optimization method is utilized to determine 
the generation profile of the WF. Specifically, to deal with the 
worst scenario, the interval forecasting technique is used and 
the most fluctuated case in the look-ahead time window is 
chosen for receding horizon optimization. The update cycle of 
the WTs dispatch commands is identical with the AGC cycle. 
To facilitate online optimization, a de-correlated neural 
network ensembles (DNNE) algorithm is introduced. At WTs 
control layer, the rotor speed regulation based control and pitch 
angle regulation based control are utilized simultaneously to 
trace the periodic dispatch commands. The proposed control 
scheme has threefold advantages: 1) the dispatch commands for 
WTs is generated from a system-oriented perspective; 2) the 
negative impact of wind uncertainty is handled by a robust 
strategy; 3) high computational efficiency is guaranteed with a 
simple matrix calculation.  
 

 
Fig. 1. Framework of the proposed control scheme

III. WIND TURBINE AND WAKE EFFECT MODELS 

A. Wind Turbine Model 
The mechanical power that a WT extracts from wind is 

                         (1) 

where r is the air density; R is the rotor blade radius; vw is the 
wind speed, b is the pitch angle, Cp is the power coefficient; and 
l is the tip speed ratio defined as 

                                       (2) 

with being the rotor speed.  
To get the maximum power, the pitch angle needs to be 

maintained at zero degree while the rotor speed should vary 
according to wind speed when the wind speed is below the rated 
value; on the other hand, the rotor speed should maintain at its 

rated value while the pitch angle control starts to activate when 
the wind speed is higher than the rated value. The active power 
reference of a WT under the MPPT control ( ) can be 
expressed as, 

           (3) 

where Pwtnom denotes the WT’s nominal power (i.e. the captured 
power at the rated wind speed), vwrated is the rated wind speed.  

This work considers the doubly-fed induction generator 
(DFIG) based WT. We assume that the drive train is rigidly 
coupled, and the single mass model is adopted 

                               (4) 

where J denotes the equivalent moment inertia of the WT; 
denotes the gear box ratio;  is the aerodynamic 
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torque; and  is the electrical torque. 

B. Wake Effect Model 
WTs extract energy from wind and there is a wake effect 

behind the turbine, i.e. the wind speed reaching to downstream 
WTs is less than that of upstream WTs. Various wake effect 
models have been proposed in the literature. Among these 
models, the Jensen’s wake effect model is the most prevalent 
one and is suitable for engineering applications. It is established 
based on the assumption that the wake effect expands linearly 
downstream, as shown in Fig. 2. For any WT with B 
being the total number of WTs in the WF, the velocity profile 
can be given by, 

                               (5) 
where is the free wind speed, is the aggregated velocity 
deficit of WT j. Taking the multiple wakes generated by 
upstream WTs into account, can be expressed as 

       (6) 

Here, Di is the diameter of the blades of the i-th WT. CTi is the 
thrust coefficient and is a nonlinear function of the tip speed 
ratio and pitch angle.  is the distance between the upstream 
WT i and downstream WT j along with the wind direction. 

is the overlap between the area spanned by the wake 
shadow cone generated by WT i and the area swept by the WT 
j ( i.e. ). d is the decay constant.  

 
Fig. 2. Jensen’s wake model 

IV. THE PROPOSED SYSTEM-ORIENTED POWER REGULATION 
SCHEME FOR A WIND FARM 

A. Mileage Payment Estimation 
The mileage payment reflects the speed and accuracy that a 

regulation resource in following the Automatic Generation 
Control (AGC) signal. At a certain time slot k, the mileage 
payment system operator compensates to an AGC unit m can be 
calculated as a product of three terms,  

                          (7) 
In (7),  is the regulation mileage (i.e. the up/down 

movement of the m-th AGC unit to follow AGC dispatch signal) 
at time slot k; S is the mileage price which is market-dependent; 

is the performance score which evaluates the performance 

of the m-th unit in terms of following the AGC dispatch signal 
and it can be calculated once for each market interval.  

Originally, a significant part of mileage payment would be 
caused by the randomness of wind energy. Even though wind 
turbine generators can hardly be dispatched like conventional 
generators. To a considerable extent, regulating wind power 
actively in response to actual system needs would have a 
positive impact on mitigating system balancing pressure. In this 
connection, it would be much interesting and reasonable to 
regulate wind power by considering a WF as a semi-dispatch 
resource other than passive “free-runners”. Hence in this work, 
we hold a perspective that the WF should be balancing 
responsible. 

The “benefited pay” principle is an ideal rule in the balancing 
market. However, this impartial principle is fairly difficult to 
achieve, as it is difficult to precisely quantify to which extent 
the incurred balancing cost should be shared by the 
beneficiaries in real-time operation. As recalled our initial 
incentive—by letting the WF be balancing responsible, the 
mileage payment should be somehow pre-estimated and such 
mileage payment can be regarded as an important indictor to 
regulate wind power generation. Such operation strategy 
coincides with the above-mentioned “benefited pay” principle 
and fits in with an efficient and fair market environment. 

As illustrated above, the wind farm output should be timely 
controlled and respond to the real-time mileage payment. Based 
on this, we include AGC information as an essential part to pre-
estimate the AGC actions, which should be consistent with the 
actual ones. In context of the concerned market structure and 
operation mechanism in this paper, the information of AGC 
units covering energy scheduling profile, regulation capability, 
performance score, etc. should be available for system 
operators. In this connection, the mileage payment can be pre-
estimated from the WF perspective.  

B. Principle of Wind Power Regulation 
Fig. 3 gives the power capture characteristic of a WT. 

Initially, suppose a WT operates at point A according to the 
MPPT algorithm at a certain wind speed. If less wind power 
output is expected, the WT can choose to shift to point B or C 
by accelerating rotor speed or increasing pitch angle. If the 
former method is adopted, a part of excessive energy can be 
stored in the rotational rotor. If more wind power is expected in 
the near future, the WT can shift to point D via rotor speed 
deceleration as the stored KE can be released back to system. If 
the latter method is adopted, the overloading would not be 
achieved. In WTs real-time operation, we can regulate the 
power outputs of WTs via utilizing rotor speed regulation based 
control or blade pitch angle regulation based control. 
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Fig. 3. Power capture characteristic of a WT 
1) Rotor Speed Regulation based Control 

For a WT, when it works at a de-loading mode, the excessive 
wind energy can be stored in the rotating mass via rotor speed 
acceleration till the upper limit is reached. Similarly, the KE 
stored in the rotating mass can be released back to system via 
rotor speed deceleration. In particular, the KE stored in its 
rotating mass is 

                                   (8) 

and the electric power converted from KE charging/discharging 
process (i.e. Pke) can be formulated as, 

                             (9) 

It should be noted there exists a rotor speed denoted as
 that captures the maximum power under a certain 

pitch angle (e.g. point A, E, F in Fig. 3). If the rotor speed 
decelerates to a value that lower than , the WT would 
require extra power to bring the rotor speed to recover to

. As a consequence, during this process, the active 
power dip would occur. Besides, according to [25], operating at 
a status that the rotor speed is lower than may reduce 
system small signal stability margin. Therefore, the rotor speed 
variation limits should be considered when adopting the rotor 
speed regulation based control.  
2) Pitch Angle Regulation based Control 

Different from the rotor speed regulation based control, 
overloading cannot be achieved via the pitch angle regulation 
based control as no energy storage component exists in the pitch 
angle controller. Instead, the mechanical power captured by the 
WT is directly changed via pitch angle variation.  

At the WT level, the rotor speed regulation based control is 
usually preferable due to the high energy efficiency and fast 
response. However, at the WF level, utilizing the rotor speed 
regulation based control and pitch angle regulation based in a 
cascaded manner is no longer the optimal solution due to wake 
effect. As illustrated in (5), (6), the wind speed at downstream 
WTs is influenced by the operating status of upstream WTs, 
which in turn influences the overall power production of the 
WF. To optimally exploiting the overall power regulation 
capability of the WF, an optimization problem would be 
formulated in the next section.  

C. The Optimization Module 
1) Problem Formulation 

According to the above-mentioned analyse, the imbalance 
between the scheduled power and net load can be mitigated by 
regulating wind power output. Therefore, for the WF operator, 
wind power maximization should not be the only target and the 
balancing cost incurred by wind power fluctuation should be 
taken into account at the same time. These two competing 
objectives (i.e. wind power maximization and mileage payment 
minimization) are achieved via multi-objective optimization in 
this work. 

According to (1) and (9), the electric power that an individual 

WT delivers to the grid is 
                              (10) 

Discretizing the above equation, gives  

  

(11) 
where  is the length between two consecutive time instants k 
and k-1. In this work, the wind speed is assumed to be constant 
for the short control interval .   

According to (11), the power output from a WT at current 
time slot k is dependent on the operation status at time slot k-1. 
To achieve optimal wind power regulation, a receding horizon 
optimization technique is adopted in this work. In the receding 
horizon optimization, the dispatch decision of the first control 
cycle is executed and then the process is repeated from the new 
current state for future decision making. In a given look-ahead 
time window (i.e. from current time slot k0 to future time slot 
kH), the optimization problem is formulated as follows, 

  (12) 

s.t.                                                      (13) 
                    (14) 

                           (15)                      
                (16) 

             (17) 
                       (18) 
                     (19) 

 (20) 

    var   
In the objective function, B is the number of WTs, M is the 

number of AGC units and α, S, Km are defined in (7), 

denotes the WF nominal power and denotes the 
maximum mileage payment. The weighting factor  can 
be used to achieve a balance of the trade-off between the two 
objectives. Specifically, decreasing  can stimulate the WF to 
release system balancing stress whereas the harvested wind 
energy would be decreased in the meantime. Even though the 
decrease of wind energy harvesting is inevitably unavoidable 
after the WF being balancing responsible. However, instead of 
arbitrarily sacrificing a significant amount of wind energy, our 
proposed strategy can response to the estimated system 
balancing needs subject to the practical constraints of the wind 
turbines. 

WTs constraints: Physical constraints of WTs such as the 
available power, rotor speed and pitch angle are considered. In 
particular, the maximum active power injection from a WT is 
determined by the converter limit, which further depends on the 

21
2 rE Jw=

r
ke r

dE dP J
dt dt

ww= =

( )roptw b

( )roptw b

( )roptw b

( )roptw b

( ) ( ) ( )e m keP t P t P t= -

2 3 ( ) ( 1)1( )= ( ( ), ( )) ( ) ( )
2

r r
e P w r

k kP k R C k k v k J k
t

w w
rp l b w

- -
-

D

tD

tD

0

0

,  1

max
1

max  ( ) /

(1 ) ( ( ) ( )) /

H

rb b

H

k B

eb wfnom
k b

k M
up down
m m m mil

k m

P k t P

D k D k SK C

w b
a

a

=

=

D -

- +

åå

åå

0 ( ) 1.2eb wtnomP k P£ £

max( )( ) ( )roptb b rb rk kw b w w£ £

min max( )b kb b b£ £
_ _( ) ( ) ( 1)up reg up reg up

m m mD k P k P k= - -
_ _( ) ( 1) ( )down reg down reg down

m m mD k P k P k= - -
_ _0 ( )reg up reg cap

m mP k P£ £
_ _0 ( )reg down reg cap

m mP k P£ £

1 1
( ) ( ) ( ) ( ( ) ( ))

B M
up down

load eb schedule m m
b m

P k P k P k D k D k
= =

- = + -å å

0( ),  ( ) ,  [ , ], [1, ]rb b Tk k k k k b Bw b +Î Î ÎR

wfnomP

maxmilC
[0,1]a Î

a



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

6 

maximum value of the converter voltage and the maximum 
current rating. Such a setting can be adjusted according to the 
characteristic of power electronic devices. For example, in [26], 
the maximum value of the converter active power injection is 
1.21 p.u. when   the design power factor of the converter equals 
to 1; In [27], the converter limit is assumed to be 1.2 p.u.. In 
this work, we assume that the converter limit is 1.2 p.u., as 
shown in (13). To guarantee the stable operation of WTs, the 
rotor speed variation is limited via (14). The pitch angle 
variation should be within WTs physical limits, as shown in 
(15), where is obtained using a look-up table method.. 
It is noted that wake interactions are modeled in the 
optimization formula and wind speeds experienced by down-
WTs are calculated according to (5) and (6).  

System constraints:  / , / 
 denotes the up/down regulation mileage, up/down 

set points of AGC unit m at time slot k respectively,  
denotes the regulation capability of AGC units m. The AGC 
units that participate in the regulation market should subject to 
their operational constraints. As given in (18), (19), the AGC 
set points should be limited by the regulation capabilities of 
each unit. Besides, in real time operation, the system should 
subject to the power balancing constraint (20). 
2) Wind Forecasting in the Receding Horizon  

In this work, the traditional point forecasting method is not 
used as this method is hardly to be accurate enough. Instead, the 
well-known long short-term memory (LSTM) network [28] is 
adopted to construct wind speed prediction intervals (PIs) over 
multiple look-ahead horizons. The LSTM network is a powerful 
tool for general-purpose sequence modeling, which is 
essentially a variant of recurrent neural network (RNN). In this 
work, the encoder-decoder (Seq2Seq) LSTM architecture is 
adopted to generate a bunch of desired quantiles, and then the 
PIs are derived based on several pairs of the estimated quantiles. 
For instance, quantiles with levels of 5% and 95% form a 90% 
PI. In this sense, the underlying problem can be formulated as 
a quantile regression problem, 

                                    (21) 

where is the H-step sequence of predicted 

quantiles with different levels ranging from τ1 to τQ, τ∈[0,1], 
is the explanatory information available up to time k,  is 

the parameters of estimator f(∙) which needs to be tuned. As 
shown in Fig. 4, the encoder is composed of several stacked 
LSTM units, each accepts the current input xk and the outputs 
(cell and hidden states) from the previous unit. It propagates 
forward until the last unit of encoder generates the decoded 
features, which also acts as the input for the first unit of decoder. 
The cell and hidden states also propagate forward until the 
ending of forecasting horizon. Finally, the forecasted sequence 
is obtained. 

 
Fig. 4. LSTM encoder-decoder model  

The accuracy of predicted quantiles is evaluated through the 
popular statistical metric---pinball loss [29], herein the 
asymmetric weights are applied to errors through a tilted 
transformation of the absolute value function as follows, 

        (22) 

where is the observation at time slot k+i. The lower pinball 
loss value indicates a better predictive performance of the 
model. As a result, the learning process of encoder-decoder 
LSTM translates to an optimization problem defined by, 

           (23) 

where is T is the number of trained time slots.  

 
Fig. 5. The robust strategy for the receding horizon optimization   

To cope with wind power uncertainty, a robust strategy is 
introduced for wind power regulation by deploying the resultant 
forecasting interval. Under a certain PI, for time window [k+1, 
k+H], the actual wind speed, and the predicted upper/lower 
prediction bounds are given in Fig. 5. To mitigate system 
balancing pressure, the most fluctuated wind speed in the 
concerned time window (the dot pink line in Fig. 5) is selected 
as input information for the receding horizon optimization. As 
a result, the mileage payment can be minimized even under the 
worst case.  

Remark: The more volatile the wind speed is, the more 
mileage cost would be incurred.  
3) Online Application of the Proposed Control 

Owing to the nonlinearity and non-convexity of the 
abovementioned optimization problem, the analytical 
optimization techniques is no longer applicable and the PSO 
algorithm is utilized to solve the problem. It should be noted 
this method cannot be directly applied to online control as it 
needs a relatively long computing time.  

The artificial neural networks (ANNs) can be regarded as a 
black-box to map the given input to the desired output via 
learning from data and finding a hypothesis to estimate the 
unknown target function. In recent years, they are widely used 
for classification, prediction, and function approximation. To 
enable the proposed scheme can achieve online application, an 

( )roptw b

( )up
mD k ( )down

mD k _ ( )reg up
mP k

_ ( )reg down
mP k

_reg cap
mP

ˆ ( ; )kf x=τq θ!

{ }1ˆ ˆ ˆ,k k H+ +=τ τ τq q q!

kx!  θ

ˆ ˆ( ),          
ˆ( , )

ˆ ˆ(1 )( ),   
k i k i k i k i

k i k i
k i k i k i k i

y q if y q
l y q

q y if y q

t t
t t

t t

t

t
+ + + +

+ +

+ + + +

ì - ³ï= í
- - <ïî

k iy +

1

1,
1 1

argmin ( , ( ; ))
QT H

k i k h k
k i

l y f x x
t

t

q t

q+ - +
= =

× × ×ååå



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

7 

intelligent learning based method is introduced in this work. It 
is noted that the incentive of proposing the intelligent learning 
based predictor is to facilitate online optimization. Owing to its 
unique merit (i.e. fast training mechanism), it can serve as a 
promising alternative solution method. 

Considering the complex nonlinear relationship between the 
input variables and output variables in the formulated problem, 
an ensemble learning approach is utilized in this work. 
Specifically, the random vector functional-link (RVFL) 
networks are selected as ensemble component models to 
overcome the disadvantages of the gradient-based learning 
algorithms for training the single-layer feed-forward networks 
(e.g. local minima, slow convergence, poor sensitivity to 
learning rate setting). To encourage the diversity among 
ensemble components and meanwhile maintain an overall good 
ensemble accuracy, a de-correlated neural-net ensembles 
method is utilized in this work. The network architecture of the 
DNNE model is given in Fig. 1. Given an ensemble of z base 
model and a training dataset containing s instances, 
the ensemble collective output and the de-correlated error of i-
th individual learner are formulated as, 

                           (24) 

          (25) 

where , bi are the weight and the output of the i-th base 
network respectively,  is a regularizing factor. 

To attain a reliable and accurate ensemble output, the weight 
of each base learner (i.e. ) is determined by the learning 
performance of each RVFL net. In particular, an entropy based 
weights selection method is utilized to quantify the 
performance of each RVEL net, and the details can be referred 
to [30].  

For an individual learner, the output of the i-th base network 
(simulated with an instance xn) can be expressed as, 

                           (26) 

where L is the number of hidden neurons in the i-th individual 
RVFL network; is the output weight of the j-th hidden 
neuron in the i-th base model; is the output of j-th hidden 
neuron in the i-th base model and g( ) can be any squashing 
basis function.  

It is assumed that all base learners have homogeneous hidden 
nodes. Hence the negative correlation learning ensemble 
models would obtain the optimal performance when the 
gradient of error expressed in (26) vanishes. The detailed matrix 
calculation process can be referred to [30]. 

In the proposed problem, the wind speed prediction data in 
the look-ahead time window, rotor speed and pitch angle of 
WTs at previous time slot, the mileage price, scheduled power, 
load demand and performance score of AGC units in the look-
ahead time window constitute the input vector. The optimal 
dispatch commands of individual WTs (i.e. active power 
command and blade pitch angle command) are the target vector. 

D. Wind Turbines Control Module 
The rotating mass builds up an “energy buffer” such that the 

wind power production can be extended via KE 
charging/discharging. In addition, the mechanical power 
capture efficiency of the WT can be directly changed via pitch 
angle regulation. The rotor speed regulation based control and 
pitch angle regulation based control work simultaneously in this 
paper to adjust wind power output. As shown in Fig. 1, that the 
original MPPT control is bypassed and the active power 
command and pitch angle command of individual WTs that 
generated from the optimization module are sent to WTs’ rotor 
side converter and pitch controller as the new reference set-
points. In real-time operation, to guarantee the stable operation 
of WTs and to ensure that the predicted active power command 
and the pitch angle command matching up with the operating 
principle of WTs, two refining loops are introduced into WTs’ 
control module.  

As mentioned in Section IV. B, the rotor speed over-
deceleration during KE discharging process should be avoided. 
To this end, an active power compensation loop is designed and 
the compensate value of the power command can be 
expressed as, 

   (27) 

where is the optimal mechanical power that the WT 
captures at , is the rotor speed at previous 
time slot. After introducing (27), the power command would 

never larger than , which in turn 

guaratees the stable operation of the WT.  
A pitch angle compensation loop is also developed to avoid 

the over adjustment of blade pitch angle. As given in Fig. 1, the 
mismatch between the measured actual wind power output and 
the active power command is sent to a Proportion-Integration 
controller, and then a compensation value of the pitch angle 
command is generated to eliminate the deviation between the 
actual power output and the dispatch command. After adding 
this loop, the pitch angle reference can be refined, and the 
compensate value of the pitch angle command can be 
expressed as, 

     (28) 

where Kp and KI are the control parameters of the Proportion-
Integration controller.  

V. CASE STUDIES 

A. Experimental Setup 
In this section, we test our method in a modified IEEE 9-bus 

test system, in which a 100 MW-WF is integrated. As shown in 
Fig. 6, the WF has 20 units of WTs. Specifically, there are five 
rows and each row consists of four WTs in the WF, where the 
space of two adjacent DFIGs is 5D. For WTs in the WF, the 
NREL 5 MW DFIG-WT is utilized and the detailed parameter 
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setting can be found in [31]. More information about the test 
system can be found in [32]. 

In this work, the system dynamic model is developed in 
DIgSILENT/PowerFactory, and the optimization framework is 
formulated in MATLAB. The set-up of the joint simulation 
platform guarantees the bidirectional data exchange. 
Specifically, the AGC control cycle is set to 4 seconds. The look-
ahead time window in the optimization module is set as 5 times 
of the AGC cycle (i.e. 20 s). The simulation was executed on a 
computer of 2 processors, each one with 2.59 GHz frequency, 
and 64 GB of RAM. 

 
Fig. 6. Testing system configuration 

In this work, the system dynamic model is developed in 
DIgSILENT/PowerFactory, and the optimization framework is 
formulated in MATLAB. The set-up of the joint simulation 
platform guarantees the bidirectional data exchange. 
Specifically, the AGC control cycle is set to 4 seconds. The look-
ahead time window in the optimization module is set as 5 times 
of the AGC cycle (i.e. 20 s). The simulation was executed on a 
computer of 2 processors, each one with 2.59 GHz frequency, 
and 64 GB of RAM. 

B. Simulation Results and Analysis 
1)  Performance of the Trained DNNE  

It takes about 17 min on average to find a solution of the 
optimization problem using PSO algorithm. Obviously, it 
cannot be directly applied to online control. The offline 
calculated solutions are collected to train DNNE. In fact, one 
cannot exhaustively simulation every possible scenario offline. 
Regarding this concern, we would like to firstly justify the 
validity of the selective training set. In our case studies, a total 
of 8097 samples covering typical operation states are obtained 
by offline calculation by using the particle swarm optimization 
(PSO) algorithm, among which 7000 of them are adopted to 
train DNNE and 1097 of them are used to test the proposed 
control scheme. The wind speed data for offline calculation is 
captured from [33]. The mean absolute percentage error 
(MAPE) and normalized root-mean-square error (nRMSE) are 
used to evaluate the performance. The detailed results are given 
in Table I, which demonstrates that the prediction accuracy the 
DNNE algorithm is satisfactory. It should be noted that in real-
world application, it is indeed possible to further extend the 
training set and re-tune the whole DNNE model to enhance the 
optimization process in considering other unseen operation 
states. 

TABLE I 
TABLE I PREDICTION PERFORMANCE OF DNNE 

 Overall 
wind 

power 
production 

(the 
first row 

WTs) 

 (the 
second 

row 
WTs) 

(the 
third row 

WTs) 

(the 
fourth 
row 

WTs) 

MAPE 4.37% 8.86% 9.70% 9.98% 13.62% 

nRMSE 6.08% 10.05% 11.32% 11.39% 12.63% 

2) Performance of the Proposed Control under Different Wind 
Prediction Intervals  

As discussed in Section IV, the wind speed forecast data in 
the receding horizon is generated via the quantile-based 
Seq2Seq LSTM network. By examining the finite quantile 
levels τ from 2% and 98% to 15% and 85% (i.e. the PIs with 
96% to 70% confidence levels) are yielded. A set of wind speed 
for 15 min is used to test the proposed control scheme. The 
prediction results under different PIs are given in Fig. 7. The 
corresponding total mileage payment and the dynamic 
performance of WTs are given in Table II and Fig. 8 (the 
weighting coefficient α is determined as 0.5). As indicated in 
Table II, compared with the conventional strategy that each WT 
operates at the MPPT mode, the total mileage payment is 
significantly reduced with the proposed control scheme 
regardless of the prediction confidence level. It can be found 
that the wind power is effectively smoothed out after 
introducing the proposed control, as shown in Fig. 8(a). Since a 
robust strategy is adopted to handle wind uncertainty, to prepare 
for the worst case, the total wind power production has a slight 
decrease along with the increase of the prediction confidence 
level (i.e. 10316.312895.38 kWh with 90%PI, 13192.65 kWh 
with 80%PI, 13405.88 kWh with 70%PI). To periodically trace 
the optimized dispatch commands, the rotor speed and pitch 
angle based control methods are simultaneous utilized in the 
proposed control. As shown in Fig. 8(b), (c), both the rotor 
speed and pitch angle of WTs in different rows vary within the 
allowable ranges and . In particular, 
different from the conventional strategy that each WT operates 
at the MPPT mode, with the proposed control scheme, the pitch 
angle upstream WTs is not equal to zero, such that the spilled 
energy can be captured by downstream WTs, which increases 
the aggregated wind power production of when more power is 
expected. To sum up, the power regulation potential of the WF 
is optimally exploited with the proposed control scheme. 

TABLE II 
MILEAGE PAYMENT UNDER DIFFERENT WIND SPEED PIS 

 96%
PI 

94%
PI 

92%
PI 

90%
PI 

80%
PI 

70%
PI 

Each WT 
with 

MPPT 
control 

Total mileage 
payment ($) 

407.7
3 

411.4
0 

415.4
4 

417.6
9 

424.1
3 

431.0
0 

630.54 
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Fig. 7. Predicted wind speed with different PIs 

 

 

 
Fig. 8. Simulation results with different wind speed PIs. (a) total output 
power of WF, (b) rotor speed of WTs in different rows, (c) pitch angle of 
WTs in different rows 

3) Performance of the Proposed Control under Different 
Weighting Factor  

To investigate the influence of the adjustment of the 
weighting factor, scenarios with different α settings are 
investigated in this work. The simulation results in terms of α = 
0.5 have given in Table II and Fig. 8. Under situations that α = 
0.4, and α = 0.6, the total mileage payment of the dynamic 
operation status of WTs in different rows are given in Table III 
and Fig. 9. As indicated in table III, the mileage payment 
increases with the increase of α. This is because the increase of 
α means more attention is paid to wind power maximization, 
which in turn intensifies the total balancing cost. As shown in 
Fig. 9(a), the energy yield from the WF decreases with the 
decrease of α (i.e. the total captured energy throughout 

simulation is 14143.01kWh when α = 0.6 and 12301.21kWh 
when α = 0.4). According to Fig. 9(b), 9(c), the rotor speed and 
pitch angle of different rows WTs both vary to adjust wind 
power output. Specifically, the total amount of rotor speed and 
pitch angle variations increase with the decrease of α. This is 
because the wind power is expected to be smoother with a lower 
α. As a result, the downward/upward wind power regulation 
requirements become stricter. The total curtailed wind energy 
with the proposed control throughout simulation compared with 
MPPT control is given in Table IV. It can be found that 
curtailed wind energy is decreased with the increase of α, which 
is consistent with what we mentioned in Section IV. C.  

 

 

 
Fig. 9.  Simulation results with different α. (a) total output power of WF, 
(b) rotor speed of WTs in different rows, (c) pitch angle of WTs in 
different rows 

TABLE III 
MILEAGE PAYMENT UNDER DIFFERENT SETTINGS 

 Total mileage 
payment ($) 

 Total mileage 
payment ($) 
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α =0.4, 96% PI 399.86 α =0.6, 96% PI 438.06 
α =0.4, 94% PI 402.51 α =0.6, 94% PI 442.00 
α =0.4, 92% PI 406.35 α =0.6, 92% PI 444.49 
α =0.4, 90% PI 408.15 α =0.6, 90% PI 451.28 
α =0.4, 80% PI 415.26 α =0.6, 80% PI 458.09 
α =0.4, 70% PI 417.45 α =0.6, 70% PI 471.61 

 
TABLE IV 

TOTAL CURTAILED WIND ENERGY WITH PROPOSED CONTROL IN DIFFERENT 
SCENARIOS COMPARED WITH MPPT CONTROL  

 Total curtailed wind energy (kWh) 
α =0.5, 90% PI 1536.11 
α =0.5, 80% PI 1238.84 
α =0.5, 70% PI 1025.61 
α =0.4, 90% PI 2130.28 
α =0.6, 90% PI 849.99 

VI. CONCLUSION 
To mitigate the negative impact brought along by wind 

uncertainty and variability, this paper has proposed a novel 
wind power regulation scheme considering the resulting 
balancing cost. In particular, the internal wake effect in the WF 
has been taken into account. Besides, the wind uncertainty is 
well handled through a robust control method. To bypasses the 
time-consuming computation process caused by the high 
nonlinearity and non-convexity of the formulated optimization 
problem, a RVFL-based DNNE algorithm has been introduced. 
Simulations results have verified that the proposed control 
scheme can effectively manage the total power production of 
the WF via exploiting WTs’ self-regulation capabilities. The 
obtained results indicate that the proposed control is a feasible 
solution to mitigate the power balancing dilemmas that brought 
along by high penetration of wind integration.  
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