Home health care routing and scheduling problem with the

consideration of outpatient services

Abstract

In China, family doctor contract service can provide not only the home health care service
for the elderly or patients with mobility difficulties at their homes but also the outpatient service
mainly for ordinary patients in the community care center. This paper presents a home health
care routing and scheduling problem with the consideration of outpatient services. By
considering the constraints about time windows, skill requirements, and working regulations,
the problem is formulated as a mixed-integer nonlinear and convex programming model to
minimize the total travel costs of the door-to-door service and the total waiting penalties of out-
patients, and maximize the total benefit of patients’ preference satisfaction. We adopt an outer-
approximation method to obtain its global e-optimal solutions for the small scale problem and
develop a hybrid genetic algorithm to solve the large problem. A small instance is set up to
analyze the problem properties and the performance of the outer-approximation method. The
results of large scale examples show that the proposed hybrid genetic algorithm can provide
high-quality solutions with short computing times.

Keywords: Home health care scheduling; Vehicle routing problem; Door-to-door service;
Outpatient service; Patient preference satisfaction.
1. Introduction

Population aging is a global trend. In China, people older than 60 was 16.15 percent in 2015
and it is expected to rise to 17.17 percent by the end of 2020 (Intellectual Research Consulting
Group, 2017). Moreover, in 2019, the World Health Organization predicted that, the number of
people aged 60 and older would grow by 56%, from 962 million to 1.4 billion between 2017
and 2030, and would be more than 2.1 billion by 2050 (World Health Organization, 2019).

Home health care (HHC) is an industry that aims to assign doctors to serve patients at home
and provide some essential services such as medical tests, wound care, psychological
counseling and caring visits, etc. (Lanzarone et al., 2012; Liu et al., 2014). It is more sutiable
for the elderly, patients with chronic diseases or mobility difficulties. With the population aging,

the demand for medical resources is increasing, HHC service develops rapidly and becomes an
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efficient and professional industry to solve the pension burden in some developed countries
such as France, Germany, Australia, etc. (Shi et al., 2017). However, in China, since HHC
service is usually provided by the private HHC organization and the price is expensive, it
develops slowly and only covers few patients in some big cities such as Shanghai, Beijing, etc.
(Zhuo et al., 2015).

To better meet the demands of most patients for long-term and continuous health care service
in China, family doctor contract service is developed by the government under the background
of hierarchical diagnosis and treatment, and performed by the doctor team in community care
center (Zhou, 2018). Doctors in the team not only provide HHC services at patients’ homes
(mainly for the elderly or patients with mobility difficulties), but also provide outpatient
services for patients who need general medical treatment or large medical equipment at the
community care center. For ease of description, we call these two service modes as door-to-
door and outpatient services, respectively. Note that the patients who normally receive door-to-
door services may also receive outpatient services in some days. For example, the elderly
patients usually receive services at home, but they have to go to the community care center to
receive outpatient service when they need large medical equipment for physical examination.

Compared with HHC service, family doctor contract service can serve more types of patients.
Meanwhile, it focuses on establishing long-term and continuous care with patients, therefore,
the doctor-patient matching is more important than that in the traditional outpatient service.
This new service with two service modes can allocate medical resources more flexibly and its
price is cheaper than the HHC service. Therefore, it is more suitable for China with a high
degree of aging but a shortage of medical resources. In 2017, it has been signed by more than
30% people, the coverage rate of “key population” such as the elderly, patients with chronic
diseases or mobility difficulties is as high as 60%, and it will strive to cover all people by the
end of 2020 (Medical Reform Office of the State Council of China, 2016).

In family doctor contract service, the contracted patients are required to make a reservation
for service mode (door-to-door or outpatient) according to their requirements before receiving
service. Although these two modes of services may be performed by the same doctor team,
their operations are quite different in practice. The door-to-door services require doctors to go

to patients’ homes to provide the service, while the outpatient services require patients to go to
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the community care center to receive the service. In the scheduling problem, the former requires
managers to solve the home health care routing and scheduling problem (HHCRSP), which is
generally modeled as an extension of the vehicle routing problem (VRP), while the latter is
commonly formulated by using queuing theory. The relevant research for each mode is
relatively rich, which is reviewed in Section 2. However, there is no research to consider both
modes in scheduling problems simultaneously as in the situation in China. This research aims
to fill the research gap.

Specifically, the contributions of our study are as follows.

First, we introduce and model a new HHCRSP with the consideration of outpatient services.
Doctors are arranged for either the door-to-door or outpatient service. By considering
constraints about time windows, workload, and skill requirements, our problem is to determine
the service mode for each doctor, the doctor-patient matching in outpatient service, and the
routes of doctors arranged for the door-to-door service. The objective is to minimize the total
travel cost of the door-to-door service and the total waiting penalties of out-patients, and
maximize the total benefit of patients’ preference satisfaction. The problem is formulated as a
mixed-integer nonlinear and convex programming model.

Second, we adopt an outer-approximation method to obtain the global -optimal solutions of
the mixed-integer convex programming model. Considering that the decision variables in the
model are integers and the tangent lines can only be generated at integer points, in the outer
approximation method, we build a 0-1 integer programming model to find the optimal
breakpoints among all the integer points.

Third, to solve the large problem, we propose a hybrid genetic algorithm (HGA), by
embedding a tailored local search and a shake procedure, a newly designed individual
representation, novel crossover and mutation operators, and a new initial population creation
procedure into genetic algorithm (GA).

Finally, we analyze the sensitivity of parameters, problem properties, and the performance
of the outer-approximation method, and illustrate the performance of HGA by solving the large
problem.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 describes and formulates the proposed problem. Section 4 presents the outer
3



approximation method for the formulation. Section 5 describes the proposed HGA. Section 6
presents the problem properties and the results of the performance of the proposed solution
methods. Finally, Section 7 concludes the paper.
2. Literature review

The general HHCRSP is to establish routes for doctors to complete the door-to-door service,
and it is an extension of VRP augmented by many unusual side-constraints that are specific to
the HHC context (Cisseé et al., 2017; Fikar & Hirsch, 2017), such as patient preference, skill
requirements, etc. In this section, we focus on the latest trend of scheduling (and routing)
problems and review 15 representative studies in the last five years.

Table 1 shows the most common objectives and constraints addressed in the literature. Table
2 summarizes objectives, constraints, and solution methods considered in the reviewed articles
and our article. When an article deals with one of them, the symbol (v') is marked on the

corresponding cell.

Table 1
The classification of objectives and constraints in scheduling.

Objectives Constraints
Abbr. Description Abbr. Description
TT Time (travel, waiting, overtime etc.) T™W Time windows
cC Costs (travel, service, fixed, etc.) SM Skill requirements
wB Workload balance WR Working regulations
PS Preference satisfaction sy Synchronization
uc Uncertainty(stochastic travel time, service time)
Table 2
Obijectives, constraints, and methodologies found in the reviewed articles and our article.
Objectives Constraints

Article TT cC wB PS TW SM WR sy uc Solution method(s)
Braekers et al. (2016) v v v v 4 Exact/metaheuristic (MDLS)
Decerle et al. (2018) v v v v Metaheuristic (MA)
Du et al. (2017) v v v Metaheuristic (GA)
Fikar & Hirsch (2015) v v v v v v Matheuristic
Grenouilleau et al. (2019) v v v 4 v Matheuristic
Hashemi Doulabi et al.(2020) v v v v Exact (branch&cut)
Hiermann et al. (2015) v v v v Metaheuristic (VNS/MA/SA/SS)
Liu et al. (2018) v v v Metaheuristic (VNS)
Misir et al. (2015) 4 v v v v Heuristic
Mosquera et al. (2019) v v v v v v Metaheuristic (VNS)
Nikzad et al. (2020) v v v v v Matheuristic



Shi et al. (2019) v v v Metaheuristic (TS/SA/VNS)

Xiao et al. (2018) v v v 4 v Exact

Yalcindag et al. (2016) 4 4 v Exact/metaheuristic (GA)
Yuan et al. (2015) v v v 4 4 Exact (B&P)

Our paper v v v v 4 Exact/Metaheuristic (HGA)

B&P: Branch-and Price; (H)GA: (Hybrid) Genetic Algorithm; MA: Memetic Algorithm; MDLS: Multi-directional Local Search;
SA: Simulated Annealing; SS: Scatter Search; TS: Tabu search; VNS: Variable Neighborhood Search.

As seen in Table 2, travel cost and travel time are the most common measures found in
optimization objectives of HHCRSP. Due to they are closely related to the doctors’ working
time, Braekers et al. (2016) further considered the overtime cost. In addition, some studies
focused on maximizing patients’ or doctors’ preference satisfaction to improve service quality
(Hiermann et al., 2015; Musir et al., 2015; Braekers et al., 2016; Decerle et al., 2018;
Grenouilleau et al., 2019; Mosquera et al., 2019). For example, Braekers et al. (2016)
minimized patients’ convenience in terms of visit times and doctors, Mosguera et al. (2019)
maximized patients’ total preference cost regarding doctors. On the other hand, most of the
existing studies consider multiple objectives simultaneously, but the methodologies to handle
multiple objectives vary. Most of these studies (e.g., Hiermann et al., 2015; Misir et al., 2015;
Yalgindag et al., 2016; Decerle et al., 2018) used the weighted-sum approach to unify all
objectives into a single objective. Mosquera et al. (2019) adopted a lexicographic ordering
method to hand the multitude of objectives. Braekers et al. (2016) proposed a bi-objective
optimization method to obtain a set of Pareto optimal solutions, which allow them to analyze
the trade-off between costs and client inconvenience. In our paper, travel costs and patients’
preference satisfaction regarding skill and doctor-patient familiarity are considered for the
door-to-door service, and the objectives are unified into a single objective by the weighted-sum
approach.

In terms of constraints, the key characteristics of the HHCRSP such as time windows, skill
requirements and working regulations are considered in most studies, while other factors (such
as synchronization, uncertainty, etc.) are seldom considered. Meanwhile, the specific
implementation of these constraints can be different in these reviewed articles. For example,
the implemented time windows for patients to receive service can be generally divided into

hard time windows (e.g., Hiermann et al., 2015; Liu et al., 2018; Mosquera et al., 2019) and
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soft time windows within certain range (e.g., Misir et al., 2015; Yuan et al., 2015; Braekers et
al., 2016; Decerle et al., 2018). For working regulations, most studies set a maximum working
duration for doctors (e.g., Fikar & Hirsch, 2015; Braekers et al., 2016; Mosquera et al., 2019;
Nikzad et al., 2020). Xiao et al. (2018) considered the flexible lunch break requirements, while
Hiermann et al. (2015) set the priority working time windows for doctors. For skill requirements,
most studies considered elastic matching (e.g., Fikar & Hirsch, 2015; Hiermann et al., 2015;
Yuan et al., 2015; Du et al., 2017; Braekers et al., 2016; Mosquera et al., 2019); that is, doctors
with a higher skill level are allowed to visit patients with lower skill level requirment to balance
the overall distribution of doctors. The elastic skill matching may reduce travel related expenses,
but it may also impact doctors' satisfaction if they are required to perform multiple visits at a
lower qualification level. Therefore, Fikar & Hirsch (2015) further set a maximum downgrading
level for each doctor. In this study, we consider hard time windows for patients to receive
services, elastic matching of skill requirements, set a maximum downgrading level and a
maximum working duration for doctors.

The HHCRSP problem is NP-hard because it is an extension of VRP. The solution method
for this problem can be broadly classified into three categories: exact methods, heuristic-based
methods (including metaheuristics and heuristic), and matheuristics. Although exact methods
(e.g., Yuan et al., 2015; Hashemi Doulabi et al., 2020) can get optimal solutions, their
computation time is heavily restricted by the problem size. Therefore, most researchers prefer
to adopt metaheuristics/heuristics to obtain a good solution instead of an exact solution to
address their (large-size) problems. As seen from Table 2, while Misir et al. (2015) used a
hyper-heuristic to solve their problem, the main used metaheuristics are classical, including GA
(Yalgindag et al., 2016; Du et al., 2017), variable neighborhood search (Hiermann et al., 2015;
Liu et al., 2018; Mosquera et al. 2019; Shi et al., 2019), tabu search (Shi et al., 2019), multi-
directional local search (Brackers et al., 2016), and simulated annealing (Hiermann et al., 2015;
Shi et al., 2019). To combine the advantages of the exact method and the metaheuristic,
matheuristics received the least attention in the last five years (Grenouilleau et al., 2019; Nikzad
et al., 2020; Fikar & Hirsch., 2015); for example, Fikar & Hirsch (2015) generated problem
clusters by incorporating set partitioning and linear programming techniques to optimize start

time and enable synchronization. However, the matheuristics still have some limitations in
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problem size compared with heuristic-based methods. In our problem, we adopt the branch and
cut method embedded in CPLEX for the small scale problems. On the other hand, considering
GA has many advantages such as simple structure and high search efficiency, we develop a
new hybrid GA by embedding a local search into the basic GA framework to solve the large
problems.

As for the scheduling research about the outpatient service, there exist many methodologies
and solution techniques to reduce costs and improve service quality (Ahmadi-Javid et al., 2017).
Queuing theory is one of the most common methodologies since the models require fewer data
and are simple to use. Moreover, queueing models can obtain some information about activities
(waiting times, utilization rates, queue times, and lengths) and provide the reference for the
decision-makers. M/M/1 and M/M/s are the two most popular queuing systems for the
outpatient service (Lakshmi & Appa lyer, 2013). In an outpatient service system with s
doctors, each doctor is treated as a separate service station, the service can be viewed as s
independent M/M/1 queuing sequence and each patient assigned to a doctor according to the
appointment (e.g., Hopkins et al., 2008; Adeleke et al., 2009; Cochran & Broyles, 2010), while
in M/M/s, the system assigns the arrived patients to doctors according to the station usage (e.g.,
Agnihothri & Taylor, 1991; Green, 2006; de Véricourt & Jennings, 2011). M/M/s is more
suitable for the case that all doctors have the same service rate or all patients have the same
selection opportunity for doctors. In our problem, patients have reservation preferences and
specific skill requirements, and do not have the same selection opportunity for each doctor. It
is more applicable to treat each doctor’s service as an independent M/M/1 queuing system.

3. Problem description and formulation
3.1. Problem description

The HHCRSP with the consideration of the outpatient service can be described as follows.

Before receiving a service, the contracted patients are required to make a reservation for
service mode according to their requirements. On each day each patient can only reserve one
service mode, either outpatient or door-to-door service mode. Moreover, there is a fixed number
of patients each day. Then, we can define N ={1,2,...,|N|} as a set of patients, N; =

{1,2,...,|N;|} as the set of patients who have reserved the door-to-door service (home
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healthcare patients) and N, = {|N;| + 1,|N;| + 2, ...,|N|} as the set of patients who have

reserved the outpatient service (out-patients). Thus, N = N; U N,.

A group of doctors, K = {1,2, ..., |K|}, has an identical hard service time window at the care
center, and is required to be arranged to serve both classes of patients. Each doctor is qualified
with a skill level to show the serviceability or quality. Meanwhile, each patient has a skill level
requirement, which limits that the service must be performed by a doctor with the same or a
higher skill level. To avoid the overwork of high-skill qualified doctors and better balance the
workload of doctors, we set a maximum allowable skill level deviation E (E = 0) between the
doctor skill level and the patient skill level required. Each doctor can be only assigned to one

service mode at most, and has the maximum continuous working duration R.

For the door-to-door service, we consider a complete directed graph G = (V, A), where V is
the set of nodes and A4 is the set of arcs. Nodes consist of patients’ homes and the care center.
Each patient’s home is represented by a separate node in this graph. The care center is
represented by both the starting depot and ending depot, i.e., nodes 0 and |N| + 1, where each
doctor must start at and return to, respectively. Thus, V ={0,|N|+1}UN; and A=
{(i,)):i e V\{IN]| + 1},j € V\{0},i # j}. Each patient has a service duration and a hard time

window for starting a service, and each doctor must start a service within the hard time window.

For the outpatient service, each doctor’s working time duration is R. Although the service
starting time range for patients may be defined during reservation, the incoming stream of
patients can also be considered as a Poisson process. We assume each doctor’s service process

can be modeled as an independent M/M/1 queuing system. For doctor k, the service time is

exponentially distributed with a mean of ui where wuy, is the service rate. When the number
k

of patients assigned to doctor k is t;, the incoming stream of patients is a Poisson process

with a rate of A, = %". Thus, the total waiting time of patients served by doctor k can be
oM weR? e
expressed as Ty, = e T R

In HHC, service quality and doctor-patient familiarity are two important factors affecting
patient preference. Patients prefer to the doctors who have a higher skill level or served them

before (Cabana & Jee, 2004; Fan et al., 2005; Sanscorrales et al., 2006). We use p;, to model
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doctor-patient familiarity; it equals 1(0) if doctor k has served (not served) has served patient i
before. We use the service skill level deviation between a doctor and a patient to denote the
service quality. The larger the deviation, the better the service quality.

The problem is to determine the doctor assignments to the two modes, the doctor-patient
matching in the outpatient service, and the routes of doctors for the door-to-door service starting
and ending at the care center. The objectives are to minimize the total travel cost of doctors for
the door-to-door service and the total waiting penalties for the outpatient service, and maximize

the total benefit of patients’ preference satisfaction.
3.2. Problem formulation

Sets

N, Set of patients who need the door-to-door service, {1,2, ..., |N;|}.

N, Set of out-patients, {|N;| + 1, |N;| + 2, ..., |N;| + [N, |}

N Set of all patients, N; U N,.

K Set of doctors, {1,2, ..., |K|}.

/4 Set of vertices, including the patients who need the door-to-door service and the care
center, N; U {0,|N| + 1}.

A Setof arcs, {(i,j):i € V\{|IN| + 1},j € V\{0},i # j}.

Parameters

R Maximum continuous working duration.
E The maximum skill level deviation.

q; Required skill level of patient i.

Qk The qualified skill level of doctor k.

Dik 1if doctor k has served patient i before; O otherwise.

ti Travel time from node i to j.

Cij Travel cost from node i to ;.

[e;, ;] The hard time window at node i for starting a service.

T; Service duration at node i (and 75 = Ty4; =0).

Uy The average service rate of doctor k in an outpatient service.

Wy The unit waiting penalty of outpatients.
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W, The unit benefit of patients’ preference satisfaction.

Decision variables

Vik 1 if doctor k isassigned to serve patient i; O otherwise.

Xijk 1if doctor k travels from node i to j; O otherwise.

Auxiliary variables

ta; The time when doctor k arrives at node i.

ty The number of outpatients served by doctor k.

Sk 1 if doctor k is assigned to a door-to-door service; 0 otherwise.
Formulation

[P1]

Min Yrex 2 jyea(Cij - Xijx) + Wi Zkex(

Qr — q1)

S. t.

Doctor assignment constraints:
0<t, <ug'R

tk = Xien, Yik

Vik = Ziev\(IN|+1} Xijk

Yik < Ok
Yie S1—16;
Ykek Yik = 1

Skill constraints:

qi < Xkex Vir * Qk

qi = Lrex Vi Q — E

Working hours constraints:
tanj+1,k — taox < R

Routing constraints:
Zien\(In|+1} Xijk — Ziev\(o} Xjik = 0
ZieNl Xoix = Ok

Ziezv1 Xi|N|+1.k = Ok

t
— K —R) — Wy Tek Yien Vir - Pix +

Uk

vk EK
vk EK
Vj EN,kEK
VvieN,k€E€EK
VieN, kEK

VieN

VieN

VieEN

Vk € K

Vj € Ny, k €K

vk € K

VkeK
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Time window constraints:

tagx = ey6y vk eK (14)
ta+ik < lupe - Ok vk € K (15)
taj > max{e, tay} + 1+ t; —M(1—x;,) Vi€ V\{IN|+1},j e V\{0},k € K (16)
0<tay <1l -y Vie N, keK an

Binary and definitional constraints:

xijk € {0,1} v(i,))EAkEK (18)
yir €{0,1} VieN,keK (19)
6, €{0,1} Vk €K (20)

Obijective (1) is to minimize the total travel cost for the door-to-door service and the total
waiting penalties of out-patients, and maximize the total benefit of patients’ preference
satisfaction simultaneously. Constraints (2) ensure that the number of outpatients served by a
doctor cannot exceed the doctor’s average service capacity in an outpatient service. Constraints
(3) defines the number of outpatients served by doctor k. Constraints (4) show the relationship
between y; and x;j. Constraints (5) and (6) ensure that each doctor can be only assigned to
one service mode at most. Constraints (7) guarantee that every patient must be served by one
doctor. Constraints (8) and (9) make sure that every patient can only be served by a doctor with
the same or a higher skill level but not exceed the maximum skill level deviation E. Constraints
(10) ensure that the working hours of doctors for the door-to-door service is less than the
maximum working hours. Constraints (11) are the flow-conservation constraints for the doctors
to serve home healthcare patients. They ensure that a doctor who visits a patient in a door-to-
door service must eventually leave that patient. Constraints (12) and (13) ensure that each
doctor assigned to door-to-door service must start from the care center and finally returns to the
care center. Constraints (14) and (15) guarantee that the doctors are assigned to the door-to-
door service within the time window of the care center. Constraints (16) ensure that the arrival
times of doctors for the door-to-door service are correctly set. Constraints (17) guarantee that
if a doctor visits one patient in the door-to-door service, the arrival time must not be later than
the end of the patient's time window. Constraints (18) to (20) are binary constraints for decision

variables.
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4. An g-global optimization method

[P1] presented in Section 3 is a mixed-integer nonlinear programming model with

uk-RZ
Up'R—tg

nonlinear constraints (16) and a nonlinear term in the objective function. In order to

implement it by optimization solvers such as CPLEX, we linearized the [P1] model. Constraints
(16) can be easily linearized to constraints (21) and (22) as follows:

taj, = e; + 1 + ty; — M(1— xg.) Vi € V\{|N| +1},j e V\{0},k e K (21)
tay = tag +1; +t;; — M(1—x;x) Vi e V\{IN|+1},j e V\{0}L,k e K (22)
.p2
On the other hand, uu’; B s convex, because the value of the second derivative is positive
k'Rl

at the domain 0 < t; < u; - R. The outer approximation method can be used to obtain global

g-optimal solutions by solving the relaxation problem.
4.1. The outer-approximation method

The outer-approximation method is one of the basic approaches to handle mixed-integer
programming problems with nonlinear equality constraints or general model structure (Fletcher
& Leyfter, 1994). It aims to generate a piecewise-linear function with as few pieces as possible
within an approximation error of € and has been widely used in various research fields, such
as revenue management in liner shipping studies (e.g., Wang & Meng, 2012; Wang et al., 2015),
electric vehicle fleet size and trip pricing problems (e.g., Xu et al., 2018), bike rebalancing
problems (e.g., Li & Liu, 2021). Among them, Li & Liu (2021) formulated a 0-1 integer
programming problem by minimizing the total number of breakpoints to find the optimal
breakpoints among all integer points. This method shows great sensitivity to € and can obtain
fewer tangent lines compared with the existing methods by Wang & Meng (2012) and Xu et al.
(2018) for a given e.

2

Ug'R
Ug'R—tg

In our study, we transform formulation [P1] by approximating the convex function

in the objective function with a series of piecewise-linear functions by the outer approximation

method of Li & Liu (2021). The procedure is as follows.

.p2
Step 1: Define the convex function g(t;) = uu';R . and set an approximation error €.
kR—LlE
’ . 2 .
Step 2: Calculate the slope S(tx) =g (tk):—ﬁ and the intercept y(t;) = g(ty) —
! -R? ‘R— . .
g (&)t = WeR™ Qe R=200 (1 the tangent line of curve g(t,) at point t;.

(ur-R—ty)?

Step 3: For each k € K, define € = I%I to allocate the total tolerance € and the set of

optimal breakpoints S, is determined by solving formulation [B], where it is formulated using

y(ty), B(t,), and the following notations.
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Sets

C  Set of points, indexed by 0,1, ..., min {Ju; - R — 1], |[N,|};

Decision variables

X, = lifpoint m is selected as a breakpoint; = 0 otherwise;

Vim = 1ifthe tangent line with breakpoint m is selected to calculate the difference between

the actual value and the approximation value at point ; = 0 otherwise;

Formulation

[B]
min - YecXm (B1)
s. t.
9 D)-B&™) i + v ™)) Vi -M (1-Fm) <€ VimeC (B2)
YmecVim =1 VieC (B3)
Xm Z Yim vi,m € C (B4)
yim €{0,1},  x, €{0,1} VimeC (B5)

The objective (B1) is to minimize the total number of breakpoints. Constraints (B2) ensure
that the difference between the actual value and the approximation value is not larger than £,
where M is a large positive number. Constraints (B3) indicate that at least one breakpoint is
selected for each point i. Constraints (B4) show the relationship between X, and V.
Constraints (B5) are binary constraints for the decision variables.

4.2. Relaxation problem (lower bound)

uk-Rz
Ug'R—

We introduce a new auxiliary variable A, to replace in the objective function. By
k

adding the linear relaxation constraints with breakpoint m (Vm € Sj), new formulation [P2]
provides the lower bound of formulation [P1].
[P2]
min Ypex iev Xjev(Cij - Xiji) + Wi Zkex(Ax — :l—’; — R) — W, Sk Siee Vir - i + Qe — q)  (23)
Subject to constraints (2)-(15), (17)-(22) and
A = B™) -ty + v (™) Vm € Sp, k € K (24)
Let Opt and LB be the optimal objective value to [P1] and [P2], respectively. Thus, LB
is a lower bound of Opt. Let (x{jx, Yik, tk, Ax) be the optimal solution to [P2]. An upper

bound of Opt can be determined by

R? :
e t_}zcc — R) = W Ykex Xien Yik * (Pix + Qi — 1) (25)

ug'R-t, u

UB = Ykek X(i,jealCij * Xijk) + Wi Zkek(

According to the piecewise-linear approximation scheme, it follows that
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LB<Opt<UB<LB+¢ (26)

5. HGA method
Although the outer approximation method can obtain the global e-optimal solution, itis only
restricted to the small-scale problem. In this section, we propose an HGA to solve the proposed
problem over a large instance. This HGA uses a new individual representation and has novel
developments in the key steps including initial population creation, crossover, and mutation,
and embeds a tailored local search method and a shake procedure. The structure is presented in

Algorithm 1.

Algorithm 1. HGA
1: Initialize population P(0), take the best individual in P(0) as the gobal best individual G,.s; and

initial best individual B(0).

2: Set iterkeep=0, iter=0.

3 While (iterkeep < T)

4: Generate offspring population P(iter + 1) by selection, crossover, and mutation.

5: Local search is applied to the best half individuals in P(iter + 1), and then copy the best individual
in P(iter + 1) to B(iter + 1).

6: If f(B(iter +1)) = f(Gpest)

7: iterkeep = iterkeep+l.

8: Else

9: Gpese= B(iter + 1).

10: iterkeep =0.

11: End if

12: If (iterkeep =10)

13: Apply the shake procedure to P(iter + 1).

14: End if

15: iter = iter + 1.

16: End while
17: Reture Gpegt-

In HGA, a maximum number of iterations between two improvements T is used as a
stopping condition. To improve the search efficiency, a local search procedure is applied to the
best half individuals after mutation. If the gobal best individual Gj,s: iS not improved in 10
consecutive iterations, the shake procedure is applied to maintain the diversity of the population.
5.1. Individual representation

Shietal. (2017) proposed an encoding method by using a list table to represent an individual.
In this method, every individual consists of several rows, and each row represents a route. We

generalize the method to fit our problem by considering the doctor-patient assignment in the
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outpatient service and the routes of doctors for the door-to-door service simultaneously. In the
generalized version, the first item of each row represents the doctor assigned to participate in a
service; the second item represents whether the doctor is arranged for an outpatient service
(denoted by 1) or a door-to-door service (denoted by 0), and the rest items are the patients to
be served by the doctor in the first item. Note that the patient array order is also the sequence
that patients are served if the doctor is arranged for the door-to-door service. While for the
outpatient service, the patient array is unordered, and the arranged patients’ services are subject
to a first-come-first-served basis. Fig. 1 shows an example. There are totally 5 doctors. The first
three doctors are arranged for the door-to-door service, and the last two doctors are arranged
for the outpatient service. This representation can easily cover the doctor scheduling and need

not decode or encode again during the algorithm implementation.

Individual Schedules
@ o | 5 | s | o | 2 | Doctor 1: door-to-door service, care center—>5—>4—>9—>2—>care center
| ® | 0 | 1 | 6 | 3 | Doctor 2: door-to-door service, care center—>1—>6—>3—>care center
Decoding
| ® | 0 | 7 | 10 | 8 | F——————| Doctor 3: door-to-door service, care center—>7—>10—>8—>care center
| @ | - | . | 12| - | £ |16 | - | Doctor 4: outpatient service, the service patients set={11, 12, 13, 19, 16, 18}
1 | 14| 15|17 | 20 . . . .
| © | | | | | | Doctor 5: outpatient service, the service patients set={14, 15, 17, 20}

Fig. 1. The representation of an individual.

5.2. Initial population

To better maintain population diversity, we adopt two ways to generate the initial population.
Half of the individuals are generated in a “random” way. We start a new row by randomly
selecting an unassigned patient and a doctor available to serve this patient, and then keep
inserting other patients randomly into this row without violating any constraints. If no available
patients can be inserted into the current row, a new row is created. This process is repeated until
all the patients are assigned. Another half of the individuals are generated in a “superior” way
by adopting a tailored initialization method that is based on the insertion heuristic for vehicle
routing problem with time window (VRPTW) developed by Solomon (1987). The main

structure is presented in Algorithm 2.

Algorithm 2. The tailored initialization method
1 Set Nlnor = Ny, N2yt = Ny Nyor = N, Kpoe = K.
2: While (Npo; # @ and Ky # @)
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a

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Random select a patient i € N,,,;.
If (i € N1,,,; && adoctor k who satisfies q; < Q. < q; + E exists)
Randomly select a available doctor k and construct a service route: k - 0 — i; delete i from
N1,,; and N, and delete k from K.
While (N1,,; # @)
Copy all patients in N1,,, who satisfy constraints to the set M.
If (M + 9)
Select the best patient u* € M and insert it into the current route by the criteria ¢, and
P2-
Delete u* fromboth N1,,; and N,;.
Else
Break;
End if
End while
Else if (i € N2,,,; && adoctor k who satisfies q; < Q, < q; + E exists)
Randomly select a available doctor k and construct a service patient set SP={i}; delete i from
N2,,: and N, and delete k from K.
Copy all patients in N2,,,, whose skill requirements are within the range [Q;, — E, Q] to P.
While (P # @ and |SP|< u, R —1)
Select the best insert patient u* € P by the criterion ¢, and add it to set SP.
Delete u* from N2,,;, Np,: and P.
End while
Else
Break;
End if
End while
If (Npot = @)
A new individual constructed.
End if

In algorithm 2, N,,, and K,,: represent the unarranged patient and doctor sets,

respectively. We put the unassigned patients of the door-to-door and outpatient services into

the sets N1,,; and N2, respectively. An unassigned patient is randomly selected, and an

available doctor who can serve this patient is selected to start a new row. If the doctor is

arranged for a door-to-door service, we find the best feasible insertion position for each

unassigned patient by satisfying all the constraints (criterion ¢-), and select the “best” patient

with the maximal preference satisfaction (criterion ¢,), and then insert the “best” patient into

the best insertion position. If the doctor is arranged for an outpatient service, we directly adopt

the criterion ¢, to select the “best” patient with the maximal preference satisfaction for this

doctor, and add this patient to the tail of the patient array. If no available patient can be inserted
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into the current row, a new row is started unless all patients are assigned. The criteria ¢, and
¢, are defined in the following subsections.
5.2.1 Criterion ¢,

Suppose the current door-to-door service sequence is (ig, iy, ..., i), Where iy and i, are
the care center. For each unassigned patient u, the best feasible insertion position in the route
can be found by the following formula without violating any constraint.

©1(lp =1, U ip+)) = min [algoll(ip_l,u, ip) + az(plz(ip_l,u, ip)],p =1,.m (27)

where a;+a;,=1,0<a;<1,0<a, <1. (pn(ip_l,u, ip) = Cip_yu t Cuiy, — Cip i, -

<p12(ip_1,u, ip) is the difference between the total waiting time of the doctor in the original
route and that after inserting u in arc (i,-4,i,). This criterion tries to find a position with the
minimal weighted sum of travel cost and waiting time saving of the doctor arranged for the
door-to-door service.
5.2.2 Criterion ¢,
The best patient u* is selected by

P2(u", k) = max[pyy + Qr — qul (28)
where p,x + Qx — q, 1S the preference satisfaction of patient u if u isassigned to be served
by doctor k. This criterion tries to find the best patient with the maximal preference satisfaction

for the doctor in service.
5.3. Parent selection

We adopt tournament selection, by randomly selecting two individuals and evaluating them.
The better one participates in the crossover, mutation, and the local search improvement. Repeat

until the number of selected individuals reaches the population size.
5.4. Crossover

We propose a new crossover operator for the door-to-door and outpatient services
synchronously. The feasibility is checked during the crossover operation to guarantee that
offsprings are feasible.

Randomly select two parents P1, P2 and a doctor k, for crossover operation. Offspring 1 is

gerenated by P1 and the row for k; in P2, and inherits most of P1. Similarly, offspring 2 is
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gerenated by P2 and the row for k, in P1, and inherits most of P2. For easy description, we
take the generation of offspring 1 as an example to describe the procedure. There are three cases
in crossover operation.
Case 1: If k; isnot arranged in P2, copy P1 to offspring 1.
Case 2: If k; is arranged in P2 but not arranged in P1, remove the patients served by
doctor k; from P1, and then add the row for k; in P2 to P1. For example, in Fig. 2, the
corresponding row of doctor 6 in P2 is R2, then remove patients 10, 9, 2 from P1, and add
R2 to P1 to form offspring 1.
Case 3: If k, isarranged both in P1 and P2, there are four crossover strategies.
(@) If kq isarranged for an outpatient service in P1 and a door-to-door service in P2, copy
P1 to offspring 1.
(b) If k, is arranged for a door-to-door service in both P1 and P2, and the corresponding
rows are R1 and R2, respectively (See Fig. 3), then do the following.
Step 1. Delete the patients in R2 {10, 9, 2} from P1 (See Fig. 3(a)).
Step 2. Delete R1 from P1 and add R2 in P1 (See Fig. 3(b)).
Step 3. Reinsert the remaining patients in R1 {5, 4} into any rows of the door-to-door
service in P1 (See Fig. 3(c)) without violating any constraints. If reinsertion fails, copy
P1 to offspring 1.
(c) If ky isarranged for a door-to-door service in P1 and an outpatient service in P2, and
the corresponding rows are R1 and S2, respectively (See Fig. 4), then do the following.
Step 1. Delete the patients in S2 {11, 15, 13} from P1 (See Fig. 4(a)).
Step 2. Delete R1 from P1 (See Fig. 4(b)).
Step 3. Reinsert the patients in R1 {1, 6, 3} into the rows of other door-to-door services
in P2 and add S2 to P1 (See Fig. 4(c)).
(d) If k, is arranged for an outpatient service in both P1 and P2, and the corresponding
rows are S1 and S2, respectively (See Fig. 5).
Step 1. Delete the patients in S2 {14, 13, 16} from P1 (Fig. 5(a)).

Step 2. Reinsert the patients in S2 {14, 13, 16} into S1 (Fig. 5(b)) randomly.
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5.5. Mutation

Mutation operators are used to maintaining the diversity of the population from one
generation to the next. Considering the problem characteristic, we design six different mutation
operators for the doctor-patient assignment of the outpatient and door-to-door services and the
routes of doctors for the door-to-door service. Operators (1)-(4) are specifically for the routes,
while operators (5)-(6) are applicable to doctor-patient assignments of both the outpatient and
door-to-door services:

(1) Intra two-node exchange: randomly select two different patients and then swap them.

(2) Intra 2-opt: randomly select two patients and then reverse the sub route between them.

(3) Intra single-node relocation: randomly delete one patient, then reinsert this patient into
the route.

(4) Inter two-point swap: randomly select two patients from different routes, take the selected
patients as cut points. Then cut each route into two pieces and swaps the two parts to form
two new routes.

(5) Inter two-node exchange: randomly select two patients using the same service mode from
different rows and then swap them.

(6) Inter single-node relocation: randomly delete one patient from a row and then insert this
patient into another row.

For each time, we randomly choose one operator from (1)-(6) for the door-to-door service
and one operator from (5)-(6) for the outpatient service. The new individual replaces the old
one if it is feasible.

5.6. Local search

The local search operator is applied to the best half individuals in each generation to improve
search efficiency. In the problem, we adopt nine local search moves. The first six moves are
the same as the mutation operators described in Section 5.5, moves (7)-(8) are specifically for
routes, move (9) is the doctor-patient matching operator.

(7) Multiple node relocation: randomly delete a set of patients DP with |DP| > 2. Then
reinsert the patients in set DP into the individual.

(8) Swapping two subsequences: randomly select two independent subsequences from

different routes, and swap them.
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(9) Swapping two doctors: randomly select a route, and swap the related doctor with another
doctor who has the same service skill.

The procedure is shown in Algorithm 3.

Algorithm 3. Local search

1:  Put moves (1)-(8) into a move set.

2:  Select the first move from the move set.

3. If the selected move belongs to moves (1)-(4) or (7)-(8), the move is carried on the rows for the
door-to-door service. If the selected move belongs to moves (5)-(6), the move is carried on the rows
for the outpatient service.

4 If the selected move can yield an improvement, adopt this move repeatedly until no improvement
is yielded after 20 times, and then go to step 7.

Remove the selected move from the set.

5

6: Ifthe set is empty, go to step 7. Otherwise, go to step 2.

7:  Move (9) repeatedly adopted until no improvement is yielded after Tj,.q; times.
8

Replace the former individual with the new one.

5.7. Shake procedure

To prevent the algorithm from falling into a local optimum as the solution diversity decreases,
the shake procedure is applied if the gobal best individual Gp.s is not improved in 10
consecutive iterations: Randomly select individuals from the population with a shake
probability P, then each selected individual is perturbed by adopting one of the nine moves
for the local search procedure in Section 5.6. The original individual will be replaced by the
newly generated individual only if the new one is feasible.
6. Computational results

We conducted computational experiments to illustrate the problem properties and tested the
efficiency of the proposed method. A small instance setting is shown in Section 6.1, which is
used in Section 6.2 - Section 6.5. All exact solutions were obtained by adopting branch and cut
method embedded in IBM-ILOG CPLEX 12.6.3. The HGA was coded in C#. All experiments
were performed on a computer equipped with an Intel Core i7-2600U CPU 3.4GHz PC with a
16GB RAM.
6.1. Small example setting

In this small instance, there are 6 doctors, 10 out-patients, and 8 home healthcare patients.
This size is good enough to illustrate the problem properties and to obtain the exact solution in

a short time. The home healthcare center coordinate is (4, 13) and its time window is [Omin,
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540min]. Doctors’ maximum continuous working duration is 480min. The values of the travel
cost and travel time are set to equal the rounded integer of the distance between the two patients.

The other doctors’ and patients’ information are shown in Table A.1~Table A.3.
6.2. Sensitivity analysis

We solved the example in Section 6.1 to optimality with different combinations of
parameters (E, W;, W,), and analyzed the effect of these parameters on the operational
strategy. For E, we consider three cases: no skill level deviation (E = 0), at most one skill-level
deviation (E = 1) and at most two skill-level deviations (E = 2). For W; and W,, we
consider different parameter combinations. When W, =5, W, varies from [1,50] with an
increment of 0.1. When W, =5, W; varies from [1,50] with an increment of 0.1. To
guarantee that the resultant solution is globally optimal, we set the allocated tolerance € = 0.
Table 3 gives the computation results of travel cost, waiting time of out-patients, and the overall
preference satisfaction of patients with different parameter combinations. Fig. 6~Fig. 11 show
the trends of travel cost, the total waiting penalties of out-patients, and the total benefit of
patients’ preference satisfaction with different parameter combinations.

Table 3

Computation results under different parameter combinations.

@E=0
Waiting time of out- Overall preference
w, w, Travel cost ($)
patients (min) satisfaction of patients
1-50 5 663 31.0 11
5 1-50 663 31.0 11
(b)E=1
Waiting time of out- Overall preference
w, w, Travel cost ($)
patients (min) satisfaction of patients
1-11 5 635 54.0 20
1.2-25 5 635 32.0 15
2.6-50 5 635 26.2 12
5 1-9.7 635 26.2 12
5 9.8-21.9 635 32.0 15
5 22-28 635 54.0 20
5 28.1-50 663 54.0 21
(c)E=2
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Waiting time of out-

Overall preference

w; W, Travel cost ($)
patients (min) satisfaction of patients
1-11 5 589 43.6 20
1.2-13 5 589 39.5 19
14-24 5 589 320 17
2.5-50 5 589 26.2 14
5 1-9.7 589 26.2 14
5 9.8-18.6 589 320 17
5 18.7-20.8 589 39.5 19
5 20.9-41 589 43.6 20
5 41.1-47.9 589 51.8 21
5 48-50 589 71.0 23
690 T T T T T T 690 T T T T T T
680~ 1 680 - bt
670~ 1 670 b
660 1 660 - i
L 6501 1 . 650 -
3 640t B 8 640f- B
% 630 1 g 630f -
= =
620~ 1 620 i
610 A 610 4
600 ~ - 600 i
590 = B 590 & N
580 : : : : : : : : 580 : : ‘ : : : : :
10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Fig. 6 The relation between travel cost and W, when W, =

The total waiting penalties of out-patients

1600

1400

1200

1000

800

600

400

200

0

Fig. 8 The relation between the total waiting penalties of out-patients

and W; when W, =5.

2

Fig. 7 The relation between travel cost and W, when W; = 5.

400 : : : : : : : : :
9 E=0
& 350 E=1 4
g E=2
5
2 3001 i
o
0
2
S 250 .
[
o
o
£ ‘
£ 200+ g
g
<
s =
o 150 f ]
2 ‘

100 : : : : : : : : :

5 10 15 20 25 30 35 40 45

Fig. 9 The relation between the total waiting penalties of out-patients

and W, when W, = 5.

23

50



=
1=}
S

-
1N}
S
=)
T

............ 0
------ E=1
________ E=2

©
S

1000 -

©
S
S
T
=)
S

@

S

=)
T

~
=)

IS
S
S
T
T T
P PR |

=
S

N

S

S
T

The total benefit of patients' preference satisfaction

The total benefit of patients’ preference satisfaction

o
S

5 0 155 2 zéz 0 ® 40 & 5 "
Fig. 10 The relation between the total benefit of patients’ preference Fig. 11 The relation between the total benefit of patients’ preference
satisfaction and W, when W, = 5. satisfaction and W, when W, = 5.
6.2.1. Sensitivity analysis of the maximum skill level deviation E

From Table 3, it is observed that for a smaller E, the travel cost, waiting time of out-patients
and overall preference satisfaction of patients fluctuate less with the changes of W, and W,,.
This is mainly due to the fact that a smaller E value leads to stricter doctor-patient skill matching
and hence the resultant solutions have less variability. On the other hand, for specific values of
W, and W,, it is easily observed that the travel cost of the optimal route for the door-to-door
service decreases with the growth of E in Fig. 6 and Fig. 7, because a larger E value leads to
more feasible home healthcare patient matching to each doctor, which results in an optimal
routing plan with a lower travel cost.

From Table 3, Fig. 8 and Fig. 9, we can see that the effect of E toward the waiting time and
the total waiting penalties of out-patients is also obvious. When E = 0, strict doctor-patient skill
matching and other constraints make the solution unchanged, which leads to the situation that
the total waiting time of out-patients does not change with W; and W,. With E increasing,
doctor-patient matching and the number of out-patients served by each doctor may change,
which may ultimately lead to the change in waiting time and total waiting penalties for the out-
patient service.

As seen from Fig. 10 and Fig. 11, a larger E value leads to a higher total benefit of patients’
preference satisfaction in most cases. We can explain it by the fact that a larger E value
corresponds to more flexible matching opportunities and the patient prefers the doctor with a

better skill, which eventually increases the overall preference satisfaction of patients as well.

On the other hand, as there is a trade-off between the different parts of the objective, some
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special cases such as the overall preference satisfaction of patients for a larger E being smaller
also exist (as seen from Fig. 11, when W, is between 28.1 and 41, the total benefit of patients’
preference satisfaction when E = 2 is less than that when E = 1).

6.2.2. Sensitivity analysis of the unit waiting penalty of out-patients W;

When W, =5, for a specific E value, W, affects the waiting time of out-patients directly,
and the variation of travel cost and the overall preference satisfaction of patients have some
regularities. As expected, from Fig. 6, it is observed that the travel cost remains the same with
W, increasing due to the fact that the constraints (such as time windows, skill matching, etc.)
make the single route for the door-to-door service remain the same.

From Table 3 and Fig. 8, we can see that when E = 0, with the growth of W, the waiting
time of out-patients remains 31.0 (min) due to strict doctor-patient matching, and the total
waiting penalties increases linearly with a slope of 31.0 accordingly. When E = 1 and E = 2,
the waiting time of out-patients decreases but the total waiting penalties of outpatients increase
with W, increasing in range [1, 2.6] (E = 1) and [1, 2.5] (E = 2). When W; >2.6 (E=1) and
W, = 2.5 (E = 2), the waiting time of out-patients remains 26.2 (min), and the total waiting
penalties of outpatients increase linearly with a slope of 26.2 accordingly. This can be explained
by the fact that the doctor-patient matching reaches the state with the least waiting time of out-
patients, and does not change anymore.

With W, increasing, the contribution or the importance of the overall preference
satisfaction of patients to the objective value decreases. As a result, when E =1 and E = 2, the
overall preference satisfaction of patients decreases promptly and then constantly equals 12 (E
=1)or14 (E=2)when W; >2.6 or W; > 2.5 as shown in Table 3. It can be explained by
the fact that the doctor-patient matching changes to reduce the overall preference satisfaction
of patients so as to reduce the waiting time of outpatients if possible as W; increases. However,
when E = 0, the overall preference satisfaction of patients equals 11 and remains the same with
W, increasing because for the strict skill matching, doctor-patient matching is difficult to
change.

6.2.3. Sensitivity analysis of the unit benefit of patients’ preference satisfaction W,

From Table 3 and Fig. 7, it is observed that W, affects the overall preference satisfaction of

patients directly for specific values of W, and E. However, the travel cost seldom changes
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with the increase of W,. Only when E = 1,W; =5 and W, increases from 28 to 28.1, the
travel cost changes from 635($) to 663($). This is because doctor-patient matching changes to
increase the overall preference satisfaction of patients, which results in a long travel route for
doctors who involve in the door-to-door service.

From Table 3 and Fig. 11, we can see that, with W, increasing, the overall preference
satisfaction of patients equals 11 when E = 0 due to the strict doctor-patient matching, and the
total benefit of patients’ preference satisfaction increases linearly with a slope of 11 accordingly.
When E = 1 and E = 2, the overall preference satisfaction of patients increases with the growth
of W, which leads to the increasing trends in the total benefit of patients’ preference
satisfaction. In contrast, with W, increasing, the waiting time of out-patients remains the same
when E = 0 but increases in a stepwise manner when E = 1 and E = 2 as shown in Table 3.
6.3. The trade-off between the outpatient and door-to-door services

In this section, we analyze the trade-off of the scheduling between the outpatient and door-
to-door services. For ease of description, we split the objective function in [P2] into f; and f,,
which represent the performance measure for the door-to-door service (the difference between
travel cost and the total benefit of preference satisfaction of home healthcare patients) and the
outpatient service (the difference between the total waiting penalties of out-patients and the

total benefit of preference satisfaction of out-patients) respectively, shown as follows.

fi = Zkex Z(i,j)eA(Cij X)) — Wa Dikek ZieN1 Yik * @ik + Qx — qi) (29)
t
fo = Wi Xkex (A — u_’; —R) — W Yek ZiENz Yik " Pik + Qx — q;) (30)

We introduce a new objective function f; = f; + W5 - f,, where W5 is used to show the
ratio of the two objectives. We also adopt the instance in Section 6.1 to minimize f3, and set
W, =5 W, =5 and E=1. W5 varies from [0,2] with an increment of 0.01. Table 4 shows
the computation results of f;, f,, travel cost, the total waiting penalties of out-patient, the
total benefit of preference satisfaction of all patients, home healthcare patients, and out-
patients, and the doctors arranged in the outpatient service with the corresponding number of
outpatients served shown in bracket regarding the different values of Ws.

Table 4

Computation results regarding different Ws.
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The total benefit

The total benefit

The total benefit

Total waiting of preference The doctors
Travel of preference of preference
78 fi penalties of satisfaction of arranged in the
cost ($) satisfaction of satisfaction of
outpatients ($) home healthcare outpatient service
all patients ($) outpatients ($)
patients ($)

0 585  263.43 635 303.43 90 50 40 1(5),3(5)
0.01-0.13 585  219.83 635 269.83 100 50 50 3(2,6(13),1(5
0.14-055 600  110.46 635 135.46 60 35 25 1(2),5(3),3(5)
0.56-2.00 605  100.75 635 130.75 60 30 30 1(2),5(3),6(5)

When W, = 0, the outpatient service is not considered in f;. As a result, f; reaches its
minimum value of 585 and f, equals a maximum value of 263.43. Since travel cost is
determined by the constraints such as time window, skill requirements, and working regulation,
it does not change with W5;. However, the total benefit of patients’ preference satisfaction of
home healthcare patients obtains a maximum value of 50 when W5 =0. It is because most of
the doctors with higher skill levels or more familiar to home healthcare patients are arranged to
the door-to-door service. In this case, only two doctors (doctors 1 and 3) are arranged to the
outpatient service, and the total waiting penalties of out-patients reaches the maximum value.

When W5 > 0, the contribution of f, to f; increases and that of f; to f; decreases with
W5 increasing. Minimizing f; results in f; increasing and f, decreasing as W5 is
increasing. In f;, since travel cost remains the same, the total benefit of preference satisfaction
of home healthcare patients decreases with W5 increasing. In f, the total waiting penalties of
out-patients decrease with W5 increasing, although the schedule may not be favorable to the
out-patients (the total benefit of preference satisfaction of out-patients decreases, e.g., the value
of the total benefit of preference satisfaction of out-patients when W5 in an interval of
[0.01,0.13] is larger than that when W5 ininterval [0.14, 2]). Another observation is that when
W5 changes from any value in the interval [0.14, 0.55] to any value in [0.56, 2.00], the service
modes of doctors 3 and 6 arranged are exchanged, and the total waiting penalties of out-patient
decreases. Combining with the fact that the service rate of doctor 3 is lower than that of doctor
6, we can conclude that arranging the doctor with higher service rates to the outpatient service
can reduce the total waiting penalties of out-patients.

6.4. Effect of different allocated tolerances & toward the computational results

A

To test the effect of the allocated tolerance £ in the e-global optimization method on the
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computational results of the number of tangent lines, the optimal objective value in [P2], the
computation time, and the relative gap regarding the different values of € , we also adopt the
example described in Section 6.1. We set W, =5, W, =5, & varies from [0,11] with an
increment of 1. Table 5 shows the computational results when E = 1.

Table 5

Computation results regarding different £,

Optimal Optimal
Number of CPU Number of CPU
objective Gap% € objective Gap%
tangent lines time(s) tangent lines time(s)
value value

0 66 705.755 16.082 0 6 28 617.148 15.754 12.555
1 52 701.931 15.896 0.542 7 24 606.462 16.112 14.069
2 43 689.382 15.348 2.320 8 24 616.475 15.946 12.650
3 39 668.378 15.387 5.296 9 23 602.313 16.250 14.657
4 31 638.771 15.801 9491 10 21 599.853 16.096 15.006
5 30 642.416 15.584 8975 11 21 592.474 16.022 16.051

From Table 5, it is observed that with € increasing, the number of tangent lines decreases
and the problem is more relaxed, which leads to a lower optimal objective value in most cases.
However, there are still some special cases for some adjacent €. This can be explained by the
fact that although the number of tangent lines decreases or remains the same with € increasing,
the feasible region made by tangent lines may change slightly. Therefore, it is possible that a
larger value of € can obtain a larger optimal objective. For example, the optimal objective
value when £ =5 (8) is larger than that when & =4 (7). When & increases by 2 or more, the
feasible region made by tangent lines enlarges. In this case, the optimal objective value with
larger € is smaller. The relative gap (= (global optimal objective value-optimal objective
value)/global optimal objective value) has a similar variation to the optimal objective value and
the gap is as high as 16.051% when & = 11. In term of computation time, there is no obvious
change with different €. This is because the number of tangents that can be selected is 66 in
our instance, which is quite small for the outer-approximation method.

6.5. Managerial implications
To highlight the significance of considering the outpatient services in HHC, we construct

four different scenarios based on the example described in Section 6.1 respectively: (1)

Scenario 1: changing the service mode of 10 outpatients to door-to-door service; (2) Scenario
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2: changing the service mode of 10 outpatients to door-to-door service, and adding 3 new home
healthcare patients; (3) Scenario 3: adding 3 new home healthcare patients; (4) Scenario 4:
adding 3 new outpatients. Table A.4 provides the information about the relevant patients in the
four scenarios, in which patient 9 to 18 are the original outpatients and patients 19 to 21 are
newly added patients. We set W; = 5, W, = 5 and E = 1. Table 6 shows the travel cost, the
total waiting penalties of out-patient, the total benefit of preference satisfaction of all patients,
the total cost (the objective value) and the average cost of patients (= the objective value/the
total number of patients) in each scenario.

Table 6

The computation results of each instance.

The number of ~ Thenumber  Travel  Total waiting The total benefitof =~ The total ~ The average

Scenarios home healthcare of outpatients  cost (§)  penalties of  preference satisfaction cost ($) cost of
patients outpatients ($) of all patients ($) patients ($)
Original example 8 10 635 130.75 60 705.75 39.21
Scenario 1 18 0 1334 0 100 1234 68.56
Scenario 2 21 0 — — — — —
Scenario 3 11 10 707 290.91 105 892.91 41.52
Scenario 4 8 13 635 245.76 70 810.76 38.61

In Scenario 1, without considering outpatient service, we can see that the values of the travel
cost, objective value and the average cost of patients are larger than those in the original
example. It indicates that the combination of door-to-door service with outpatient service can
reduce the total cost compared with HHC service. Meanwhile, the total benefit of preference
satisfaction of all patients in Scenario 1 is also larger than that in the original example. It can
be explained by the fact that in HHC service, the outpatients’ waiting penalties is not
incorporated into the objective, and doctors can match the patients better as for the skill and the
care continuity.

In Scenario 2, when adding 3 new home healthcare patients in Scenario 1, we can see that 6
doctors cannot complete the door-to-door services of 21 home healthcare patients. However,
by considering outpatient services in HHC service, the doctors can complete the services of 21
patients despite that the 3 additional added patients are home healthcare patients (Scenario 3)
or outpatients (Scenario 4). The integration of the two service modes can help doctors serve

more patients. As expected, there are 21 patients in Scenario 3 and 4, with a larger proportion
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of the outpatients (Scenario 4), the objective value, the average cost of patients and the total
waiting penalties of outpatients are lower than those with a smaller proportion of the outpatients
(Scenario 3). Specially, Scenario 4 has more outpatients but lower total waiting penalties, this
is mainly because that the schedule changes and more doctors with higher service rates are
assigned to outpatient services.

Overall, compared with HHC service, the combination of door-to-door and outpatient
services can make the doctors allocation more flexible. It can serve more patients with lower
operating costs. As the primary care of hierarchical diagnosis and treatment, the combination
of door-to-door and outpatient services can play a positive role in balancing the medical
resources in the community care center. It is also suitable for the countries with a shortage of
medical resources but a high aging degree.

6.6. Effectiveness of the hybrid genetic algorithm
6.6.1. The construction method of instances

Since no benchmark exists for the problem, we generated instances based on Solomon’s
VRPTW benchmark (Solomon, 1987) and combined our problem characteristics. The details
are described as follows.

Solomon’s instances are classified into three classes that differ by the geographical
distribution of customers, which are clustered in the C type, randomly located in the R type,
and semi-clustered in the RC type. For all instances in the C, R, and RC types, we consider the
first |N;|+1 customers as care center and home healthcare patients. To simplify the problem,
the travel cost c;; and travel time ¢;; are equal to the rounded integer of the distance between
node i and node j. The service duration of each home healthcare patient z; is uniformly
distributed in [30min, 90min]. The depot (care center) has a time window [0min, 540min]. The
center and width of the time window for home healthcare patient i are uniformly distributed in
[eo + toi Lo — tio — 7;] and [60min, 120min] respectively. All time-related parameters are
rounded into integers. For all patients, the skill requirements are divided into three levels: 1, 2,
3, and the classes of patients contribute to 50%, 30%, and 20% of the total, respectively.

For each doctor, the maximum continuous working duration R = 480 min. Doctors’ skill

qualifications are also divided into three levels: 1, 2, 3, and each class of doctors occupies 1/3
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of the total number of doctors. The average service rate u;, is uniformly distributed in [3—10 , 1—10].

If a doctor’s skill qualification is not less than one patient’s skill requirement, we randomly
generated 1 or O to indicate whether the doctor has served this patient before or not; otherwise,
we only use 0 to indicate that the doctor has not served this patient before.
6.6.2 Parameter tuning

To maximize the performance of HGA, the numerical parameters of HGA listed in Table 7
were tuned with the heuristic algorithm EVOCA (Riff & Montero, 2013), which is simple and
can realize the automation of the algorithm design and parameter setting process. EVOCA
requires as few parameters as possible and provides an easy setting for the definition of the
input data. In our parameter tuning processes, HGA was regarded as the target algorithm, 8
instances with different sizes in Section 6.6.3 were randomly selected as the training set. The
guality measure used for assessing the parameter configurations of HGA was defined by the
negative number of obtained objective value of each instance. If more than one parameter
configurations were able to obtain the optimal, the evaluation value was equal to the negative
number of the average objective value. The training stopping condition for EVOCA was set to
10000 iterations in each experiment.
Table 7

Numerical parameter list

Name Symbol Type Range Precision
Crossover probability P, Real [0.8,1.0] 0.01
Mutation probability P, Real [0.0,0.1] 0.01
Shake probability P, Real [0.5,1.0] 0.01
Population size NP Integer [30, 100] 1
Maximum number of iterations T Integer [300, 400] 1

between two improvements T

We ran EVOCA 5 times with different seeds. Table 8 gives the parameter calibrations
obained by adopting EVOCA with different seeds. From Table 8, we can see that the value of
P. ( =1) in configuration 2 is the same as that in configuration 1 and 3, and P, (= 0.1) in
configuration 2 is the same as that in configuration 5. Configuration 2 integrates the good
features of parameters in the five obtained configurations. Moreover, configuration 2 with

larger T can help the HGA obtain better solution compared with the other configurations.
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Therefore, in the subsequent experiments, the HGA adopts configuration 2 as the actual
parameter values.
Table 8

The parameter calibrations using different seeds.

Configuration  #1 #2 #3 #4 #5

P, 1.0 1.0 1.0 0.8 0.97
Py 007 01 006 003 01
Py 082 076 083 087 0.88
NP 83 77 93 95 62
T 330 385 356 380 369

6.6.3. The performance of HGA

To illustrate the performance of HGA, we randomly generated 24 instances with different
sizes according to the method in Section 6.6.1, and compare the results obtained by HGA and
cut method embedded in CPLEX for the relaxed model [P2]. We set the maximum skill level
deviation E = 1, the unit waiting penalty in the outpatient service W; =5, the unit benefit of
patients’ preference satisfaction W, =5, and the allocated tolerance € =0. Table 9 shows the
running times (CPU) in seconds, the upper bounds (UBs), the lower bounds (LBs), and the gaps
obtained by CPLEX. CPLEX was terminated after an optimal solution was found or 6 h (21600s)
limit was reached. Table 9 gives the average and worse objective values obtained by HGA in
10 runs, as well as the gaps (%) representing the deviation of the average and worse objective
values from the LB. It also shows the average running times (CPU) in seconds and the standard
deviation of gaps obtained by HGA.
Table 9

Comparison of the performance of the exact method and the HGA.

Instance Exact method HGA
Type |K| |N;| [Ny Obj. CPU (s) Ave Obj. Worse Obj. CPU (s) Standard
uB LB  Gap% Value Gap% Value Gap% deviation of gaps

R1 6 10 30 826.40 826.40 0.00 13.26 82640 0.00 826.40 0.00 0.74 0.00
C1 6 10 30 1848.16 1848.16 0.00 17.78 1848.16 0.00 1848.16 0.00 0.81 0.00
RC1 6 10 30 737.67 737.67 0.00 13.99 739.32 0.22 743.19 0.74 0.61 0.00
R1 8 20 40 1705.27 1705.27 0.00 74.25 1710.12 0.28 1720.39 0.88 1.38 0.00
C1 8 20 40 1308.65 1308.65 0.00 92.34 1311.64 0.23 1362.37 3.94 1.19 0.01
RC1 8 20 40 2297.13 2297.13 0.00 128.27 2303.13 0.26 240557 451 142 0.00
R1 10 30 60 3862.05 3862.05 0.00 7008.35 3889.25 0.70 393729 191 3.84 0.01
Cl 10 30 60 2821.59 1871.83 33.66 21600.00 1927.48 2.89 1963.88 4.69 3.86 0.02
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RC1 10 30 60 3279.84 3279.84 0.00 1438.58 3334.27 1.63 339527 340 3.88 0.00

R1 12 40 80 6468.44 5264.95 18.61 21600 5476.86 3.87 5662.08 7.01  10.06 0.02
Cl 12 40 80 4421.23 3185.80 27.94 21600 3302.65 3.54 3400.18 6.30 12.88 0.04
RC1 12 40 80 2542897 --- 21600 27030.07 5.92 27821.24 8.60 16.65 0.02
R1 15 50 100 4096.74 --- 21600 4320.24 517 452287 942 41.47 0.03
Cl1 15 50 100 241739 -~ 21600 2558.02 550 2669.44 9.44 1355 0.03
RC1 15 50 100 9864.44 5561.21 43.62 21600 594328 6.43 6288.28 1156 62.46 0.05
R1 18 60 120 555483 --- 21600 5941.47 6.51 6226.83 10.79 123.40 0.04
Cl1 18 60 120 3697.18 --- 21600 3928.52 5.89 427528 1352 29.35 0.04
RC1 18 60 120 910582 --- 21600 9972.42 8.69 10317.02 11.74 236.62 0.05
R1 20 75 150 12800.62 --- 21600 13972.34 8.39 14678.62 12.79 491.53 0.06
Cl 20 75 150 6907.85 --- 21600 7582.84 890 7965.85 13.28 201.54 0.05
RC1 20 75 150 959496 --- 21600 10606.91 9.54 10856.48 11.62 332.43 0.04
R1 30 100 200 -- 21600 1578238 --- 1642156 --  526.18

Cl1 30 100 200 -- 21600 13390.88 --- 14652.81 --- 528.44
RC1 30 100 200 -- 21600 18801.28 --- 19539.33 ---  597.90

In Table 9, we can see that when |K| <10, CPLEX can obtain the optimal solution except
for the eighth instance (C1l type and |K| = 10, |N;| = 30, |[N,| = 60) within 21600s. In
contrast, the HGA takes less time and gets a nearly optimal solution with a average objective
gap of less than 2.89% and a worse objective gap of less than 4.69%. With the problem size
increasing, it is hard to find the optimal solution and can only obtain feasible solutions or LBs
within 21600s by CPLEX. When |K| increased to 15, only the fifth instance ( RC1 type and
|K| = 15,|N;| = 50, |N,| = 100) can obtain a feasible solution by CPLEX and the gap is as
high as 43.62%. However, the HGA can obtain a better feasible solution with smaller gaps of
the average and worse objective values, and the corresponding runtime is less than 62.46s.
When 18< |K| <20, only the LBs are obtained by CPLEX but the HGA can obtain a better
solution with a average objective gap of less than 9.54% and a worse objective gap of less than
13.52%. When |K| = 30, CPLEX cannot solve the problem within 21600s, while the HGA
can obtain a feasible solution less than 600s. Moreover, although the standard deviation of the
gaps are increases with the problem size on the whole, it is never greater than 0.06.

Overall, the above experiments illustrate the limitation of the exact method with CPLEX.
HGA can obtain a better solution in a shorter time and has a stronger stability, which has the
advantage of solving this problem.

7. Conclusions

By taking the family doctor contract services in China as a background, this paper presents
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a home health care routing and scheduling problem with the consideration of the outpatient
service. The problem is formulated as a mixed-integer nonlinear and convex programming
model to minimize the total travel cost, the total waiting penalties of out-patients, and maximize
the total benefit of patients’ preference satisfaction. We used an outer-approximation method
to obtain its global e-optimal solutions and developed HGA to solve the large size problem.
To analyze the sensitivity of parameters, problem properties, and the performance of the outer-
approximation method, a small instance was set up, and the results demonstrate the following:
First, the solution is affected by the maximum skill level deviation £, the unit waiting penalty
of outpatients W; and the unit benefit of patients’ preference satisfaction W,. With E
increasing, the influence of W; and W, on solution will be greater, and this could make
operation management more flexible. Second, with the weight for each service mode increasing,
the resultant scheme will arrange doctors with higher skill levels or more familiar to patients to
the corresponding mode. Managers can balance the two modes by adjusting the weight for each
mode. Third, the allocated tolerance £ is sensitive to the optimal objective value in the outer
approximation method. Fourth, compared with home health care service of only door-to-door
services, the combination of door-to-door and outpatient services can serve more patients with
lower operating costs. To illustrate the performance of the proposed HGA, 24 instances with
up to 30 doctors, 100 home healthcare patients, and 200 out-patients were tested. The results
show the HGA can yield high-quality solutions within short computing time, and can solve
much larger size problems than the branch and cut method.

This paper is the first to consider the home health care routing and scheduling problem that
combines the door-to-door and outpatient services. The research has a great practical
significance for the development and improvement of family doctor contract services in China.
In future research, we can extend the problem to consider multi-period scheduling and some
uncertain factors (such as spontaneous patient requests, stochastic traveling time, etc.).
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Table A.1

Doctors’ information.

Doctor k Q Uy Doctor k Qx Uy
1 3 0.0380 4 2 0.0354
2 3 0.0356 5 2 0.0442
3 1 0.0797 6 1 0.0837
Table A.2

Home healthcare patients’ information.

Patient i Coordinates [e;, 1] 7; (min) q; puc(k =12,..,6)
1 (80,2) [139, 239] 52 3 [110000]
2 (92, 73) [107, 190] 89 2 [110100]
3 (48, 57) [63, 152] 32 1 [001011]
4 (23, 45) [173, 279] 83 1 [001111]
5 (96, 54) [225, 339] 84 3 [000000]
6 (52, 23) [333, 413] 77 1 [000111]
7 (48, 62) [290, 361] 35 2 [100100]
8 (67, 39) [69, 131] 45 1 [001011]
Table A.3
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Out-patients’ information.

Patient i qi pu(k =12,...,6) Patient i qi pi(k =12,...,6)
9 3 [000000] 14 2 [000000]
10 2 [100110] 15 1 [000011]
11 2 [110110] 16 1 [001111]
12 1 [011010] 17 2 [000100]
13 1 [000101] 18 1 [L00000]
Table A4

Information about relevant patients in the four scenarios.

Patient i  coordinates [e;, ;] 7; (min) g Pk =12,..,6)
9 [63,9]  [298, 403] 35 3 [000000]
10 [27,54]  [139,233] 79 2 [100110]
11 [95,96]  [124,171] 71 2 [110110]
12 [15,97]  [202, 308] 49 1 [011010]
13 [95,48]  [304, 355] 87 1 [000101]
14 [80,14]  [234,322] 32 2 [000000]
15 [42,91]  [87,130] 56 1 [000011]
16 [79,95]  [112,207] 32 1 [001111]
17 [65,3] [122, 213] 75 2 [000100]
18 [84,93]  [114,200] 47 1 [100000]
19 [67,75]  [123,222] a1 2 [001001]
20 [74,39]  [251, 355] 59 1 [000110]
21 [65,17]  [191, 256] 56 2 [100100]
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