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Home health care routing and scheduling problem with the 

consideration of outpatient services 

Abstract  

In China, family doctor contract service can provide not only the home health care service 

for the elderly or patients with mobility difficulties at their homes but also the outpatient service 

mainly for ordinary patients in the community care center. This paper presents a home health 

care routing and scheduling problem with the consideration of outpatient services. By 

considering the constraints about time windows, skill requirements, and working regulations, 

the problem is formulated as a mixed-integer nonlinear and convex programming model to 

minimize the total travel costs of the door-to-door service and the total waiting penalties of out-

patients, and maximize the total benefit of patients’ preference satisfaction. We adopt an outer-

approximation method to obtain its global ε-optimal solutions for the small scale problem and 

develop a hybrid genetic algorithm to solve the large problem. A small instance is set up to 

analyze the problem properties and the performance of the outer-approximation method. The 

results of large scale examples show that the proposed hybrid genetic algorithm can provide 

high-quality solutions with short computing times. 

Keywords: Home health care scheduling; Vehicle routing problem; Door-to-door service; 

Outpatient service; Patient preference satisfaction. 

1. Introduction 

Population aging is a global trend. In China, people older than 60 was 16.15 percent in 2015 

and it is expected to rise to 17.17 percent by the end of 2020 (Intellectual Research Consulting 

Group, 2017). Moreover, in 2019, the World Health Organization predicted that, the number of 

people aged 60 and older would grow by 56%, from 962 million to 1.4 billion between 2017 

and 2030, and would be more than 2.1 billion by 2050 (World Health Organization, 2019). 

Home health care (HHC) is an industry that aims to assign doctors to serve patients at home 

and provide some essential services such as medical tests, wound care, psychological 

counseling and caring visits, etc. (Lanzarone et al., 2012; Liu et al., 2014). It is more sutiable 

for the elderly, patients with chronic diseases or mobility difficulties. With the population aging, 

the demand for medical resources is increasing, HHC service develops rapidly and becomes an 
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efficient and professional industry to solve the pension burden in some developed countries 

such as France, Germany, Australia, etc. (Shi et al., 2017). However, in China, since HHC 

service is usually provided by the private HHC organization and the price is expensive, it 

develops slowly and only covers few patients in some big cities such as Shanghai, Beijing, etc. 

(Zhuo et al., 2015).  

To better meet the demands of most patients for long-term and continuous health care service 

in China, family doctor contract service is developed by the government under the background 

of hierarchical diagnosis and treatment, and performed by the doctor team in community care 

center (Zhou, 2018). Doctors in the team not only provide HHC services at patients’ homes 

(mainly for the elderly or patients with mobility difficulties), but also provide outpatient 

services for patients who need general medical treatment or large medical equipment at the 

community care center. For ease of description, we call these two service modes as door-to-

door and outpatient services, respectively. Note that the patients who normally receive door-to-

door services may also receive outpatient services in some days. For example, the elderly 

patients usually receive services at home, but they have to go to the community care center to 

receive outpatient service when they need large medical equipment for physical examination.  

Compared with HHC service, family doctor contract service can serve more types of patients. 

Meanwhile, it focuses on establishing long-term and continuous care with patients, therefore, 

the doctor-patient matching is more important than that in the traditional outpatient service. 

This new service with two service modes can allocate medical resources more flexibly and its 

price is cheaper than the HHC service. Therefore, it is more suitable for China with a high 

degree of aging but a shortage of medical resources. In 2017, it has been signed by more than 

30% people, the coverage rate of “key population” such as the elderly, patients with chronic 

diseases or mobility difficulties is as high as 60%, and it will strive to cover all people by the 

end of 2020 (Medical Reform Office of the State Council of China, 2016).  

In family doctor contract service, the contracted patients are required to make a reservation 

for service mode (door-to-door or outpatient) according to their requirements before receiving  

service. Although these two modes of services may be performed by the same doctor team, 

their operations are quite different in practice. The door-to-door services require doctors to go 

to patients’ homes to provide the service, while the outpatient services require patients to go to 
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the community care center to receive the service. In the scheduling problem, the former requires 

managers to solve the home health care routing and scheduling problem (HHCRSP), which is 

generally modeled as an extension of the vehicle routing problem (VRP), while the latter is 

commonly formulated by using queuing theory. The relevant research for each mode is 

relatively rich, which is reviewed in Section 2. However, there is no research to consider both 

modes in scheduling problems simultaneously as in the situation in China. This research aims 

to fill the research gap. 

Specifically, the contributions of our study are as follows.  

First, we introduce and model a new HHCRSP with the consideration of outpatient services. 

Doctors are arranged for either the door-to-door or outpatient service. By considering 

constraints about time windows, workload, and skill requirements, our problem is to determine 

the service mode for each doctor, the doctor-patient matching in outpatient service, and the 

routes of doctors arranged for the door-to-door service. The objective is to minimize the total 

travel cost of the door-to-door service and the total waiting penalties of out-patients, and 

maximize the total benefit of patients’ preference satisfaction. The problem is formulated as a 

mixed-integer nonlinear and convex programming model. 

Second, we adopt an outer-approximation method to obtain the global ε-optimal solutions of 

the mixed-integer convex programming model. Considering that the decision variables in the 

model are integers and the tangent lines can only be generated at integer points, in the outer 

approximation method, we build a 0-1 integer programming model to find the optimal 

breakpoints among all the integer points.  

Third, to solve the large problem, we propose a hybrid genetic algorithm (HGA), by 

embedding a tailored local search and a shake procedure, a newly designed individual 

representation, novel crossover and mutation operators, and a new initial population creation 

procedure into genetic algorithm (GA). 

Finally, we analyze the sensitivity of parameters, problem properties, and the performance 

of the outer-approximation method, and illustrate the performance of HGA by solving the large 

problem. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 describes and formulates the proposed problem. Section 4 presents the outer 
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approximation method for the formulation. Section 5 describes the proposed HGA. Section 6 

presents the problem properties and the results of the performance of the proposed solution 

methods. Finally, Section 7 concludes the paper. 

2. Literature review 

The general HHCRSP is to establish routes for doctors to complete the door-to-door service, 

and it is an extension of VRP augmented by many unusual side-constraints that are specific to 

the HHC context (Cissé et al., 2017; Fikar & Hirsch, 2017), such as patient preference, skill 

requirements, etc. In this section, we focus on the latest trend of scheduling (and routing) 

problems and review 15 representative studies in the last five years.  

Table 1 shows the most common objectives and constraints addressed in the literature. Table 

2 summarizes objectives, constraints, and solution methods considered in the reviewed articles 

and our article. When an article deals with one of them, the symbol () is marked on the 

corresponding cell. 

Table 1 

The classification of objectives and constraints in scheduling. 

Objectives  Constraints 

Abbr. Description  Abbr. Description 

TT Time (travel, waiting, overtime etc.)  TW Time windows 

CC Costs (travel, service, fixed, etc.)  SM Skill requirements 

WB Workload balance  WR Working regulations 

PS Preference satisfaction   SY Synchronization 

   UC Uncertainty(stochastic travel time, service time) 

Table 2 

Objectives, constraints, and methodologies found in the reviewed articles and our article. 

 

Article 

Objectives  Constraints  

Solution method(s) TT CC WB PS 

 

TW SM WR SY UC 

Braekers et al. (2016)           Exact/metaheuristic (MDLS) 

Decerle et al. (2018)           Metaheuristic (MA) 

Du et al. (2017)           Metaheuristic (GA) 

Fikar & Hirsch (2015)            Matheuristic 

Grenouilleau et al. (2019)           Matheuristic 

Hashemi Doulabi et al.(2020)           Exact (branch&cut) 

Hiermann et al. (2015)  

          Metaheuristic (VNS/MA/SA/SS) 

Liu et al. (2018)           Metaheuristic (VNS) 

Mısır et al. (2015)           Heuristic 

Mosquera et al. (2019)           Metaheuristic (VNS) 

Nikzad et al. (2020)           Matheuristic 
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Shi et al. (2019)           Metaheuristic (TS/SA/VNS) 

Xiao et al. (2018)           Exact 

Yalçındağ et al. (2016)            Exact/metaheuristic (GA) 

Yuan et al. (2015)           Exact (B&P) 

Our paper           Exact/Metaheuristic (HGA) 

B&P：Branch-and Price; (H)GA: (Hybrid) Genetic Algorithm; MA: Memetic Algorithm; MDLS: Multi-directional Local Search; 

SA: Simulated Annealing; SS: Scatter Search; TS: Tabu search; VNS: Variable Neighborhood Search. 

As seen in Table 2, travel cost and travel time are the most common measures found in 

optimization objectives of HHCRSP. Due to they are closely related to the doctors’ working 

time, Braekers et al. (2016) further considered the overtime cost. In addition, some studies 

focused on maximizing patients’ or doctors’ preference satisfaction to improve service quality 

(Hiermann et al., 2015; Mısır et al., 2015; Braekers et al., 2016; Decerle et al., 2018; 

Grenouilleau et al., 2019; Mosquera et al., 2019). For example, Braekers et al. (2016) 

minimized patients’ convenience in terms of visit times and doctors, Mosquera et al. (2019) 

maximized patients’ total preference cost regarding doctors. On the other hand, most of the 

existing studies consider multiple objectives simultaneously, but the methodologies to handle 

multiple objectives vary. Most of these studies (e.g., Hiermann et al., 2015; Mısır et al., 2015; 

Yalçındağ et al., 2016; Decerle et al., 2018) used the weighted-sum approach to unify all 

objectives into a single objective. Mosquera et al. (2019) adopted a lexicographic ordering 

method to hand the multitude of objectives. Braekers et al. (2016) proposed a bi-objective 

optimization method to obtain a set of Pareto optimal solutions, which allow them to analyze 

the trade-off between costs and client inconvenience. In our paper, travel costs and patients’ 

preference satisfaction regarding skill and doctor-patient familiarity are considered for the 

door-to-door service, and the objectives are unified into a single objective by the weighted-sum 

approach. 

In terms of constraints, the key characteristics of the HHCRSP such as time windows, skill 

requirements and working regulations are considered in most studies, while other factors (such 

as synchronization, uncertainty, etc.) are seldom considered. Meanwhile, the specific 

implementation of these constraints can be different in these reviewed articles. For example, 

the implemented time windows for patients to receive service can be generally divided into 

hard time windows (e.g., Hiermann et al., 2015; Liu et al., 2018; Mosquera et al., 2019) and 

file:///C:/Users/think/Desktop/写作参考/manuscript.docx%23_Hlk523166625
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soft time windows within certain range (e.g., Mısır et al., 2015; Yuan et al., 2015; Braekers et 

al., 2016; Decerle et al., 2018). For working regulations, most studies set a maximum working 

duration for doctors (e.g., Fikar & Hirsch, 2015; Braekers et al., 2016; Mosquera et al., 2019; 

Nikzad et al., 2020). Xiao et al. (2018) considered the flexible lunch break requirements, while 

Hiermann et al. (2015) set the priority working time windows for doctors. For skill requirements, 

most studies considered elastic matching (e.g., Fikar & Hirsch, 2015; Hiermann et al., 2015; 

Yuan et al., 2015; Du et al., 2017; Braekers et al., 2016; Mosquera et al., 2019); that is, doctors 

with a higher skill level are allowed to visit patients with lower skill level requirment to balance 

the overall distribution of doctors. The elastic skill matching may reduce travel related expenses, 

but it may also impact doctors' satisfaction if they are required to perform multiple visits at a 

lower qualification level. Therefore, Fikar & Hirsch (2015) further set a maximum downgrading 

level for each doctor. In this study, we consider hard time windows for patients to receive 

services, elastic matching of skill requirements, set a maximum downgrading level and a 

maximum working duration for doctors. 

The HHCRSP problem is NP-hard because it is an extension of VRP. The solution method 

for this problem can be broadly classified into three categories: exact methods, heuristic-based 

methods (including metaheuristics and heuristic), and matheuristics. Although exact methods 

(e.g., Yuan et al., 2015; Hashemi Doulabi et al., 2020) can get optimal solutions, their 

computation time is heavily restricted by the problem size. Therefore, most researchers prefer 

to adopt metaheuristics/heuristics to obtain a good solution instead of an exact solution to 

address their (large-size) problems. As seen from Table 2, while Mısır et al. (2015) used a 

hyper-heuristic to solve their problem, the main used metaheuristics are classical, including GA 

(Yalçındağ et al., 2016; Du et al., 2017), variable neighborhood search (Hiermann et al., 2015; 

Liu et al., 2018; Mosquera et al. 2019; Shi et al., 2019), tabu search (Shi et al., 2019), multi-

directional local search (Braekers et al., 2016), and simulated annealing (Hiermann et al., 2015; 

Shi et al., 2019). To combine the advantages of the exact method and the metaheuristic, 

matheuristics received the least attention in the last five years (Grenouilleau et al., 2019; Nikzad 

et al., 2020; Fikar & Hirsch., 2015); for example, Fikar & Hirsch (2015) generated problem 

clusters by incorporating set partitioning and linear programming techniques to optimize start 

time and enable synchronization. However, the matheuristics still have some limitations in 

file:///C:/Users/think/Desktop/写作参考/manuscript.docx%23_Hlk523166625
file:///C:/Users/think/Desktop/写作参考/manuscript.docx%23_Hlk523166625
file:///C:/Users/think/Desktop/写作参考/manuscript.docx%23_Hlk523166625
file:///C:/Users/think/Desktop/写作参考/manuscript.docx%23_Hlk523166625
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problem size compared with heuristic-based methods. In our problem, we adopt the branch and 

cut method embedded in CPLEX for the small scale problems. On the other hand, considering 

GA has many advantages such as simple structure and high search efficiency, we develop a 

new hybrid GA by embedding a local search into the basic GA framework to solve the large 

problems. 

As for the scheduling research about the outpatient service, there exist many methodologies 

and solution techniques to reduce costs and improve service quality (Ahmadi-Javid et al., 2017). 

Queuing theory is one of the most common methodologies since the models require fewer data 

and are simple to use. Moreover, queueing models can obtain some information about activities 

(waiting times, utilization rates, queue times, and lengths) and provide the reference for the 

decision-makers. M/M/1 and M/M/s are the two most popular queuing systems for the 

outpatient service (Lakshmi & Appa Iyer, 2013). In an outpatient service system with 𝑠 

doctors, each doctor is treated as a separate service station, the service can be viewed as s 

independent M/M/1 queuing sequence and each patient assigned to a doctor according to the 

appointment (e.g., Hopkins et al., 2008; Adeleke et al., 2009; Cochran & Broyles, 2010), while 

in M/M/s, the system assigns the arrived patients to doctors according to the station usage (e.g., 

Agnihothri & Taylor, 1991; Green, 2006; de Véricourt & Jennings, 2011). M/M/s is more 

suitable for the case that all doctors have the same service rate or all patients have the same 

selection opportunity for doctors. In our problem, patients have reservation preferences and 

specific skill requirements, and do not have the same selection opportunity for each doctor. It 

is more applicable to treat each doctor’s service as an independent M/M/1 queuing system. 

3. Problem description and formulation 

3.1. Problem description 

The HHCRSP with the consideration of the outpatient service can be described as follows.  

Before receiving a service, the contracted patients are required to make a reservation for 

service mode according to their requirements. On each day each patient can only reserve one 

service mode, either outpatient or door-to-door service mode. Moreover, there is a fixed number 

of patients each day. Then, we can define 𝑁 = {1,2, … , |𝑁|} as a set of patients, 𝑁1 =

{1,2, … , |𝑁1|}  as the set of patients who have reserved the door-to-door service (home 

javascript:void(0);
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healthcare patients) and 𝑁2 = {|𝑁1| + 1, |𝑁1| + 2, … , |𝑁|} as the set of patients who have 

reserved the outpatient service (out-patients). Thus, 𝑁 = 𝑁1 ∪ 𝑁2.  

A group of doctors, 𝐾 = {1,2, … , |𝐾|}, has an identical hard service time window at the care 

center, and is required to be arranged to serve both classes of patients. Each doctor is qualified 

with a skill level to show the serviceability or quality. Meanwhile, each patient has a skill level 

requirement, which limits that the service must be performed by a doctor with the same or a 

higher skill level. To avoid the overwork of high-skill qualified doctors and better balance the 

workload of doctors, we set a maximum allowable skill level deviation E (𝐸 ≥ 0) between the 

doctor skill level and the patient skill level required. Each doctor can be only assigned to one 

service mode at most, and has the maximum continuous working duration 𝑅.  

For the door-to-door service, we consider a complete directed graph G = (𝑉, A), where 𝑉 is 

the set of nodes and A is the set of arcs. Nodes consist of patients’ homes and the care center. 

Each patient’s home is represented by a separate node in this graph. The care center is 

represented by both the starting depot and ending depot, i.e., nodes 0 and |𝑁| + 1, where each 

doctor must start at and return to, respectively. Thus, 𝑉 = {0, |𝑁| + 1} ∪ 𝑁1  and 𝐴 =

{(𝑖, 𝑗): 𝑖 ∈ 𝑉\{|𝑁| + 1}, 𝑗 ∈ 𝑉\{0}, 𝑖 ≠ 𝑗}. Each patient has a service duration and a hard time 

window for starting a service, and each doctor must start a service within the hard time window.  

 For the outpatient service, each doctor’s working time duration is 𝑅. Although the service 

starting time range for patients may be defined during reservation, the incoming stream of 

patients can also be considered as a Poisson process. We assume each doctor’s service process 

can be modeled as an independent M/M/1 queuing system. For doctor 𝑘, the service time is 

exponentially distributed with a mean of 
1

𝑢𝑘
, where 𝑢𝑘 is the service rate. When the number 

of patients assigned to doctor 𝑘 is 𝑡𝑘, the incoming stream of patients is a Poisson process 

with a rate of 𝜆𝑘 =
𝑡𝑘

𝑅
. Thus, the total waiting time of patients served by doctor 𝑘  can be 

expressed as 𝑇𝑘 =
𝜆𝑘

𝑢𝑘(𝑢𝑘−𝜆𝑘)
∙ 𝑡𝑘 =

𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
−

𝑡𝑘

𝑢𝑘
− 𝑅. 

In HHC, service quality and doctor-patient familiarity are two important factors affecting 

patient preference. Patients prefer to the doctors who have a higher skill level or served them 

before (Cabana & Jee, 2004; Fan et al., 2005; Sanscorrales et al., 2006). We use 𝑝𝑖𝑘 to model 
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doctor-patient familiarity; it equals 1(0) if doctor 𝑘 has served (not served) has served patient 𝑖 

before. We use the service skill level deviation between a doctor and a patient to denote the 

service quality. The larger the deviation, the better the service quality.  

The problem is to determine the doctor assignments to the two modes, the doctor-patient 

matching in the outpatient service, and the routes of doctors for the door-to-door service starting 

and ending at the care center. The objectives are to minimize the total travel cost of doctors for 

the door-to-door service and the total waiting penalties for the outpatient service, and maximize 

the total benefit of patients’ preference satisfaction.  

3.2. Problem formulation 

Sets 

𝑁1 Set of patients who need the door-to-door service, {1,2, … , |𝑁1|}. 

𝑁2 Set of out-patients, {|𝑁1| + 1, |𝑁1| + 2, … , |𝑁1| + |𝑁2|}. 

𝑁 Set of all patients, 𝑁1 ∪ 𝑁2. 

𝐾 Set of doctors, {1,2, … , |𝐾|}. 

𝑉 Set of vertices, including the patients who need the door-to-door service and the care 

center, 𝑁1 ∪ {0, |𝑁| + 1}. 

𝐴 Set of arcs, {(𝑖, 𝑗): 𝑖 ∈ 𝑉\{|𝑁| + 1}, 𝑗 ∈ 𝑉\{0}, 𝑖 ≠ 𝑗}. 

Parameters 

𝑅 Maximum continuous working duration. 

𝐸 The maximum skill level deviation. 

𝑞𝑖 Required skill level of patient i. 

𝑄𝑘 The qualified skill level of doctor 𝑘.    

𝑝𝑖𝑘  1 if doctor 𝑘 has served patient 𝑖 before; 0 otherwise.   

𝑡𝑖𝑗 Travel time from node 𝑖 to 𝑗.  

𝑐𝑖𝑗  Travel cost from node 𝑖 to 𝑗.  

[𝑒𝑖 , 𝑙𝑖] The hard time window at node i for starting a service. 

𝜏𝑖 Service duration at node i (and 𝜏0 = 𝜏|𝑁|+1 =0).    

𝑢𝑘 The average service rate of doctor k in an outpatient service. 

𝑊1 The unit waiting penalty of outpatients. 
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𝑊2 The unit benefit of patients’ preference satisfaction. 

Decision variables 

𝑦𝑖𝑘 1 if doctor 𝑘 is assigned to serve patient 𝑖; 0 otherwise.  

𝑥𝑖𝑗𝑘 1 if doctor 𝑘 travels from node 𝑖 to 𝑗; 0 otherwise.    

Auxiliary variables 

𝑡𝑎𝑖𝑘 The time when doctor 𝑘 arrives at node 𝑖. 

𝑡𝑘 The number of outpatients served by doctor k. 

𝛿𝑘 1 if doctor k is assigned to a door-to-door service; 0 otherwise.   

Formulation 

[P1] 

Min ∑ ∑ (𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘)(𝑖,𝑗)∈𝐴𝑘∈𝐾 + 𝑊1 ∑ (
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
−

𝑡𝑘

𝑢𝑘
− 𝑅𝑘∈𝐾 ) − 𝑊2 ∑ ∑ 𝑦𝑖𝑘𝑖∈𝑁 ∙ (𝑝𝑖𝑘 +𝑘∈𝐾

𝑄𝑘 − 𝑞𝑖) 

(1) 

s. t. 

Doctor assignment constraints: 

0 ≤ 𝑡𝑘 < 𝑢𝑘 ∙ 𝑅 ∀𝑘 ∈ 𝐾 (2) 

𝑡𝑘 = ∑ 𝑦𝑖𝑘𝑖∈𝑁2
  ∀𝑘 ∈ 𝐾 (3) 

𝑦𝑗𝑘 = ∑ 𝑥𝑖𝑗𝑘𝑖∈𝑉\{|𝑁|+1}   ∀𝑗 ∈ 𝑁1, 𝑘 ∈ 𝐾 (4) 

𝑦𝑖𝑘 ≤ 𝛿𝑘   ∀𝑖 ∈ 𝑁1, 𝑘 ∈ 𝐾 (5) 

𝑦𝑖𝑘 ≤ 1 − 𝛿𝑘 ∀𝑖 ∈ 𝑁2, 𝑘 ∈ 𝐾  (6) 

∑ 𝑦𝑖𝑘 = 1𝑘∈𝐾   ∀𝑖 ∈ 𝑁  (7) 

Skill constraints: 

𝑞𝑖 ≤ ∑ 𝑦𝑖𝑘 ∙ 𝑄𝑘  𝑘∈𝐾   ∀𝑖 ∈ 𝑁 (8) 

𝑞𝑖 ≥ ∑ 𝑦𝑖𝑘 ∙ 𝑄𝑘  𝑘∈𝐾 − 𝐸  ∀𝑖 ∈ 𝑁 (9) 

Working hours constraints: 

𝑡𝑎|𝑁|+1,𝑘 − 𝑡𝑎0𝑘 ≤ 𝑅 ∀𝑘 ∈ 𝐾 (10) 

Routing constraints:  

∑ 𝑥𝑖𝑗𝑘 − ∑ 𝑥𝑗𝑖𝑘𝑖∈𝑉\{0} = 0𝑖∈𝑉\{|𝑁|+1}   ∀𝑗 ∈ 𝑁1, 𝑘 ∈ 𝐾 (11) 

∑ 𝑥0𝑖𝑘 = 𝛿𝑘𝑖∈𝑁1
  ∀𝑘 ∈ 𝐾 (12) 

∑ 𝑥𝑖,|𝑁|+1,𝑘 = 𝛿𝑘𝑖∈𝑁1
  ∀𝑘 ∈ 𝐾 (13) 
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Time window constraints: 

𝑡𝑎0𝑘 ≥ 𝑒0𝛿𝑘 ∀𝑘 ∈ 𝐾 (14) 

𝑡𝑎|𝑁|+1,𝑘 ≤ 𝑙|𝑁|+1 ∙ 𝛿𝑘 ∀𝑘 ∈ 𝐾 (15) 

𝑡𝑎𝑗𝑘 ≥ 𝑚𝑎𝑥{𝑒𝑖 , 𝑡𝑎𝑖𝑘} + 𝜏𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑉\{|𝑁| + 1}, 𝑗 ∈ 𝑉\{0}, 𝑘 ∈ 𝐾 (16) 

0 ≤ 𝑡𝑎𝑖𝑘 ≤ 𝑙𝑖 ∙ 𝑦𝑖𝑘  ∀𝑖 ∈ 𝑁1, 𝑘 ∈ 𝐾 (17) 

Binary and definitional constraints: 

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (18) 

𝑦𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (19) 

𝛿𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐾 (20) 

Objective (1) is to minimize the total travel cost for the door-to-door service and the total 

waiting penalties of out-patients, and maximize the total benefit of patients’ preference 

satisfaction simultaneously. Constraints (2) ensure that the number of outpatients served by a 

doctor cannot exceed the doctor’s average service capacity in an outpatient service. Constraints 

(3) defines the number of outpatients served by doctor k. Constraints (4) show the relationship 

between 𝑦𝑖𝑘 and 𝑥𝑖𝑗𝑘. Constraints (5) and (6) ensure that each doctor can be only assigned to 

one service mode at most. Constraints (7) guarantee that every patient must be served by one 

doctor. Constraints (8) and (9) make sure that every patient can only be served by a doctor with 

the same or a higher skill level but not exceed the maximum skill level deviation E. Constraints 

(10) ensure that the working hours of doctors for the door-to-door service is less than the 

maximum working hours. Constraints (11) are the flow-conservation constraints for the doctors 

to serve home healthcare patients. They ensure that a doctor who visits a patient in a door-to-

door service must eventually leave that patient. Constraints (12) and (13) ensure that each 

doctor assigned to door-to-door service must start from the care center and finally returns to the 

care center. Constraints (14) and (15) guarantee that the doctors are assigned to the door-to-

door service within the time window of the care center. Constraints (16) ensure that the arrival 

times of doctors for the door-to-door service are correctly set. Constraints (17) guarantee that 

if a doctor visits one patient in the door-to-door service, the arrival time must not be later than 

the end of the patient's time window. Constraints (18) to (20) are binary constraints for decision 

variables. 
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4. An 𝛆-global optimization method  

[P1] presented in Section 3 is a mixed-integer nonlinear programming model with 

nonlinear constraints (16) and a nonlinear term 
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
 in the objective function. In order to 

implement it by optimization solvers such as CPLEX, we linearized the [P1] model. Constraints 

(16) can be easily linearized to constraints (21) and (22) as follows: 

𝑡𝑎𝑗𝑘 ≥ 𝑒𝑖 + 𝜏𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑉\{|𝑁| + 1}, 𝑗 ∈ 𝑉\{0}, 𝑘 ∈ 𝐾 (21) 

𝑡𝑎𝑗𝑘 ≥ 𝑡𝑎𝑖𝑘 + 𝜏𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑉\{|𝑁| + 1}, 𝑗 ∈ 𝑉\{0}, 𝑘 ∈ 𝐾 (22) 

On the other hand, 
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
 is convex, because the value of the second derivative is positive 

at the domain 0 ≤ 𝑡𝑘 < 𝑢𝑘 ∙ 𝑅. The outer approximation method can be used to obtain global 

ε-optimal solutions by solving the relaxation problem.   

4.1. The outer-approximation method 

The outer-approximation method is one of the basic approaches to handle mixed-integer 

programming problems with nonlinear equality constraints or general model structure (Fletcher 

& Leyffer, 1994). It aims to generate a piecewise-linear function with as few pieces as possible 

within an approximation error of ε and has been widely used in various research fields, such 

as revenue management in liner shipping studies (e.g., Wang & Meng, 2012; Wang et al., 2015), 

electric vehicle fleet size and trip pricing problems (e.g., Xu et al., 2018), bike rebalancing 

problems (e.g., Li & Liu, 2021). Among them, Li & Liu (2021) formulated a 0-1 integer 

programming problem by minimizing the total number of breakpoints to find the optimal 

breakpoints among all integer points. This method shows great sensitivity to ε and can obtain 

fewer tangent lines compared with the existing methods by Wang & Meng (2012) and Xu et al. 

(2018) for a given ε.  

In our study, we transform formulation [P1] by approximating the convex function 
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
 

in the objective function with a series of piecewise-linear functions by the outer approximation 

method of Li & Liu (2021). The procedure is as follows.  

Step 1: Define the convex function 𝑔(𝑡𝑘) =
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
 and set an approximation error ε.  

Step 2: Calculate the slope 𝛽(𝑡𝑘) = 𝑔′(𝑡𝑘)=−
𝑢𝑘∙𝑅2

(𝑢𝑘∙𝑅−𝑡𝑘)2 and the intercept γ(𝑡𝑘) = 𝑔(𝑡𝑘) −

𝑔′(𝑡𝑘) ∙ 𝑡𝑘 =
𝑢𝑘∙𝑅2(𝑢𝑘∙𝑅−2𝑡𝑘)

(𝑢𝑘∙𝑅−𝑡𝑘)2  of the tangent line of curve 𝑔(𝑡𝑘) at point 𝑡𝑘. 

Step 3: For each 𝑘 ∈ 𝐾 , define ε̂ =  
ε

|𝐾|
  to allocate the total tolerance ε  and the set of 

optimal breakpoints 𝑆𝑘 is determined by solving formulation [B], where it is formulated using 

γ(𝑡𝑘), 𝛽(𝑡𝑘), and the following notations. 
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Sets 

C  Set of points, indexed by 0, 1, … , min {⌈𝑢𝑘 ∙ 𝑅 − 1⌉, |𝑁2|}; 

Decision variables 

𝑥̅𝑚   = 1 if point 𝑚 is selected as a breakpoint; = 0 otherwise; 

𝑦̅𝑖𝑚   = 1 if the tangent line with breakpoint 𝑚 is selected to calculate the difference between 

the actual value and the approximation value at point i; = 0 otherwise; 

Formulation 

[B] 

min     ∑ 𝑥̅𝑚𝑚∈𝐶   (B1) 

s. t.  
 

𝑔(𝑡𝑘
(𝑖))-(𝛽(𝑡𝑘

(𝑚)) ∙ 𝑖 + γ(𝑡𝑘
(𝑚)

))∙ 𝑦̅𝑖𝑚 -𝑀 ∙(1-𝑦̅𝑖𝑚) ≤ 𝜀̂ ∀𝑖, 𝑚 ∈ 𝐶 (B2) 

∑ 𝑦̅𝑖𝑚𝑚∈C ≥ 1  ∀𝑖 ∈ 𝐶 (B3) 

𝑥̅𝑚  ≥ 𝑦̅𝑖𝑚 ∀𝑖, 𝑚 ∈ 𝐶 (B4) 

𝑦̅𝑖𝑚 ∈ {0,1}, 𝑥̅𝑚 ∈ {0,1} ∀𝑖, 𝑚 ∈ 𝐶 (B5) 

   The objective (B1) is to minimize the total number of breakpoints. Constraints (B2) ensure 

that the difference between the actual value and the approximation value is not larger than 𝜀̂, 

where M is a large positive number. Constraints (B3) indicate that at least one breakpoint is 

selected for each point i. Constraints (B4) show the relationship between 𝑥̅𝑚  and 𝑦̅𝑖𝑚 . 

Constraints (B5) are binary constraints for the decision variables.  

4.2. Relaxation problem (lower bound)  

We introduce a new auxiliary variable 𝐴𝑘 to replace 
𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
 in the objective function. By 

adding the linear relaxation constraints with breakpoint 𝑚 (∀𝑚 ∈ 𝑆𝑘), new formulation [P2] 

provides the lower bound of formulation [P1]. 

[P2] 

𝑚𝑖𝑛 ∑ ∑ ∑ (𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘)𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾 + 𝑊1 ∑ (𝐴𝑘 −
𝒕𝒌

𝒖𝒌
− 𝑅𝒌∈𝑲 ) − 𝑊2 ∑ ∑ 𝑦𝑖𝑘𝑖∈𝐶 ∙ (𝑝𝑖𝑘 + 𝑄𝑘 − 𝑞𝑖𝒌∈𝑲 )  (23) 

Subject to constraints (2)-(15), (17)-(22) and 

𝐴𝑘 ≥  𝛽(𝑡𝑘
(𝑚)) ∙ 𝑡𝑘 + γ(𝑡𝑘

(𝑚)
)                         ∀𝑚 ∈ 𝑆𝑘, 𝑘 ∈ 𝐾         (24) 

Let 𝑂𝑝𝑡 and 𝐿𝐵 be the optimal objective value to [P1] and [P2], respectively. Thus, 𝐿𝐵 

is a lower bound of 𝑂𝑝𝑡. Let  (𝑥𝑖𝑗𝑘
∗ , 𝑦𝑖𝑘

∗ , 𝑡𝑘
∗, 𝐴𝑘

∗ ) be the optimal solution to [P2]. An upper 

bound of 𝑂𝑝𝑡 can be determined by 

𝑈𝐵 = ∑ ∑ (𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘
∗ )(𝑖,𝑗)∈𝐴𝑘∈𝐾 + 𝑊1 ∑ (

𝑢𝑘∙𝑅2

𝑢𝑘∙𝑅−𝑡𝑘
∗ −

𝑡𝑘
∗

𝑢𝑘
− 𝑅𝑘∈𝐾 ) − 𝑊2 ∑ ∑ 𝑦𝑖𝑘

∗
𝑖∈𝑁 ∙ (𝑝𝑖𝑘 + 𝑄𝑘 − 𝑞𝑖𝑘∈𝐾 ) (25) 

According to the piecewise-linear approximation scheme, it follows that 
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                       𝐿𝐵 ≤ 𝑂𝑝𝑡 ≤ 𝑈𝐵 ≤ 𝐿𝐵 + 𝜀                           (26) 

5. HGA method 

Although the outer approximation method can obtain the global 𝜀-optimal solution, it is only 

restricted to the small-scale problem. In this section, we propose an HGA to solve the proposed 

problem over a large instance. This HGA uses a new individual representation and has novel 

developments in the key steps including initial population creation, crossover, and mutation, 

and embeds a tailored local search method and a shake procedure. The structure is presented in 

Algorithm 1. 

Algorithm 1. HGA 

1: Initialize population 𝑃(0), take the best individual in 𝑃(0) as the gobal best individual 𝐺𝑏𝑒𝑠𝑡  and 

initial best individual 𝐵(0). 

2: Set 𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝=0, 𝑖𝑡𝑒𝑟=0. 

3: While (𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝 < 𝑇)  

4: Generate offspring population 𝑃(𝑖𝑡𝑒𝑟 + 1) by selection, crossover, and mutation. 

5: Local search is applied to the best half individuals in 𝑃(𝑖𝑡𝑒𝑟 + 1), and then copy the best individual 

in 𝑃(𝑖𝑡𝑒𝑟 + 1) to 𝐵(𝑖𝑡𝑒𝑟 + 1). 

6:   If 𝑓(𝐵(𝑖𝑡𝑒𝑟 + 1)) ≥ 𝑓(𝐺𝑏𝑒𝑠𝑡) 

7:      𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝 =  𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝+1. 

8: Else  

9:   𝐺𝑏𝑒𝑠𝑡= 𝐵(𝑖𝑡𝑒𝑟 + 1). 

10: 𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝 = 0. 

11: End if  

12: If (𝑖𝑡𝑒𝑟𝑘𝑒𝑒𝑝 =10) 

13: Apply the shake procedure to 𝑃(𝑖𝑡𝑒𝑟 + 1). 

14: End if 

15: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1. 

16: End while 

17: Reture 𝐺𝑏𝑒𝑠𝑡.  

In HGA, a maximum number of iterations between two improvements 𝑇  is used as a 

stopping condition. To improve the search efficiency, a local search procedure is applied to the 

best half individuals after mutation. If the gobal best individual 𝐺𝑏𝑒𝑠𝑡 is not improved in 10 

consecutive iterations, the shake procedure is applied to maintain the diversity of the population. 

5.1. Individual representation 

Shi et al. (2017) proposed an encoding method by using a list table to represent an individual. 

In this method, every individual consists of several rows, and each row represents a route. We 

generalize the method to fit our problem by considering the doctor-patient assignment in the 
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outpatient service and the routes of doctors for the door-to-door service simultaneously. In the 

generalized version, the first item of each row represents the doctor assigned to participate in a 

service; the second item represents whether the doctor is arranged for an outpatient service 

(denoted by 1) or a door-to-door service (denoted by 0), and the rest items are the patients to 

be served by the doctor in the first item. Note that the patient array order is also the sequence 

that patients are served if the doctor is arranged for the door-to-door service. While for the 

outpatient service, the patient array is unordered, and the arranged patients’ services are subject 

to a first-come-first-served basis. Fig. 1 shows an example. There are totally 5 doctors. The first 

three doctors are arranged for the door-to-door service, and the last two doctors are arranged 

for the outpatient service. This representation can easily cover the doctor scheduling and need 

not decode or encode again during the algorithm implementation.  

Doctor 1: door-to-door service, care center—>5—>4—>9—>2—>care center

Doctor 2: door-to-door service, care center—>1—>6—>3—>care center

Doctor 3: door-to-door service, care center—>7—>10—>8—>care center

Doctor 4: outpatient service, the service patients set={11, 12, 13, 19, 16, 18}

Doctor 5: outpatient service, the service patients set={14, 15, 17, 20}

Individual

0 945①

0 61②

0 107③

Schedules

Decoding

1 1211④

2

3

8

13 16 1819

171 1514⑤ 20

 

Fig. 1. The representation of an individual. 

5.2. Initial population 

To better maintain population diversity, we adopt two ways to generate the initial population. 

Half of the individuals are generated in a “random” way. We start a new row by randomly 

selecting an unassigned patient and a doctor available to serve this patient, and then keep 

inserting other patients randomly into this row without violating any constraints. If no available 

patients can be inserted into the current row, a new row is created. This process is repeated until 

all the patients are assigned. Another half of the individuals are generated in a “superior” way 

by adopting a tailored initialization method that is based on the insertion heuristic for vehicle 

routing problem with time window (VRPTW) developed by Solomon (1987). The main 

structure is presented in Algorithm 2.  

Algorithm 2. The tailored initialization method 

1: Set 𝑁1𝑛𝑜𝑡 = 𝑁1, 𝑁2𝑛𝑜𝑡 = 𝑁2, 𝑁𝑛𝑜𝑡 = 𝑁, 𝐾𝑛𝑜𝑡 = 𝐾. 

2: While (𝑁𝑛𝑜𝑡 ≠ ∅ and 𝐾𝑛𝑜𝑡 ≠ ∅ ) 
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3: Random select a patient 𝑖 ∈ 𝑁𝑛𝑜𝑡. 

4:    If (𝑖 ∈ 𝑁1𝑛𝑜𝑡  && a doctor k who satisfies 𝑞𝑖 ≤ 𝑄𝑘 ≤ 𝑞𝑖 + 𝐸 exists) 

5:      Randomly select a available doctor k and construct a service route: 𝑘 → 0 → 𝑖; delete 𝑖 from  

𝑁1𝑛𝑜𝑡 and 𝑁𝑛𝑜𝑡, and delete k from 𝐾𝑛𝑜𝑡. 

6:      While (𝑁1𝑛𝑜𝑡 ≠ ∅) 

7: Copy all patients in 𝑁1𝑛𝑜𝑡 who satisfy constraints to the set 𝑀. 

8:         If (𝑀 ≠ ∅) 

9:            Select the best patient 𝑢∗ ∈ 𝑀 and insert it into the current route by the criteria 𝜑1 and 

𝜑2. 

10:            Delete 𝑢∗ from both  𝑁1𝑛𝑜𝑡 and 𝑁𝑛𝑜𝑡. 

11:         Else 

12:            Break; 

13: End if 

14:       End while 

15:    Else if (𝑖 ∈ 𝑁2𝑛𝑜𝑡 && a doctor k who satisfies 𝑞𝑖 ≤ 𝑄𝑘 ≤ 𝑞𝑖 + 𝐸 exists) 

16: Randomly select a available doctor k and construct a service patient set SP={𝑖}; delete 𝑖 from 

𝑁2𝑛𝑜𝑡 and 𝑁𝑛𝑜𝑡, and delete k from 𝐾𝑛𝑜𝑡. 

17:       Copy all patients in 𝑁2𝑛𝑜𝑡 whose skill requirements are within the range [𝑄𝑘 − 𝐸, 𝑄𝑘] to P. 

18:       While (𝑃 ≠ ∅ and |SP| < 𝑢𝑘 ∙ 𝑅 − 1) 

19:           Select the best insert patient 𝑢∗ ∈ 𝑃 by the criterion 𝜑2 and add it to set SP.  

20:           Delete 𝑢∗ from  𝑁2𝑛𝑜𝑡, 𝑁𝑛𝑜𝑡 and P. 

21:        End while 

22:    Else  

23:        Break; 

24: End if 

25: End while 

26: If (𝑁𝑛𝑜𝑡 = ∅ ) 

27:   A new individual constructed. 

28: End if 

In algorithm 2, 𝑁𝑛𝑜𝑡  and 𝐾𝑛𝑜𝑡  represent the unarranged patient and doctor sets, 

respectively. We put the unassigned patients of the door-to-door and outpatient services into 

the sets 𝑁1𝑛𝑜𝑡   and 𝑁2𝑛𝑜𝑡, respectively. An unassigned patient is randomly selected, and an 

available doctor who can serve this patient is selected to start a new row. If the doctor is 

arranged for a door-to-door service, we find the best feasible insertion position for each 

unassigned patient by satisfying all the constraints (criterion 𝜑1), and select the “best” patient 

with the maximal preference satisfaction (criterion 𝜑2), and then insert the “best” patient into 

the best insertion position. If the doctor is arranged for an outpatient service, we directly adopt 

the criterion 𝜑2 to select the “best” patient with the maximal preference satisfaction for this 

doctor, and add this patient to the tail of the patient array. If no available patient can be inserted 
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into the current row, a new row is started unless all patients are assigned. The criteria 𝜑1 and 

𝜑2 are defined in the following subsections. 

5.2.1 Criterion 𝜑1  

Suppose the current door-to-door service sequence is (𝑖0, 𝑖1, … , 𝑖𝑚), where 𝑖0 and 𝑖𝑚 are 

the care center. For each unassigned patient 𝑢, the best feasible insertion position in the route 

can be found by the following formula without violating any constraint. 

    𝜑1(𝑖𝑝∗−1, 𝑢, 𝑖𝑝∗)) = min [𝛼1𝜑11(𝑖𝑝−1, 𝑢, 𝑖𝑝) + 𝛼2𝜑12(𝑖𝑝−1, 𝑢, 𝑖𝑝)], 𝑝 = 1, … 𝑚    (27) 

where 𝛼1 + 𝛼2 = 1, 0 ≤ 𝛼1 ≤ 1, 0 ≤ 𝛼2 ≤ 1 . 𝜑11(𝑖𝑝−1, 𝑢, 𝑖𝑝) = 𝑐𝑖𝑝−1,𝑢 + 𝑐𝑢,𝑖𝑝
− 𝑐𝑖𝑝−1,𝑖𝑝

. 

𝜑12(𝑖𝑝−1, 𝑢, 𝑖𝑝) is the difference between the total waiting time of the doctor in the original 

route and that after inserting u in arc (𝑖𝑝−1, 𝑖𝑝). This criterion tries to find a position with the 

minimal weighted sum of travel cost and waiting time saving of the doctor arranged for the 

door-to-door service. 

5.2.2 Criterion 𝜑2  

The best patient 𝑢∗ is selected by 

              𝜑2(𝑢∗, 𝑘) = max[𝑝𝑢𝑘 + 𝑄𝑘 − 𝑞𝑢]                            (28) 

where 𝑝𝑢𝑘 + 𝑄𝑘 − 𝑞𝑢 is the preference satisfaction of patient 𝑢 if  𝑢 is assigned to be served 

by doctor 𝑘. This criterion tries to find the best patient with the maximal preference satisfaction 

for the doctor in service. 

5.3. Parent selection  

We adopt tournament selection, by randomly selecting two individuals and evaluating them. 

The better one participates in the crossover, mutation, and the local search improvement. Repeat 

until the number of selected individuals reaches the population size. 

5.4. Crossover  

We propose a new crossover operator for the door-to-door and outpatient services 

synchronously. The feasibility is checked during the crossover operation to guarantee that 

offsprings are feasible.  

Randomly select two parents P1, P2 and a doctor 𝑘1 for crossover operation. Offspring 1 is 

gerenated by P1 and the row for 𝑘1 in P2, and inherits most of P1. Similarly, offspring 2 is 
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gerenated by P2 and the row for 𝑘1 in P1, and inherits most of P2. For easy description, we 

take the generation of offspring 1 as an example to describe the procedure. There are three cases 

in crossover operation.  

Case 1: If 𝑘1 is not arranged in P2, copy P1 to offspring 1.  

Case 2: If 𝑘1  is arranged in P2 but not arranged in P1, remove the patients served by 

doctor 𝑘1 from P1, and then add the row for 𝑘1 in P2 to P1. For example, in Fig. 2, the 

corresponding row of doctor 6 in P2 is R2, then remove patients 10, 9, 2 from P1, and add 

R2 to P1 to form offspring 1. 

Case 3: If 𝑘1 is arranged both in P1 and P2, there are four crossover strategies. 

(a) If 𝑘1 is arranged for an outpatient service in P1 and a door-to-door service in P2, copy 

P1 to offspring 1.  

(b) If 𝑘1 is arranged for a door-to-door service in both P1 and P2, and the corresponding 

rows are R1 and R2, respectively (See Fig. 3), then do the following. 

Step 1. Delete the patients in R2 {10, 9, 2} from P1 (See Fig. 3(a)). 

Step 2. Delete R1 from P1 and add R2 in P1 (See Fig. 3(b)). 

Step 3. Reinsert the remaining patients in R1 {5, 4} into any rows of the door-to-door 

service in P1 (See Fig. 3(c)) without violating any constraints. If reinsertion fails, copy 

P1 to offspring 1. 

(c) If  𝑘1 is arranged for a door-to-door service in P1 and an outpatient service in P2, and 

the corresponding rows are R1 and S2, respectively (See Fig. 4), then do the following. 

Step 1. Delete the patients in S2 {11, 15, 13} from P1 (See Fig. 4(a)). 

Step 2. Delete R1 from P1 (See Fig. 4(b)). 

Step 3. Reinsert the patients in R1 {1, 6, 3} into the rows of other door-to-door services 

in P2 and add S2 to P1 (See Fig. 4(c)).  

(d) If 𝑘1 is arranged for an outpatient service in both P1 and P2, and the corresponding 

rows are S1 and S2, respectively (See Fig. 5). 

Step 1. Delete the patients in S2 {14, 13, 16} from P1 (Fig. 5(a)). 

Step 2. Reinsert the patients in S2 {14, 13, 16} into S1 (Fig. 5(b)) randomly. 
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Fig. 2 The illustration in Case 2. 
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Fig. 5 The illustration in Case 3(d). 
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5.5. Mutation  

Mutation operators are used to maintaining the diversity of the population from one 

generation to the next. Considering the problem characteristic, we design six different mutation 

operators for the doctor-patient assignment of the outpatient and door-to-door services and the 

routes of doctors for the door-to-door service. Operators (1)-(4) are specifically for the routes, 

while operators (5)-(6) are applicable to doctor-patient assignments of both the outpatient and 

door-to-door services:  

(1) Intra two-node exchange: randomly select two different patients and then swap them. 

(2) Intra 2-opt: randomly select two patients and then reverse the sub route between them.  

(3) Intra single-node relocation: randomly delete one patient, then reinsert this patient into 

the route.  

(4) Inter two-point swap: randomly select two patients from different routes, take the selected 

patients as cut points. Then cut each route into two pieces and swaps the two parts to form 

two new routes. 

(5) Inter two-node exchange: randomly select two patients using the same service mode from 

different rows and then swap them. 

(6) Inter single-node relocation: randomly delete one patient from a row and then insert this 

patient into another row. 

For each time, we randomly choose one operator from (1)-(6) for the door-to-door service 

and one operator from (5)-(6) for the outpatient service. The new individual replaces the old 

one if it is feasible. 

5.6. Local search 

The local search operator is applied to the best half individuals in each generation to improve 

search efficiency. In the problem, we adopt nine local search moves. The first six moves are 

the same as the mutation operators described in Section 5.5, moves (7)-(8) are specifically for 

routes, move (9) is the doctor-patient matching operator.   

(7) Multiple node relocation: randomly delete a set of patients 𝐷𝑃 with |𝐷𝑃| ≥ 2. Then 

reinsert the patients in set 𝐷𝑃 into the individual.  

(8) Swapping two subsequences: randomly select two independent subsequences from 

different routes, and swap them. 
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(9) Swapping two doctors: randomly select a route, and swap the related doctor with another 

doctor who has the same service skill.  

The procedure is shown in Algorithm 3. 

Algorithm 3. Local search 

1: Put moves (1)-(8) into a move set. 

2: Select the first move from the move set. 

3: If the selected move belongs to moves (1)-(4) or (7)-(8), the move is carried on the rows for the 

door-to-door service. If the selected move belongs to moves (5)-(6), the move is carried on the rows 

for the outpatient service.  

4 If the selected move can yield an improvement, adopt this move repeatedly until no improvement 

is yielded after 20 times, and then go to step 7. 

5: Remove the selected move from the set. 

6: If the set is empty, go to step 7. Otherwise, go to step 2. 

7: Move (9) repeatedly adopted until no improvement is yielded after 𝑇𝑙𝑜𝑐𝑎𝑙 times.  

8: Replace the former individual with the new one. 

5.7. Shake procedure 

To prevent the algorithm from falling into a local optimum as the solution diversity decreases, 

the shake procedure is applied if the gobal best individual 𝐺𝑏𝑒𝑠𝑡  is not improved in 10 

consecutive iterations: Randomly select individuals from the population with a shake 

probability 𝑃𝑠, then each selected individual is perturbed by adopting one of the nine moves 

for the local search procedure in Section 5.6. The original individual will be replaced by the 

newly generated individual only if the new one is feasible. 

6. Computational results 

We conducted computational experiments to illustrate the problem properties and tested the 

efficiency of the proposed method. A small instance setting is shown in Section 6.1, which is 

used in Section 6.2 - Section 6.5. All exact solutions were obtained by adopting branch and cut 

method embedded in IBM-ILOG CPLEX 12.6.3. The HGA was coded in C#. All experiments 

were performed on a computer equipped with an Intel Core i7-2600U CPU 3.4GHz PC with a 

16GB RAM. 

6.1. Small example setting 

In this small instance, there are 6 doctors, 10 out-patients, and 8 home healthcare patients. 

This size is good enough to illustrate the problem properties and to obtain the exact solution in 

a short time. The home healthcare center coordinate is (4, 13) and its time window is [0min, 
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540min]. Doctors’ maximum continuous working duration is 480min. The values of the travel 

cost and travel time are set to equal the rounded integer of the distance between the two patients. 

The other doctors’ and patients’ information are shown in Table A.1~Table A.3. 

6.2. Sensitivity analysis  

We solved the example in Section 6.1 to optimality with different combinations of 

parameters (E, 𝑊1 , 𝑊2 ), and analyzed the effect of these parameters on the operational 

strategy. For E, we consider three cases: no skill level deviation (𝐸 = 0), at most one skill-level 

deviation (𝐸 = 1) and at most two skill-level deviations (𝐸 = 2). For 𝑊1  and 𝑊2 , we 

consider different parameter combinations. When 𝑊1 = 5, 𝑊2 varies from [1,50] with an 

increment of 0.1. When 𝑊2 = 5 , 𝑊1  varies from [1,50]  with an increment of 0.1. To 

guarantee that the resultant solution is globally optimal, we set the allocated tolerance 𝜀̂ = 0. 

Table 3 gives the computation results of travel cost, waiting time of out-patients, and the overall 

preference satisfaction of patients with different parameter combinations. Fig. 6~Fig. 11 show 

the trends of travel cost, the total waiting penalties of out-patients, and the total benefit of 

patients’ preference satisfaction with different parameter combinations. 

Table 3 

Computation results under different parameter combinations.  

(a) E = 0 

𝑊1 𝑊2 Travel cost ($) 
Waiting time of out-

patients (min) 

Overall preference 

satisfaction of patients 

1-50 5 663 31.0 11 

5 1-50 663 31.0 11 

(b) E = 1  

𝑊1 𝑊2 Travel cost ($) 
Waiting time of out-

patients (min) 

Overall preference 

satisfaction of patients  

1-1.1 5 635 54.0 20 

1.2-2.5 5 635 32.0 15 

2.6-50 5 635 26.2 12 

5 1-9.7 635 26.2 12 

5 9.8-21.9 635 32.0 15 

5 22-28 635 54.0 20 

5 28.1-50 663 54.0 21 

(c) E = 2 



23 
 

𝑊1 𝑊2 Travel cost ($) 
Waiting time of out-

patients (min) 

Overall preference 

satisfaction of patients  

1-1.1 5 589 43.6 20 

1.2-1.3 5 589 39.5 19 

1.4-2.4 5 589 32.0 17 

2.5-50 5 589 26.2 14 

5 1-9.7 589 26.2 14 

5 9.8-18.6 589 32.0 17 

5 18.7-20.8 589 39.5 19 

5 20.9-41 589 43.6 20 

5 41.1-47.9 589 51.8 21 

5 48-50 589 71.0 23 

      

Fig. 6 The relation between travel cost and 𝑊1 when 𝑊2 = 5.  Fig. 7 The relation between travel cost and 𝑊2 when 𝑊1 = 5.   

     

Fig. 8 The relation between the total waiting penalties of out-patients Fig. 9 The relation between the total waiting penalties of out-patients  

and 𝑊1 when 𝑊2 = 5.         and 𝑊2 when 𝑊1 = 5. 
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Fig. 10 The relation between the total benefit of patients’ preference        Fig. 11 The relation between the total benefit of patients’ preference 

satisfaction and 𝑊2 when 𝑊1 = 5.                                 satisfaction and  𝑊1 when 𝑊2 = 5. 

6.2.1. Sensitivity analysis of the maximum skill level deviation E 

From Table 3, it is observed that for a smaller E, the travel cost, waiting time of out-patients 

and overall preference satisfaction of patients fluctuate less with the changes of 𝑊1 and 𝑊2. 

This is mainly due to the fact that a smaller E value leads to stricter doctor-patient skill matching 

and hence the resultant solutions have less variability. On the other hand, for specific values of 

𝑊1 and 𝑊2, it is easily observed that the travel cost of the optimal route for the door-to-door 

service decreases with the growth of E in Fig. 6 and Fig. 7, because a larger E value leads to 

more feasible home healthcare patient matching to each doctor, which results in an optimal 

routing plan with a lower travel cost. 

From Table 3, Fig. 8 and Fig. 9, we can see that the effect of E toward the waiting time and 

the total waiting penalties of out-patients is also obvious. When E = 0, strict doctor-patient skill 

matching and other constraints make the solution unchanged, which leads to the situation that 

the total waiting time of out-patients does not change with 𝑊1 and 𝑊2. With E increasing, 

doctor-patient matching and the number of out-patients served by each doctor may change, 

which may ultimately lead to the change in waiting time and total waiting penalties for the out-

patient service.  

As seen from Fig. 10 and Fig. 11, a larger E value leads to a higher total benefit of patients’ 

preference satisfaction in most cases. We can explain it by the fact that a larger E value 

corresponds to more flexible matching opportunities and the patient prefers the doctor with a 

better skill, which eventually increases the overall preference satisfaction of patients as well. 

On the other hand, as there is a trade-off between the different parts of the objective, some 
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special cases such as the overall preference satisfaction of patients for a larger E being smaller 

also exist (as seen from Fig. 11, when 𝑊2 is between 28.1 and 41, the total benefit of patients’ 

preference satisfaction when E = 2 is less than that when E = 1).  

6.2.2. Sensitivity analysis of the unit waiting penalty of out-patients 𝑊1 

When 𝑊2 = 5, for a specific E value, 𝑊1 affects the waiting time of out-patients directly, 

and the variation of travel cost and the overall preference satisfaction of patients have some 

regularities. As expected, from Fig. 6, it is observed that the travel cost remains the same with 

𝑊1 increasing due to the fact that the constraints (such as time windows, skill matching, etc.) 

make the single route for the door-to-door service remain the same.  

From Table 3 and Fig. 8, we can see that when E = 0, with the growth of 𝑊1, the waiting 

time of out-patients remains 31.0 (min) due to strict doctor-patient matching, and the total 

waiting penalties increases linearly with a slope of 31.0 accordingly. When E = 1 and E = 2, 

the waiting time of out-patients decreases but the total waiting penalties of outpatients increase 

with 𝑊1 increasing in range [1, 2.6] (E = 1) and [1, 2.5] (E = 2). When 𝑊1 ≥2.6 (E = 1) and 

𝑊1 ≥ 2.5 (E = 2), the waiting time of out-patients remains 26.2 (min), and the total waiting 

penalties of outpatients increase linearly with a slope of 26.2 accordingly. This can be explained 

by the fact that the doctor-patient matching reaches the state with the least waiting time of out-

patients, and does not change anymore. 

With 𝑊1  increasing, the contribution or the importance of the overall preference 

satisfaction of patients to the objective value decreases. As a result, when E = 1 and E = 2, the 

overall preference satisfaction of patients decreases promptly and then constantly equals 12 (E 

= 1) or 14 (E = 2) when 𝑊1 ≥ 2.6 or 𝑊1 ≥ 2.5 as shown in Table 3. It can be explained by 

the fact that the doctor-patient matching changes to reduce the overall preference satisfaction 

of patients so as to reduce the waiting time of outpatients if possible as 𝑊1 increases. However, 

when E = 0, the overall preference satisfaction of patients equals 11 and remains the same with 

𝑊1  increasing because for the strict skill matching, doctor-patient matching is difficult to 

change.  

6.2.3. Sensitivity analysis of the unit benefit of patients’ preference satisfaction 𝑊2 

From Table 3 and Fig. 7, it is observed that 𝑊2 affects the overall preference satisfaction of 

patients directly for specific values of 𝑊1 and E. However, the travel cost seldom changes 
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with the increase of 𝑊2. Only when E = 1, 𝑊1  = 5 and 𝑊2 increases from 28 to 28.1, the 

travel cost changes from 635($) to 663($). This is because doctor-patient matching changes to 

increase the overall preference satisfaction of patients, which results in a long travel route for 

doctors who involve in the door-to-door service. 

From Table 3 and Fig. 11, we can see that, with 𝑊2  increasing, the overall preference 

satisfaction of patients equals 11 when E = 0 due to the strict doctor-patient matching, and the 

total benefit of patients’ preference satisfaction increases linearly with a slope of 11 accordingly. 

When E = 1 and E = 2, the overall preference satisfaction of patients increases with the growth 

of 𝑊2  which leads to the increasing trends in the total benefit of patients’ preference 

satisfaction. In contrast, with 𝑊2 increasing, the waiting time of out-patients remains the same 

when E = 0 but increases in a stepwise manner when E = 1 and E = 2 as shown in Table 3. 

6.3. The trade-off between the outpatient and door-to-door services 

In this section, we analyze the trade-off of the scheduling between the outpatient and door-

to-door services. For ease of description, we split the objective function in [P2] into 𝑓1 and 𝑓2, 

which represent the performance measure for the door-to-door service (the difference between 

travel cost and the total benefit of preference satisfaction of home healthcare patients) and the 

outpatient service (the difference between the total waiting penalties of out-patients and the 

total benefit of preference satisfaction of out-patients) respectively, shown as follows. 

𝑓1 = ∑ ∑ (𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘)(𝑖,𝑗)∈𝐴𝑘∈𝐾 − 𝑊2 ∑ ∑ 𝑦𝑖𝑘𝑖∈𝑁1
∙ (𝑝𝑖𝑘 + 𝑄𝑘 − 𝑞𝑖𝑘∈𝐾 )           (29) 

𝑓2 = 𝑊1 ∑ (𝐴𝑘 −
𝑡𝑘

𝑢𝑘
− 𝑅𝑘∈𝐾 ) − 𝑊2 ∑ ∑ 𝑦𝑖𝑘𝑖∈𝑁2

∙ (𝑝𝑖𝑘 + 𝑄𝑘 − 𝑞𝑖𝑘∈𝐾 )         (30) 

We introduce a new objective function 𝑓3 = 𝑓1 + 𝑊3 ∙ 𝑓2, where 𝑊3 is used to show the 

ratio of the two objectives. We also adopt the instance in Section 6.1 to minimize 𝑓3, and set 

𝑊1 = 5, 𝑊2 = 5 and E = 1. 𝑊3 varies from [0,2] with an increment of 0.01. Table 4 shows 

the computation results of 𝑓1，𝑓2, travel cost, the total waiting penalties of out-patient, the 

total benefit of preference satisfaction of all patients, home healthcare patients, and out-

patients, and the doctors arranged in the outpatient service with the corresponding number of 

outpatients served shown in bracket regarding the different values of 𝑊3. 

Table 4 

Computation results regarding different 𝑊3. 
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𝑊3 𝑓1 𝑓2 
Travel 

cost ($) 

Total waiting 

penalties of 

outpatients ($) 

The total benefit 

of preference 

satisfaction of 

all patients ($)  

The total benefit 

of preference 

satisfaction of 

home healthcare 

patients ($) 

The total benefit 

of preference 

satisfaction of 

outpatients ($) 

 

The doctors 

arranged in the 

outpatient service 

0 585 263.43 635 303.43 90 50 40 1 (5), 3 (5) 

0.01-0.13 585 219.83 635 269.83 100 50 50 3 (2), 6 (3), 1 (5) 

0.14-0.55 600 110.46 635 135.46 60 35 25 1 (2), 5 (3), 3 (5) 

0.56-2.00 605 100.75 635 130.75 60 30 30 1 (2), 5 (3), 6 (5) 

 When 𝑊3 = 0, the outpatient service is not considered in 𝑓3. As a result, 𝑓1 reaches its 

minimum value of 585 and 𝑓2  equals a maximum value of 263.43. Since travel cost is 

determined by the constraints such as time window, skill requirements, and working regulation, 

it does not change with 𝑊3. However, the total benefit of patients’ preference satisfaction of 

home healthcare patients obtains a maximum value of 50 when 𝑊3 = 0. It is because most of 

the doctors with higher skill levels or more familiar to home healthcare patients are arranged to 

the door-to-door service. In this case, only two doctors (doctors 1 and 3) are arranged to the 

outpatient service, and the total waiting penalties of out-patients reaches the maximum value. 

When 𝑊3 > 0, the contribution of 𝑓2 to 𝑓3 increases and that of 𝑓1 to 𝑓3 decreases with 

𝑊3  increasing. Minimizing 𝑓3  results in 𝑓1  increasing and 𝑓2  decreasing as 𝑊3  is 

increasing. In 𝑓1, since travel cost remains the same, the total benefit of preference satisfaction 

of home healthcare patients decreases with 𝑊3 increasing. In 𝑓2, the total waiting penalties of 

out-patients decrease with 𝑊3 increasing, although the schedule may not be favorable to the 

out-patients (the total benefit of preference satisfaction of out-patients decreases, e.g., the value 

of the total benefit of preference satisfaction of out-patients when 𝑊3  in an interval of 

[0.01,0.13] is larger than that when 𝑊3 in interval [0.14, 2]). Another observation is that when 

𝑊3 changes from any value in the interval [0.14, 0.55] to any value in [0.56, 2.00], the service 

modes of doctors 3 and 6 arranged are exchanged, and the total waiting penalties of out-patient 

decreases. Combining with the fact that the service rate of doctor 3 is lower than that of doctor 

6, we can conclude that arranging the doctor with higher service rates to the outpatient service 

can reduce the total waiting penalties of out-patients. 

6.4. Effect of different allocated tolerances 𝜺̂ toward the computational results 

To test the effect of the allocated tolerance 𝜀̂ in the ε-global optimization method on the 
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computational results of the number of tangent lines, the optimal objective value in [P2], the 

computation time, and the relative gap regarding the different values of ε̂ , we also adopt the 

example described in Section 6.1. We set 𝑊1 = 5 ,  𝑊2 = 5 ,  ε̂ varies from [0,11] with an 

increment of 1. Table 5 shows the computational results when E = 1. 

Table 5 

Computation results regarding different 𝜀̂.  

𝛆̂ 
Number of 

tangent lines 

Optimal 

objective 

value  

CPU 

time(s) 
Gap% 𝛆̂ 

Number of 

tangent lines 

Optimal 

objective 

value 

CPU 

time(s) 
Gap% 

0 66 705.755 16.082 0 6 28 617.148 15.754 12.555 

1 52 701.931 15.896 0.542 7 24 606.462 16.112 14.069 

2 43 689.382 15.348 2.320 8 24 616.475 15.946 12.650 

3 39 668.378 15.387 5.296 9 23 602.313 16.250 14.657 

4 31 638.771 15.801 9.491 10 21 599.853 16.096 15.006 

5 30 642.416 15.584 8.975 11 21 592.474 16.022 16.051 

From Table 5, it is observed that with ε̂ increasing, the number of tangent lines decreases 

and the problem is more relaxed, which leads to a lower optimal objective value in most cases. 

However, there are still some special cases for some adjacent ε̂. This can be explained by the 

fact that although the number of tangent lines decreases or remains the same with ε̂ increasing, 

the feasible region made by tangent lines may change slightly. Therefore, it is possible that a 

larger value of ε̂ can obtain a larger optimal objective. For example, the optimal objective 

value when ε̂ = 5 (8) is larger than that when ε̂ = 4 (7). When ε̂ increases by 2 or more, the 

feasible region made by tangent lines enlarges. In this case, the optimal objective value with 

larger ε̂  is smaller. The relative gap (= (global optimal objective value-optimal objective 

value)/global optimal objective value) has a similar variation to the optimal objective value and 

the gap is as high as 16.051% when ε̂ = 11. In term of computation time, there is no obvious 

change with different ε̂. This is because the number of tangents that can be selected is 66 in 

our instance, which is quite small for the outer-approximation method. 

6.5. Managerial implications 

To highlight the significance of considering the outpatient services in HHC, we construct 

four different scenarios based on the example described in Section 6.1 respectively: (1) 

Scenario 1: changing the service mode of 10 outpatients to door-to-door service; (2) Scenario 
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2: changing the service mode of 10 outpatients to door-to-door service, and adding 3 new home 

healthcare patients; (3) Scenario 3: adding 3 new home healthcare patients; (4) Scenario 4: 

adding 3 new outpatients. Table A.4 provides the information about the relevant patients in the 

four scenarios, in which patient 9 to 18 are the original outpatients and patients 19 to 21 are 

newly added patients. We set 𝑊1 = 5, 𝑊2 = 5 and E = 1. Table 6 shows the travel cost, the 

total waiting penalties of out-patient, the total benefit of preference satisfaction of all patients, 

the total cost (the objective value) and the average cost of patients (= the objective value/the 

total number of patients) in each scenario. 

Table 6 

The computation results of each instance. 

 

Scenarios 

The number of 

home healthcare 

patients 

The number 

of outpatients 

Travel 

cost ($) 

Total waiting 

penalties of 

outpatients ($) 

The total benefit of 

preference satisfaction 

of all patients ($) 

The total 

cost  ($) 

The average 

cost of 

patients ($) 

Original example 8 10 635 130.75 60 705.75 39.21 

Scenario 1 18 0 1334 0 100 1234 68.56 

Scenario 2 21 0 — — — — — 

Scenario 3 11 10 707 290.91 105 892.91 41.52 

Scenario 4 8 13 635 245.76 70 810.76 38.61 

In Scenario 1, without considering outpatient service, we can see that the values of the travel 

cost, objective value and the average cost of patients are larger than those in the original 

example. It indicates that the combination of door-to-door service with outpatient service can 

reduce the total cost compared with HHC service. Meanwhile, the total benefit of preference 

satisfaction of all patients in Scenario 1 is also larger than that in the original example. It can 

be explained by the fact that in HHC service, the outpatients’ waiting penalties is not 

incorporated into the objective, and doctors can match the patients better as for the skill and the 

care continuity. 

In Scenario 2, when adding 3 new home healthcare patients in Scenario 1, we can see that 6 

doctors cannot complete the door-to-door services of 21 home healthcare patients. However, 

by considering outpatient services in HHC service, the doctors can complete the services of 21 

patients despite that the 3 additional added patients are home healthcare patients (Scenario 3) 

or outpatients (Scenario 4). The integration of the two service modes can help doctors serve 

more patients. As expected, there are 21 patients in Scenario 3 and 4, with a larger proportion 
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of the outpatients (Scenario 4), the objective value, the average cost of patients and the total 

waiting penalties of outpatients are lower than those with a smaller proportion of the outpatients 

(Scenario 3). Specially, Scenario 4 has more outpatients but lower total waiting penalties, this 

is mainly because that the schedule changes and more doctors with higher service rates are 

assigned to outpatient services. 

Overall, compared with HHC service, the combination of door-to-door and outpatient 

services can make the doctors allocation more flexible. It can serve more patients with lower 

operating costs. As the primary care of hierarchical diagnosis and treatment, the combination 

of door-to-door and outpatient services can play a positive role in balancing the medical 

resources in the community care center. It is also suitable for the countries with a shortage of 

medical resources but a high aging degree. 

6.6. Effectiveness of the hybrid genetic algorithm 

6.6.1. The construction method of instances 

Since no benchmark exists for the problem, we generated instances based on Solomon’s 

VRPTW benchmark (Solomon, 1987) and combined our problem characteristics. The details 

are described as follows. 

Solomon’s instances are classified into three classes that differ by the geographical 

distribution of customers, which are clustered in the C type, randomly located in the R type, 

and semi-clustered in the RC type. For all instances in the C, R, and RC types, we consider the 

first |𝑁1|+1 customers as care center and home healthcare patients. To simplify the problem, 

the travel cost 𝑐𝑖𝑗 and travel time 𝑡𝑖𝑗 are equal to the rounded integer of the distance between 

node 𝑖 and node 𝑗. The service duration of each home healthcare patient 𝜏𝑖  is uniformly 

distributed in [30min, 90min]. The depot (care center) has a time window [0min, 540min]. The 

center and width of the time window for home healthcare patient i are uniformly distributed in 

[𝑒0 + 𝑡0𝑖, 𝑙0 − 𝑡𝑖0 − 𝜏𝑖] and [60min, 120min] respectively. All time-related parameters are 

rounded into integers. For all patients, the skill requirements are divided into three levels: 1, 2, 

3, and the classes of patients contribute to 50%, 30%, and 20% of the total, respectively. 

For each doctor, the maximum continuous working duration 𝑅 = 480 min. Doctors’ skill 

qualifications are also divided into three levels: 1, 2, 3, and each class of doctors occupies 1/3 
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of the total number of doctors. The average service rate 𝑢𝑘 is uniformly distributed in [
1

30
,

1

10
]. 

If a doctor’s skill qualification is not less than one patient’s skill requirement, we randomly 

generated 1 or 0 to indicate whether the doctor has served this patient before or not; otherwise, 

we only use 0 to indicate that the doctor has not served this patient before. 

6.6.2 Parameter tuning 

To maximize the performance of HGA, the numerical parameters of HGA listed in Table 7 

were tuned with the heuristic algorithm EVOCA (Riff & Montero, 2013), which is simple and 

can realize the automation of the algorithm design and parameter setting process. EVOCA 

requires as few parameters as possible and provides an easy setting for the definition of the 

input data. In our parameter tuning processes, HGA was regarded as the target algorithm, 8 

instances with different sizes in Section 6.6.3 were randomly selected as the training set. The 

quality measure used for assessing the parameter configurations of HGA was defined by the 

negative number of obtained objective value of each instance. If more than one parameter 

configurations were able to obtain the optimal, the evaluation value was equal to the negative 

number of the average objective value. The training stopping condition for EVOCA was set to 

10000 iterations in each experiment.  

Table 7  

Numerical parameter list 

Name  Symbol Type Range Precision 

Crossover probability 𝑃𝑐 Real [0.8, 1.0] 0.01 

Mutation probability 𝑃𝑚 Real [0.0, 0.1] 0.01 

Shake probability 𝑃𝑠 Real [0.5, 1.0] 0.01 

Population size 𝑁𝑃 Integer [30, 100] 1 

Maximum number of iterations 

between two improvements 𝑇 

𝑇 Integer [300, 400] 1 

We ran EVOCA 5 times with different seeds. Table 8 gives the parameter calibrations 

obained by adopting EVOCA with different seeds. From Table 8, we can see that the value of 

𝑃𝑐 ( = 1) in configuration 2 is the same as that in configuration 1 and 3, and 𝑃𝑚 (= 0.1) in 

configuration 2 is the same as that in configuration 5. Configuration 2 integrates the good 

features of parameters in the five obtained configurations. Moreover, configuration 2 with 

larger T can help the HGA obtain better solution compared with the other configurations. 
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Therefore, in the subsequent experiments, the HGA adopts configuration 2 as the actual 

parameter values. 

Table 8 

The parameter calibrations using different seeds. 

Configuration  #1 #2 #3 #4 #5 

𝑃𝑐 1.0 1.0 1.0 0.8 0.97 

𝑃𝑚 0.07 0.1 0.06 0.03 0.1 

𝑃𝑠 0.82 0.76 0.83 0.87 0.88 

𝑁𝑃 83 77 93 95 62 

𝑇 330 385 356 380 369 

6.6.3. The performance of HGA 

  To illustrate the performance of HGA, we randomly generated 24 instances with different 

sizes according to the method in Section 6.6.1, and compare the results obtained by HGA and 

cut method embedded in CPLEX for the relaxed model [P2]. We set the maximum skill level 

deviation E = 1, the unit waiting penalty in the outpatient service 𝑊1 = 5, the unit benefit of 

patients’ preference satisfaction 𝑊2 = 5, and the allocated tolerance 𝜀̂ = 0. Table 9 shows the 

running times (CPU) in seconds, the upper bounds (UBs), the lower bounds (LBs), and the gaps 

obtained by CPLEX. CPLEX was terminated after an optimal solution was found or 6 h (21600s) 

limit was reached. Table 9 gives the average and worse objective values obtained by HGA in 

10 runs, as well as the gaps (%) representing the deviation of the average and worse objective 

values from the LB. It also shows the average running times (CPU) in seconds and the standard 

deviation of gaps obtained by HGA. 

Table 9 

Comparison of the performance of the exact method and the HGA. 

Instance  Exact method  HGA 

Type |𝐾| |𝑁1| |𝑁2|  Obj. CPU (s)  Ave Obj. Worse Obj.  CPU (s) Standard 

deviation of gaps      UB LB Gap%   Value  Gap% Value  Gap%  

R1 6 10 30   826.40  826.40  0.00  13.26   826.40  0.00  826.40  0.00  0.74  0.00  

C1 6 10 30   1848.16  1848.16  0.00  17.78   1848.16  0.00  1848.16  0.00  0.81  0.00  

RC1 6 10 30   737.67  737.67  0.00  13.99   739.32  0.22  743.19  0.74  0.61  0.00  

R1 8 20 40   1705.27  1705.27  0.00  74.25   1710.12  0.28  1720.39  0.88  1.38  0.00  

C1 8 20 40   1308.65  1308.65  0.00  92.34   1311.64  0.23  1362.37  3.94  1.19  0.01  

RC1 8 20 40   2297.13  2297.13  0.00  128.27   2303.13  0.26  2405.57  4.51  1.42  0.00  

R1 10 30 60   3862.05  3862.05  0.00  7008.35   3889.25  0.70  3937.29  1.91  3.84  0.01  

C1 10 30 60   2821.59  1871.83  33.66  21600.00   1927.48  2.89  1963.88  4.69  3.86  0.02  
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RC1 10 30 60   3279.84  3279.84  0.00  1438.58   3334.27  1.63  3395.27  3.40  3.88  0.00  

R1 12 40 80   6468.44  5264.95  18.61  21600   5476.86  3.87  5662.08  7.01  10.06  0.02  

C1 12 40 80   4421.23  3185.80  27.94  21600   3302.65  3.54  3400.18  6.30  12.88  0.04  

RC1 12 40 80   --- 25428.97  --- 21600   27030.07  5.92  27821.24  8.60  16.65  0.02  

R1 15 50 100   --- 4096.74  --- 21600   4320.24  5.17  4522.87  9.42  41.47  0.03  

C1 15 50 100   --- 2417.39  --- 21600   2558.02  5.50  2669.44  9.44  13.55  0.03  

RC1 15 50 100   9864.44  5561.21  43.62  21600   5943.28  6.43  6288.28  11.56  62.46  0.05  

R1 18 60 120   --- 5554.83  --- 21600   5941.47  6.51  6226.83  10.79  123.40  0.04  

C1 18 60 120   --- 3697.18  --- 21600   3928.52  5.89  4275.28  13.52  29.35  0.04  

RC1 18 60 120   --- 9105.82  --- 21600   9972.42  8.69  10317.02  11.74 236.62 0.05  

R1 20 75 150   --- 12800.62  --- 21600   13972.34  8.39  14678.62  12.79  491.53 0.06  

C1 20 75 150   --- 6907.85  --- 21600   7582.84  8.90  7965.85  13.28  201.54 0.05  

RC1 20 75 150   --- 9594.96  --- 21600   10606.91  9.54  10856.48  11.62  332.43 0.04  

R1 30 100 200   --- --- --- 21600   15782.38  --- 16421.56  --- 526.18 --- 

C1 30 100 200   --- --- --- 21600   13390.88  --- 14652.81  --- 528.44 --- 

RC1 30 100 200   --- --- --- 21600   18801.28  --- 19539.33  --- 597.90 --- 

In Table 9, we can see that when |𝐾| ≤10, CPLEX can obtain the optimal solution except 

for the eighth instance (C1 type and |𝐾| = 10, |𝑁1| = 30, |𝑁2| = 60) within 21600s. In 

contrast, the HGA takes less time and gets a nearly optimal solution with a average objective 

gap of less than 2.89% and a worse objective gap of less than 4.69%. With the problem size 

increasing, it is hard to find the optimal solution and can only obtain feasible solutions or LBs 

within 21600s by CPLEX. When |𝐾| increased to 15, only the fifth instance ( RC1 type and 

|𝐾| = 15, |𝑁1| = 50, |𝑁2| = 100) can obtain a feasible solution by CPLEX and the gap is as 

high as 43.62%. However, the HGA can obtain a better feasible solution with smaller gaps of 

the average and worse objective values, and the corresponding runtime is less than 62.46s. 

When 18≤ |𝐾| ≤20, only the LBs are obtained by CPLEX but the HGA can obtain a better 

solution with a average objective gap of less than 9.54% and a worse objective gap of less than 

13.52%. When |K| ≥ 30, CPLEX cannot solve the problem within 21600s, while the HGA 

can obtain a feasible solution less than 600s. Moreover, although the standard deviation of the 

gaps are increases with the problem size on the whole, it is never greater than 0.06. 

Overall, the above experiments illustrate the limitation of the exact method with CPLEX. 

HGA can obtain a better solution in a shorter time and has a stronger stability, which has the 

advantage of solving this problem. 

7. Conclusions 

By taking the family doctor contract services in China as a background, this paper presents 
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a home health care routing and scheduling problem with the consideration of the outpatient 

service. The problem is formulated as a mixed-integer nonlinear and convex programming 

model to minimize the total travel cost, the total waiting penalties of out-patients, and maximize 

the total benefit of patients’ preference satisfaction. We used an outer-approximation method 

to obtain its global ε-optimal solutions and developed HGA to solve the large size problem. 

To analyze the sensitivity of parameters, problem properties, and the performance of the outer-

approximation method, a small instance was set up, and the results demonstrate the following: 

First, the solution is affected by the maximum skill level deviation E, the unit waiting penalty 

of outpatients 𝑊1  and the unit benefit of patients’ preference satisfaction 𝑊2 . With E 

increasing, the influence of 𝑊1  and 𝑊2  on solution will be greater, and this could make 

operation management more flexible. Second, with the weight for each service mode increasing, 

the resultant scheme will arrange doctors with higher skill levels or more familiar to patients to 

the corresponding mode. Managers can balance the two modes by adjusting the weight for each 

mode. Third, the allocated tolerance ε̂ is sensitive to the optimal objective value in the outer 

approximation method. Fourth, compared with home health care service of only door-to-door 

services, the combination of door-to-door and outpatient services can serve more patients with 

lower operating costs. To illustrate the performance of the proposed HGA, 24 instances with 

up to 30 doctors, 100 home healthcare patients, and 200 out-patients were tested. The results 

show the HGA can yield high-quality solutions within short computing time, and can solve 

much larger size problems than the branch and cut method.  

This paper is the first to consider the home health care routing and scheduling problem that 

combines the door-to-door and outpatient services. The research has a great practical 

significance for the development and improvement of family doctor contract services in China. 

In future research, we can extend the problem to consider multi-period scheduling and some 

uncertain factors (such as spontaneous patient requests, stochastic traveling time, etc.).  
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Table A.1 

Doctors’ information. 

Doctor 𝑘 𝑄𝑘 𝑢𝑘 Doctor 𝑘 𝑄𝑘 𝑢𝑘 

1 3 0.0380 4 2 0.0354 

2 3 0.0356 5 2 0.0442 

3 1 0.0797 6 1 0.0837 

Table A.2 

Home healthcare patients’ information. 

Patient 𝑖 Coordinates [𝑒𝑖 , 𝑙𝑖] 𝜏𝑖 (min) 𝑞𝑖 𝑝𝑖𝑘(𝑘 = 1,2, … ,6) 

1 (80, 2) [139, 239] 52 3 [1 1 0 0 0 0] 

2 (92, 73) [107, 190] 89 2 [1 1 0 1 0 0] 

3 (48, 57) [63, 152] 32 1 [0 0 1 0 1 1] 

4 (23, 45) [173, 279] 83 1 [0 0 1 1 1 1] 

5 (96, 54) [225, 339] 84 3 [0 0 0 0 0 0] 

6 (52, 23) [333, 413] 77 1 [0 0 0 1 1 1] 

7 (48, 62) [290, 361] 35 2 [1 0 0 1 0 0] 

8 (67, 39) [69, 131] 45 1 [0 0 1 0 1 1] 

Table A.3 
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Out-patients’ information. 

Patient 𝑖 𝑞𝑖 𝑝𝑖𝑘(𝑘 = 1,2, … ,6) Patient 𝑖 𝑞𝑖 𝑝𝑖𝑘(𝑘 = 1,2, … ,6) 

9 3 [0 0 0 0 0 0] 14 2 [0 0 0 0 0 0] 

10 2 [1 0 0 1 1 0] 15 1 [0 0 0 0 1 1] 

11 2 [1 1 0 1 1 0] 16 1 [0 0 1 1 1 1] 

12 1 [0 1 1 0 1 0] 17 2 [0 0 0 1 0 0] 

13 1 [0 0 0 1 0 1] 18 1 [1 0 0 0 0 0] 

Table A.4 

Information about relevant patients in the four scenarios. 

Patient 𝑖 coordinates [𝑒𝑖 , 𝑙𝑖] 𝜏𝑖 (min) 𝑞𝑖 𝑝𝑖𝑘(𝑘 = 1,2, … ,6) 

9 [63, 9] [298, 403] 35 3 [0 0 0 0 0 0] 

10 [27, 54] [139, 233] 79 2 [1 0 0 1 1 0] 

11 [95, 96] [124, 171] 71 2 [1 1 0 1 1 0] 

12 [15, 97] [202, 308] 49 1 [0 1 1 0 1 0] 

13 [95, 48] [304, 355] 87 1 [0 0 0 1 0 1] 

14 [80, 14] [234, 322] 32 2 [0 0 0 0 0 0] 

15 [42, 91] [87, 130] 56 1 [0 0 0 0 1 1] 

16 [79, 95] [112, 207] 32 1 [0 0 1 1 1 1] 

17 [65,3] [122, 213] 75 2 [0 0 0 1 0 0] 

18 [84, 93] [114, 200] 47 1 [1 0 0 0 0 0] 

19 [67, 75] [123, 222] 41 2 [0 0 1 0 0 1] 

20 [74, 39] [251, 355] 59 1 [0 0 0 1 1 0] 

21 [65, 17] [191, 256] 56 2 [1 0 0 1 0 0] 

 

 

 


