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Abstract. We concern the modal choice of commuters in a transport system comprising a 

highway, which is only used by autos, in parallel to two separate transit lines, which are only 

used by buses. For the operation of the transit lines, two market structures are considered: 

monopolistic and duopolistic. Each transit operator sets its transit fare to maximize its own 

profit. The problem of optimizing the profit of each transit operator is formulated as an 

optimization model with equilibrium constraints. We theoretically prove that, to obtain both 

the interior and boundary solutions of the optimization model, it is sufficient to solve an 

alternative optimization model with equality constraints. Moreover, we prove that increasing 

the toll charge of private autos leads to an increase in the optimal profit of each transit 

operator. Based on the above two properties, for each market structure, we propose a 

period-to-period transit fare and auto toll scheme to locally or globally maximize the profit of 

each transit operator and to simultaneously make the profit of each transit operator more than 

a certain value (otherwise, the transit operator may leave the market due to unattractive 

profits or losses). Finally, by numerical examples, we show the effectiveness of the scheme in 

each market, the necessity of examining both the interior and boundary solutions of the 

optimization model, and the importance of designing a period-to-period transit fare and auto 

toll scheme. 
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1. Introduction 

Multiple transport modes commonly exist in a city so as to provide substitutable 

                                                 

* Corresponding author. Tel.: +852 28578552.  

E-mail addresses:buaa_guorenyong@126.com (R.-Y. Guo), ceszeto@hku.hk (W.Y. Szeto).  



2 
 

transportation services for travelers. For example, travelers can choose either private cars or 

public transit to travel from their origins to their destinations. Here, the public transit refers to 

urban transit rather than extra-urban transit. The urban transit usually competes with other 

urban travel modes, e.g., private cars and taxis, and it mainly services commuters who 

regularly travel between home and work. Existing studies on multi-modal transport systems, 

including public transport systems, can be mainly categorized into two classes according to 

the nature of public transport provision: governmental provision of public transport and 

provision of public transport by a private firm.  

Most of the existing studies on multi-modal transport systems belong to the first class. In 

some studies belonging to the first class (e.g., Huang, 2000, 2002; Kraus, 2003; Gonzales and 

Daganzo, 2012; Li et al., 2012; Tirachini and Hensher, 2012; David and Foucart, 2014; Wu 

and Huang, 2014; Gonzales, 2015; Liu et al., 2016), cutting down or minimizing the total 

social cost of a system is regarded as a target of planning and managing the system. In other 

studies belonging to the first class (e.g., Arnott and Yan, 2000; Pels and Verhoef, 2007; Ahn, 

2009; van den Berg and Verhoef, 2014), maximizing user surplus or government surplus is 

regarded as a target. In the second class (e.g., Pels and Verhoef, 2007; Li et al., 2012; van der 

Weijde et al., 2013; Wu and Huang, 2014; Zhang et al., 2014; Li and Yang, 2016), researchers 

mainly concern how to improve or maximize the profit of the private firm of operating public 

transit lines.  

In recent decades, there are public transport services provided by multiple private firms. 

As a result, various market structures have emerged and the level of competition between 

service operators differs greatly. In some countries, such as the Netherlands, one operator 

owns the exclusive rights to operate most or even all connections in the public transport 

network; in others, such as the UK, new operators can freely enter the market to offer new 

services, or directly compete for franchises to operate existing ones (van der Weijde et al., 

2013). In Hong Kong, public transit services are mainly provided by five franchised bus 

operators, including Citybus, New World First Bus, Kowloon Motor Bus, Long Win Bus, and 

New Lantau Bus (see the homepage of the Transport Department, the Government of the 

Hong Kong Special Administrative Region).  

In some multi-modal transport systems with the provision of public transit by private 

firms such as the UK, toll charging is also implemented in congested areas to manage travel 

demand. For this type of multi-modal transport system, two important questions should be 

duly considered. The first question is how operators operate their respective public transit 

lines to increase their own profit. The second question is how the government charges road 
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users using private cars or equivalently subsidizes public transport operators to guarantee that 

the profit of each operator is not less than a certain value (otherwise operators may leave the 

market due to generating an unattractive profit or even running a loss). This paper answers 

the two questions on the basis of two proposed models for optimizing public transit operators’ 

profits with general equilibrium constraints under both monopolistic and duopolistic market 

structures. The general equilibrium constraints herein mean that we examine both interior and 

boundary equilibrium solutions of traffic flow distributions.  

In some existing studies on modal choice at an equilibrium state, e.g., Huang (2000), 

Arnott and Yan (2000), van der Weijde et al. (2013), Wu and Huang (2014), Zhang et al. 

(2014), and Liu et al. (2016), researchers generally only examine interior solutions, in which 

all modes are used between each origin-destination (OD) pair, and do not examine boundary 

solutions, in which at least one mode is not used between an OD pair. When only interior 

solutions are considered, the equilibrium conditions in those existing studies are formulated 

in the form of equalities. The resultant models with equality constraints can be investigated 

and analyzed more easily compared with the corresponding model with general equilibrium 

constraints. Unlike those existing studies, our objectives are to analyze the two models for 

optimizing operators’ profits with general equilibrium constraints under different market 

structures and to examine both interior and boundary solutions of the two models. 

There are at least three motivations for us to examine both interior and boundary solutions. 

First, the model for investigating interior solutions is just a special case of the model for 

investigating both interior and boundary solutions. Obtaining the results of a more general 

model is always a goal of scientific research. Second, a model for obtaining interior solutions 

is only applied to evaluate the performance efficiency of an existing transport mode (e.g., the 

profit of running the existing transport service). However, a model for obtaining both interior 

and boundary solutions can be applied to evaluate not only the efficiency of an existing 

transport mode but also whether it is necessary to open an extra transit line or cancel an 

existing transit line. The evaluation of the necessity is an important stage of designing a 

multi-modal transport system. Third, a model for optimizing operators’ profits with general 

equilibrium constraints is similar to a model for transportation network design. Thus, 

investigating the model with general equilibrium constraints is helpful for developing an 

algorithm for solving the network design problem.  

In this paper, we theoretically prove an interesting conclusion of the models for 

optimizing operators’ profits with general equilibrium constraints, i.e., both the interior and 

boundary solutions of the models can be obtained by solving an optimization model with 
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equality constraints. In addition, we prove that increasing the toll charge of private autos 

results in increases in the optimal profits of transit operators. Meanwhile, we show an 

application of the above two conclusions to develop a dynamic bus fare and car toll 

adjustment scheme, which relates to the discipline of dynamic adjustment processes of flows 

and control variables.  

Recently, researchers begin to concern the dynamic adjustment process of flows and 

control variables in multi-modal transport systems. Indeed, in realistic multi-modal transport 

systems, commuters can adjust their transport modes, routes, or departure times from day to 

day based on their experiences or information provided by an advanced traffic information 

system, and the resultant traffic flows can evolve over days before reaching an equilibrium 

state. In addition, when a traffic control scheme is implemented in a multi-modal transport 

system at an equilibrium state, the control scheme may perturb the system and make the 

traffic flows fall into a disequilibrium state. As a result, the traffic flows may begin to adjust 

towards a new equilibrium state or may always oscillate from day to day.  

The exploration of the day-to-day dynamics opens up another avenue for improving 

system utility, e.g., decreasing traffic congestion or total travel cost (Friesz et al., 2004; Xiao 

and Lo, 2015; Zhao et al., 2019). Readers may refer to a comprehensive review of the 

day-to-day dynamics of traffic flows and control variables by Watling and Cantarella (2013, 

2015).  

In the aspect of modeling the dynamics of flows and control variables in multi-modal 

transport systems, some advancements have been made. Cantarella et al. (2015) proposed a 

dynamical system to formulate the joint adjustment of modal choice and transit operation 

from day to day in a bi-modal transport system. In the system, the frequency of bus runs is 

prefixed to meet the demand with all the buses available or is daily updated to meet the 

demand with the minimum number of buses required to avoid oversaturation. They also 

showed the non-uniqueness of equilibrium by a numerical example. Li and Yang (2016) 

proposed a dynamical system model for formulating travelers’ day-to-day modal choice in a 

bi-modal transportation system with responsive transit services. In their model, the frequency 

of bus runs is adjusted from period to period so that a given target profit of the transit 

operator is achieved at a stationary state.  

Liu and Geroliminis (2017) modeled and controlled a multi-region and multi-modal 

transportation system, in which the travelers adjust their mode choices from day to day and 

the within-day traffic dynamics evolve over days. They developed an adaptive mechanism to 

update parking pricing from period to period so as to improve the system’s efficiency. Liu et 
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al. (2017) modeled the joint evolution of travelers’ departure time and mode choices in a 

bi-modal transportation system by considering the impact of user inertia. They also analyzed 

the dynamic interactions between transport users and the traffic information provider. Guo 

and Szeto (2018) designed a control strategy to control the day-to-day modal choice of 

commuters in a bi-modal transportation system so as to simultaneously reduce the daily total 

travel cost of the transportation system and achieve a Pareto improvement or zero-sum 

revenue target at a stationary state. Moreover, they introduced new concepts of Pareto 

improvement and zero-sum revenue in a day-to-day dynamic setting and proposed the two 

targets’ implementations in either a prior or a posterior form.  

In this paper, we also focus on the dynamic adjustment process of the modal choice of 

commuters. However, different from Cantarella et al. (2015), Li and Yang (2016), Liu and 

Geroliminis (2017), Liu et al. (2017), and Guo and Szeto (2018), we concern a multi-modal 

transport system comprising two separate transit lines, which are only used by buses, in 

parallel to a highway, which is only used by autos. The two transit lines are owned by one or 

more private firms (private operators) and the highway is governed by the government 

(public operator). Two market structures are considered, i.e., one with a monopolistic public 

transport operator, which operates the two transit lines, and the other one, in which each of 

the two separate operators own one transit line. A transit operator can only set the bus fare on 

its transit line. The toll charge of private cars running on the highway is determined by the 

government. For each of the two market structures, we propose a dynamic bus fare and auto 

toll scheme to locally or globally maximize the profit of each operator and at the same time to 

ensure the profit of each private firm not less than a certain value (i.e., ensure that the profit is 

attractive to the operator to run the business). In each scheme, the bus fares and the auto toll 

are adjusted from period to period based on known information in the previous period, in 

which a period covers a number of successive days.  

The contributions of this paper can be summarized as follows: 

(1) We investigate the modal choice of commuters in a transport system comprising a 

highway, which is managed by the government (public operator), and two separate transit 

lines, which are operated by one or more private firms (private operators). We consider both 

monopolistic and duopolistic market structures for the transit operation.  

(2) For each market structure, we analyze an optimization model with equilibrium 

constraints to optimize the profit of each transit operator.  

(3) We theoretically prove that, to obtain both the interior and boundary solutions of each 

optimization model, it is sufficient to solve an alternative optimization model with equality 
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constraints.  

(4) We prove that increasing the toll charge of private autos leads to an increase in the 

optimal profit of each transit operator.  

(5) Based on the above two properties, we propose a period-to-period transit fare and auto 

toll scheme for each market structure to locally or globally maximize the profit of each transit 

operator and to simultaneously make the profit of each transit operator more than a certain 

value.  

The remainder of this paper is organized as follows. In the next section, the optimization 

models for maximizing operators’ profits and their properties are presented. In Section 3, we 

propose the dynamic bus fare and car toll schemes and their implementation processes. 

Several numerical examples are given to show the properties of the optimization models and 

the implementation effectiveness of the schemes in Section 4. Finally, some remarks and 

conclusions are provided in Section 5.  

 

2. System description 

2.1. Notations and assumptions  

We consider a multi-modal transport network in Figure 1. In every morning, a fixed 

number d  ( 0 ) of commuters travel from an origin (O) to a destination (D). The 

assumption of fixed demand is acceptable when we consider work/school trips or morning 

peak hour trips in which the trips are always compulsory. The OD pair is connected by two 

transit lines in parallel to a highway. The three transport modes are separated. Commuters can 

choose to travel by bus running on one of the two transit lines or an auto running on the 

highway, i.e., they have three discrete choices. The number of bus users on transit line i  

( 1,2= ) is denoted by 
,b ix  ( 0 ), the number of auto users on the highway is denoted by ax  

( 0 ), and T

,1 ,2( , , )b b ax x x=x  is the corresponding vector. They then satisfy 

,1 ,2b b ax x x d+ + = . Let   be the feasible set of the numbers of bus users and auto users and 

it is denoted as  

 ,1 ,2 ,1 ,2, 0, 0, 0b b a b b ax x x d x x x= + + =   x .  (1) 
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Figure 1. A multi-modal transport network.  

 

We mainly investigate the effect of bus fares and the car toll on both the modal choice of 

commuters and the operating profit of each transit operator, and hence we assume that the 

frequency of bus runs on each transit line is constant. This assumption reflects the reality that 

the frequency of bus runs cannot be adjusted frequently and it is required to remain 

unchanged for a long period. Let 
,b it  ( 0 ) stand for the average travel time cost of bus 

users on transit line i  ( 1,2= ), including waiting time cost at a bus stop and in-vehicle time 

cost. ( )a at x  ( 0 ) represents the average travel time cost of auto users on the highway, 

including both free flow travel cost and congestion cost (occurring on the road). The function 

at  is continuously differentiable with respect to ax . Moreover, it is supposed that 

d ( ) d 0a a at x x  . This implies that a higher number of auto users generate more congestion 

for auto users because there are more autos on the highway. Hence, the function at  is 

increasing in ax .  

The notation 
,( )b ig x  ( 0 ) denotes the average in-vehicle congestion cost of passengers 

on transit line i  ( 1,2= ) and it reflects the discomfort generated by in-vehicle congestion, 

which has a significant effect on the choices of passengers between transit services and other 

transport modes (Huang, 2000, 2002; Huang et al., 2007; Li et al., 2012; van den Berg and 

Verhoef, 2014; Wu and Huang, 2014). The function g  is continuously differentiable in 
,b ix . 

It is assumed that 
, ,d ( ) d 0b i b ig x x  , i.e., the in-vehicle congestion cost increases as the 

number of bus users increases. 
,b ip  ( 0 ) stands for the transit fare (ticket price) charged 

from each bus user on transit line i  ( 1,2= ), ap  ( 0 ) is the toll charge from each auto 

user on the highway, and 
T

,1 ,2( , , )b b ap p p=p  is the corresponding vector. All those costs and 

prices, mentioned above, are measured in the monetary unit.  

Based on the above notations, the travel costs 
, , ,( , )b i b i b ic x p  and ( , )a a ac x p  of 

commuters using buses on transit line i  ( 1,2= ) and using autos on the highway are 

respectively formulated as  

, , , , , ,( , ) ( )b i b i b i b i b i b ic x p t g x p= + +  and  (2) 
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( , ) ( )a a a a a ac x p t x p= + .  (3) 

The perceived travel costs of commuters using buses on transit line i  ( 1,2= ) and using 

autos on the highway are respectively denoted as 
, , , ,( , )b i b i b i b ic x p +  and ( , )a a a ac x p + , 

where 
,1b , 

,2b , and a  are three random error terms which prescribe the difference among 

travel costs perceived by different commuters.  

At the stochastic user equilibrium (SUE) state, no commuter can reduce his/her perceived 

travel cost by unilaterally altering his/her travel mode (Sheffi, 1985). The SUE conditions can 

be characterized as  

( ),1 ,1 ,1 ,1 ,1Pr ( , )b b b b bx d c x p  = +  ,  (4) 

( ),2 ,2 ,2 ,2 ,2Pr ( , )b b b b bx d c x p  = +  , and (5) 

( )Pr ( , )a a a a ax d c x p  = +  .  (6) 

where 

 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2min ( , ) , ( , ) , ( , )b b b b b b b b a a a ac x p c x p c x p   = + + + .  

It is generally assumed that the random error terms can take any values that belong to 

( , )− +  in existing studies (Sheffi, 1985). For example, it is supposed that the random 

error terms are independently and identically distributed Gumbel variables or they are 

normally distributed variables. As a result, it is guaranteed that the traffic flows at the SUE 

state are in the interior of the feasible set of traffic flows and the SUE conditions can be 

equivalently written as a set of equalities.  

Sometimes, in order to obtain some analytical results related to the performance 

evaluation of a policy/scheme in a multi-modal transport system, the implementation of the 

policy/scheme is analyzed and evaluated based on the assumption that the variances of the 

random error terms are zero in existing studies, e.g., Huang (2000), Pels and Verhoef (2007), 

Li et al. (2012), van der Weijde et al. (2013), and Liu et al. (2016). Under the assumption, the 

SUE conditions degenerate into the following deterministic user equilibrium (DUE) 

conditions: 

( ), , , ,( , ) 0b i b i b i b ix c x p − = , for 1,2i = , ( )( , ) 0a a a ax c x p − = ,  (7) 

where   is the minimum travel cost among all modes, i.e.,  

 ,1 ,1 ,1 ,2 ,2 ,2min ( , ), ( , ), ( , )b b b b b b a a ac x p c x p c x p = .  (8) 

Conditions (7) and (8) state that all used modes have equal travel cost, which is less than or 
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equal to those of any of the unused modes. In this way, the analysis and evaluation can be 

simplified. Moreover, it can be verified by numerical simulations that some change trends 

and policy/scheme properties generated in the context of DUE are qualitatively identical with 

those obtained in the context of SUE. In subsequent analyses, we adopt the assumption that 

the variances of the random error terms are zero.  

Let 
, ,( )b i b ik x  be the daily operating cost of transit line i  ( 1,2= ). The function 

,b ik  is 

continuously differentiable with respect to 
,b ix . It is supposed that 

, , ,d ( ) d 0b i b i b ik x x   and 

this means that the function 
,b ik  is non-decreasing in 

,b ix . It is worth mentioning that there 

is a fact for the operation of public transit, namely, when the number 
,b ix  of bus users on 

transit line i  ( 1,2= ) is large, the increasing rate of the operating cost 
, ,( )b i b ik x  of transit 

line i  to 
,b ix  may be slight or zero. The fact does not affect the conclusions in subsequent 

Sections 2.2 and 2.3, because the conclusions in subsequent Sections 2.2 and 2.3 are based on 

only a precondition related to the functions 
,1bk  and 

,2bk , i.e., the functions 
,1bk  and 

,2bk  

are continuously differentiable with respect to 
,1bx  and 

,2bx , respectively. 

 

2.2. The transit monopoly  

For the market structure with a monopolistic transit operator, who operates both transit 

lines, the daily total profit of the transit operator is governed by  

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2( ) ( )b b b b b b b bU x p x p k x k x= + − − ,  (9) 

i.e., the daily total profit is equal to the difference between the revenue 
,1 ,1 ,2 ,2b b b bx p x p+  

from transit fares and the operating cost 
,1 ,1 ,2 ,2( ) ( )b b b bk x k x+ .  

For a given auto toll ap , the operator maximizes the daily total profit at the equilibrium 

state through determining transit fares 
,1bp  and 

,2bp . The optimal monopolistic transit fares 

are obtained by solving the following optimization problem  

,1 ,2

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2
( , )
max ( ) ( )
b b

b b b b b b b b
p p

U x p x p k x k x= + − − ,  (10) 

where 
,1 ,2( , )b bp p  is subject to  

( ), , , ,( ) 0b i b i b i b ix t g x p + + − = , for 1,2i = , ( )( ) 0a a a ax t x p + − = , (11) 

,1 0bp  , 
,2 0bp  , and x .  (12) 

Condition (11) is the DUE condition, in which the minimum travel cost   among all modes  

is formulated in expression (8). The first two constraints in condition (12) are two 

non-negativity constraints for transit fares and the last one states the feasibility constraints for 

the numbers of bus and auto users.  



10 
 

Condition (11) indicates that the equilibrium user distribution among modes at the 

maximum point can be either in the interior of the feasible set   or on the boundary of  . 

Thus, compared with some existing studies, e.g., Huang (2000), Arnott and Yan (2000), van 

der Weijde et al. (2013), Wu and Huang (2014), Zhang et al. (2014), and Liu et al. (2016), a 

more general case is considered here.  

The value of the objective function of the optimization problem (10) to (12) is determined 

by the variables x  and p . Once p  is determined, a unique x  at the equilibrium state is 

also determined because the functions g  and at  are increasing. Thus, x  is a function of 

p  and the value of the objective function is finally determined by p .  

In this paper, Assumption 1 is adopted in subsequent analyses, which is stated as follows.  

 

Assumption 1. Let UE UE UE UE T

,1 ,2( , , )b b ax x x=x  be the flow distribution pattern at the DUE state 

without transit fares (i.e., 
,1 0bp =  and 

,2 0bp = ) and it satisfies  

UE

,1 0bx  , UE

,2 0bx  , UE 0ax  , and ( ) ( )UE UE

, ,b i b i a a at g x t x p+ = + , for 1,2i = .  (13) 

 

Assumption 1 means that, at the DUE state without transit fares, all modes are used, 

namely, the number of commuters using each mode is positive and the travel costs of all 

modes are equal. Then, we have the following property.  

 

Property 1. Let ( )* *

,1 ,2,b bp p  be an optimal solution to the following optimization problem: 

,1 ,2

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2
( , )
max ( ) ( )
b b

b b b b b b b b
p p

U x p x p k x k x= + − − ,  (14) 

where 
,1 ,2( , )b bp p  is subject to  

, , ,( ) ( )b i b i b i a a at g x p t x p+ + = + , for 1,2i = ,  (15) 

,1 0bp  , 
,2 0bp  , and x .  (16) 

Then, under Assumption 1, ( )* *

,1 ,2,b bp p  is also an optimal solution to the optimization 

problem (10) to (12).  

 

Property 1 is proved in Appendix A.1. In the proof, the feasible set of the optimization 

problem (10) to (12) is divided into several subsets, one of which satisfies conditions (15) and 

(16). To prove Property 1, it is shown that the objective function value at an optimal solution 

in the subset of satisfying conditions (15) and (16) is not less than the objective function 

value at an optimal solution in any one of the other subsets. Assumption 1 is adopted to 
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guarantee that two optimal solutions in different subsets are comparable through an 

intermediary feasible solution.  

Despite the fact that the DUE condition is expressed in the form of equalities in the 

optimization problem (14) to (16), an optimal transit fare vector, at which the equilibrium 

user distribution can be either in the interior or on the boundary of the feasible set  , can be 

obtained by solving the optimization problem. The set of transit fares satisfying constraints 

(15) and (16) is a subset of the set of transit fares satisfying constraints (11) and (12), and 

Property 1 means that the subset contains the optimal solutions to the optimization problem 

(10) to (12). Obviously, it is easier to analyze the problem (14) to (16) than the problem (10) 

to (12). In this way, the degree of difficulty for solving the general problem is reduced.  

Once the transit fares and car toll p  is determined, a unique user distribution pattern x  

of satisfying constraints (15) and (16) is also determined. Therefore, the variable U  in (14) 

is a function of p . The partial derivatives of the variable U  with respect to p  are 

formulated as  

( )( ) ( ),1 ,1 ,1 ,2 ,2 ,2 ,2

,1

,1 ,1 ,2 ,1 ,2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a a b b b a a

b

b b b b a a b a a

p k x g x t x p k x t xU
x

p g x g x g x t x g x t x

    − − + + −
= +

      + +
,  (17) 

( ) ( )( ),1 ,1 ,1 ,2 ,2 ,2 ,1

,2

,2 ,1 ,2 ,1 ,2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a a b b b b a a

b

b b b b a a b a a

p k x t x p k x g x t xU
x

p g x g x g x t x g x t x

    − − − +
= +

      + +
, and  (18) 

( ) ( ),1 ,1 ,1 ,2 ,2 ,2 ,2 ,1

,1 ,2 ,1 ,2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b b b b b

a b b b a a b a a

p k x g x p k x g xU

p g x g x g x t x g x t x

   − + −
=

      + +
.  (19) 

The derivation of partial derivatives (17) to (19) is given in Appendix A.2.  

When the bus fare on one of the two transit lines is relatively large so that no commuters 

choose to travel (by bus) on the transit line at the DUE state, the optimization problem (14) to 

(16) is simplified to  

,

, , , ,max ( )
b i

b i b i b i b i
p

U x p k x= − ,  (20) 

where 
,b ip  is subject to  

, , ,( ) ( )b i b i b i a a at g x p t x p+ + = + ,  (21) 

,b i ax x d+ = , 
, 0b ix  , 0ax  , and 

, 0b ip  . (22) 

Here, i 1 or 2= . Similar to the derivation of partial derivatives (17) to (19), the partial 

derivatives of the variable U  in (20) with respect to 
,b ip  and ap  are formulated as  

( ) , , , ,

, , , , ,

, , ,

( )
( )

( ) ( )

b i b i b i b i

b i b i b i b i b i

b i b i b i a a

x p k xU
p k x x x

p p g x t x

 −
= − + = − +

   +
 and  (23) 



12 
 

( ) , , , ,

, , ,

,

( )
( )

( ) ( )

b i b i b i b i

b i b i b i

a a b i a a

x p k xU
p k x

p p g x t x

 −
= − =

   +
.  (24) 

Formulae (17) to (19) indicate how the transit fares 
,1bp  and 

,2bp  and the auto toll ap  

affect the profit U  of the transit operator. In the transport system, the travel demand d  is 

fixed and the functions at  and g  are increasing. Therefore, when the auto toll ap  

increases and the bus fare vector 
,1 ,2( , )b bp p  remains unchanged, the number of bus users 

ascends. However, this does not mean that the profit U  of the transit operator also rises 

owing to the following reason. The profit of the transit operator is equal to the difference 

between the revenue from transit fares and the operating cost. We adopt a more general 

precondition with respect to the operating cost, i.e., the changing rate of the operating cost to 

the number of bus users is not specified. As a result, the marginal revenue may be less than 

the marginal operating cost even if the number of bus users increases. On the other hand, the 

optimal bus fare vector for optimizing the profit of the transit operator is adjusted as the auto 

toll increases. Thus, it is unclear (at least, it is not intuitively perceived) how the optimal 

profit of the transit operator changes as the auto toll increases.  

Property 2 answers the question, which requires the following notations and definitions 

for clarity. Given an auto toll ap , let 
,1 ,2( , )b bp p  be an optimal bus fare vector at the 

equilibrium state and 1 2( , , )b b ax x x=x ， ，  be the vector of the numbers of bus users and auto 

users at the optimal solution. The profit U  of the transit operator is a function of 1 2( , )b bp p， ，  

and ap , and hence the profit of the transit operator at the optimal solution is denoted as 

,1 ,2( , , )b b aU U p p p= . Given another auto toll ap , the notations 1 2( , )b bp p， ， , 
,1 ,2( , , )b b ax x x=x , 

and ,1 ,2( , , )b b aU U p p p=  have similar meanings.  

 

Property 2. If a ap p , then ,1 ,2 ,1 ,2( , , ) ( , , )b b a b b aU p p p U p p p .  

 

Property 2 is proved in Appendix A.3. This property gives a theoretical principle for the 

government to set the auto toll to make the optimal profit of the transit operator more than a 

certain value in the transit monopoly market. It indicates that, as the toll charge to car users 

ascends, the optimal profit of the operator also increases. Thus, to guarantee that the optimal 

profit of the operator is not less than a target value at the equilibrium state, the government 

should set a relatively higher toll charge to car users.  

Property 2 is based on the precondition that, given an auto toll, an optimal transit fare 

vector can be exactly obtained. However, an optimal transit fare vector can only be obtained 

approximately in reality. When the precondition changes as “given an auto toll, only an 
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approximately optimal transit fare vector can be obtained”, it can be seen from the proof of 

Property 2 in Appendix A.3 that Property 2 still holds so long as the approximately optimal 

profit at the larger auto toll ap  satisfies inequality (A.34).  

 

2.3. The transit Bertrand-Nash duopoly   

When the two transit lines are owned by separate operators, the daily total profit of the 

operator of operating transit line j  ( 1,2= ) is governed by  

, , , ,( )j b j b j b j b jV x p k x= − ,  (25) 

i.e., the daily total profit is equal to the difference between the revenue 
, ,b j b jx p  from transit 

fares and the operating cost 
, ,( )b j b jk x . The operator of transit line j  determines the transit 

fare on transit line j  to maximize its own profits at the DUE state (given the transit fare on 

the other transit line and the auto toll). The optimal transit fare is obtained by solving the 

following optimization problem:  

,

, , , ,max ( )
b j

j b j b j b j b j
p

V x p k x= − ,  (26) 

where 
,b jp  is subject to  

( ), , , ,( ) 0b i b i b i b ix t g x p + + − = , for 1,2i = , ( )( ) 0a a a ax t x p + − = ,  (27) 

, 0b jp  , and x .  (28) 

Here, the minimum travel cost   among all three modes is formulated in expression (8). 

For the optimization problem (26) to (28), the following property holds.  

 

Property 3. Let *

,b jp  ( 1,2j = ) be an optimal solution to the following optimization 

problem: 

,

, , , ,max ( )
b j

j b j b j b j b j
p

V x p k x= − ,  (29) 

where 
,b jp  is subject to  

, , ,( ) ( )b i b i b i a a at g x p t x p+ + = + , for 1,2i = ,  (30) 

, 0b jp  , and x .  (31) 

Then, under Assumption 1, 
*

,b jp  is also an optimal solution to the optimization problem (26) 

to (28).  

Property 3 is proved in Appendix A.4. This property indicates that the feasible subset of 

satisfying constraints (30) and (31) contains the optimal solutions to the optimization problem 
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(26) to (28).  

The variable 
jV  ( 1,2j = ) in (29) is a function of the bus fares and auto toll p . The 

partial derivatives of the variables 1V  and 2V  in (29) with respect to p  are formulated as  

( )( ),1 ,1 ,1 ,21
,1

,1 ,1 ,2 ,1 ,2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a a

b

b b b b a a b a a

p k x g x t xV
x

p g x g x g x t x g x t x

  − +
= − +

      + +
,  (32) 

( ),1 ,1 ,11

,2 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a a

b b b b a a b a a

p k x t xV

p g x g x g x t x g x t x

 −
=

      + +
,  (33) 

( ),1 ,1 ,1 ,21

,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b

a b b b a a b a a

p k x g xV

p g x g x g x t x g x t x

 −
=

      + +
,  (34) 

( ),2 ,2 ,22

,1 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a a

b b b b a a b a a

p k x t xV

p g x g x g x t x g x t x

 −
=

      + +
,  (35) 

( )( ),2 ,2 ,2 ,12
,2

,2 ,1 ,2 ,1 ,2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a a

b

b b b b a a b a a

p k x g x t xV
x

p g x g x g x t x g x t x

  − +
= − +

      + +
, and (36) 

( ),2 ,2 ,2 ,12

,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b

a b b b a a b a a

p k x g xV

p g x g x g x t x g x t x

 −
=

      + +
.  (37) 

The derivation of partial derivatives (32) to (37) is provided in Appendix A.5. These 

partial derivatives indicate how the transit fares 
,1bp  and 

,2bp  and the auto toll ap  affect 

the profit 
jV  of the operator of transit line j  ( 1,2= ). For example, when 

,1 ,1 ,1( )b b bp k x , 

the inequalities 
1 ,1 0bV p   , 

1 ,2 0bV p   , and 1 0aV p    hold, since the functions g  

and at  are increasing. Thus, increasing the bus fare 
,1bp  on transit line 1 makes the profit 

1V  of transit operator 1 ascend and increasing the bus fare 
,2bp  on transit line 2 (or the auto 

toll ap ) leads to the descent of 1V .  

Given an auto toll ap , let 
,1bp  and 

,2bp  be optimal bus fares at the equilibrium state for 

transit operators 1 and 2, respectively, and 
,1 ,2( , , )b b ax x x=x  be the vector of the numbers of 

bus users and auto users at the optimal solution. The profit 
jV  of transit operator j  ( 1,2= ) 

is a function of 
,b jp  and ap , and hence the profit of transit operator j  at the optimal 

solution is denoted as ,( , )j j b j aV V p p= . Given another auto toll ap , the notations 
,1bp , 

,2bp , 

,1 ,2( , , )b b ax x x=x , and ,( , )j j b j aV V p p=  ( 1,2j = ) have similar meanings. The following 

property answers the question of how the optimal profit of transit operator j  ( 1,2= ) 

changes as the auto toll increases.  

 

Property 4. If a ap p , then , ,( , ) ( , )j b j a j b j aV p p V p p , for 1,2j = .  
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Property 4 is proved in Appendix A.6. Similar to Property 2 for the monopoly market, 

Property 4 gives a theoretical principle for the government to set the auto toll to make the 

optimal profit of each of the two transit operators more than a certain value in the transit 

Bertrand-Nash duopoly market. It indicates that, as the toll charge to car users ascends, the 

optimal profits of both transit operators also rise. Thus, to guarantee that the optimal profit of 

each transit operator is not less than a target value at the equilibrium state, the government 

should set a relatively high toll charge to car users.  

 

3. Period-to-period operational schemes 

In this section, we apply the above models and properties in Section 2 to propose a 

period-to-period transit fare and auto toll scheme for each market structure to maximize the 

profit of each transit operator and to simultaneously make the profit of each transit operator 

more than a certain value.  

 

3.1. Dynamics of the transport system 

In the transport system, on each day, commuters reconsider their transport modes based 

on known information (e.g., travel time costs and congestion costs on previous days and 

transit fares and the auto toll on that day) to minimize their own travel costs. On one hand, 

each public transit operator determines the transit fare(s) on its transit line(s) and adjusts the 

transit fare(s) from period to period according to user distribution among modes and the 

travel costs of all modes in the previous period (i.e., the transit fare of each line remains 

unchanged on all days during a period) so as to locally or globally maximize its profit from 

operating transit line(s). On the other hand, the government determines the auto toll for users 

on the highway from period to period based on the previous information to guarantee that the 

profit of each public transport operator is more than a certain value (otherwise, transit 

operators may leave the market due to unattractive profits or even losses). As a result, the 

decision-making of commuters, public transit operators, and the government interacts with 

each other. The interactive adjustment process is formulated as a dynamical system under a 

market structure. In the dynamical system, the traffic volumes for selecting the three transport 

modes are state variables and the transit fares for buses and the toll charge for autos are 

control variables. Under different market structures, the dynamics of the state variables are 

common and the control variables are determined by different schemes.  

Here, we do not specify how commuters adjust their modal choices from day to day (i.e., 
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the dynamics of the state variables). Similar to Yang et al. (2004), Han and Yang (2009), 

Yang et al. (2010), and Zhou et al. (2015), we adopt an assumption, i.e., the system gets to the 

equilibrium state at the end of a period given the bus fares and auto toll in the period. 

Day-to-day modal choice can be formulated by the models proposed by Smith (1984), Friesz 

et al. (1994), Zhang and Nagurney (1996), and He et al. (2010), or others. For instance, by 

applying the proportional swap rule of Smith (1984), the day-to-day adjustments of the 

numbers of bus users and auto users are formulated as  

( )( 1) ( ) ( ) ( 1)

, , , ,m m m m

b j b j b jx x F+ += + x p , for 1,2j = , and  (38) 

( )( 1) ( ) ( ) ( 1),m m m m

a a ax x F+ += + x p ,  (39) 

for 0,1,2,m = . The superscript (m) refers to the mth day, e.g., ( )

,

m

b jx  represents the number 

of bus users on transit line j  on day m . The adjustment parameter 0  . The functions 

,b jF  ( 1,2j = ) and aF  are expressed as  

,1 ,2 ,2 ,2 ,2 ,1 ,1 ,1 ,1 ,1 ,1( , ) ( , ) ( , ) ( , ) ( , )b b b b b b b b a a a a b b bF x c x p c x p x c x p c x p
+ +

= − + −      x p  

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,1 ,1 ,1 ,1( , ) ( , ) ( , ) ( , )b b b b b b b b b b b a a ax c x p c x p x c x p c x p
+ +

− − − −       ,  (40) 

,2 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,2( , ) ( , ) ( , ) ( , ) ( , )b b b b b b b b a a a a b b bF x c x p c x p x c x p c x p
+ +

= − + −      x p  

,2 ,2 ,2 ,2 ,1 ,1 ,1 ,2 ,2 ,2 ,2( , ) ( , ) ( , ) ( , )b b b b b b b b b b b a a ax c x p c x p x c x p c x p
+ +

− − − −       , and (41) 

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2( , ) ( , ) ( , ) ( , ) ( , )a b b b b a a a b b b b a a aF x c x p c x p x c x p c x p
+ +

= − + −      x p  

,1 ,1 ,1 ,2 ,2 ,2( , ) ( , ) ( , ) ( , )a a a a b b b a a a a b b bx c x p c x p x c x p c x p
+ +

− − − −       ,  (42) 

where the mapping [ ] max{,0} =  . 

Formulae (38) to (42) state that, on each day, commuters adjust their transport modes 

based on the previous day’s travel costs and intraday transit fares and auto toll. A portion of 

commuters using a mode with a higher generalized travel cost will choose to travel by other 

modes with a lower generalized travel cost on the next day. The portion is proportional to 

both the number of commuters using the mode with a higher generalized travel cost and the 

generalized travel cost difference from other modes.  

 

3.2. Operational scheme for the transit monopoly 

Let 
( )n

p  be the bus fares and the auto toll in period n  and 
( )n

x  be the numbers of bus 

users and auto users at the end of period n  (namely, the numbers of bus users and auto users 

at the equilibrium state under the implementation of the bus fares and auto toll 
( )n

p ). For the 
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monopoly market structure, in which the two transit lines are operated by an operator, the 

operator determines the transit fares ( 1)

,1

n

bp +  and ( 1)

,2

n

bp +  in period 1n +  in three different 

cases.  

First, when both transit lines are used at the end of period n  (i.e., ( )

,1 0n

bx   and ( )

,2 0n

bx  ) 

or both transit lines are not used at the end of period n  (i.e., ( )

,1 0n

bx =  and ( )

,2 0n

bx = ), ( 1)

,1

n

bp +  

and ( 1)

,2

n

bp +  are respectively formulated as  

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,2 ,2 ,2 ,1 ,1 ,1 ,2( 1) ( ) ( )

,1 ,1 ,1( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 ,2

n n n n n n n

b b b a a b b b b a an n n

b b bn n n n n n

b b b a a b a a

p k x t x p k x g x t x
p p x

g x g x g x t x g x t x
+
     − − − +
 = + +

      + +
 

 

  (43) 

and  

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,1 ,1 ,1 ,2 ,2 ,2 ,1( 1) ( ) ( )

,2 ,2 ,2( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 ,2

n n n n n n n

b b b a a b b b b a an n n

b b bn n n n n n

b b b a a b a a

p k x t x p k x g x t x
p p x

g x g x g x t x g x t x
+
     − − − +
 = + +

      + +
 

. 

  (44) 

Second, when ( )

,1 0n

bx =  and ( )

,2 0n

bx   (i.e., transit line 1 is not used and transit line 2 is 

used), ( 1)

,1

n

bp +  and ( 1)

,2

n

bp +  are respectively governed by  

( 1)

,1 ,1

n

b bp p+ =  and  (45) 

( )
( ) ( )

( ) ( )

,2 ,2 ,2( 1) ( ) ( )

,2 ,2 ,2( ) ( )

,2

n n

b b bn n n

b b bn n

b a a

k x p
p p x

g x t x
+
  −

= + + 
  +
 

.  (46) 

Third, when ( )

,1 0n

bx   and ( )

,2 0n

bx =  (i.e., transit line 1 is used and transit line 2 is not 

used), ( 1)

,1

n

bp +  and ( 1)

,2

n

bp +  are respectively given by  

( )
( ) ( )

( ) ( )

,1 ,1 ,1( 1) ( ) ( )

,1 ,1 ,1( ) ( )

,1

n n

b b bn n n

b b bn n

b a a

k x p
p p x

g x t x
+
  −

= + + 
  +
 

 and  (47) 

( 1)

,2 ,2

n

b bp p+ = .  (48) 

Here,   ( 0 ) is a sensitivity parameter and it determines the rate of change of the transit 

fares. Formulae (43) and (44) describe that the bus fares are updated in the positive gradient 

direction of the objective function in expression (14), where the gradients are given by 

equations (17) and (18). 1bp  ( 2bp ) is a relatively large value to make transit line 1 (transit 

line 2) is not used in the next period yet. In this way, the bus fares are updated in the positive 

gradient direction of the objective function in expression (20), as described by formulae (45) 

to (48). Formulae (43) to (48) indicate that the transit fares in each period are calculated 

according to known information in the previous period.  

Given a fixed auto toll ap , the period-to-period adjustment process of bus fares is 
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summarized as follows.  

Step 1. Set the initial bus fares ( )(1) (1)

,1 ,2,b bp p  in period 1 and compute the numbers of bus 

users and auto users 
(1)

x  at the end of period 1 according to an adjustment rule of modal 

choice, e.g., that formulated by formulae (38) to (42). Set 1n = . 

Step 2. If ( ) ( )( ) ( ) ( )

,1 ,1 ,1

n n n

b b b a a at g x p t x p+ +  + , then set ( ) ( )( ) ( ) ( )

,1 ,1 ,1

n n n

b a a a b bp t x p t g x= + − − ; 

if ( ) ( )( ) ( ) ( )

,2 ,2 ,2

n n n

b b b a a at g x p t x p+ +  + , then set ( ) ( )( ) ( ) ( )

,2 ,2 ,2

n n n

b a a a b bp t x p t g x= + − − .  

Step 3. If n N , then go to Step 4; otherwise, stop.  

Step 4. Compute the bus fares ( )( 1) ( 1)

,1 ,2,n n

b bp p+ +  in period 1n+  according to formulae (43) 

and (44). If ( )

,1 0n

bx =  and ( )

,2 0n

bx  , then re-compute ( )( 1) ( 1)

,1 ,2,n n

b bp p+ +  according to 

formulae (45) and (46); otherwise if ( )

,1 0n

bx   and ( )

,2 0n

bx = , then re-compute 

( )( 1) ( 1)

,1 ,2,n n

b bp p+ +  according to formulae (47) and (48). Then, compute the numbers of bus 

users and auto users 
( 1)n+

x  at the end of period 1n+  according to the adjustment rule of 

modal choice. Set 1n n= +  and go to Step 2.  

We call the above period-to-period adjustment process of bus fares BFPAP1. In the 

BFPAP1, N  is the maximum number of periods. Given the bus fares ( )( ) ( )

,1 ,2,n n

b bp p  at the 

beginning of period n , the numbers of bus users and auto users 
( )n

x  at the end of period n  

are determined. ( )( ) ( )

,1 ,2,n n

b bp p  and 
( )n

x  satisfy DUE condition (11); however, they may not 

satisfy equality constraint (15). In the BFPAP1, Step 2 is used to guarantee that the variables 

( )( ) ( )

,1 ,2,n n

b bp p  and 
( )n

x  are projected onto the feasible set of satisfying constraints (15) and (16) 

in each period. (i.e., this step is used to guarantee that they always adjust in the feasible set in 

the BFPAP1). Obviously, after the projection onto the feasible set, the value of the objective 

function in formula (14) remains unchanged.  

Step 3 is used to check whether the stopping criterion is met (when the current period is 

the last one). In Step 4, formulae (43) and (44) are used to update the bus fares to make the 

value of the objective function increase. They may not take action for a point on the boundary 

of the feasible set of satisfying constraints (15) and (16). In the case that the point is on the 

boundary of the feasible set in a period, the bus fares need to be updated in a direction along 

the boundary of the feasible set that makes the value of the objective function increase. That 

is to say, when the point is on the boundary, the bus fares should be updated by formulae (45) 

to (48). As seen from expression (23), formulae (45) to (48) describe that the bus fares are 

updated in the positive gradient direction of the objective function in (20). In this way, under 

the precondition that the sensitivity parameter   takes a reasonable value, the value of the 

objective function always increases as the number of periods increases, unless the trajectory 

of the system gets to a stationary state. The increasing degree is determined by the initial state 
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(i.e., the bus fares in period 1). If the initial state is in the attraction domain of a stationary 

point, then the trajectory converges to the stationary point. The attraction domain of a 

stationary point defines the collection of all states that will evolve towards the stationary 

point over time (Bie and Lo, 2010). 

In addition, it is worth mentioning that the BFPAP1 is designed based on Property 1, a 

precondition of which is Assumption 1. However, Assumption 1 is not necessary for the 

implementation of the BFPAP1 in a realistic multi-mode transportation system. In fact, before 

the BFPAP1 is applied to a multi-mode transportation system, which does not satisfy 

Assumption 1, a transit fare/subsidy vector 
,1 ,2( , )b bp p  is implemented in the transportation 

system so that all modes are used at the equilibrium state under the implementation of the 

transit fare/subsidy vector 
,1 ,2( , )b bp p . The travel costs of commuters using buses on transit 

lines are formulated as  

, , , , , , ,( , ) ( )b i b i b i b i b i b i b ic x p t g x p p= + + + , for 1,2i = .  

In each period, the bus fare vector ( )( ) ( )

,1 ,2,n n

b bp p  is computed based on the above travel cost 

formulations (the actual bus fares charged from bus users are ( )

, ,

n

b i b ip p+  for 1,2i = ). In this 

way, the multi-mode transportation system, which does not satisfy Assumption 1, is 

converted into one, which satisfies Assumption 1, and the BFPAP1 can be implemented in the 

multi-mode transportation system.  

To make the profit of the transit operator at the stationary state more than a certain value, 

the government can adjust the auto toll from period to period according to the following 

process.  

Step 1. Set an auto toll ap .  

Step 2. Under the implementation of the auto toll, an optimal bus fare vector 
,1 ,2( , )b bp p  

at the equilibrium state and the numbers x  of bus users and auto users at the optimal 

solution are observed using the BFPAP1 mentioned in this section earlier.  

Step 3. Compute the profit of the transit operator at the stationary state. If the profit is less 

than a target value, then set a ap p = +  and go to Step 2; otherwise, stop.  

We call the above period-to-period adjustment process of auto toll ATPAP1. In Step 2 of 

the ATPAP1, the BFPAP1 is adopted to optimize the profit of the transit operator given an 

auto toll. This implies that the ATPAP1 is one overall algorithm that iteratively updates both 

auto toll and bus fares. In Step 3,   is a small positive number. By Property 2, it is known 

that Step 3 takes effect in increasing the profit of the transit operator. As a result, the BFPAP1 

is effective for maximizing the profit of the transit operator and for simultaneously making 

the profit of the transit operator more than a certain value.  
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3.3. Operational scheme for the transit Bertrand-Nash duopoly  

For the duopoly market structure, in which each transit line is operated by an operator, 

each transit operator determines the bus fare on its transit line to maximize its profit. The 

operator of operating transit line 1 calculates the transit fare ( 1)

,1

n

bp +  on transit line 1 in period 

1n +  as follows:  

( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,1 ,1 ,1 ,2( 1) ( ) ( )

,1 ,1 1 ,1( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 ,2 3

n n n n

b b b b a an n n

b b bn n n n n n

b b b a a b a

k x p g x t x
p p x

g x g x g x t x g x t x
+

   − +
 = + +
      + +
 

,  (49) 

where 1  ( 0 ) is a sensitivity parameter and determines the rate of change of the transit 

fare. The operator of operating transit line 2 calculates the transit fare ( 1)

,2

n

bp +  on transit line 2 

in period 1n +  by the following formula: 

( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,2 ,2 ,2 ,1( 1) ( ) ( )

,2 ,2 2 ,2( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 ,2

n n n n

b b b b a an n n

b b bn n n n n n

b b b a a b a a

k x p g x t x
p p x

g x g x g x t x g x t x
+

   − +
 = + +
      + +
 

,  (50) 

where 2  ( 0 ) is a sensitivity parameter and determines the rate of change of the transit 

fare. Formulae (49) and (50) show that each operator calculates the transit fare on its transit 

line in each period according to known information in the previous period. Moreover, the bus 

fare on each transit line is updated in the gradient direction of the objective function in 

expression (29).  

Given a fixed auto toll ap , the period-to-period adjustment process of bus fares is 

summarized as follows.  

Step 1. Set the initial bus fares (1)

,1bp  and (1)

,2bp  in period 1 and compute the numbers of 

bus users and auto users 
(1)

x  at the end of period 1 according to an adjustment rule of 

modal choice. Set 1n = . 

Step 2. If ( ) ( )( ) ( ) ( )

,1 ,1 ,1

n n n

b b b a a at g x p t x p+ +  + , then set ( ) ( )( ) ( ) ( )

,1 ,1 ,1

n n n

b a a a b bp t x p t g x= + − − ; 

if ( ) ( )( ) ( ) ( )

2 2 2

n n n

b b b a a at g x p t x p+ +  +， ， ， , then set ( ) ( )( ) ( ) ( )

,2 ,2 ,2

n n n

b a a a b bp t x p t g x= + − − .  

Step 3. If n N , then go to Step 4; otherwise, stop.  

Step 4. Compute the bus fares ( 1)

1

n

bp +

，  and ( 1)

2

n

bp +

，  in period 1n+  according to formulae 

(49) and (50). Then, compute the numbers of bus users and auto users 
( 1)n+

x  at the end of 

period 1n+  according to the adjustment rule of modal choice. Set 1n n= +  and go to 

Step 2.  

We call the above period-to-period adjustment process of bus fares BFPAP2. The first 

three steps in the BFPAP2 take a similar effect as those in the BFPAP1. It can be seen from 
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expressions (32) and (36) that formulae (49) and (50) describe that each operator updates 

its bus fare in an ascent direction (or the positive gradient direction) of its profit function in 

each period. Thus, Step 4 makes the profit of each operator increase until a stationary state is 

reached (under the precondition that the sensitivity parameters 1  and 2  take reasonable 

values).  

To make the profit of each transit operator at the stationary state more than a certain value, 

the government can adjust the auto toll from period to period according to the following 

process.  

Step 1. Set an auto toll ap .  

Step 2. Under the implementation of the auto toll, optimal bus fares 
,1bp  and 

,2bp  at the 

equilibrium state and the numbers x  of bus users and auto users at the optimal solution 

are observed using the BFPAP2 mentioned in this section earlier.  

Step 3. Compute the profits of both transit operators at the stationary state. If the profit of 

at least a transit operator is less than a target value, then set a ap p = +  and go to Step 2; 

otherwise, stop.  

We call the above period-to-period adjustment process of auto toll ATPAP2. The ATPAP2 

is one overall algorithm that iteratively updates both auto toll and bus fares and it can take 

effect in maximizing the profit of each transit operator and in simultaneously making the 

profit of each transit operator more than a certain value.  

 

4. Numerical examples 

In this section, we give a set of numerical examples to show the properties of the two 

implementation processes. The total number of commuters is 9000d = . The average travel 

time costs of bus users on transit lines 1 and 2 are 
,1 1.1bt =  and 

,2 1.5bt = , respectively. The 

average travel time cost of auto users on the highway is formulated as  

4

( ) 0.9 1.0
4300

a
a a

x
t x

 
=  + 

 
.  (51) 

The average in-vehicle congestion costs of passengers on transit lines 1 and 2 are expressed 

as  

3

,

,( ) 1.1
4600

b i

b i

x
g x

 
=   

 
, 1,2i = .  (52) 

The operating costs of transit lines 1 and 2 are governed by  

,1 ,1 ,1( ) 400 10 +1b b bk x x= +  and 
,2 ,2 ,2( ) 380 8 +1b b bk x x= + .  (53) 
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The day-to-day adjustment of modal choice is formulated by formulae (38) to (42) and the 

adjustment parameter   in formulae (38) and (39) takes 0.01 .  

 

4.1. The transit monopoly case 

We first investigate the operational scheme for the transit monopoly in Section 3.2. The 

sensitivity parameter 0.0004 =  in formulae (43), (44), (46), and (47). The parameters 

,1 20bp =  and 
,2 20bp =  in formulae (45) and (48), respectively. When the transit fares and 

auto toll 
,1 ,2( , , ) (0,0,0)b b ap p p = , the numbers of bus users and auto users at the DUE state  

UE UE UE

,1 ,2( , , ) (3439.28,1742.10,3818.62)b b ax x x = .  

Therefore, Assumption 1 holds for the case of 0ap = . 

Figure 2 depicts the evolutionary trajectories of the transit fares 
,1 ,2( , )b bp p  and the daily 

total profit U  from period 1 to 50 when the initial transit fares ( )(1) (1)

,1 ,2,b bp p = (0,0.80)  and 

(1.40,0)  in period 1 and the auto toll 0ap =  in all periods. Table 1 shows the transit fares 

( )(1) (1)

,1 ,2,b bp p  and ( )(50) (50)

,1 ,2,b bp p  in periods 1 and 50, the numbers of bus users and auto users 

(50)
x  at the end of period 50, and the daily total profit (50)U  of the transit operator at the end 

of period 50 in the case of 0ap = .  

 

 

 

Figure 2. The evolutionary trajectories of the transit fares 
,1 ,2( , )b bp p  and the daily total 

profit U  from period 1 to 50 when the operational scheme for the transit monopoly in 

Section 3.2 is applied.  
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Table 1. The auto toll ap  in all periods, the transit fares ( )(1) (1)

,1 ,2,b bp p  and ( )(50) (50)

,1 ,2,b bp p  in 

periods 1 and 50, the numbers ( )(50) (50) (50)

,1 ,2, ,b b ax x x  of bus users and auto users at the end of 

period 50, and the daily total profit (50)U  of the transit operator at the end of period 50 when 

the operational scheme for the transit monopoly in Section 3.2 is applied.  

ap  ( )(1) (1)

,1 ,2,b bp p  ( )(50) (50)

,1 ,2,b bp p  ( )(50) (50) (50)

,1 ,2, ,b b ax x x  (50)U  

0 (0,0.80) (7.26, 6.92) (1713.29,0.00,7286.71) 11244.52 

0 (1.40,0) (7.59, 7.14) (0.00,1648.19,7351.81) 10652.78 

 

One can see that the trajectories of the transit fares 
,1 ,2( , )b bp p  get to a stationary state as 

the number of periods increases from 1 to 50. Under the implementation of the operational 

scheme, the daily total profit of the operator ascends and gets to a stationary value as the 

number of periods increases. Therefore, the operational scheme is effective for locally or 

globally maximizing the profit of the operator. 

The initial transit fares significantly affect the transit fares and user distribution at the 

stationary state. The trajectories of user distribution adjust to two stationary points located at 

the boundary of the feasible set   of the numbers of bus users and auto users. The optimal 

solutions occur at the boundary of the set   and only transit line 1 is used at the optimal 

solution. This result indicates that it is essential to examine optimal solutions at the boundary 

of the feasible set of user distribution. When both transit lines are operated by a monopolistic 

operator, the number of travelers using one of the two transit lines is zero at the optimal 

solution, and hence the operator can choose to operate one of the two transit lines to 

maximize its profit.  

Figure 3 shows the changing trend of the maximum (optimal) total profit U  of the 

transit operator as the auto toll ap  varies from 0 to 1 with an interval of 0.2. Assumption 1 

holds for all these ap -values. It can be seen that, when the auto toll ap  increases, the 

maximum total profit U  of the transit operator also increases. Therefore, to guarantee that 

the profit of the transit operator is more than a certain value, the government can increase the 

toll charge to private car users.  
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Figure 3. The trend of the maximum (optimal) total profit U  of the transit operator as the 

auto toll ap  varies from 0 to 1 with an interval of 0.2. 

 

4.2. The transit Bertrand-Nash duopoly case 

We then examine the operational scheme for the transit Bertrand-Nash duopoly in Section 

3.3. The sensitivity parameters 1 0.0001 =  and 2 0.0001 =  in formulae (49) and (50), 

respectively. Figure 4 describes the evolutionary trajectories of the transit fares 
,1bp  and 

,2bp  and the daily total profits 1V  and 2V  from period 1 to 50 when the initial transit fares 

( )(1) (1)

,1 ,2,b bp p = (0,0.80) , (0,0.40) , (0,0) , (0.70,0) , and (1.40,0)  in period 1 and the auto 

toll 0ap =  in all periods. Table 2 records the transit fares ( )(1) (1)

,1 ,2,b bp p  and ( )(50) (50)

,1 ,2,b bp p  in 

periods 1 and 50, the numbers of bus users and auto users 
(50)

x  at the end of period 50, and 

the daily total profits (50)

1V  and (50)

2V  of the two transit operators at the end of period 50 in 

the case of 0ap = .  
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Figure 4. The evolutionary trajectories of the transit fares 
,1bp  and 

,2bp  and the daily total 

profits 1V  and 2V  from period 1 to 50 when the operational scheme for the transit 

Bertrand-Nash duopoly in Section 3.3 is applied.  

 

Table 2. The auto toll ap  in all periods, the transit fares ( )(1) (1)

,1 ,2,b bp p  and ( )(50) (50)

,1 ,2,b bp p  in 

periods 1 and 50, the numbers ( )(50) (50) (50)

,1 ,2, ,b b ax x x  of bus users and auto users at the end of 
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period 50, and the daily total profits (50)

1V  and (50)

2V  of the two transit operators at the end 

of period 50 when the operational scheme for the transit Bertrand-Nash duopoly in Section 

3.3 is applied.  

ap  ( )(1) (1)

,1 ,2,b bp p  ( )(50) (50)

,1 ,2,b bp p  ( )(50) (50) (50)

,1 ,2, ,b b ax x x  (50)

1V  (50)

2V  

0 (0,0.80) (1.64,1.76) (3584.15,0.00,5415.85) 4895.36 –388 

0 (0,0.40) (0.92,0.63) (2543.08,1832.76,4624.16) 1429.60 439.53 

0 (0,0) (0.92,0.63) (2543.08,1832.76,4.62416) 1429.60 439.53 

0 (0.70,0) (0.92,0.63) (2543.08,1.832.76,4624.16) 1429.60 439.53 

0 (1.40,0) (2.36,1.49) (0.00,3471.55,5528.45) –410 4308.41 

 

Several phenomena can be seen in Figure 4 and Table 2. First, the trajectories from 

different initial points evolve to three different stationary points, two of which are located at 

the boundary of the feasible set of satisfying conditions (30) and (31) and one of which is 

located in the interior of the feasible set.  

Second, initial bus fares on the two transit lines significantly affect the profits of the two 

operators. A high initial bus fare on a transit line (at the same time, the initial bus fare on the 

other transit line is zero) can make all commuters give up choosing to use that transit line at 

the stationary state. As a result, the operator of that transit line becomes loss-making and the 

operator of the other transit line becomes profitable at the stationary state. This means that, in 

the transit Bertrand-Nash duopoly, the profit of a transit operator is affected by not only its 

decision-making but also the decision-making of the other transit operator. In the dynamic 

process, when a transit operator sets the initial bus fare on its transit line as the optimal one at 

the stationary state with the consideration of the Bertrand-Nash duopoly, the profit of the 

operator may not be optimal. For example, when transit operator 1 sets the initial bus fare 

(1)

,1bp  on its transit line as the optimal value 1.64 (i.e., (50)

,1bp ), operator 1 will become 

loss-making if transit operator 2 sets the initial bus fare (1)

,2bp  as zero. Thus, a static optimal 

transit fare cannot be directly applied to a multi-modal system in a non-stationary state.  

Third, although the profit of a transit operator is maximum at a stationary point located at 

the boundary of the feasible set, the stationary point is not realizable. In fact, the profit of a 

transit operator is also affected by the decision-making of the other transit operator, and 

hence each operator is not willing to set a high initial transit fare on its transit line to obtain 

an optimal profit. As a result, both operators set a small initial transit fare and the trajectories 

of the system evolve to a stationary point in the interior of the feasible set. That is to say, the 

stationary point in the interior of the feasible set is a Nash equilibrium point. At that 

equilibrium point, the profits of both operators are not globally optimal. This also results in a 
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low transit fare for commuters and commuters pay a lower transit fare in a Bertrand-Nash 

duopoly market than in a monopoly market. At the Nash equilibrium point, more commuters 

choose to use a transit line with lower travel time cost and the profit of the operator of a 

transit line with lower travel time is higher compared with the other operator.  

 

5. Conclusions  

In this paper, we concern about a multi-modal transport system comprising two separate 

public transit lines and a highway. The highway is only used by autos and the two transit lines 

are only used by buses. In the system, the two public transit lines are owned by one or more 

private firms and the highway is managed by the government. Two market structures are 

involved, i.e., one with a monopolistic public transport operator, which operates both transit 

lines, and the other one, in which separate operators own one transit line. For each market 

structure, each operator can only set the bus fare on its transit line to maximize its profit at 

the equilibrium state. This problem can be formulated as an optimization model with general 

equilibrium constraints. We theoretically prove that, to obtain the optimal solutions of the 

model not only in the interior of the feasible set of user distributions but also at the boundary 

of the feasible set, it is sufficient to solve an optimization model with equality constraints.  

In the transport system, when the toll charge of private autos increases and the fares for 

bus users remain unchanged, the number of bus users increases. However, this does not mean 

that the profit of each transit operator also increases, because the marginal revenue may be 

less than the marginal operating cost even if the number of bus users increases. On the other 

hand, the optimal bus fare for optimizing the profit of each transit operator is adjusted as the 

auto toll increases. Thus, it is unclear how the optimal profit of each transit operator changes 

as the auto toll increases. In this paper, we answer the question and prove that increasing the 

auto toll makes the optimal profit of each transit operator increase.  

Based on the above models and properties, for each of the two market structures, we 

propose a period-to-period bus fare and auto toll scheme to locally or globally maximize the 

profit of each operator and to simultaneously make the profit of each transit operator not less 

than a certain value (otherwise, the transit operator may leave the market due to unattractive 

profits or losses).  

Finally, by numerical examples, we examine the two proposed bus fare and auto toll 

schemes and obtain the following conclusions. For the transit monopoly, (i) the operational 

scheme is effective for locally or globally maximizing the profit of the operator; (ii) the 

operator can choose to operate one of the two transit lines to maximize its profit, and hence it 
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is essential to examine the optimal solution at the boundary of the feasible set of user 

distribution; (iii) to make the profit of the transit operator more than a certain value, the 

government can improve the toll charge to private car users. For the transit Bertrand-Nash 

duopoly, (i) under the implementation of the operational scheme, the trajectory of user 

distributions can evolve to either a stationary point located at the boundary of the feasible set 

of user distributions or a stationary point located in the interior of the feasible set; (ii) when 

both transit operators are willing to set a small initial transit fare, the trajectory of user 

distributions evolves to a stationary point in the interior of the feasible set, and the profits of 

both transit operators are not globally optimal at the interior stationary point; (iii) a static 

optimal transit fare scheme cannot be directly applied to a multi-modal system in a 

non-stationary state.  

The analyses and results presented in this paper are based on the assumption of fixed 

demand, i.e., each commuter must travel every morning. The assumption is involved in the 

proof of Property 1 (or Property 3) to compare the operator profits at two different 

equilibrium points and it is not involved in the proof of Property 2 (or Property 4). This 

means that Property 1 (or Property 3) and its proof may not be directly applied to the case 

that the assumption of fixed demand is replaced with another one, e.g., the travel demand is 

elastic, i.e., commuters can choose either to travel or not every morning; but Property 2 (or 

Property 4) and its proof may be valid for the case of elastic demand.  

The period-to-period transit fare and auto toll schemes in Section 3 are developed based 

on the assumption that the system gets to the equilibrium state at the end of a period given the 

bus fares and auto toll in the period. However, in reality, traffic flows may not be in 

equilibrium at any arbitrary time. By relaxing the assumption that day-to-day traffic flows 

must reach an equilibrium state at the end of each period, Ye et al. (2015) extended the 

trial-and-error method of Yang et al. (2004) and proposed a period-to-period toll charge 

scheme to achieve system optimum target. Similar to the idea of Ye et al. (2015), it is possible 

to relax the assumption of the period-to-period transit fare and auto toll schemes in future 

work.  
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Appendix A. Property proofs and formula derivations 

A.1. Proof of Property 1 

Proof. Equilibrium condition (11) can be further deduced into seven different sub-conditions 

(A.1) to (A.7):  

, , ,( ) ( )b i b i b i a a at g x p t x p+ + = + , for 1,2i = ,  (A.1) 

,1 0bx =  and 
,1 ,1 ,1 ,2 ,2 ,2( ) ( ) ( )b b b b b b a a at g x p t g x p t x p+ +  + + = + ,  (A.2) 

,2 0bx =  and 
,2 ,2 ,2 ,1 ,1 ,1( ) ( ) ( )b b b b b b a a at g x p t g x p t x p+ +  + + = + ,  (A.3) 

0ax =  and 
,1 ,1 ,1 ,2 ,2 ,2( ) ( ) ( )a a a b b b b b bt x p t g x p t g x p+  + + = + + ,  (A.4) 

,1 0bx = , 
,2 0bx = , 

,1 ,1 ,1( ) ( )b b b a a at g x p t x p+ +  + ,  

and 
,2 ,2 ,2( ) ( )b b b a a at g x p t x p+ +  + ,  (A.5) 

,1 0bx = , 0ax = , 
,1 ,1 ,1 ,2 ,2 ,2( ) ( )b b b b b bt g x p t g x p+ +  + + ,  

and 
,2 ,2 ,2( ) ( )a a a b b bt x p t g x p+  + + , and (A.6) 

,2 0bx = , 0ax = , 
,2 ,2 ,2 ,1 ,1 ,1( ) ( )b b b b b bt g x p t g x p+ +  + + ,  

and 
,1 ,1 ,1( ) ( )a a a b b bt x p t g x p+  + + .  (A.7) 

Therefore, the feasible set of decision variables of the optimization problem (10) to (12) can 

be subdivided into seven subsets respectively satisfying the seven different sub-conditions.  

Let ( ),1 ,2,j j

b bp p  ( 1,2, ,7j = ) be an optimal solution to the optimization problem  

,1 ,2

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2
( , )
max ( ) ( )
b b

b b b b b b b b
p p

U x p x p k x k x= + − − ,  (A.8) 

where 
,1 ,2( , )b bp p  is subject to sub-condition (A.j) and constraint (12). Let 

T

,1 ,2( , , )j j j j

b b ax x x=x  be the unique user distribution pattern at the DUE state determined by 

( ),1 ,2,j j

b bp p  ( 1,2, ,7j = ). Therefore, to prove Property 1, it is sufficient to prove  

( ) ( )1 1

,1 ,2 ,1 ,2, ,j j

b b b bU p p U p p , for 2,3, ,7j = .  (A.9) 

First, we prove  

( ) ( )1 1 2 2

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.10) 
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It is supposed that UE 2

a ax x  holds (
UE

x  is the user distribution pattern at the DUE state 

without transit fares). Associated with the fact UE 2

,1 ,10b bx x = , it is generated that  

UE UE UE 2 2 2

,2 ,1 ,1 ,2b b a b a bx d x x d x x x= − −  − − = .  (A.11) 

Thus, we have  

( ) ( ) ( ) ( ) ( )UE 2 2 2 2 UE

,2 ,2 ,2 ,2 ,2 ,2 ,2b b b b b b b a a a a a at g x t g x t g x p t x p t x p+  +  + + = +  + .  (A.12) 

The first inequality in expression (A.12) follows the precondition that the function g  is 

increasing. The equality results from the condition that ( )2 2

,1 ,2,b bp p  and 
2

x  satisfy 

sub-condition (A.2). The third (or last) inequality is obtained by the assumption that the 

function at  is increasing. Expression (A.12) contradicts condition (13). Therefore, UE 2

a ax x  

holds. It immediately follows that  

( ) ( ) ( ) ( )2 UE UE 2

,1 ,1 ,1 ,1b b b b a a a a a at g x t g x t x p t x p+  + = +  + .  (A.13) 

In addition, sub-condition (A.2) shows that  

( ) ( )2 2 2

,1 ,1 ,1b b b a a at g x p t x p+ +  + .  (A.14) 

Therefore, there is a ( ) ( ) ( )2 2 2 2

,1 ,1 ,1 ,10,b a a a b b bp t x p t g x p= + − −   so that  

( ) ( ) ( )2 2 2 2 2

,1 ,1 ,1 ,2 ,2 ,2b b b b b b a a at g x p t g x p t x p+ + = + + = + , (A.15) 

i.e., ( )2 2

,1 ,2,b bp p  and 
2

x  satisfy sub-condition (A.1). Thus, it is obtained that  

( ) ( ) ( )1 1 2 2 2 2

,1 ,2 ,1 ,2 ,1 ,2, , ,b b b b b bU p p U p p U p p = .  (A.16) 

The equality in equation (A.16) follows from the fact 
2

,1 0bx = . Thus, inequality (A.10) is 

generated.  

Second, similar to the proof of inequality (A.10), it can be generated that  

( ) ( )1 1 3 3

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.17) 

Third, we prove  

( ) ( )1 1 4 4

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.18) 

Let  

( ) ( )4 4 4

,1 ,1 ,1b a a a b bp t x p t g x= + − −  and ( ) ( )4 4 4

,2 ,2 ,2b a a a b bp t x p t g x= + − − .  (A.19) 

Then, ( )4 4

,1 ,2,b bp p  and 
4

x  satisfy sub-condition (A.1), and hence 

( ) ( )1 1 4 4

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.20) 

By the definition of U , we have  
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( ) ( ) ( )( )4 4 4 4 4

,1 ,2 ,1 ,1 ,1,b b b a a a b bU p p x t x p t g x= + − −  

( ) ( )( ) ( ) ( )4 4 4 4 4

,2 ,2 ,2 ,1 ,1 ,2 ,2b a a a b b b b b bx t x p t g x k x k x+ + − − − −  

( ) ( ) ( )4 4 4 4 4 4 4 4

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2 ,1 ,2,b b b b b b b b b bx p x p k x k x U p p + − − = .  (A.21) 

The inequality is generated by the precondition 4

,1 0bx   (or 4

,2 0bx  ) and sub-condition 

(A.4). Combining (A.20) and (A.21) leads to inequality (A.18).  

Fourth, we prove  

( ) ( )1 1 5 5

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.22) 

On one hand, 5 UE

,1 ,10b bx x=  , 5 UE

,2 ,20b bx x=  , and 5 UE

a ax d x=   hold and also the functions 

g  and at  are increasing. Thus, associated with condition (13), it is obtained that  

( ) ( ) ( ) ( )5 UE UE 5

,1 ,1 ,1 ,1b b b b a a a a a at g x t g x t x p t x p+  + = +  +  and  (A.23) 

( ) ( ) ( ) ( )5 UE UE 5

,2 ,2 ,2 ,2b b b b a a a a a at g x t g x t x p t x p+  + = +  + .  (A.24) 

On the other hand, it holds that  

( ) ( )5 5 5

,1 ,1 ,1b b b a a at g x p t x p+ +  +  and ( ) ( )5 5 5

,2 ,2 ,2b b b a a at g x p t x p+ +  + .  (A.25) 

Therefore, there are  

( ) ( ) ( )5 5 5 5

,1 ,1 ,1 ,10,b a a a b b bp t x p t g x p= + − −   and ( ) ( ) ( )5 5 5 5

b,2 ,2 ,2 ,20,a a a b b bp t x p t g x p= + − −   

so that  

( ) ( ) ( )5 5 5 5 5

,1 ,1 ,1 ,2 ,2 ,2b b b b b b a a at g x p t g x p t x p+ + = + + = + ,  (A.26) 

i.e., 
5

x  and ( )5 5

,1 ,2,b bp p  satisfy sub-condition (A.1). Thus, it is obtained that  

( ) ( ) ( )1 1 5 5 5 5

,1 ,2 ,1 ,2 ,1 ,2, , ,b b b b b bU p p U p p U p p = .  (A.27) 

The equality in equation (A.27) follows from the conditions 5

,1 0bx =  and 5

,2 0bx = . Thus, 

inequality (A.22) holds.  

Fifth, we prove  

( ) ( )1 1 6 6

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.28) 

The proof needs to be illustrated in three cases. When  

( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ +  + ,  

we take ( ) ( )6 6 6

,2 ,2 ,2b a a a b bp t x p t g x= + − −  and then ( )6 6

,1 ,2,b bp p  and 
6

x  satisfy 

sub-condition (A.2). As a result, we have  
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( ) ( )2 2 6 6

,1 ,2 ,1 ,2, ,b b b bU p p U p p  

( ) ( )( ) ( ) ( )6 6 6 6 6 6 6

,1 ,1 ,2 ,2 ,2 ,1 ,1 ,2 ,2b b b a a a b b b b b bx p x t x p t g x k x k x= + + − − − −  

( ) ( ) ( )6 6 6 6 6 6 6 6

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2 ,1 ,2,b b b b b b b b b bx p x p k x k x U p p + − − = .  (A.29) 

Combining inequality (A.29) with inequality (A.10), inequality (A.28) is obtained. By a 

similar deduction, when  

( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ + = +  and ( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ +  + ,  

inequality (A.28) also holds.  

Sixth, similar to the proof of inequality (A.28), it can be obtained that  

( ) ( )1 1 7 7

,1 ,2 ,1 ,2, ,b b b bU p p U p p .  (A.30) 

Thus, by inequalities (A.10), (A.17), (A.18), (A.22), (A.28), and (A.30), we can conclude that 

( )1 1

,1 ,2,b bp p  is an optimal solution to the optimization problem (10) to (12).  ■ 

 

A.2. Derivation of partial derivatives (17) to (19) 

Proof. Differentiating both sides of equation (15) and the user conservation condition with 

respect to p  generates  

,1

,1

,1 ,1

( ) 1 ( )b a
b a a

b b

x x
g x t x

p p

 
 + =

 
, ,2

,2

,1 ,1

( ) ( )b a
b a a

b b

x x
g x t x

p p

 
 =

 
, ,1 ,2

,1 ,1 ,1

0b b a

b b b

x x x

p p p

  
+ + =

  
,  (A.31) 

,1

,1

,2 ,2

( ) ( )b a
b a a

b b

x x
g x t x

p p

 
 =

 
, ,2

,2

,2 ,2

( ) 1 ( )b a
b a a

b b

x x
g x t x

p p

 
 + =

 
, ,1 ,2

,2 ,2 ,2

0b b a

b b b

x x x

p p p

  
+ + =

  
,  (A.32) 

,1

,1( ) ( ) 1b a
b a a

a a

x x
g x t x

p p

 
 = +

 
, 

,2

,2( ) ( ) 1b a
b a a

a a

x x
g x t x

p p

 
 = +

 
, 

,1 ,2 0b b a

a a a

x x x

p p p

  
+ + =

  
.  (A.33) 

Solving the above equations results in  

,1 ,2

,1 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b a a

b b b b a a b a a

x g x t x

p g x g x g x t x g x t x

  +
= −

      + +
,  

,2

,1 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b a a

b b b b a a b a a

x t x

p g x g x g x t x g x t x

 
=

      + +
,  

,2

,1 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

ba

b b b b a a b a a

g xx

p g x g x g x t x g x t x


=

      + +
,  
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,1

,2 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b a a

b b b b a a b a a

x t x

p g x g x g x t x g x t x

 
=

      + +
,  

,2 ,1

,2 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b a a

b b b b a a b a a

x g x t x

p g x g x g x t x g x t x

  +
= −

      + +
,  

,1

,2 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

ba

b b b b a a b a a

g xx

p g x g x g x t x g x t x


=

      + +
,  

,1 ,2

,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b b

a b b b a a b a a

x g x

p g x g x g x t x g x t x


=

      + +
,  

,2 ,1

,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b b

a b b b a a b a a

x g x

p g x g x g x t x g x t x


=

      + +
, and 

,1 ,2

,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b ba

a b b b a a b a a

g x g xx

p g x g x g x t x g x t x

 +
= −

      + +
.  

Thus, we have  

( ) ( ),1 ,2

,1 ,1 ,1 ,2 ,2 ,2 ,1

,1 ,1 ,1

( ) ( )b b

b b b b b b b

b b b

x xU
p k x p k x x

p p p

 
 = − + − +

  
 

( )( ) ( ),1 ,1 ,1 ,2 ,2 ,2 ,2

,1

,1 ,2 ,1 ,2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a a b b b a a

b

b b b a a b a a

p k x g x t x p k x t x
x

g x g x g x t x g x t x

    − − + + −
= +

     + +
,  

( ) ( ),1 ,2

,1 ,1 ,1 ,2 ,2 ,2 ,2

,2 ,2 ,2

( ) ( )b b

b b b b b b b

b b b

x xU
p k x p k x x

p p p

 
 = − + − +

  
 

( ) ( )( ),1 ,1 ,1 ,2 ,2 ,2 ,1

,2

,1 ,2 ,1 ,2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a a b b b b a a

b

b b b a a b a a

p k x t x p k x g x t x
x

g x g x g x t x g x t x

    − − − +
= +

     + +
, and 

( ) ( ),1 ,2

,1 ,1 ,1 ,2 ,2 ,2( ) ( )b b

b b b b b b

a a a

x xU
p k x p k x

p p p

 
 = − + −

  
 

( ) ( ),1 ,1 ,1 ,2 ,2 ,2 ,2 ,1

,1 ,2 ,1 ,2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b b b b b

b b b a a b a a

p k x g x p k x g x

g x g x g x t x g x t x

   − + −
=

     + +
.  

This derivation is completed.  ■ 

 

A.3. Proof of Property 2 

Proof. We take  

( ) ( ),1 ,1 ,1
ˆ

b a a a b bp t x p t g x= + − −  and ( ) ( ),2 ,2 ,2
ˆ

b a a a b bp t x p t g x= + − − .  
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On one hand, it follows from a ap p  that  

( ) ( ),1 ,1 ,1 ,1
ˆ 0b a a a b b bp t x p t g x p + − − =   and  

( ) ( ),2 ,2 ,2 ,2
ˆ 0b a a a b b bp t x p t g x p + − − =  .  

On the other hand,  

( ) ( ),1 ,1 ,1
ˆ

b b b a a at g x p t x p+ + = +  and ( ) ( ),2 ,2 ,2
ˆ

b b b a a at g x p t x p+ + = + .  

Thus, x  and 
,1 ,2

ˆ ˆ( , , )b b ap p p  satisfy constraints (15) and (16). As a result, we have  

,1 ,2 ,1 ,2
ˆ ˆ( , , ) ( , , )b b a b b aU p p p U p p p .  (A.34) 

In addition,  

,1 ,2 ,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2
ˆ ˆ ˆ ˆ( , , ) ( ) ( )b b a b b b b b b b bU p p p x p x p k x k x= + − −  

,1 ,1 ,2 ,2 ,1 ,1 ,2 ,2 ,1 ,2( ) ( ) ( , , )b b b b b b b b b b ax p x p k x k x U p p p + − − = .  (A.35) 

Thus, combining inequalities (A.34) and (A.35) generates  

,1 ,2 ,1 ,2( , , ) ( , , )b b a b b aU p p p U p p p .  

This proof is completed.  ■ 

 

A.4. Proof of Property 3 

Proof. Equilibrium condition (27) can be further deduced into seven different sub-conditions 

(A.1) to (A.7), and hence the feasible set of decision variables of the optimization problem 

(26) to (28) can be subdivided into seven subsets of respectively satisfying the seven different 

sub-conditions. Let ,

j

b ip  ( 1,2i =  and 1,2, ,7j = ) be an optimal solution to the 

optimization problem  

,

, , , ,max ( )
b i

i b i b i b i b i
p

V x p k x= − ,  (A.36) 

where 
,b ip  is subject to sub-condition (A.j) and constraint (28). Let 

j
x  be the unique user 

distribution pattern at the DUE state determined by ( ),1 ,2,j j

b bp p  ( 1,2, ,7j = ). Therefore, to 

prove Property 3, it is sufficient to prove  

( ) ( )1

, ,

j

i b i i b iV p V p , for 1,2i =  and 2,3, ,7j = .  (A.37) 

First, we prove  

( ) ( )1 2

, ,i b i i b iV p V p , for 1,2i = .  (A.38) 

It is supposed that UE 2

a ax x  (
UE

x  is the user distribution pattern at the DUE state without 

transit fares). Associated with the condition 
UE 2

,1 ,10b bx x = , it is generated that  
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UE UE UE 2 2 2

,2 ,1 ,1 ,2b b a b a bx d x x d x x x= − −  − − = .  (A.39) 

Thus, we have  

( ) ( ) ( ) ( ) ( )UE 2 2 2 2 UE

,2 ,2 ,2 ,2 ,2 ,2 ,2b b b b b b b a a a a a at g x t g x t g x p t x p t x p+  +  + + = +  + .  (A.40) 

The first inequality in expression (A.40) follows the precondition that the function g  is 

increasing. The equality results from the condition that ( )2 2

,1 ,2,b bp p  and 2
x  satisfy 

sub-condition (A.2). The third (or last) inequality is obtained by the assumption that the 

function at  is increasing. Expression (A.40) contradicts condition (13). Therefore, UE 2

a ax x  

holds. It immediately follows that  

( ) ( ) ( ) ( )2 UE UE 2

,1 ,1 ,1 ,1b b b b a a a a a at g x t g x t x p t x p+  + = +  + .  (A.41) 

In addition, it follows from condition (A.2) that  

( ) ( )2 2 2

,1 ,1 ,1b b b a a at g x p t x p+ +  + .  (A.42) 

Therefore, there is a ( ) ( ) ( )2 2 2 2

,1 ,1 ,1 ,10,b a a a b b bp t x p t g x p= + − −   so that  

( ) ( ) ( )2 2 2 2 2

,1 ,1 ,1 ,2 ,2 ,2b b b a a a b b bt g x p t x p t g x p+ + = + = + + ,  (A.43) 

i.e., ( )2 2

,1 ,2,b bp p  and 
2

x  satisfy sub-condition (A.1). Thus, it is obtained that  

( ) ( ) ( ) ( )1 2 2 2

1 ,1 1 ,1 ,1 ,1 1 ,1b b b b bV p V p k x V p = − =  and  (A.44) 

( ) ( )1 2

2 ,2 2 ,2b bV p V p ,  (A.45) 

Thus, inequality (A.38) is generated.  

Second, similar to the proof of inequality (A.38), it can be obtained that  

( ) ( )1 3

, ,i b i i b iV p V p , for 1,2i = .  (A.46) 

Third, we prove  

( ) ( )1 4

, ,i b i i b iV p V p , for 1,2i = .  (A.47) 

Let  

( ) ( )4 4 4

,1 ,1 ,1b a a a b bp t x p t g x= + − −  and ( ) ( )4 4 4

,2 ,2 ,2b a a a b bp t x p t g x= + − − .  (A.48) 

Then, ( )4 4

,1 ,2,b bp p  and 
4

x  satisfy sub-condition (A.1), and hence 

( ) ( )1 4

, ,i b i i b iV p V p , for 1,2i = .  (A.49) 

By the definition of iV  ( 1,2i = ), we have  

( ) ( ) ( )( ) ( ) ( ) ( )4 4 4 4 4 4 4 4 4

, , , , , , , , , , ,i b i b i a a a b i b i b i b i b i b i b i b i i b iV p x t x p t g x k x x p k x V p= + − − −  − = .  (A.50) 

The inequality in expression (A.50) is generated by the fact 
4

, 0b ix   and sub-condition (A.4). 
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Combining (A.49) and (A.50) leads to inequality (A.47).  

Fourth, we prove  

( ) ( )1 5

, ,i b i i b iV p V p , for 1,2i = .  (A.51) 

On one hand, 5 UE

,1 ,10b bx x=  , 5 UE

,2 ,20b bx x=  , and 5 UE

a ax d x=   hold and also the functions 

g  and at  are increasing. Thus, associated with condition (13), it is obtained that  

( ) ( ) ( ) ( )5 UE UE 5

, , , ,b i b i b i b i a a a a a at g x t g x t x p t x p+  + = +  + , for 1,2i = .  (A.52) 

On the other hand, it holds that  

( ) ( )5 5 5

, , ,b i b i b i a a at g x p t x p+ +  + , for 1,2i = .  (A.53) 

Therefore, there are  

( ) ( ) ( )5 5 5 5

, , , ,0,b i a a a b i b i b ip t x p t g x p= + − −  , for 1,2i = ,  

so that  

( ) ( )5 5 5

, , ,b i b i b i a a at g x p t x p+ + = + , for 1,2i = ,  (A.54) 

i.e., ( )5 5

,1 ,2,b bp p  and 
5

x  satisfy sub-condition (A.1). Thus, it is obtained that  

( ) ( ) ( ) ( )1 5 5 5

, , , , ,i b i i b i b i b i i b iV p V p k x V p = − = , for 1,2i = .  (A.55) 

The equalities in expression (A.55) follow from the condition 5

, 0b ix = . Thus, inequality 

(A.51) holds.  

Fifth, we prove  

( ) ( )1 6

, ,i b i i b iV p V p , for 1,2i = .  (A.56) 

The proof needs to be illustrated in three cases. When  

( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ +  + ,  

we take ( ) ( )6 6 6

,2 ,2 ,2b a a a b bp t x p t g x= + − −  and then ( )6 6

,1 ,2,b bp p  and 
6

x  satisfy 

sub-condition (A.2). As a result, we have  

( ) ( )2 6

1 ,1 1 ,1b bV p V p  and  

( ) ( ) ( ) ( )( ) ( )2 6 6 6 6 6

2 ,2 2 ,2 ,2 ,2 ,2 ,2 ,2b b b a a a b b b bV p V p x t x p t g x k x = + − − −  

( ) ( )6 6 6 6

,2 ,2 ,2 ,2 2 ,2b b b b bx p k x V p − = .  

Associated with relation (A.38), inequality (A.56) is obtained. By a similar deduction, when  

( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ + = +  and ( ) ( )6 6 6

,1 ,1 ,1b b b a a at g x p t x p+ +  + ,  

inequality (A.56) also holds.  
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Sixth, similar to the proof of inequality (A.56), it can be proved that  

( ) ( )1 7

, ,i b i i b iV p V p , for 1,2i = .  (A.57) 

Thus, by inequalities (A.38), (A.46), (A.47), (A.51), (A.56), and (A.57), we can conclude that 

1

,b ip  ( 1,2i = ) is an optimal solution to optimization problem (26) to (28).  ■ 

 

A.5. Derivation of partial derivatives (32) to (37) 

Proof. Differentiating both sides of equation (30) and the user conservation condition with 

respect to p  generates  

,1

,1

,1 ,1

( ) 1 ( )b a
b a a

b b

x x
g x t x

p p

 
 + =

 
, ,2

,2

,1 ,1

( ) ( )b a
b a a

b b

x x
g x t x

p p

 
 =

 
, ,1 ,2

,1 ,1 ,1

0b b a

b b b

x x x

p p p

  
+ + =

  
,  (A.58) 

,1

,1

,2 ,2

( ) ( )b a
b a a

b b

x x
g x t x

p p

 
 =

 
, ,2

,2

,2 ,2

( ) 1 ( )b a
b a a

b b

x x
g x t x

p p

 
 + =

 
, ,1 ,2

,2 ,2 ,2

0b b a

b b b

x x x

p p p

  
+ + =

  
,  (A.59) 

,1

,1( ) ( ) 1b a
b a a

a a

x x
g x t x

p p

 
 = +

 
, 

,2

,2( ) ( ) 1b a
b a a

a a

x x
g x t x

p p

 
 = +

 
, 

,1 ,2 0b b a

a a a

x x x

p p p

  
+ + =

  
.  (A.60) 

Solving the above equations results in  

,1 ,2

,1 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b a a

b b b b a a b a a

x g x t x

p g x g x g x t x g x t x

  +
= −

      + +
,  

,2

,1 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b a a

b b b b a a b a a

x t x

p g x g x g x t x g x t x

 
=

      + +
,  

,2

,1 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

ba

b b b b a a b a a

g xx

p g x g x g x t x g x t x


=

      + +
,  

,1

,2 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b a a

b b b b a a b a a

x t x

p g x g x g x t x g x t x

 
=

      + +
,  

,2 ,1

,2 ,1 ,2 ,1 ,2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b a a

b b b b a a b a a

x g x t x

p g x g x g x t x g x t x

  +
= −

      + +
,  

,1

,2 ,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

ba

b b b b a a b a a

g xx

p g x g x g x t x g x t x


=

      + +
,  

,1 ,2

,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b b

a b b b a a b a a

x g x

p g x g x g x t x g x t x


=

      + +
,  
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,2 ,1

,1 ,2 ,1 ,2

( )

( ) ( ) ( ) ( ) ( ) ( )

b b

a b b b a a b a a

x g x

p g x g x g x t x g x t x


=

      + +
, and 

,1 ,2

,1 ,2 ,1 ,2

( ) ( )d

d ( ) ( ) ( ) ( ) ( ) ( )

b ba

a b b b a a b a a

g x g xx

p g x g x g x t x g x t x

 +
= −

     + +
.  

Thus, we have  

( )
( )( ),1 ,1 ,1 ,2,11

,1 ,1 ,1 ,1 ,1

,1 ,1 ,1 ,2 ,1 ,2

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a ab

b b b b b

b b b b b a a b a a

p k x g x t xxV
p k x x x

p p g x g x g x t x g x t x

  − +
= − + = − +

       + +
, 

( )
( ),1 ,1 ,1,11

,1 ,1 ,1

,2 ,2 ,1 ,2 ,1 ,2

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a ab

b b b

b b b b b a a b a a

p k x t xxV
p k x

p p g x g x g x t x g x t x

 −
= − =

       + +
, 

( )
( ),1 ,1 ,1 ,2,11

,1 ,1 ,1

,1 ,2 ,1 ,2

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

b b b bb

b b b

a a b b b a a b a a

p k x g xxV
p k x

p p g x g x g x t x g x t x

 −
= − =

       + +
, 

( )
( ),2 ,2 ,2,22

,2 ,2 ,2

,1 ,1 ,1 ,2 ,1 ,2

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

b b b a ab

b b b

b b b b b a a b a a

p k x t xxV
p k x

p p g x g x g x t x g x t x

 −
= − =

       + +
, 

( )
( )( ),2 ,2 ,2 ,1,22

,2 ,2 ,2 ,2 ,2

,2 ,2 ,1 ,2 ,1 ,2

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b a ab

b b b b b

b b b b b a a b a a

p k x g x t xxV
p k x x x

p p g x g x g x t x g x t x

  − +
= − + = − +

       + +
, 

and 

( )
( ),2 ,2 ,2 ,1,22

,2 ,2 ,2

,1 ,2 ,1 ,2

( ) ( )d
( )

d ( ) ( ) ( ) ( ) ( ) ( )

b b b bb

b b b

a a b b b a a b a a

p k x g xxV
p k x

p p g x g x g x t x g x t x

 −
= − =

      + +
. 

This derivation is completed.  ■ 

 

A.6. Proof of Property 4 

Proof. We take  

,1 ,1 ,1
ˆ ( ) ( )b a a a b bp t x p t g x= + − −  and 

,2 ,2 ,2
ˆ ( ) ( )b a a a b bp t x p t g x= + − − .  

On one hand, it is obtained that  

,1 ,1 ,1 ,1
ˆ ( ) ( ) 0b a a a b b bp t x p t g x p + − − =   and  

,2 ,2 ,2 ,2
ˆ ( ) ( ) 0b a a a b b bp t x p t g x p + − − =  .  

On the other hand, it holds that  

,1 ,1 ,1
ˆ( ) ( )b b b a a at g x p t x p+ + = +  and 

,2 ,2 ,2
ˆ( ) ( )b b b a a at g x p t x p+ + = + .  

Thus, 
,1

ˆ
bp , 

,2
ˆ

bp , ap , and x  satisfy constraints (30) and (31). As a result, we have  
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, ,
ˆ( , ) ( , )j b j a j b j aV p p V p p , for 1,2j = .  (A.61) 

In addition,  

, , , , , , , , , ,
ˆ ˆ( , ) ( ) ( ) ( , )j b j a b j b j b j b j b j b j b j b j j b j aV p p x p k x x p k x V p p= −  − = , for 1,2j = .  (A.62) 

Thus, by inequalities (A.61) and (A.62), it immediately follows that  

, ,( , ) ( , )j b j a j b j aV p p V p p , for 1,2j = .  

This proof is completed.  ■ 
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