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A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing 44 

Sharing Problem 45 
 46 
Abstract 47 

Ride-hailing sharing involves grouping ride-hailing customers with similar trips and time 48 
schedules to share the same ride-hailing vehicle to reduce their total travel cost. With the 49 
current information and communication technology, ride-hailing customers and drivers can be 50 
matched in real-time via a ride-hailing platform. This paper formulates a dynamic ride-hailing 51 
sharing problem that simultaneously maximizes the number of served customers, minimizes 52 
the travel cost and travel time ratios, and considers the capacity, time window, and travel cost 53 
constraints. The travel cost ratio is the ratio of actual passengers’ fare to the passengers’ fare 54 
without ride-hailing sharing, whereas the travel time ratio is defined as the actual travel time 55 
(including waiting time) over the maximum allowable travel time. To solve the dynamic 56 
problem, it is divided into many small and continuous static subproblems with an equal time 57 
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm 58 
with path relinking, while the contraction hierarchies and vantage point tree are used to 59 
determine the shortest path and accelerate the algorithm, respectively. Problem properties and 60 
the performance of the proposed solution method are demonstrated using large-scale real-time 61 
data from Didi that is the largest ride-hailing company in China. The proposed method is shown 62 
to outperform the benchmark, i.e., greedy randomized adaptive search procedure (GRASP) 63 
with path relinking. The proposed method also performs better when the length of each time 64 
interval is longer, and the tolerance for the incremental travel time caused by detours is higher. 65 
We also demonstrate that (a) considering both travel cost and travel time ratios in the objective 66 
can achieve a better sharing percentage, and balance the increase in the travel time ratio and 67 
the decrease in the travel cost ratio compared with the objective that misses either travel time 68 
or the travel cost ratio; and (b) the passengers can gain a large out-of-pocket cost saving in the 69 
case of ride-hailing sharing while enduring a relatively small increase in travel time compared 70 
with the case without ride-hailing sharing.  71 
 72 
Keywords: Dynamic ride-hailing sharing; artificial bee colony algorithm; path relinking; 73 
vantage point tree. 74 
  75 
1. Introduction 76 

With the development of social economy and motorization, increasing traffic congestion in 77 
urban road networks, finite oil supplies, and environmental pollution have aroused great 78 
attention from the public. According to Jensen (2005) and Santos et al. (2011), the private car 79 
occupancy rates (the number of travelers per vehicle) are quite low in both Europe and the US, 80 
reaching 1.8 persons per vehicle for leisure trips and 1.1 for commuting trips. The low 81 
occupancy rate has led to a huge waste of social resources. The annual cost of wasted time and 82 
fuel caused by traffic congestion in the US was approximately 160 billion dollars in 2015 83 
(Schrank et al., 2015). Moreover, greenhouse gases emitted by vehicles have increased more 84 
than double since 1970, while the annual greenhouse emissions were still growing (IPCC, 85 
2015). Another issue is that more travelers choose ride-hailing services (e.g., Didi, Uber, and 86 
Lyft) for convenience with an increase in income. The supply of ride-hailing vehicles usually 87 
does not meet the travel demand during peak hours, and consequently, travelers have to wait 88 
for a long time before using the services or abandon the services and shift to other modes.  89 
 90 
One solution to the above problems is ride-hailing sharing. Ride-hailing sharing is a type of 91 
ride-hailing service that groups the customers with similar trips and time schedules to share the 92 
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same ride-hailing vehicle, which can consequently reduce the total driving distance and fuel 93 
cost of the vehicles and increase the vehicle occupancy rate. Ride-hailing sharing services have 94 
been provided by private companies such as Didi, Uber, Lyft, etc. in recent years and proved 95 
that both the passengers and drivers could benefit from these services. The passengers with 96 
loose travel time windows can receive compensation as a return of the increase in travel time, 97 
while ride-hailing drivers can serve more passengers and earn more during their available 98 
working time. As a real-time service that connects multiple passengers and ride-hailing drivers, 99 
the operations of ride-hailing sharing require a third-party platform to provide technical support, 100 
including collecting the travel information of ride-hailing drivers and customers (e.g., current 101 
locations and customers’ preferences) and matching the requests of ride-hailing customers with 102 
the vehicles. With the increasing smartphone penetration rate and the development of wireless 103 
communication technology, both ride-hailing drivers and customers can access information 104 
timely and accurately to implement ride-hailing sharing. 105 
 106 
Dynamic ride-hailing sharing problems with different objectives have been studied in the 107 
literature. The commonly adopted objectives include maximizing the number of served 108 
customers and minimizing the travel time (distance or delay). Moreover, passengers’ travel cost 109 
is a critical measure when providing ride-hailing sharing services as it often influences whether 110 
travelers choose to share rides or not. Santos and Xavier (2015) formulated it in the form of 111 
the travel cost ratio, which is the ratio of actual passengers’ travel cost to the passengers’ travel 112 
cost without ride-hailing sharing. However, using the travel cost ratio in the objective function 113 
does not prevent the travel time increment due to the detour caused by ride-hailing sharing to 114 
be acceptable by passengers. Therefore, we formulate a new dynamic ride-hailing sharing 115 
problem that simultaneously maximizes the number of served customers, and minimizes the 116 
travel cost and travel time ratios, where the travel time ratio is defined as the actual travel time 117 
(including waiting time) over the maximum allowable travel time. To solve the dynamic 118 
problem, it is divided into many small and continuous static subproblems with an equal time 119 
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm 120 
with path relinking, while the contraction hierarchies and vantage point tree are used to 121 
determine the shortest path and accelerate the algorithm, respectively. Problem properties and 122 
the performance of the proposed solution method are demonstrated using large-scale real-time 123 
data from Didi. 124 
 125 
The main contributions of this paper can be summarized as follows:  126 
 127 

⚫ We present a novel dynamic ride-hailing sharing problem that simultaneously 128 
maximizes the weighted number of served customers, minimizes the weighted sum 129 
of travel cost and travel time ratios, and considers the constraints of capacity, time 130 
window, and travel cost. This problem considers both the travel cost and travel time 131 
in the objective function, since two of the most important factors that affect taking 132 
ride-hailing sharing service is the cost and time. 133 
 134 

⚫ We divide the problem into many small and continuous static subproblems with an 135 
equal time interval. We propose a new solution method based on the MABC algorithm 136 
to solve the subproblem. To accelerate the solution search, we use the vantage-point 137 
(VP) tree to narrow the solution search space of each request by identifying the ride-138 
hailing vehicles near the pickup point of the passengers within a pre-defined radius. 139 
The overall solution approach is proved to be efficient in solving large-scale ride-140 
hailing sharing problems. 141 

 142 
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⚫ Based on real ride-hailing data, we illustrate the performance of the proposed solution 143 
approach and show that our approach is more effective than the existing solution 144 
method proposed by Santos and Xavier (2015) for the dynamic ride-hailing sharing 145 
problem. 146 

 147 
The remainder of this paper is organized as follows. In Section 2, we provide an in-depth 148 
literature review to show the research gaps. In Section 3, we describe the dynamic ride-hailing 149 
sharing problem and formulate the static subproblem. Section 4 proposes the MABC algorithm. 150 
Section 5 presents the computational results. Finally, Section 6 concludes the paper and 151 
provides an outlook on future research. 152 
 153 
2. Literature Review 154 

In the literature, the ride-hailing sharing problem can be regarded as a variant of the dial-a-ride 155 
problem (DARP). The DARP aims to determine vehicle routes and schedules for the users who 156 
specify requests with pickup and delivery locations (Cordeau and Laporte, 2007) and has 157 
various applications, including freight transportation (e.g., Dumas et al., 1991), and elderly or 158 
disabled personnel transportation (e.g., Madsen et al., 1995; Melachrinoudis et al., 2007; 159 
Beaudry et al., 2010). There are two differences between the DARP and the ride-hailing sharing 160 
problem. First, dial-a-ride vehicles start from the depot(s) to pick up passengers in the DARP, 161 
while the start locations of ride-hailing vehicles can be anywhere in the ride-hailing sharing 162 
problem. Second, besides the time window constraint that the DARP focuses on, the ride-163 
hailing sharing problem requires considering the travel cost (fare) constraint for each passenger 164 
to ensure that the out-of-pocket cost of each passenger is lower in a shared vehicle than a non-165 
shared vehicle. It is noted that in the literature, the taxi sharing problem is a special type of the 166 
ride-hailing sharing problem, in which the ride-hailing sharing services may include not only 167 
taxis but also private cars (e.g., Didi). 168 
 169 
Ho et al. (2018) pointed out that the DARP problem could be classified into four categories: 170 
static-deterministic, static-stochastic, dynamic-deterministic, and dynamic-stochastic. If the 171 
existing plans can (cannot) be modified when new information enters the system, the problem 172 
is dynamic (static). If the information received is certain (is unknown or uncertain) when 173 
making a decision, the problem is deterministic (stochastic). The ride-hailing sharing problem 174 
is a dynamic-deterministic problem. As ride-hailing customers who are willing to share a ride 175 
always want to match a ride-hailing vehicle as soon as possible and their requests can enter the 176 
system at random times, they often match drivers on very short notice. Previous studies have 177 
adopted several strategies to deal with the dynamic nature of the ride-hailing sharing problem. 178 
One strategy is that the model processes a request immediately after the system receives the 179 
request (Ma et al., 2013). Though the customers can get feedback in a short time, this strategy 180 
usually provides “shortsighted” solutions as it does not consider the influence of near-future 181 
requests, and thus leads to poor solution quality. Another strategy is to adopt the rolling horizon 182 
strategy, in which the solutions are determined using all known information within a planning 183 
horizon, but the final decisions have not been made until necessitated by a deadline of the 184 
requests (Agatz et al., 2011). This strategy can obtain a better solution than the first strategy as 185 
it considers more information, but the customers require longer time waiting for the final 186 
matching results. To balance the waiting time for matching results and solution quality, this 187 
study adopts the strategy that the dynamic problem is divided into small continuous static 188 
subproblems (Santos and Xavier, 2015; Alonso-Mora et al., 2017). Each static subproblem 189 
handles a scene corresponding to a specific time interval. This strategy can handle multiple 190 
requests simultaneously, and the time interval we set is short enough such that the customers 191 
do not wait too long for receiving feedback.  192 
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 193 
Table 1  Characteristics for representative DARPs and ride-hailing sharing problems  194 
Reference Type Objective(s) Constraint(s)2 Scenario Solution method(s) 

Psaraftis 

(1980) 

DARP Minimize a weighted sum of the total 

travel time and dissatisfaction of 

customers 

Capacity and 

MPS 

D/S Dynamic programming 

Jaw et al. 

(1986) 

DARP Minimize a weighted sum of 

disutility to the system’s customers 

and of operator costs 

Time and capacity S Advanced dial-a-ride 

with time windows  

(ADARTW) heuristic 

Madsen et 

al. (1995) 

DARP Multiple objectives1 Time and capacity D REBUS heuristic  

Horn 

(2002) 

DARP Minimize total travel time while 

maximizing ridership using a 

weighted sum approach 

Time and capacity D L2sched system  

Attanasio 

et al. 

(2004) 

DARP Minimize total routing cost Time and capacity D Tabu search  

Coslovich 

et al. 

(2006) 

DARP Maximize the number of served 

customers 

Time D Two-phase insertion 

technique 

Beaudry et 

al. (2010) 

DARP Minimize a weighted sum of total 

travel time, total lateness, and total 

earliness 

Time and capacity D Two-phase heuristic 

procedure 

Schilde et 

al. (2014) 

DARP Minimize the sum of tardiness, 

earliness, and travel time violations 

Time and capacity D Metaheuristic solution 

approaches based on 

dynamic variable 

neighborhood search 

Ma et al. 

(2013, 

2015) 

RHSP Minimize the total travel 

distance 

Time, capacity, 

and cost 

D Dual-side vehicle 

searching algorithm 

Santos and 

Xavier 

(2015) 

RHSP Maximize the number of served 

requests while minimizing the travel 

cost ratio 

Time, capacity, 

and cost 

D GRASP with path 

relinking 

Jung et al. 

(2016) 

RHSP  

Minimize total passenger travel 

times; maximize system profit 

Time and capacity  D Nearest vehicle 

dispatch algorithm/ 

Insertion heuristic/ 

Hybrid Simulated 

Annealing 

Alonso-

Mora et al. 

(2017) 

RHSP Minimize the travel delay of all 

passengers while maximizing the 

number of served requests 

Time and capacity D Greedy assignment 

with Mosek and 

parallel computing 

Sayarshad 

and Gao 

(2018) 

DARP Maximize social welfare Capacity D A novel dynamic 

optimization 

algorithm with a 

Markov decision 

process 

Wang et al. 

(2018) 

RHSP Minimize travel time Time, capacity, 

and cost 

D A greedy strategy 

Liang et al. 

(2020) 

DARP Maximize revenue, the number of 

matched customers while minimizing 

the fuel cost and delay 

Time and capacity D A customized 

Lagrangian relaxation 

algorithm 

This paper  RHSP Maximize the weighted number of 

served customers while minimizing 

the weighted sum of the travel cost 

ratio and the travel time ratio  

Time, capacity, 

and cost 

D Rolling horizon 

approach with MABC 

and path relinking 

Note: RHSP = Ride-hailing sharing problem, MPS = maximum position shift (i.e., the maximum difference 195 
between the position of a customer in the sequence of deliveries/pickups and the first-come-first-served position 196 
of that customer in the initial list of requests); D = dynamic problem, S = static problem, D/S = dynamic problem 197 
and static problem; 1: The objective is formed by the mixture of objectives choosing from minimizing total driving 198 
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time, minimizing the number of vehicles, minimizing total waiting time, minimizing the deviation from promise 199 
service, and minimizing the total cost of operation of the vehicles. 2: time constraints refer to time window 200 
constraints, and cost constraints refer to travel cost constraints. 201 
 202 
Table 1 summarizes the characteristics of the existing DARPs and ride-hailing sharing 203 
problems in the literature in terms of the problem type, design objectives, design constraints, 204 
operational scenarios, and solution methods. It can be seen that ride-hailing sharing problems 205 
have been studied in recent years, while DARPs have a long history. Different from the 206 
conventional DARPs, the ride-hailing sharing problem includes the passengers’ travel cost (i.e., 207 
fare or out-of-pocket) into constraints to control the expense of each passenger on the trip due 208 
to the detour caused by ride-hailing sharing (e.g., Ma et al., 2013, 2015; Santos and Xavier, 209 
2015). Regarding the design objectives, the commonly adopted objectives include maximizing 210 
the number of served customers (e.g., Coslovich et al., 2006) and minimizing the travel time 211 
(distance or delay) (e.g., Attanasio et al., 2004; Ma et al., 2013, 2015; Wang et al., 2018), 212 
whereas some studies formulated their design problems with more than one design objective 213 
(e.g., Jaw et al., 1986; Horn, 2002; Beaudry et al., 2010; Schilde et al., 2014; Santos and Xavier, 214 
2015; Jung et al., 2016; Alonso-Mora et al., 2017; Sayarshad and Gao, 2018). On the other 215 
hand, passengers’ travel cost is an important measure when providing ride-hailing sharing 216 
services as it often influences whether travelers choose a ride-hailing sharing service or just a 217 
ride-hailing service. Santos and Xavier (2015) formulated it in the form of the travel cost ratio. 218 
However, using this ratio in the objective function does not prevent the travel time increment 219 
due to the detour caused by ride-hailing sharing to be acceptable by passengers. Therefore, the 220 
objective function in our studied problem includes not only the travel cost ratio but also the 221 
travel time ratio that compares the actual travel time with the maximum allowable travel time 222 
(i.e., the maximum time that a passenger can spend for a ride) to limit the increase in travel 223 
time.  224 
 225 
A wide range of solution methods have been proposed to solve the DARP and the ride-hailing 226 
sharing problem in the literature. Psaraftis (1980) developed an exact optimization procedure 227 
based on dynamic programming to solve the DARP (with ridesharing). Unlike the static version 228 
of the problem that does not consider the immediate requests, the dynamic version considers 229 
the immediate requests during the operation while it is limited to only the case with a single 230 
vehicle and many customers. The computational time of this algorithm is an exponential 231 
function of the number of customers. Alonso-Mora et al. (2017) built a request-trip-vehicle 232 
graph, which consisted of all possible combinations of the requests and vehicles according to 233 
the time window constraints. An integer linear program was formulated to determine the 234 
optimal assignment with the best objective function value (or the best objective value) based 235 
on the request-trip-vehicle graph. In the worst case, the method can be seen as an exhaustive 236 
search, so the parallel computations are used to speed up the method. However, the 237 
computational time of this method increases rapidly with the maximum waiting time. As 238 
DARPs and ride-hailing sharing problems are NP-hard (Baugh Jr., 1998; Santos and Xavier, 239 
2015), exact methods are usually impossible to solve for optimal solutions in large instances 240 
efficiently. Heuristics or metaheuristics can search for near-optimal solutions efficiently and 241 
thus become widely adopted in the existing literature (e.g., Horn, 2002; Attanasio et al., 2004; 242 
Beaudry et al., 2010; Santos and Xavier, 2015; Jung et al., 2016). Meanwhile, many other 243 
methods are proposed to solve the DARP and ride-hailing sharing problem. For example, Ma 244 
et al. (2013) proposed a vehicle searching algorithm using a spatial-temporal index to find 245 
candidate vehicles and then a scheduling algorithm was applied to achieve matching and check 246 
constraints. This method for solving ride-hailing sharing problems is demonstrated to be very 247 
efficient and can be used in large-scale ride-hailing sharing problems. However, this method 248 
only suits the problem that minimizes the total travel distance or total travel time. New solution 249 
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methods may be required to handle other or more objectives. Sayarshad and Gao (2018) 250 
divided the DARP problem into multiple traveling salesman problems and solved them by a 251 
traveling salesman problem with pickup and deliver (TSPPD) algorithm. The Markov decision 252 
process was used to obtain information to calculate social welfare. Liang et al. (2020) solved 253 
the problem using a customized Lagrangian relaxation algorithm, and this algorithm was time-254 
consuming (15.9 min for 50 iterations for a network with 66 road links and 46 nodes), leading 255 
to long waiting time for customers. Please refer to more comprehensive reviews on the solution 256 
methods of DARPs by Berbeglia et al. (2010) and Ho et al. (2018). 257 
 258 
As reviewed by Ho et al. (2018), recently proposed metaheuristics have not been adopted in 259 
solving the DARP and its variants. As one of the recent methods mentioned in their review, the 260 
artificial bee colony (ABC) algorithm is adopted to solve our proposed problem. As a powerful 261 
metaheuristic proposed by Karaboga (2005), the ABC algorithm has been demonstrated with 262 
good performance in solving many problems, including numerical function optimization (e.g., 263 
Karaboga and Ozturk, 2009), structural inverse analysis (e.g., Karaboga, 2009), pattern 264 
classification (e.g., Karaboga and Ozturk, 2009), the leaf-constrained minimum spanning tree 265 
problem (e.g., Singh, 2009), and so on. It has also been applied in solving different logistics 266 
and transportation problems with satisfactory performance, such as capacitated vehicle routing 267 
problems (e.g., Szeto et al., 2011), return restriction design problems (e.g., Long et al., 2014), 268 
transit routes and frequency settings (e.g., Szeto and Jiang, 2014), and bicycle repositioning 269 
problems (e.g., Szeto and Shui, 2018). The works provide firm ground to apply the ABC 270 
algorithm in solving our dynamic ride-hailing sharing problem. 271 
 272 
Unlike the literature, to solve the proposed dynamic ride-hailing sharing problem, we first 273 
decompose the whole planning horizon evenly into smaller time intervals and then adopt the 274 
ABC algorithm with path relinking in each time interval. Path relinking is an enhancement 275 
strategy proposed by Glover (1997) to explore the better solution between elite solutions 276 
obtained by tabu search or scatter search (e.g., Glover, 1997; Glover et al., 2000). Applying 277 
path relinking into the GRASP has significantly improved the solution time and quality 278 
(Resendel and Ribeiro, 2005). The GRASP with path relinking was first used in the ride-hailing 279 
sharing problem and achieved better performance than that without path relinking (Santos and 280 
Xavier, 2015). Furthermore, to speed up the matching between the requests and the vehicles, 281 
the vantage-point tree (VP tree) was used to do range queries to search for feasible vehicles 282 
around the origin of the request within a given radius. As a data structure for partitioning 283 
general metric space in a hierarchical way proposed by Yianilos (1993), the VP tree was widely 284 
used for efficient nearest neighbor queries (Nielsen et al., 2009; Fu et al., 2000). The resultant 285 
solution method is referred to as the MABC algorithm. 286 
 287 
3. Dynamic Ride-hailing Sharing Problem 288 

In this section, we first present the notations adopted in this problem and then give a detailed 289 
problem statement of the dynamic ride-hailing sharing problem. Afterward, the mathematical 290 
formulation of the static subproblem is presented in detail. 291 
 292 
3.1. Notations 293 

The notations used in this paper are listed as follows. 294 
 295 

Sets/indices 296 
V  Set of all vertices (points) on the road network; 

E  Set of all edges on the road network; 
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 Set of all requests that are waiting to match; 
 Set of all matched requests; 

 Set of all ride-hailing vehicles available in the system; 

W  Set that contains all origins and destinations of requests in ; 

U  Set that contains all origins and destinations of requests in ; 

i  Request i ; 

i+  Origin of request i , i V+  ; 

i−  Destination of request i , i V−  ; 

j  Ride-hailing vehicle j ; 

j+  Starting point of vehicle j , j V+  ; 

j−  Dummy destination of vehicle j ; 

jR  Route of vehicle j , where  0 1, , ,
j

j j j

j ZR v v v= ; 

j

zv  The z th point in the route of vehicle j , 
j

zv V ; 

( )j

zi v  Request i  with either pickup or delivery at point 
j

zv . 

 297 
Parameters 298 

ip  Number of passengers of request i ; 
order

iT  Order time of request i  (i.e., time of customers making request i ); 

p

iT  Latest pickup time of request i ; 

d

iT  Latest delivery time of request i ; 

dir

icost  
Total passengers’ out-of-pocket cost of request i  through the direct trip 

without sharing ride-hailing vehicles; 

jZ  Total number of pickup and delivery points in the route of vehicle j ; 

jq  Capacity of ride-hailing vehicle j ; 

j
zv

s  Service time at point 
j

zv ; 

1,
jj

z zv v
t

+

 Shortest travel time from 
j

zv  to 1

j

zv +  in the route of vehicle j ; 

1,
jj

z zv v
c

+

 Fare from 
j

zv  to 1

j

zv +  in the route of vehicle j ; 

1b  Weight for each request; 

2b  Weight for the travel cost ratio; 

3b  Weight for the travel time ratio; 

iDT  Shortest travel time from the origin to the destination of request i  without  

sharing ride-hailing vehicles; 
j

nowu  Location of vehicle j  at the beginning of the current time interval; 

uBT  Arrival time at u U  before any new requests were inserted into routes; 

( )j u  Matched vehicle for u U  before any new requests were inserted into 

routes. 

 299 
Decision Variables 300 

j
zv

AT  Arrival time of vehicle j  at 
j

zv ; 

j
zv

P  Number of passengers on vehicle j after leaving point 
j

zv ; 
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,

j

u vX  1 if the route of vehicle j  passes through vertex v  immediately after 

vertex u ; 0, otherwise; 

 

Variables  
real

icost  Actual total passengers’ out-of-pocket cost associated with request i ; 

iTT  Total waiting and in-vehicle travel times associated with request i ; 

1,
jj

z z

i

v v
pc

+

 Cost of the passengers of request i  from 
j

zv  to 1

j

zv + . 

  

 301 
3.2. Problem statement 302 

 303 
3.2.1. Inputs 304 
We consider a ride-hailing service provided by a private company. Let ( , )G V E  be a complete 305 

undirected graph representing the road network. The ride-hailing sharing problem starts with a 306 
set of requests waiting to match and a set of ride-hailing vehicles currently available on the 307 
road network. Each request contains the information related to the origin, destination, order 308 
time, and number of passengers. The order time of request i   is associated with the latest 309 

pickup time 
p

iT   and the latest delivery time 
d

iT  . The matched vehicle should pick up the 310 

passengers of request i  at point i+  no later than 
p

iT  and drop them off at point i−  no later 311 

than 
d

iT . According to i+  and i− , the shortest distance can be determined and then converted 312 

to the cost of the direct trip 
dir

icost   by multiplying the distance by ride-hailing fare per 313 

distance. This cost of the direct trip is also the upper bound of the ride-hailing sharing trip of 314 
request i   (after considering cost sharing of all passengers) to ensure that each passenger 315 
would not pay more by ride-hailing sharing than by making a direct trip. Each vehicle has its 316 
own information, including the starting point, capacity, and occupancy status.  317 
 318 
3.2.2. Routes of vehicles 319 

The route of vehicle j   consists of starting point 0

jv   and other points (from 1

jv   to 
j

j

Zv  ) 320 

corresponding to the origins or destinations of the requests that are served by vehicle j . The 321 

points in the route are arranged in chronological order, and the destination of a request is 322 
definitely after its corresponding origin in the route. Except for the starting point, other points 323 
in the route are associated with the information of the arrival time, load, and corresponding 324 
request (whose origin or destination is located at this point) in order to check the time window 325 

and capacity constraints during ride-hailing sharing. The arrival time of the vehicle at point 
j

zv , 326 

denoted as j
zv

AT , can be determined only when the arrival time of the vehicle at the previous 327 

point, the travel time between those two points 
1 ,

j j
zzv v

t
−

, and service time 
1

j
zv

s
−

are known, which 328 

is expressed as 
1 1 1,
+j j jj

zz z zv v v v
AT t s

− − −

+ . j
zv

AT  has to obey corresponding pickup and delivery time 329 

windows, which implies that j
zv

AT   must be less than 
( )
p

j
zi v

T   if 
j

zv   is the origin of request 330 

( )j

zi v , and must be less than 
( )
d

j
zi v

T  if 
j

zv  is the destination of request ( )j

zi v . For the load j
zv

P  331 

after leaving point 
j

zv , it is expressed as 
( )1

j j
z z

v i v
P p

−

+  and 
( )1

j j
z z

v i v
P p

−

−  if 
j

zv  is the origin and 332 
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the destination of request ( )j

zi v , respectively. j
z

j

v
P  must not exceed vehicle capacity jq .  333 

 334 
3.2.3. Cost allocation 335 
A critical part of ride-hailing sharing is the calculation of the sharing cost for each request. Due 336 
to the complexity of the ride-hailing sharing pattern, it is impossible to determine the exact cost 337 
of serving passengers of a request in advance until all passengers in this request finish their 338 
trips. In this study, we adopt the equal-cost division principle on each pair of adjacent points 339 
as the cost allocation strategy. For each pair of adjacent points, the fare between those two 340 
points is allocated equally by all passengers traveling on this route segment. If request i  is 341 

served by vehicle j  between 
j

zv  and 1

j

zv + , we can obtain 1

1

,

,

jj
z z

jj
z z

j
z

iv vi

v v

v

c p
pc

P

+

+


= . The actual 342 

total cost 
real

icost  spent by the passengers of request i  in their whole trip is the sum of the 343 

cost spent in all route segments that they pass through, which means 
1

real

,
jj

z z

i

i v v
z

cost pc
+

=  , 344 

where the range of z  is determined by the route segments of vehicle j  that the passengers 345 

of request i  travel through. As the main reason for customers choosing ride-hailing sharing 346 

services is to reduce their out-of-pocket cost, the total cost 
real

icost  spent on the trip must be 347 

equal to or less than the cost of the direct trip 
dir

icost  without sharing. 348 

 349 
3.2.4. Dynamic problem setting 350 
Not all requests are received at the beginning of the modeling horizon, and we cannot know 351 
the timing of receiving new requests in advance as in practice. Therefore, we cannot solve the 352 
dynamic ride-hailing sharing problem as a whole. Instead, we divide the modeling horizon into 353 
many intervals of equal length and divide the problem into many consecutive static ride-hailing 354 
sharing subproblems. Each subproblem corresponds to one time interval. The subproblems are 355 
solved in chronological order.  356 
 357 
Define the current time interval as the interval associated with the subproblem concerned or to 358 
be solved. Before this interval, some requests were received. Some of them have not been 359 
served and are still waiting to be served. During the current time interval, all requests waiting 360 
to be served are handled simultaneously by solving the corresponding static ride-hailing 361 
sharing subproblem.  362 
 363 
A longer time interval considers more requests at each execution, which leads to better 364 
matching performance, whereas the passengers require waiting longer to obtain the final 365 
matching result. Therefore, setting the time interval requires balancing both the matching 366 
performance and the users’ waiting time.  367 
 368 
In this paper, for simplicity, we assume that each vehicle stays in the last drop-off location to 369 
wait for requests assigned by the system if there are no passengers to deliver or pick up. This 370 
assumption can be easily relaxed by adding an endpoint to the vehicle route. We also assume 371 
that all customers are willing to share vehicles with others. Moreover, we do not consider the 372 
effect of traffic signals and assume uniform speed, and thus the travel time and the fare between 373 
two vertices are in proportion to the travel distance and remain unchanged throughout the 374 
modeling horizon. At the beginning of each time interval, the new requests received in the last 375 
time interval are collected by the system and added into set . At the end of each time interval, 376 
the requests that have already been matched to vehicles or the order times of the requests that 377 
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exceed their corresponding latest pickup times are removed from set . Set  contains all 378 
the vehicles available during the current time interval. The routes of all available vehicles are 379 
inherited from the matching results of the last time interval. When a vehicle is available for 380 
ride-hailing sharing services, the vehicle is added to set . The vehicles are removed from  381 
if they are not available. The new requests can be added to any positions of the routes if no 382 
constraints are violated. Note that the requests that were matched in the previous time intervals 383 
cannot be removed from the routes because the notices of matching results had already been 384 
sent to the corresponding vehicles and customers. The dynamic ride-hailing sharing problem 385 
is formed by linking consecutive static ride-hailing sharing subproblems.  386 
 387 
3.3. Mathematical model of the static ride-hailing sharing subproblem 388 

The static subproblem starts with set   and set  . Set  , which contains all requests 389 
waiting to be matched, consists of (a) the new requests whose order times are during the last 390 
time interval and (b) the previous unmatched requests that were received earlier than the last 391 
time interval and have no matched vehicles in the previous time intervals, while the current 392 
time does not exceed the latest pickup times of the requests. Set   contains all available 393 
vehicles during the current time interval.  394 
 395 

To formulate this problem, we introduce dummy destination j−   for all vehicles. Let 396 

 ,W i i i+ −=   be a set that contains all origins and destinations of requests in . Set  397 

contains all matched requests. { , }U i i i+ −=    is the set that contains all origins and 398 

destinations of requests in . u U  is associated with two pieces of information: arrival 399 

time uBT  and matched vehicle ( )j u .  400 

 401 

To formulate the subproblem, we define the current location 
j

nowu V  based on the current 402 

time. The current time cT  is set as the time at the end of the time interval in concern, not the 403 

beginning of the time interval. Then, the current location 
j

nowu V  is set as the first vertex that 404 

vehicle j  will visit after cT  on the road network. The reason for those settings is that the 405 

routes in the latter time intervals, not the current time interval, can be adjusted. As shown in 406 
Figure 1, the large circles represent the origins or destinations of requests, and the small circle 407 
represents a point in set V . Meanwhile, the diamond shape represents the starting point of the 408 

route. The current location 
j

nowu  is not necessarily the origin or destination of a request; it can 409 

be the point in set V  between two adjacent pickup (or delivery) points where the vehicle 410 
passes through.  411 
 412 
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Current 

location

0

jv 1

jv

2

jv 3

jv

4

jv

1+

new+ new−

1−

 413 
FIGURE 1  An example of inserting a new request into a vehicle route 414 

 415 
 416 
The mathematical model of the static ride-hailing sharing subproblem in each time interval is 417 
shown as follows:  418 
 419 

( ) +

real

, 1 2 3dir d order,
max , ,j j

z z

j j i i
u v iv v i v

i j v W U i i i

cost TT
f X P AT X b p b b

cost T T   

 
= − − 

− 
    420 

 (1) 421 
subject to 422 

, {0,1}j

u vX  , , , { , }j u v W U j j+ −      ; (2) 423 

+ ,
1j

i v
j v W U

X
  

  , i  ;  (3) 424 

+ ,
{ }

1j

j v
v W U j

X
−  

= ,  j ; (4) 425 

,
{ }

1j

u j
u W U j

X −

+  

= ,  j ;  (5) 426 

, ,

{ } { }

0j j

v u u v

v W U j v W U j

X X
+ −     

− =  , ,j u W U     ;  (6) 427 

-, ,
0j j

i v v i
v W U v W U

X X+

   

− =  , ,j i     ;  (7) 428 

( )

,

{ }

1j u

u v

v W U j

X
−  

= ,  u U ; (8) 429 

( )( )  =j u
now

u u uu
BT BT AT BT ,  u U ;  (9) 430 

( ) , ,( ) ( 1)  =  = + +j v
now

j

v u v v u u v uu
BT BT X AT AT t s , 431 

, { , },j u W U j j v U+ −        ;  (10) 432 

( ) ( ( ) ( ))  =  u v u vBT BT j u j v AT AT , , u v U ;  (11) 433 

, ,( 1)=  = + +j

u v v u u v uX AT AT t s ,  434 

, { , },j u W U j j v W+ −        ;  (12) 435 

+,
( 1)+ −=   j

now

j

i v u i i
X BT AT AT , ,j i   ;  (13) 436 

+

p0 ii
AT T  , i  ;  (14) 437 

d0 ii
AT T−  , i  ;  (15) 438 
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,( 1) ( )+=  =  = +j j j

u v v u iX v i P P p , 439 

, , , { , }j i u v W U j j+ −         ;  (16) 440 

,( 1) ( )−=  =  = −j j j

u v v u iX v i P P p , 441 

, , , { , }j i u v W U j j+ −         ;  (17) 442 

j

u jP q , ,j u W U     ;  (18) 443 

+

,

, ,( 1) ( )−


=     =

u v ij i

u v u u v ji i
u

c p
X AT AT AT pc

P
, 444 

, , ,j i u v W U        ;  (19) 445 
real dir

,

,

i

i u v i

u v V

cost pc cost


=  , i  ;  (20) 446 

order
−= −i ii

TT AT T , i  .  (21) 447 

 448 
Objective function (1) consists of three terms: the number of served customers, travel cost ratio, 449 

and travel time ratio. 1b  , 2b  , and 3b   are all positive weight coefficients that define the 450 

relative importance of these three components, respectively. It is noted that the smaller 451 

real dir/i icost cost  is, the more cost savings are; it is also noted that the smaller 
d order

i

i i

TT

T T−
 is, 452 

the smaller increment in travel time compared with no ride-hailing sharing case is. Therefore, 453 
the objective value is larger if we get more matched requests, more savings in costs, and a 454 
smaller increment in travel time. Moreover, the objective value is larger when the matched 455 
request is associated with more passengers.   456 
 457 

Constraint (2) defines ,

j

u vX  to be binary. Constraint (3) guarantees that a request can only be 458 

matched by at most one vehicle. Constraints (4) and (5) ensure that each vehicle has an origin 459 
and a destination in its route. Constraint (6) is a flow conservation constraint to make sure that 460 
u W U    served by a vehicle must have one point on the route before and after u  . 461 
Constraint (7) ensures that the origin and destination must be served by the same vehicle if the 462 
request is served. Constraint (8) ensures that the matching between requests and vehicles 463 
formed by previous time intervals cannot be changed. Constraints (9)-(11) guarantee that the 464 
order of the visited points in the route inherited from the last time interval is not changed after 465 
inserting new requests. Constraints (12) and (13) ensure that new requests can only be inserted 466 
after the current locations of the vehicles. Constraints (14) and (15) are the time window 467 
constraints for all requests, while constraints (16)-(18) are the capacity constraints. Constraint 468 
(19) calculates the passengers’ travel cost of each route segment, whereas constraint (20) 469 
ensures that the total passengers’ travel cost of each request is not higher than the total 470 
passengers’ travel cost without ride-hailing sharing. Constraint (21) calculates the total travel 471 
time of passengers of request i  if they are matched in this interval. 472 
 473 
In our proposed model, the origins and destinations of new requests are allowed to be inserted 474 
anywhere in the vehicle route after the current vehicle location if the time, cost, capacity 475 
constraints are satisfied. However, the model proposed by Santos and Xavier (2015) allowed 476 
new requests to be added only after the destination point of the last delivered passenger aboard 477 
if there are passengers aboard the vehicle at the current time. Moreover, constraint (8) ensures 478 
that the matching between requests and vehicles formed by previous time intervals cannot 479 
change so that passengers just need to accept the matching results once. This constraint cannot 480 
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be found in their model. Furthermore, both travel time and cost ratios are considered in our 481 
objective function while Santos and Xavier (2015) only considered the travel cost ratio in their 482 
objective function. To sum up, our model is different from the counterparts of the related 483 
studies in terms of the objective function and constraints. 484 
 485 
4. Solution Method 486 

Like Santos and Xavier (2015) and Alonso-Mora et al. (2017), we solve the dynamic ride-487 
hailing sharing problem by solving its subproblems in chronological order. Unlike Santos and 488 
Xavier (2015) and Alonso-Mora et al. (2017), we develop a method based on the modified 489 
artificial bee colony algorithm with path relinking to solve the static ride-hailing sharing 490 
subproblem for the time interval concerned.  491 
 492 
4.1. Modified artificial bee colony algorithm with path relinking 493 

4.1.1. Basic artificial bee colony algorithm 494 
The ABC algorithm is an optimization algorithm that simulates the behavior of a honey bee 495 
swarm in search of food. The artificial bee colony consists of three groups of bees: employed 496 
bee, onlookers, and scouts, with the objective of finding the good food source(s). Each 497 
employed bee is responsible for one food source. It searches for food around a food source. 498 
The employed bees share the information on their best food sources found so far with the 499 
onlooker bees. Each onlooker then chooses a food source among those found by the employed 500 
bees by probability, where a more profitable (better) food source has a higher probability of 501 
being chosen. When the employed bee cannot find a better food source near the current source 502 
after some time, the employed bee turns to be a scout to exploit a new food source in the vicinity 503 
of the hive.  504 
 505 
The ABC algorithm is a population-based heuristic, in which a food source represents a 506 
solution for the optimization problem, and the nectar amount of the food source represents the 507 
fitness of the corresponding solution. The ABC algorithm begins by generating a set of 508 
solutions randomly as the initial food sources, and each food source is assigned to an employed 509 
bee. After initial solutions are generated, employed bees, onlookers, and scouts exploit the food 510 
sources near the hive repeatedly during each iteration. In each iteration, each employed bee 511 
finds a new food source near the current source using a neighborhood operator and the nectar 512 
amount of the new food source (solution fitness, which is the increment on the objective 513 
function value in our study) is evaluated. If the nectar amount of the new food source is more 514 
than the old one, the employed bee abandons the current food source and is allocated to the 515 
new food source. Otherwise, the employed bee remains assigned to the current food source. 516 
Then each onlooker chooses a food source based on the nectar amount of the food sources (i.e., 517 
solution fitness) shared by employed bees by the roulette wheel selection method. Onlookers 518 
also exploit new food sources near the selected food sources using a neighborhood operator 519 
and evaluate the nectar amount of the new food sources. After all onlookers finish the 520 
exploitation process, the best new food source found by the onlookers near each food source 521 
of the employed bee is determined. If the nectar amount of the best new food source is more 522 
than the old one of the employed bee, the employed bee abandons the old food source and is 523 
assigned to the best new one. After that, if the nectar amount of a food source has not been 524 
improved for limit successive iterations, the employed bee becomes a scout, exploits a new 525 
food source randomly, becomes an employed bee again, and replaces the old food source with 526 
the new one. After all current food sources are checked, the new iteration of the ABC algorithm 527 
starts. The whole process is repeated to search for good solutions until the stop condition is 528 
reached. The steps of the ABC algorithm are presented as follows: 529 
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 530 
1. Inputs: Population size (number of food sources) n , maximum number of iterations 531 

M , and limit L . 532 
2. Randomly generate a set of solutions as the initial food sources , 1, ,ix i n= . Each 533 

food source is allocated to an employed bee. 534 
3. Calculate the fitness ( )if x  of food source , 1, ,ix i n= . Set 0, 1, ,il i n= = . 535 

4. For iteration 1m =  to M , do 536 
For 1i =  to n , do 537 

i. Perform a neighborhood operator on the food source ix  to determine a new 538 

food source ix  near the food source. 539 

ii. If ( ) ( )i if x f x , then replace ix  with ix  for the corresponding employed 540 

bee and 0il = , else 1i il l= + . 541 

End for 542 
 543 
Set 

iG = , where iG  is the set of new neighbor food sources of ix  found by the 544 

onlookers. 545 
 546 
For 1j =  to n , do 547 

i. Select a food source ix  using the roulette wheel selection method based on 548 

the fitness of all food sources. 549 
ii. Perform a neighborhood operator on ix  to obtain a new food source ix near 550 

the food source. 551 
iii. 

i i iG G x=   552 

End for 553 
 554 
For 1i =  to n , do 555 

i. Select ˆ arg max ( )
ii x Gx f x= , where ˆ

ix  is the best food source in iG . 556 

ii. If ˆ( ) ( )i if x f x , then replace ix  with ˆ
ix  for the corresponding employed 557 

bee and 0il = , else 1i il l= + . 558 

End for 559 
 560 
For 1i =  to n , do 561 

i. If 
il L= , randomly determine a new food source ix  and replace ix  with 562 

ix . 563 

End for 564 
End for 565 
 566 

4.1.2. Modified artificial bee colony algorithm  567 
 568 
The ABC algorithm is the main algorithm to determine routes of ride-hailing vehicles. To speed 569 
up finding a good solution, path relinking is embedded into the ABC algorithm to explore new 570 
and better solutions between two known solutions. It is implemented when a new current best 571 
solution is found while executing the ABC algorithm. To further improve the solution search 572 
efficiency, the vantage-point tree is deployed to reduce the solution search space and 573 
constructed before establishing the initial solution. Contraction hierarchies is incorporated into 574 
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the ABC algorithm to determine the shortest path in the studied problem. The detailed 575 
information about the vantage-point tree and path relinking will be described in Section 4.2 576 
and Section 4.8, respectively. Figure 2 shows the procedure of the resultant solution method, 577 
namely the modified artificial bee colony algorithm. The algorithm ends when running time 578 

runT  reaches the time limit, which is equal to the length of time interval intervalT .  579 

 580 

Start

Vantage point 

tree

Initial solution
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Food selection and 
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No
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End

Memorize the 
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 581 
FIGURE 2  Flowchart of the modified artificial bee colony algorithm 582 

 583 
 584 
4.2. Vantage-point tree 585 

A VP tree is a metric tree that segregates the whole set of vertices of the network into small 586 
sets by choosing vantage points (i.e., vantage vertices). The VP tree is efficient in conducting 587 
the nearest neighbor search because the vertices are stored in the tree structure, and the search 588 
can happen only in small parts of the tree (Yianilos, 1993). The VP tree contains two important 589 
segments, including the construction segment and the searching segment. For the construction 590 
segment, a vantage point (vp) is determined to divide all the vertices into two smaller parts 591 
during each partition. The vertices whose distance to the vantage point is less than a threshold 592 
(mu) are stored in the left sub-tree, and the vertices whose distance to the vantage point is larger 593 
than the threshold are stored in the right sub-tree. Each node in the tree stores the information 594 
of the vantage point and threshold. A tree data structure is created by recursively implementing 595 
this procedure to divide the data starting from the root. After building the tree using the 596 
construction segment, the searching segment is executed at the beginning of the static 597 
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subproblem, when the information of new requests is known. In this study, the range nearest 598 
neighbor search is used in the searching segment, in which we want to determine all the vertices 599 
within the radius tau  around the query vertex q . Let the distance between any two vertices 600 

m and n be ( )dist ,m n . The pseudo-code of the VP tree in this paper is summarized as follows: 601 

 602 
 603 
Part 1: Construction segment  604 

1. Inputs: A set S containing all vertices. 605 
2. Build_VP_tree ( S ). 606 
3. Return a VP tree. 607 

function Build_VP_tree ( S ): 608 
i. If S = , then return  .  609 

ii. Establish a new node: new(node). 610 
iii. Determine the vantage point at the node (node.vp := Select_vp (S)) and 611 

determine the threshold at the node (node.mu := Median ( , )S vp ). 612 

iv. Determine the set of vertices in the left sub-tree 613 

(  := { { }  dist( , )< }L s S vp vp s mu − ) and determine the set of vertices in the 614 

right sub-tree ( := { { }  dist( , ) }R s S vp vp s mu −  ); 615 

v. Construct the new nodes in the next level ( := Build_VP_tree ( )node.left L , 616 

 := Build_VP_tree ( )node.right R ). 617 

vi. return node. 618 
function Select_vp ( S ): 619 

i. Choose a random sample P  from S . 620 
ii. Set  := 0best_spread . 621 

iii. For p P , do 622 

1) Choose a random sample D  from S . 623 
2) Determine the value of spread (  := SecondMoment ( , )spread D p ). 624 

3) If spread > best_spread, then replace best_spread with spread and 625 
replace best_p with p. 626 

End for 627 
iv. return best_p . 628 

function Median ( , )S p : 629 

i. Sort  in accordance with the distance from S p . 630 

ii. Determine threshold mu (the distance that is equal to the median among all 631 
distances from all vertices in S to p). 632 

iii. Return mu.    633 
function SecondMoment ( )D, p : 634 

i. Calculate   with 
dist( )

d D
d, p

N


, where N is the number of vertices in D. 635 

ii. Calculate spread  with 

2(dist( , ) )
d D

d p

N




−
. 636 

iii. return spread. 637 
 638 
Part 2: Searching segment 639 

1. Inputs: A query vertex q , the desired radius tau , and the VP tree. 640 
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2. Search_VP_tree (root_node). 641 
3. Return the vertices around the query vertex within tau . 642 

 643 
procedure Search_VP_tree (node) 644 

i. If node = , then, return  . 645 
ii. If dist( , . )q node vp tau mu−   , then Search_VP_tree (node.left); if 646 

dist( , . )+q node vp tau mu , then Search_VP_tree (node.right). 647 

In this study, the VP tree is used to find the available vehicles around the origin of a request 648 
within a radius. The radius for each request is different because it is calculated based on the 649 
latest pickup and delivery times of the request, which means the vehicles outside this circle are 650 
impossible to pick up the customers of this request timely. At the beginning of each time 651 
interval, request i  has matching set 

iK , the latest pickup time, and the last delivery time. 652 

Matching set 
iK  of request i  is built by inserting all vehicles still available into the set. To 653 

determine the radius of request i , we define the maximum slack time of request i , which is 654 
the maximum time that a vehicle can spend to pick up customers from its current location to 655 
the origin of the request. The maximum slack time of request i   is equal to 656 

p d ,min( ,  )o d

i c i c iT T T T st− − − , where p

iT  is the latest pickup time, d

iT  is the latest delivery 657 

time, cT   is the current time, and ,o d

ist   is the shortest travel time from the origin to the 658 

destination for request i . By multiplying the vehicle speed, the maximum slack time can be 659 
transformed into the maximum pickup distance, which is the radius of the circle with the origin 660 
of request i  as the center and can be used to distinguish infeasible matching between request 661 
i  and vehicles. All vehicles outside this circle at the current time are impossible to reach the 662 
origin or destination in time and hence they are removed from the matching set 

iK . After that, 663 

request i  can only match the vehicles selected from 
iK  during executing the algorithm to 664 

narrow the search space for each request and to improve the computational efficiency. 665 
 666 
4.3. Solution representation 667 

The solution (food source) of the MABC algorithm is a matching result between requests and 668 
drivers. The solution is formed by a set of routes of vehicles. Each route is represented in the 669 
form of a vector with the length of 1 2n+ , in which n  is the number of requests matched to 670 
this vehicle route, and the first element in the vector means the starting point of this vehicle. 671 
Figure 3 illustrates a representation of a route for a ride-hailing vehicle after inserting a new 672 

request, in which point 0  in the route is the starting point of the vehicle. Points L+  and L−  673 
( L=1,2,new ) represent the origin and destination of request L , respectively. In MABC, each 674 

point in the route stores additional information, including the number of passengers aboard and 675 
the arrival time at this point. 676 
 677 

1+ 2+ 1− new+ new−
2−0

 678 
FIGURE 3  Solution representation of a vehicle route 679 

 680 
 681 
4.4. Initial solution 682 

An empty set M   is created to store the matched new requests during the initial solution 683 
process. An initial solution is created by assigning a vehicle from the matching set 

iK  684 

randomly at a time to a request in  but not in M . The request is inserted into all possible 685 
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locations in the route of that vehicle. If there are insertions that satisfy both the time window 686 
and the capacity constraints, then the insertion with the maximum objective value is selected, 687 
the corresponding vehicle is assigned to this request, and this request is added into M  . 688 
Otherwise, this request is skipped, and the next request in  but not in M  is chosen. Unlike 689 
the capacity and the time window constraints that are difficult to satisfy with the increasing 690 
detours caused by adding requests, travel cost constraints are usually satisfied—the travel cost 691 
of each request usually decreases due to ride-hailing sharing. Therefore, the travel cost 692 
constraints of the corresponding vehicle route for each request are checked only after the 693 
capacity and time window constraints are checked. If the travel cost constraints are not satisfied 694 
by the route of that vehicle, the requests in  that were assigned to this route are removed 695 
from M . This route is restored to the status without those new requests. The above procedure 696 
is repeated until M   collects all requests in  , or a pre-defined maximum number of 697 
iterations is reached.  698 
 699 
4.5. Selection of food sources 700 

At each iteration of the MABC algorithm, each onlooker selects a food source based on the 701 
information shared by the employed bees. The method used in choosing a food source is the 702 
roulette-wheel selection method. The probability of choosing food source ix   is equal to 703 

1

( )
( )

( )

i
i n

ii

z x
p x

z x
=


=


, where ( )iz x  is the increment in the objective value of food source ix  704 

after inserting new requests. This increment means the contribution of the new requests to the 705 
objective value. A better solution has a larger increment.  706 
 707 
4.6. Neighborhood operators 708 

A neighborhood operator is applied to search for a new solution around the current solution. 709 
Two neighborhood operators, namely add operator and swap operator, are used in the MABC 710 
algorithm considering the characteristics of the ride-hailing sharing problem. Whenever 711 
employed bees or onlookers seek a new solution, one of the two neighborhood operators is 712 
used randomly. If a better solution is found by the neighborhood operator, the current solution 713 
is replaced with that new solution.  714 
 715 
4.6.1. Transfer operator 716 
The transfer operator randomly selects request i   from set  . If request i   is matched a 717 
vehicle, the operator chooses vehicle j  different from the currently matched vehicle from the 718 

corresponding matching set 
iK . Then an attempt to remove request i  from the original route 719 

and insert i   into the new route of vehicle j   is made (and the insertion method will be 720 

described in Section 4.7). If request i  has not been matched a vehicle, the request is randomly 721 

added to vehicle j  from the matching set 
iK . In each case, if the insertion is feasible and the 722 

objective function of the new solution is larger than the current one, the new solution replaces 723 
the current one, and the limit count of this food source is reset as zero. Otherwise, the limit 724 
count increases by one.  725 
 726 
4.6.2. Swap operator 727 
Each swap operator randomly chooses two requests 1i   and 2i   from set   and their 728 

corresponding matched vehicles are 1j   and 2j  , respectively. Before changing the vehicle 729 

routes, we require to check the matching sets of both requests. If 1j  is in the matching set 730 
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2i
K  and 2j  is in the matching set 

1i
K , 1i  and 2i  are removed from their original routes and 731 

then 1i   and 2i   are inserted into the new routes of vehicle 2j   and 1j  , respectively (the 732 

insertion method will also be described in Section 4.7). If a new, feasible, and better solution 733 
is found by the swap operator, the current solution is replaced with the new solution, and the 734 
limit count of this new food source is set as zero; otherwise, the limit count increases by one. 735 
Note that if the condition that 1j  is in matching set 

2i
K and 2j  is in matching set 

1i
K  is not 736 

satisfied, the transfer operator, instead of the swap operator, will be used for neighborhood 737 
search.  738 
 739 
4.7. Insertion method 740 

When request i  is matched to vehicle j , both origin i+  and destination i−  of request i  741 

are required to insert into the route of j . The idea of inserting a request into the route is to 742 

check all possible insertion locations and then determine the best location to insert the request. 743 

There are two principles to determine the possible insertion locations: First, i+  and i−  can 744 
be inserted only after the points whose arrival time is later than the current time; second, origin 745 

i+  must be located before destination i− . For each possible insertion attempt, the vehicle route 746 
is restructured, and the distance between each pair of adjacent vertices (e.g., the origin of a 747 
request, the destination of a request, and the current location of the vehicle) in the route is 748 
calculated based on the shortest path between them using contraction hierarchies (Geisberger 749 
et al., 2008). Then we can recalculate the arrival time and the number of passengers right after 750 
the points of the vehicle route that are obtained after the insertion, as well as the travel cost of 751 
each request and the objective value. The points that have been influenced by the insertion are 752 
evaluated to check whether there are violations of the time window, capacity, and travel cost 753 
constraints. The new and feasible insertions are recorded, and the insertion that yields the best 754 
objective value among these insertions is chosen as the new solution to replace the old one. 755 
However, no insertion will be undergone if none of the possible insertions satisfied all the 756 
constraints. 757 
 758 
Note that contraction hierarchies is a speed-up method for searching for the shortest path in a 759 
network. It is a two-phase approach consisting of the preprocessing and query phases. 760 
Contraction hierarchies has advantages of quick preprocessing times, low space requirements, 761 
and fast query times. Each query only needs to take a short time (microseconds). Therefore, it 762 
can be used in solving large-scale problems (Geisberger et al., 2012). 763 
 764 
4.8. Path relinking 765 

In this study, path relinking is incorporated into the ABC algorithm to improve solution quality. 766 
The idea of path relinking is to try to determine a new better solution between two known good 767 
solutions. Path relinking is performed when the limit count of at least one food source 2s  is 768 

equal to the limit L.  769 
 770 
At the beginning of path relinking, there are two known good solutions, including incumbent 771 

1s  and food source 2s  with the limit count equal to L. If 2s  is better than 
1s , we replace 

1s  772 

with 2s  and stop. Otherwise, path relinking is applied to those two solutions. When executing 773 

path relinking, 
1s  is set as the initial solution (i.e., 1s s= ) and food source 2s  with the limit 774 

count equal to L is set as the guiding solution. The initial solution is transformed into the 775 
guiding solution during path relinking by implementing a series of operations sequentially to 776 
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search for the new solutions (if any) that are better than both the initial and guiding solutions. 777 
The reason for choosing the best solution as the initial solution is that the new and better 778 
solutions are more probably found near incumbent 

1s .  779 

 780 
At each iteration of path relinking, the differences between s   and 2s   are first identified. 781 

There are three possible situations for each of the requests in , including: (a) the matched 782 
vehicles of the request in s  and 2s  are different, (b) the request matches a vehicle in s  but 783 

does not match any vehicles in 2s , and (c) the request does not match any vehicles in s  but 784 

matches a vehicle in 2s . The transformations for s  consist of (a) removing the request from 785 

the route of the matched vehicle in s  and inserting the request to the route of the matched 786 
vehicle in 2s  for the first situation, (b) removing the request from the vehicle route for the 787 

second situation, and (c) adding the request into the route of the matched vehicle in 2s  for the 788 

third situation. By revising each difference between s  and 2s  separately, we can get several 789 

new solutions compared to s . If all new solutions are not better than s , the path relinking 790 
procedure stops. Otherwise, the solution with the best improvement on the objective function 791 
value among new solutions is adopted and replaces s , and the next iteration begins. After path 792 

relinking, 
1s  is replaced with s  found by path relinking.  793 

 794 
5. Computational Experiments 795 

This section presents the results and analyses involving the MABC algorithm for the ride-796 
hailing sharing problem. The GRASP heuristic described by Santos and Xavier (2015) is taken 797 
as a benchmark, and its performance is used to compare with the performance of the MABC 798 
algorithm proposed in this paper. All experiments are performed on an Intel Core i7-4770 3.40 799 
GHz CPU desktop computer, with 32 GB memory. The code is implemented in C++ with GCC 800 
(GNU Compiler Collection) using Linux (Ubuntu 16.04).  801 
 802 
The ride-hailing fare is assumed to be proportional to travel distance and is set as one dollar 803 
per kilometer. The speed of all vehicles on all roads is set as 30 km/hour so that the travel time 804 
of each link can be calculated using the given link distance and speed. The coefficients of 

1b , 805 

2b  , and 3b   are set as 2, 0.9, and 0.9, respectively. For simplicity, the service time at each 806 

pickup or delivery point is set as 0. Unless stated otherwise, the length of a time interval is set 807 
as 10 s. All experiments are executed 20 times, and the result of each experiment is obtained 808 
from the average value in 20 runs.  809 
 810 
Each request may have several ride-hailing customers to take a vehicle in reality. However, we 811 
set the number of ride-hailing customers in each request equal to 1 for simplicity. We also set 812 

that the latest pickup time p

iT  is 5 min (i.e., 300 s) later than the order time order

iT , which 813 

means that ride-hailing customers cannot wait for more than 5 min at their origin. The latest 814 

delivery time d

iT  of request i  is set as the order time order

iT  plus the maximum allowable 815 

delay. To calculate the maximum allowable delay, we define 
delayco  as the delay coefficient, 816 

which is greater than 1 and represents the tolerance of the passengers due to the increase in 817 
travel time caused by the detours in ride-hailing sharing. The maximum allowable delay is 818 
equal to the product of 

delayco  and the shortest travel time between the origin and destination 819 

of request i  (which can be determined by the contraction hierarchies highlighted in Section 820 
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4). Unless specified otherwise, the delay coefficient 
delayco  is 1.3. 821 

 822 
5.1. Data description 823 

The ride-hailing request data in Chengdu, China, are used in the computational experiments. 824 
Chengdu is a typical city with a circular layout, centered on Tianfu Square, which can also be 825 
reflected in the layout of the road network in Chengdu. The map of Chengdu is shown in Figure 826 
4. The whole city is connected by a “ring and radial” highway network, and the circular road 827 
network divides the city into multiple regions. The Chengdu map data used in our study is 828 
downloaded from Open Street Map, which consists of 34,186 vertices and 78,157 edges. This 829 
map data are used to create a road network for the ride-hailing sharing problem.  830 
 831 
The number of orders varies over time of day, and there are few orders in the night time. To 832 
illustrate a worst-case scenario, we process one-hour ride-hailing request data between 0:00 833 
am and 1:00 am on November 1, 2016, in Chengdu, China, obtained from Didi. The total 834 
number of orders is 3,661 in one hour. Each order has a set of information, including the order 835 
ID, order time, and longitudes and latitudes of the origin and destination. A sample of the ride-836 
hailing data is shown in Table 2. The order ID is desensitized by Didi to protect the privacy, 837 
and the order time is represented through the time stamp. The geolocations are given according 838 
to the GCJ-02 coordinate. As shown in Figure 5, the spatial distributions of the request origins 839 
and destinations have a similar pattern, in which the orders are denser when they are closer to 840 
the city center. 841 
 842 
 843 

 844 
Figure 4    The map of Chengdu, China 845 

 846 
Table 2  A sample of the ride-hailing data in Chengdu, China 847 

Order ID Order time 
Longitude 

(origin) 

Latitude 

(origin) 

Longitude 

(destination) 

Latitude 

(destination) 

fbcgi49b7j5yv 1477964797 104.09464 30.703971 104.08927 30.65085 

48adc4bhcb6t 1477985585 104.076509 30.76743 104.0637 30.58951 

aci8afhg8k@ 1478004952 104.019699 30.689007 104.105324 30.66395 

6fhhfe952dar 1477989840 104.03609 30.62269 104.04386 30.68232 

bd7ea2ld3b7z 1477958005 104.115997 30.652313 104.104421 30.695113 

…… …… …… …… …… …… 

 848 
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 849 

      850 
   (a) Distribution of order origins        (b) Distribution of order destinations 851 

Figure 5    Distributions of order origins and destinations in Chengdu, China 852 
 853 
 854 
The vehicles used in the study are randomly generated based on the regions, and the number 855 
of ride-hailing vehicles is similar to the real situation. We analyze the trajectory data of the 856 
ride-hailing vehicles in a day in Chengdu and determine the number of available vehicles in 857 
each hour of the day. The number of vehicles is around 2,400 between 0:00 to 1:00, so we 858 
generate 2,400 vehicles in this study to serve customers. Based on the circular road network, 859 
as shown in Figure 4, we can roughly divide Chengdu into five regions. Each ring road is 860 
approximately represented by a circle, and the center of all circles is the center of the city 861 
(Tianfu Square). The radii of the four concentric circles are approximately 4.8 km, 9.5 km, 13.6 862 
km, and 35 km. The circles separate the city into five parts, in which region one is within the 863 
4.8-km radius circle, region two is between the 4.8-km and the 9.5-km radius circles, region 864 
three is between the 9.5-km and the 13.6-km radius circles, region four is between the 13.6-km 865 
and the 35-km radius circles, and region five is beyond the 35-km radius circle. The distribution 866 
of vehicles in each region at the beginning is according to the number of request origins in this 867 
area. The ratios of request origins in each region are obtained to be 0.5865, 0.3189, 0.0744, 868 
0.0299, and 0.0004, respectively. To determine the origin of each vehicle, a region is randomly 869 
selected using the above ratios as selection probabilities, and then the origin of each vehicle is 870 
randomly chosen from the vertices in the selected region. 871 
 872 
5.2. Parameter tuning 873 

The MABC has three parameters to tune, including the number of food sources, limit, and the 874 
maximum number of iterations. However, in the current dynamic ride-hailing sharing problem, 875 
the running time of the algorithm for each subproblem is equal to the time interval of each 876 
subproblem. Therefore, we set the stopping condition to be the length of the time interval 877 
instead of the maximum number of iterations. In other words, the algorithm must stop when 878 
the running time reaches the given length of the time interval, and the number of iterations can 879 
be ignored. Therefore, we require tuning only two parameters: the number of food sources and 880 
limit. Figure 6 displays the results of the parameter tuning with different numbers of food 881 
sources and limit values.  882 
 883 
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  884 
(a)                              (b) 885 

Figure 6  Parameter tuning with the time interval of 10 s and the delay coefficient of 886 
1.3: (a) Tuning of limit; (b) Tuning of the number of food sources 887 

 888 
As shown in Figure 6(a), the objective value increases with limit until reaching a threshold. A 889 
too small limit value restricts the algorithm to obtain very good nearly local optima, whereas a 890 
too large limit value restricts the algorithm to explore more new solutions. As shown in Figure 891 
6(b), the objective value decreases with the increasing number of food sources except for the 892 
limit of 900. By comparing the results, the best combination of the parameters is achieved when 893 
the number of food sources is 3, and the limit equals 900. Therefore, the subsequent sections 894 
adopt this setting. Providing that the number of requests is roughly uniform within an hour, 895 
when the time interval is longer, it is expected that the value of limit should be larger to handle 896 
the increase in the number of requests. Based on Figure 6, parameter limit is proportional to 897 
the length of time interval e, and this value is approximately equal to 90e. Thus limit = 90e is 898 
used in all the experiments in the following subsections. 899 
 900 
5.3. Effect of the time interval 901 

In ride-hailing sharing operations, customers are not willing to spend too much time on 902 
matching. However, the system requires time to collect information about the requests and 903 
vehicles and run the matching algorithm. In this study, we consider three time intervals, i.e., 10 904 
s, 30 s, and 60 s. The maximum waiting time from placing a ride-hailing order by phone to 905 
receiving the matching result equals twice the length of the time interval. For instance, the 906 
maximum waiting time is 2 min for the time interval of 60 s, in which customers have to wait 907 
for 60 s for the operator of the ride-hailing service to collect all requests during the interval and 908 
another 60 s for waiting for the matching results. 909 
 910 
To compare the results under different time interval lengths, seven performance measures are 911 
adopted, as shown in Table 3. The objective value is the most important and comprehensive 912 
measure, which evaluates the combined effects of the number of served customers, the travel 913 
cost ratio, and the travel time ratio simultaneously. The matching percentage is the percentage 914 
of the matched requests in the total requests collected. The sharing percentage is the percentage 915 
of requests involving ride-hailing sharing in all matched requests. The average out-of-pocket 916 
cost saving percentage per passenger (

moneyR ), due to the benefits of sharing ride-hailing fares, 917 

is expressed as  918 
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where D  is the set of matched requests and real

'icost  and dir

'icost  are the total passengers’ out-920 

of-pocket costs from the origin to the destination of request 'i  with and without ride-hailing 921 
sharing, respectively. The percentage of total out-of-pocket cost saving (

moneyRT ) is expressed 922 

as 923 
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Since the travel fare per unit distance is fixed, 
moneyRT   can also be interpreted as the 925 

percentage of total vehicle travel distance saving of the whole system. Regarding the increment 926 
in time, the average travel time increment percentage per passenger timeR , which is brought by 927 

the detours in ride-hailing sharing, is expressed as 928 
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where real

'it  is the actual combined in-vehicle travel and waiting time and dir

'it  is the shortest 930 

travel time from the origin to the destination of request 'i   without ride-hailing sharing. 931 
Moreover, the percentage of total travel time increment 

timeRT  is expressed as  932 
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It is noted that 
moneyR  and timeR  are respectively the out-of-pocket cost saving percentage and 934 

the travel time increment percentage based on individuals whereas 
moneyRT  and 

timeRT  are 935 

the corresponding measures based on the whole system. 936 
 937 
As shown in Table 3, a longer time interval results in a larger objective value. In this paper, we 938 
assume that all matched requests in the previous time intervals cannot be modified in later time 939 
intervals. Therefore, when the time interval is longer, the static subproblems have more chances 940 
to get better solutions. Meanwhile, a longer time interval can have a larger average out-of-941 
pocket cost saving percentage per passenger, which means that ride-hailing sharing can 942 
generate more economic benefits (i.e., cost reduction) for each request when the length of the 943 
time interval is longer. Moreover, by comparing the values of 

moneyRT  and 
timeRT , it can be 944 

seen that a longer time interval can result in a larger overall saving in money and a smaller 945 
overall increment in time. However, a longer time interval has no advantage in the matching 946 
percentage and sharing percentage, because a longer interval implies a lower frequency of 947 
matching, which leads to a higher probability of missing feasible vehicles for matching. 948 
 949 
Regarding the general impact brought by ride-hailing sharing, Table 3 shows that the average 950 
out-of-pocket cost saving percentage per passenger 

moneyR  can reach more than 26%, and the 951 

average travel time increment percentage per passenger timeR  is only around 15%. This means 952 

that passengers can use less proportion of extra travel time to exchange for a larger proportion 953 
of money-saving due to ride-hailing sharing. This implies that ride-hailing sharing is a good 954 
choice for those who have a high tolerance for time and want to save money.  955 
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 956 
Table 4 presents the t-test results of the differences in the average objective values between the 957 
experiments with different time intervals. From the results in Table 3 and Table 4, we can 958 
conclude that the differences in the objective values in different groups are significant, and the 959 
60-second time interval achieves the best results, as it performs the best in most of the 960 
performance measures. These results imply that customers have to spend more time waiting 961 
for the matching results when the operator wants to improve system performance.  962 

 963 
Table 3  Performance comparison in terms of different time intervals  964 

Time 

interval 

Objective 

value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 1677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25% 

30 s 1682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23% 

60 s 1689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14% 

 965 
Table 4  T-tests on the difference between average objective values  966 

Test Difference in mean t-statistic p-value 

10 s vs. 30 s 5.64 5.34 0.00 

30 s vs. 60 s 6.97 5.04 0.00 

 967 
5.4. Effect of path relinking 968 

This section investigates the effect of the inclusion of path relinking into the resultant solution 969 
algorithm. Table 5 shows that all the differences in objective values with and without path 970 
relinking are statistically significant (as reflected from the p-value), and the inclusion of path 971 
relinking can significantly improve the solution quality regardless of the length of the time 972 
interval. Among all three time intervals, the solution algorithm with path relinking (i.e., the 973 
proposed MABC algorithm) can achieve a larger sharing percentage, a higher percentage of 974 
travel cost sharing per passenger, and a higher percentage of total out-of-pocket cost saving. 975 
Therefore, it is better to integrate path relinking into the solution algorithm to achieve a better 976 
solution. 977 
 978 
Table 5  Performance comparison of solution methods with or without path relinking 979 

Time 

interval 
PR 

Objective 

Value 

p- 

value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 
With PR 1,677.33 

0.00 
85.24% 72.10% 26.32% 15.48% 25.73% 16.25% 

Without PR 1,668.81 85.27% 71.35% 25.84% 15.35% 25.11% 16.01% 

30 s 
With PR 1,682.97 

0.00 
85.08% 73.28% 26.70% 15.56% 25.73% 16.23% 

Without PR 1,675.86 84.94% 72.71% 26.43% 15.50% 25.47% 16.15% 

60 s 
With PR 1,689.94 

0.04 
85.15% 73.11% 26.87% 15.51% 26.03% 16.14% 

Without PR 1,686.38 85.08% 73.03% 26.79% 15.55% 25.97% 16.12% 

Note: ‘PR’ stands for ‘path relinking’. 980 
 981 
5.5. Effect of the number of vehicles and percentage of willingness-to-share 982 

In the previous section, we assume that all passengers are willing to share a vehicle with others. 983 
The percentage of willingness-to-share means the proportion of passengers who want to take 984 
ride-hailing sharing services in the total number of passengers who want to take ride-hailing 985 
services. When the value of the percentage of willingness-to-share is 50%, half of the 986 
passengers want to share the vehicles, while the other half of passengers only want to ride alone 987 
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without sharing. In this section, the length of time interval used in the simulation is 60 s. The 988 
passengers who want to share a vehicle are randomly chosen from all requests when the 989 
percentage of willingness-to-share is 50%. Moreover, when additional candidate vehicles are 990 
introduced into this experiment, the origins of those additional vehicles are determined 991 
randomly according to the strategy described in Section 5.1. As shown in Tables 6 and 7, the 992 
objective value and the matching percentage increase when the number of vehicles increases 993 
and vice versa. However, the upward trend becomes slow when the number of vehicles is larger 994 
than 10,000. When the percentage of willingness-to-share decreases, both the objective value 995 
and the matching percentage decrease. Moreover, when the number of vehicles is large, the 996 
matching percentage slightly increases as the percentage of willingness-to-share increases. 997 
Table 8 shows that the sharing percentage decreases with the decreasing percentage of 998 
willingness-to-share and the increasing number of vehicles. It demonstrates that few vehicles 999 
for ride-hailing services can promote ride-hailing sharing. Overall, the trends agree with our 1000 
expectations. 1001 
 1002 

Table 6  Comparison of the objective value in terms of the number of vehicles and 1003 
percentage of willingness-to-share 1004 

Objective value 
Number of vehicles 

1,000 2,400 6,000 10,000 15,000 

The 

percentage 

of 

willingness-

to-share 

0 551.76 977.90 1,235.85 1,307.50 1,349.07 

50% 807.74 1,265.21 1,465.05 1,522.57 1,562.37 

100% 1,210.15 1,689.94 1,840.11 1,882.02 1,905.40 

 1005 
Table 7  Comparison of the matching percentage in terms of the number of vehicles 1006 

and percentage of willingness-to-share 1007 

Matching percentage 
Number of vehicles 

1,000 2,400 6,000 10,000 15,000 

Percentage 

of 

willingness-

to-share 

0 47.75% 77.68% 89.54% 92.13% 93.50% 

50% 54.14% 81.23% 90.17% 92.35% 93.72% 

100% 61.49% 85.15% 91.51% 93.01% 93.99% 

 1008 
Table 8  Comparison of the sharing percentage in terms of the number of vehicles and 1009 

percentage of willingness-to-share 1010 

Sharing percentage 
Number of vehicles 

1,000 2,400 6,000 10,000 15,000 

Percentage 

of 

willingness-

to-share 

0 0.00% 0.00% 0.00% 0.00% 0.00% 

50% 36.98% 32.58% 31.35% 30.46% 30.25% 

100% 77.43% 73.11% 71.19% 70.51% 70.21% 

 1011 
5.6. Effect of the delay coefficient 1012 

This section discusses the effect of the delay coefficient 
delayco  on the performance measures 1013 

introduced in Section 5.3. Table 9 compares the results with different lengths of time intervals 1014 
using different values of 

delayco . For all lengths of time intervals, a higher delay coefficient 1015 
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achieves better results on the objective value and all performance measures except for timeR  1016 

and 
timeRT . It is reasonable because a larger coefficient means a larger tolerance of passengers 1017 

to longer travel time, which allows the operators to have more feasible matches but leads to 1018 
larger timeR  and 

timeRT . 1019 

 1020 
Table 9  Performance comparison in terms of delay coefficients  1021 

Time 

interval 

Delay 

coefficient 

Objective 

value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 
1.3 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25% 

1.5 2,136.25  88.20% 80.12% 33.53% 23.37% 32.17% 24.82% 

30 s 
1.3 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23% 

1.5 2,149.78  88.35% 80.35% 33.89% 23.39% 32.64% 24.72% 

60 s 
1.3 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14% 

1.5 2,157.17  88.25% 80.72% 34.28% 23.48% 32.83% 24.73% 

 1022 
5.7. Analysis of the objective function 1023 

In this paper, there are three components considered in the objective function, including the 1024 
number of served customers, the travel cost ratio, and the travel time ratio. Either a too small 1025 
travel cost ratio or a too large travel time ratio can prevent customers from selecting ride-hailing 1026 
sharing services. To illustrate the importance of considering travel time and cost ratios in the 1027 
objective function, two new objective functions are introduced. The first one excludes the travel 1028 
time ratio by setting 3b   as zero, while keeping 

1b   and 2b   unchanged. The second one 1029 

excludes the travel cost ratio by setting 2b  as zero, while keeping 
1b  and 3b  unchanged.  1030 

 1031 
As shown in Table 10, when the travel time ratio is not considered in the objective function, 1032 
the average travel time increment percentage per passenger and the percentage of total travel 1033 
time increment increase significantly. The ride-hailing matching trips allow long detours to 1034 
serve customers. However, long detours lower the allowable number of additional passengers 1035 
served in the later time intervals due to the fixed time window of passengers aboard, leading 1036 
to the reduction in the sharing percentage and thus the reduction in 

moneyR  and 
moneyRT . When 1037 

the travel cost ratio is not considered in the objective function, the sharing percentage, the 1038 
average out-of-pocket cost saving percentage per passenger, and the percentage of total out-of-1039 
pocket cost saving decrease significantly because ride-hailing sharing requires vehicles to 1040 
detour to pick up customers and increase the travel time ratio. Meanwhile, the reduction in the 1041 
sharing percentage induces the decrease in timeR   and 

timeRT   because fewer ride-hailing 1042 

sharing activities imply fewer detours experienced by the passengers. Therefore, both the travel 1043 
time ratio and travel cost ratio are important components in the objective function to achieve 1044 
better ride-hailing sharing services. 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
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Table 10  Comparison of different objective functions 1055 

Time 

interval 

Objective 

Function 

Objective 

value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 

Normal 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25% 

TIME- 4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83% 

COST- 3,904.86 86.07% 35.86% 9.75% 9.89% 7.06% 9.06% 

30 s 

Normal 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23% 

TIME- 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71% 

COST- 3,908.42 86.10% 35.47% 9.51% 9.78% 6.74% 9.02% 

60 s 

Normal 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14% 

TIME- 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64% 

COST- 3,897.30 85.77% 34.04% 8.94% 9.61% 6.49% 8.87% 
Note: Normal = the objective function with the three components mentioned in Equation (1), TIME- = the 1056 
objective function with the number of matched requests and the travel cost ratios only, COST- = the objective 1057 
function with the number of matched requests and the travel time ratios only. 1058 
 1059 
5.8. Comparison to GRASP with path relinking 1060 

The performance of the proposed method is compared to GRASP with path relinking proposed 1061 
by Santos and Xavier (2015). There are four substantial differences between the MABC 1062 
algorithm of this paper and their method (named GRASP). First, the adopted main algorithm is 1063 
different (i.e., the ABC algorithm versus GRASP). Second, the MABC algorithm incorporates 1064 
the VP tree to narrow the search range for the requests. Due to the adoption of the VP tree, the 1065 
solution initialization methods between the MABC algorithm and GRASP are different, in 1066 
which GRASP uses the greedy method to match vehicles with feasible requests, while the 1067 
MABC algorithm uses the greedy method to match requests with feasible vehicles (described 1068 
in Section 4.4). Third, this paper introduces a transfer operator in addition to the swap operator 1069 
that has been adopted in GRASP. Fourth, GRASP allows new requests to be added only after 1070 
the destination point of the last delivered passenger aboard if there are passengers aboard the 1071 
vehicle at the current time, while the MABC algorithm has no such restriction (e.g., Figure 1). 1072 
The MABC algorithm can be viewed as the solution method obtained by introducing the four 1073 
major modifications to GRASP. To have a fair comparison of the performance between GRASP 1074 
and the MABC algorithm, the parameter setting for GRASP is determined based on the strategy 1075 
presented by Santos and Xavier (2015) and the dataset mentioned in Section 5.1. 1076 
 1077 
To clearly illustrate the effects of introducing each modification to GRASP on solving the 1078 
studied problem, three additional new methods, which are the variants of either the MABC 1079 
algorithm or GRASP, are proposed. Table 11 describes these variants. Each method in Table 11 1080 
only has one difference compared with its adjacent method.  1081 
 1082 

Table 11  Comparison of different methods solving the dynamic ride-hailing sharing 1083 
problem 1084 

Method Main algorithm 
Initialization 

Method 
Operators 

Insertion 

restriction 

GRASP (Santos 

and Xavier, 2015) 

GRASP Vehicle Swap Yes 

GRASP+ GRASP Vehicle Swap No 

ABC-- ABC Vehicle Swap No 

ABC- ABC Vehicle Swap + transfer No 

MABC ABC Request + VP Swap + transfer No 
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tree 
Note: Vehicle = initialization method using the greedy method to match vehicles with feasible requests; Request 1085 
= initialization method using the greedy method to match requests with feasible vehicles; Swap = swap operator, 1086 
Transfer = transfer operator. 1087 
 1088 
As shown in Table 12, the method using the MABC algorithm proposed in this paper (MABC) 1089 
performs the best. The variants of the MABC algorithm and GRASP, which include new 1090 
features to the ABC algorithm, yield a better solution compared with GRASP. The comparison 1091 
between GRASP and GRASP+ shows that removing the insertion restriction (the fourth aspect) 1092 
is an effective way to improve solution quality. It can improve the chance for ride-hailing 1093 
sharing, simultaneously complying with the time window, capacity, and travel cost constraints 1094 
for each request. The comparison between GRASP+ and ABC-- demonstrate that, without the 1095 
transfer operator, GRASP achieves a better objective value in longer time intervals, and the 1096 
ABC algorithm performs better in shorter time intervals. The comparison between ABC-- and 1097 
ABC- showed that the transfer operator greatly improves the performance. The comparison 1098 
between the MABC algorithm and ABC- demonstrates that the modified initialization method 1099 
and the VP tree used in this paper are more effective than the initialization method used in 1100 
GRASP because the latter is time-consuming. In summary, Table 12 shows that the proposed 1101 
MABC algorithm performs well in solving the dynamic ride-hailing sharing problem and that 1102 
the modifications to GRASP are effective. 1103 
 1104 
Table 13 shows the performance of the MABC algorithm and GRASP in terms of the objective 1105 
function adopted by Santos and Xavier (2015), who consider the number of matched requests 1106 
and travel cost ratio. The results demonstrate that the sharing percentage increases significantly, 1107 
and the customers can save more money when using the proposed MABC algorithm, which 1108 
also leads to an increment in the objective value. Comparing Table 12 with Table 13, it can be 1109 
observed that the customers need to waste more travel time to finish trips when ignoring the 1110 
travel time ratio in the objective function.  1111 
 1112 
Table 12  Performance comparison between different variants of the MABC algorithm 1113 

and GRASP  1114 

Time 

interval 
Algorithm 

Objective 

Value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 

GRASP 1,211.71  85.22% 17.60% 5.93% 12.02% 5.60% 11.08% 

GRASP+ 1,362.77  88.15% 43.11% 12.50% 14.64% 11.08% 14.20% 

ABC-- 1,388.19  88.53% 44.31% 13.25% 14.36% 12.22% 13.99% 

ABC- 1,433.01  88.04% 51.10% 15.32% 14.62% 14.51% 14.36% 

MABC  1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25% 

30 s 

GRASP 1,274.66  85.66% 22.51% 7.71% 10.95% 7.39% 10.10% 

GRASP+ 1,566.38  88.61% 56.81% 16.87% 14.16% 16.22% 14.32% 

ABC-- 1,548.72  88.42% 57.77% 18.68% 14.16% 17.39% 14.27% 

ABC- 1,642.22  88.06% 67.93% 22.92% 15.11% 22.16% 15.50% 

MABC 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23% 

60 s 

GRASP 1,292.96  85.30% 23.02% 7.89% 10.82% 7.60% 10.14% 

GRASP+ 1,617.69  88.20% 62.34% 20.54% 14.17% 18.83% 14.44% 

ABC-- 1,603.08  88.39% 62.73% 20.58% 14.17% 18.86% 14.37% 

ABC- 1,661.39  87.49% 69.25% 24.06% 15.26% 23.35% 15.86% 

MABC 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14% 

 1115 
 1116 



31 
 

Table 13  Performance comparison between the MABC algorithm and GRASP in 1117 
terms of the objective function without travel time ratio 1118 

Time 

interval 
Algorithm 

Objective 

Value 
Matching Sharing moneyR  

timeR  moneyRT  
timeRT  

10 s 
GRASP 3,599.15 85.56% 15.78% 5.45% 18.40% 5.17% 16.80% 

MABC  4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83% 

30 s 
GRASP 3,688.64 86.38% 21.16% 7.38% 18.67% 7.54% 17.13% 

MABC 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71% 

60 s 
GRASP 3,720.96 86.63% 24.59% 8.14% 18.79% 8.14% 17.44% 

MABC 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64% 

 1119 
 1120 
6. Conclusions 1121 

In this paper, a dynamic ride-hailing sharing problem is proposed, which aims to maximize the 1122 
weighted difference between the number of served customers and the sum of the travel cost 1123 
ratio and travel time ratio. Meanwhile, the time window and travel cost constraints of the 1124 
passengers and the capacity constraint of the vehicles are considered simultaneously. To handle 1125 
the dynamic characteristics of the ride-hailing sharing problem, the problem was divided into 1126 
many static subproblems with an identical time interval length. In each time interval, the 1127 
request collection and matching algorithm were executed simultaneously. To solve 1128 
subproblems, we propose a method based on the artificial bee colony algorithm, in which the 1129 
vantage-point tree is used to narrow the search space of the algorithm and path relinking is 1130 
incorporated to accelerate the solution speed to get the better solution. The method using the 1131 
GRASP with path relinking proposed by Santos and Xavier (2015) was selected as the 1132 
benchmark for the comparison. The results show that our proposed method outperforms the 1133 
benchmark. The results also demonstrate the following. (a) With a longer time interval, the 1134 
performance of the proposed method is better. However, it should be noted that a longer time 1135 
interval leads to a longer time of data collection and algorithm execution, which requires the 1136 
passengers to wait longer for matching results. (b) Embedding path relinking into the ABC 1137 
algorithm significantly improves the performance of the resultant solution method. (c) The 1138 
percentage of willingness-to-share and the number of ride-hailing vehicles can significantly 1139 
influence the matching percentage and the sharing percentage of the ride-hailing sharing 1140 
problem. (d) With a higher tolerance for the detouring time due to ride-hailing sharing, the 1141 
proposed method can perform significantly better. (e) Considering both travel cost and travel 1142 
time ratios into the design objective can achieve the best sharing percentage, and balance the 1143 
increase in travel time ratio and the decrease in travel cost ratio compared with the design 1144 
objectives that miss either the travel time or the travel cost ratio. (f) Ride-hailing sharing can 1145 
generate benefits to the passengers as the passengers can spend less money on ride-hailing fares 1146 
by spending a little bit more time due to the detours.  1147 
 1148 
This study opens the following interesting future research directions. First, our solution method 1149 
is simple and efficient but does not consider the lookahead policy. Introducing the lookahead 1150 
policy can often improve the performance of some classical transportation systems (e.g., 1151 
Mitrović-Minić et al., 2004; Spivey and Powell, 2004; Sayarshad et al., 2020; Sayarshad & 1152 
Gao, 2020). Therefore, one of the future search directions is to extend our solution method to 1153 
incorporate this lookahead policy. Second, in this study, we only consider the ride-hailing 1154 
service offered by a private company. If the company was public operated, the taxi charge 1155 
could be lower if the passengers waiting time was longer. This socially efficient price could be 1156 
examined by modifying the price mechanism in the proposed formulation, which is an 1157 
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interesting research direction. In the future, we can analyze socially efficient prices in a ride-1158 
hailing sharing problem similar to the studies of Figliozzi et al. (2007) and Sayarshad and Chow 1159 
(2015). 1160 
 1161 
 1162 
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