
1

A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing 1

Sharing Problem 2
 3
 4
 5

Xingbin Zhan 6
Department of Civil Engineering 7

The University of Hong Kong 8
Pokfulam Road, Hong Kong 9

Email: xbzhan@hku.hk 10
 11

W. Y. Szeto, Ph.D. 12
Department of Civil Engineering 13

The University of Hong Kong 14
Pokfulam Road, Hong Kong 15

Email: ceszeto@hku.hk 16
 17

C. S. Shui, Ph.D. 18
Department of Transportation and Logistics Management 19

National Chiao Tung University 20
Hsinchu, Taiwan 21

Email: csshui@nctu.edu.tw 22
 23

Xiqun (Michael) Chen, Ph.D. 24
College of Civil Engineering and Architecture 25

Zhejiang University 26
Hangzhou 310058, China 27

Email: chenxiqun@zju.edu.cn 28
 29
 30
 31
Acknowledgments 32
This research is jointly supported by a grant from the Research Grants Council of the Hong 33
Kong Special Administrative Region of China (HKU 17201217) and a grant from the 34
University Research Committee of the University of Hong Kong (201811159080). The fourth 35
author Xiqun Chen is financially supported by the National Key Research and Development 36
Program of China (2018YFB1600900), the National Natural Science Foundation of China 37
(71771198, 71922019), the joint project of the National Natural Science Foundation of China 38
and Joint Programming Initiative Urban Europe (NSFC – JPI UE) (‘U-PASS’, 71961137005), 39
and the Zhejiang Provincial Natural Science Foundation of China (LR17E080002). We would 40
like to thank Didi to provide ride-hailing data. 41
 42

 43

2

A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing 44

Sharing Problem 45
 46
Abstract 47

Ride-hailing sharing involves grouping ride-hailing customers with similar trips and time 48
schedules to share the same ride-hailing vehicle to reduce their total travel cost. With the 49
current information and communication technology, ride-hailing customers and drivers can be 50
matched in real-time via a ride-hailing platform. This paper formulates a dynamic ride-hailing 51
sharing problem that simultaneously maximizes the number of served customers, minimizes 52
the travel cost and travel time ratios, and considers the capacity, time window, and travel cost 53
constraints. The travel cost ratio is the ratio of actual passengers’ fare to the passengers’ fare 54
without ride-hailing sharing, whereas the travel time ratio is defined as the actual travel time 55
(including waiting time) over the maximum allowable travel time. To solve the dynamic 56
problem, it is divided into many small and continuous static subproblems with an equal time 57
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm 58
with path relinking, while the contraction hierarchies and vantage point tree are used to 59
determine the shortest path and accelerate the algorithm, respectively. Problem properties and 60
the performance of the proposed solution method are demonstrated using large-scale real-time 61
data from Didi that is the largest ride-hailing company in China. The proposed method is shown 62
to outperform the benchmark, i.e., greedy randomized adaptive search procedure (GRASP) 63
with path relinking. The proposed method also performs better when the length of each time 64
interval is longer, and the tolerance for the incremental travel time caused by detours is higher. 65
We also demonstrate that (a) considering both travel cost and travel time ratios in the objective 66
can achieve a better sharing percentage, and balance the increase in the travel time ratio and 67
the decrease in the travel cost ratio compared with the objective that misses either travel time 68
or the travel cost ratio; and (b) the passengers can gain a large out-of-pocket cost saving in the 69
case of ride-hailing sharing while enduring a relatively small increase in travel time compared 70
with the case without ride-hailing sharing. 71
 72
Keywords: Dynamic ride-hailing sharing; artificial bee colony algorithm; path relinking; 73
vantage point tree. 74
 75
1. Introduction 76

With the development of social economy and motorization, increasing traffic congestion in 77
urban road networks, finite oil supplies, and environmental pollution have aroused great 78
attention from the public. According to Jensen (2005) and Santos et al. (2011), the private car 79
occupancy rates (the number of travelers per vehicle) are quite low in both Europe and the US, 80
reaching 1.8 persons per vehicle for leisure trips and 1.1 for commuting trips. The low 81
occupancy rate has led to a huge waste of social resources. The annual cost of wasted time and 82
fuel caused by traffic congestion in the US was approximately 160 billion dollars in 2015 83
(Schrank et al., 2015). Moreover, greenhouse gases emitted by vehicles have increased more 84
than double since 1970, while the annual greenhouse emissions were still growing (IPCC, 85
2015). Another issue is that more travelers choose ride-hailing services (e.g., Didi, Uber, and 86
Lyft) for convenience with an increase in income. The supply of ride-hailing vehicles usually 87
does not meet the travel demand during peak hours, and consequently, travelers have to wait 88
for a long time before using the services or abandon the services and shift to other modes. 89
 90
One solution to the above problems is ride-hailing sharing. Ride-hailing sharing is a type of 91
ride-hailing service that groups the customers with similar trips and time schedules to share the 92

3

same ride-hailing vehicle, which can consequently reduce the total driving distance and fuel 93
cost of the vehicles and increase the vehicle occupancy rate. Ride-hailing sharing services have 94
been provided by private companies such as Didi, Uber, Lyft, etc. in recent years and proved 95
that both the passengers and drivers could benefit from these services. The passengers with 96
loose travel time windows can receive compensation as a return of the increase in travel time, 97
while ride-hailing drivers can serve more passengers and earn more during their available 98
working time. As a real-time service that connects multiple passengers and ride-hailing drivers, 99
the operations of ride-hailing sharing require a third-party platform to provide technical support, 100
including collecting the travel information of ride-hailing drivers and customers (e.g., current 101
locations and customers’ preferences) and matching the requests of ride-hailing customers with 102
the vehicles. With the increasing smartphone penetration rate and the development of wireless 103
communication technology, both ride-hailing drivers and customers can access information 104
timely and accurately to implement ride-hailing sharing. 105
 106
Dynamic ride-hailing sharing problems with different objectives have been studied in the 107
literature. The commonly adopted objectives include maximizing the number of served 108
customers and minimizing the travel time (distance or delay). Moreover, passengers’ travel cost 109
is a critical measure when providing ride-hailing sharing services as it often influences whether 110
travelers choose to share rides or not. Santos and Xavier (2015) formulated it in the form of 111
the travel cost ratio, which is the ratio of actual passengers’ travel cost to the passengers’ travel 112
cost without ride-hailing sharing. However, using the travel cost ratio in the objective function 113
does not prevent the travel time increment due to the detour caused by ride-hailing sharing to 114
be acceptable by passengers. Therefore, we formulate a new dynamic ride-hailing sharing 115
problem that simultaneously maximizes the number of served customers, and minimizes the 116
travel cost and travel time ratios, where the travel time ratio is defined as the actual travel time 117
(including waiting time) over the maximum allowable travel time. To solve the dynamic 118
problem, it is divided into many small and continuous static subproblems with an equal time 119
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm 120
with path relinking, while the contraction hierarchies and vantage point tree are used to 121
determine the shortest path and accelerate the algorithm, respectively. Problem properties and 122
the performance of the proposed solution method are demonstrated using large-scale real-time 123
data from Didi. 124
 125
The main contributions of this paper can be summarized as follows: 126
 127

⚫ We present a novel dynamic ride-hailing sharing problem that simultaneously 128
maximizes the weighted number of served customers, minimizes the weighted sum 129
of travel cost and travel time ratios, and considers the constraints of capacity, time 130
window, and travel cost. This problem considers both the travel cost and travel time 131
in the objective function, since two of the most important factors that affect taking 132
ride-hailing sharing service is the cost and time. 133
 134

⚫ We divide the problem into many small and continuous static subproblems with an 135
equal time interval. We propose a new solution method based on the MABC algorithm 136
to solve the subproblem. To accelerate the solution search, we use the vantage-point 137
(VP) tree to narrow the solution search space of each request by identifying the ride-138
hailing vehicles near the pickup point of the passengers within a pre-defined radius. 139
The overall solution approach is proved to be efficient in solving large-scale ride-140
hailing sharing problems. 141

 142

4

⚫ Based on real ride-hailing data, we illustrate the performance of the proposed solution 143
approach and show that our approach is more effective than the existing solution 144
method proposed by Santos and Xavier (2015) for the dynamic ride-hailing sharing 145
problem. 146

 147
The remainder of this paper is organized as follows. In Section 2, we provide an in-depth 148
literature review to show the research gaps. In Section 3, we describe the dynamic ride-hailing 149
sharing problem and formulate the static subproblem. Section 4 proposes the MABC algorithm. 150
Section 5 presents the computational results. Finally, Section 6 concludes the paper and 151
provides an outlook on future research. 152
 153
2. Literature Review 154

In the literature, the ride-hailing sharing problem can be regarded as a variant of the dial-a-ride 155
problem (DARP). The DARP aims to determine vehicle routes and schedules for the users who 156
specify requests with pickup and delivery locations (Cordeau and Laporte, 2007) and has 157
various applications, including freight transportation (e.g., Dumas et al., 1991), and elderly or 158
disabled personnel transportation (e.g., Madsen et al., 1995; Melachrinoudis et al., 2007; 159
Beaudry et al., 2010). There are two differences between the DARP and the ride-hailing sharing 160
problem. First, dial-a-ride vehicles start from the depot(s) to pick up passengers in the DARP, 161
while the start locations of ride-hailing vehicles can be anywhere in the ride-hailing sharing 162
problem. Second, besides the time window constraint that the DARP focuses on, the ride-163
hailing sharing problem requires considering the travel cost (fare) constraint for each passenger 164
to ensure that the out-of-pocket cost of each passenger is lower in a shared vehicle than a non-165
shared vehicle. It is noted that in the literature, the taxi sharing problem is a special type of the 166
ride-hailing sharing problem, in which the ride-hailing sharing services may include not only 167
taxis but also private cars (e.g., Didi). 168
 169
Ho et al. (2018) pointed out that the DARP problem could be classified into four categories: 170
static-deterministic, static-stochastic, dynamic-deterministic, and dynamic-stochastic. If the 171
existing plans can (cannot) be modified when new information enters the system, the problem 172
is dynamic (static). If the information received is certain (is unknown or uncertain) when 173
making a decision, the problem is deterministic (stochastic). The ride-hailing sharing problem 174
is a dynamic-deterministic problem. As ride-hailing customers who are willing to share a ride 175
always want to match a ride-hailing vehicle as soon as possible and their requests can enter the 176
system at random times, they often match drivers on very short notice. Previous studies have 177
adopted several strategies to deal with the dynamic nature of the ride-hailing sharing problem. 178
One strategy is that the model processes a request immediately after the system receives the 179
request (Ma et al., 2013). Though the customers can get feedback in a short time, this strategy 180
usually provides “shortsighted” solutions as it does not consider the influence of near-future 181
requests, and thus leads to poor solution quality. Another strategy is to adopt the rolling horizon 182
strategy, in which the solutions are determined using all known information within a planning 183
horizon, but the final decisions have not been made until necessitated by a deadline of the 184
requests (Agatz et al., 2011). This strategy can obtain a better solution than the first strategy as 185
it considers more information, but the customers require longer time waiting for the final 186
matching results. To balance the waiting time for matching results and solution quality, this 187
study adopts the strategy that the dynamic problem is divided into small continuous static 188
subproblems (Santos and Xavier, 2015; Alonso-Mora et al., 2017). Each static subproblem 189
handles a scene corresponding to a specific time interval. This strategy can handle multiple 190
requests simultaneously, and the time interval we set is short enough such that the customers 191
do not wait too long for receiving feedback. 192

5

 193
Table 1 Characteristics for representative DARPs and ride-hailing sharing problems 194
Reference Type Objective(s) Constraint(s)2 Scenario Solution method(s)

Psaraftis

(1980)

DARP Minimize a weighted sum of the total

travel time and dissatisfaction of

customers

Capacity and

MPS

D/S Dynamic programming

Jaw et al.

(1986)

DARP Minimize a weighted sum of

disutility to the system’s customers

and of operator costs

Time and capacity S Advanced dial-a-ride

with time windows

(ADARTW) heuristic

Madsen et

al. (1995)

DARP Multiple objectives1 Time and capacity D REBUS heuristic

Horn

(2002)

DARP Minimize total travel time while

maximizing ridership using a

weighted sum approach

Time and capacity D L2sched system

Attanasio

et al.

(2004)

DARP Minimize total routing cost Time and capacity D Tabu search

Coslovich

et al.

(2006)

DARP Maximize the number of served

customers

Time D Two-phase insertion

technique

Beaudry et

al. (2010)

DARP Minimize a weighted sum of total

travel time, total lateness, and total

earliness

Time and capacity D Two-phase heuristic

procedure

Schilde et

al. (2014)

DARP Minimize the sum of tardiness,

earliness, and travel time violations

Time and capacity D Metaheuristic solution

approaches based on

dynamic variable

neighborhood search

Ma et al.

(2013,

2015)

RHSP Minimize the total travel

distance

Time, capacity,

and cost

D Dual-side vehicle

searching algorithm

Santos and

Xavier

(2015)

RHSP Maximize the number of served

requests while minimizing the travel

cost ratio

Time, capacity,

and cost

D GRASP with path

relinking

Jung et al.

(2016)

RHSP

Minimize total passenger travel

times; maximize system profit

Time and capacity D Nearest vehicle

dispatch algorithm/

Insertion heuristic/

Hybrid Simulated

Annealing

Alonso-

Mora et al.

(2017)

RHSP Minimize the travel delay of all

passengers while maximizing the

number of served requests

Time and capacity D Greedy assignment

with Mosek and

parallel computing

Sayarshad

and Gao

(2018)

DARP Maximize social welfare Capacity D A novel dynamic

optimization

algorithm with a

Markov decision

process

Wang et al.

(2018)

RHSP Minimize travel time Time, capacity,

and cost

D A greedy strategy

Liang et al.

(2020)

DARP Maximize revenue, the number of

matched customers while minimizing

the fuel cost and delay

Time and capacity D A customized

Lagrangian relaxation

algorithm

This paper RHSP Maximize the weighted number of

served customers while minimizing

the weighted sum of the travel cost

ratio and the travel time ratio

Time, capacity,

and cost

D Rolling horizon

approach with MABC

and path relinking

Note: RHSP = Ride-hailing sharing problem, MPS = maximum position shift (i.e., the maximum difference 195
between the position of a customer in the sequence of deliveries/pickups and the first-come-first-served position 196
of that customer in the initial list of requests); D = dynamic problem, S = static problem, D/S = dynamic problem 197
and static problem; 1: The objective is formed by the mixture of objectives choosing from minimizing total driving 198

6

time, minimizing the number of vehicles, minimizing total waiting time, minimizing the deviation from promise 199
service, and minimizing the total cost of operation of the vehicles. 2: time constraints refer to time window 200
constraints, and cost constraints refer to travel cost constraints. 201
 202
Table 1 summarizes the characteristics of the existing DARPs and ride-hailing sharing 203
problems in the literature in terms of the problem type, design objectives, design constraints, 204
operational scenarios, and solution methods. It can be seen that ride-hailing sharing problems 205
have been studied in recent years, while DARPs have a long history. Different from the 206
conventional DARPs, the ride-hailing sharing problem includes the passengers’ travel cost (i.e., 207
fare or out-of-pocket) into constraints to control the expense of each passenger on the trip due 208
to the detour caused by ride-hailing sharing (e.g., Ma et al., 2013, 2015; Santos and Xavier, 209
2015). Regarding the design objectives, the commonly adopted objectives include maximizing 210
the number of served customers (e.g., Coslovich et al., 2006) and minimizing the travel time 211
(distance or delay) (e.g., Attanasio et al., 2004; Ma et al., 2013, 2015; Wang et al., 2018), 212
whereas some studies formulated their design problems with more than one design objective 213
(e.g., Jaw et al., 1986; Horn, 2002; Beaudry et al., 2010; Schilde et al., 2014; Santos and Xavier, 214
2015; Jung et al., 2016; Alonso-Mora et al., 2017; Sayarshad and Gao, 2018). On the other 215
hand, passengers’ travel cost is an important measure when providing ride-hailing sharing 216
services as it often influences whether travelers choose a ride-hailing sharing service or just a 217
ride-hailing service. Santos and Xavier (2015) formulated it in the form of the travel cost ratio. 218
However, using this ratio in the objective function does not prevent the travel time increment 219
due to the detour caused by ride-hailing sharing to be acceptable by passengers. Therefore, the 220
objective function in our studied problem includes not only the travel cost ratio but also the 221
travel time ratio that compares the actual travel time with the maximum allowable travel time 222
(i.e., the maximum time that a passenger can spend for a ride) to limit the increase in travel 223
time. 224
 225
A wide range of solution methods have been proposed to solve the DARP and the ride-hailing 226
sharing problem in the literature. Psaraftis (1980) developed an exact optimization procedure 227
based on dynamic programming to solve the DARP (with ridesharing). Unlike the static version 228
of the problem that does not consider the immediate requests, the dynamic version considers 229
the immediate requests during the operation while it is limited to only the case with a single 230
vehicle and many customers. The computational time of this algorithm is an exponential 231
function of the number of customers. Alonso-Mora et al. (2017) built a request-trip-vehicle 232
graph, which consisted of all possible combinations of the requests and vehicles according to 233
the time window constraints. An integer linear program was formulated to determine the 234
optimal assignment with the best objective function value (or the best objective value) based 235
on the request-trip-vehicle graph. In the worst case, the method can be seen as an exhaustive 236
search, so the parallel computations are used to speed up the method. However, the 237
computational time of this method increases rapidly with the maximum waiting time. As 238
DARPs and ride-hailing sharing problems are NP-hard (Baugh Jr., 1998; Santos and Xavier, 239
2015), exact methods are usually impossible to solve for optimal solutions in large instances 240
efficiently. Heuristics or metaheuristics can search for near-optimal solutions efficiently and 241
thus become widely adopted in the existing literature (e.g., Horn, 2002; Attanasio et al., 2004; 242
Beaudry et al., 2010; Santos and Xavier, 2015; Jung et al., 2016). Meanwhile, many other 243
methods are proposed to solve the DARP and ride-hailing sharing problem. For example, Ma 244
et al. (2013) proposed a vehicle searching algorithm using a spatial-temporal index to find 245
candidate vehicles and then a scheduling algorithm was applied to achieve matching and check 246
constraints. This method for solving ride-hailing sharing problems is demonstrated to be very 247
efficient and can be used in large-scale ride-hailing sharing problems. However, this method 248
only suits the problem that minimizes the total travel distance or total travel time. New solution 249

7

methods may be required to handle other or more objectives. Sayarshad and Gao (2018) 250
divided the DARP problem into multiple traveling salesman problems and solved them by a 251
traveling salesman problem with pickup and deliver (TSPPD) algorithm. The Markov decision 252
process was used to obtain information to calculate social welfare. Liang et al. (2020) solved 253
the problem using a customized Lagrangian relaxation algorithm, and this algorithm was time-254
consuming (15.9 min for 50 iterations for a network with 66 road links and 46 nodes), leading 255
to long waiting time for customers. Please refer to more comprehensive reviews on the solution 256
methods of DARPs by Berbeglia et al. (2010) and Ho et al. (2018). 257
 258
As reviewed by Ho et al. (2018), recently proposed metaheuristics have not been adopted in 259
solving the DARP and its variants. As one of the recent methods mentioned in their review, the 260
artificial bee colony (ABC) algorithm is adopted to solve our proposed problem. As a powerful 261
metaheuristic proposed by Karaboga (2005), the ABC algorithm has been demonstrated with 262
good performance in solving many problems, including numerical function optimization (e.g., 263
Karaboga and Ozturk, 2009), structural inverse analysis (e.g., Karaboga, 2009), pattern 264
classification (e.g., Karaboga and Ozturk, 2009), the leaf-constrained minimum spanning tree 265
problem (e.g., Singh, 2009), and so on. It has also been applied in solving different logistics 266
and transportation problems with satisfactory performance, such as capacitated vehicle routing 267
problems (e.g., Szeto et al., 2011), return restriction design problems (e.g., Long et al., 2014), 268
transit routes and frequency settings (e.g., Szeto and Jiang, 2014), and bicycle repositioning 269
problems (e.g., Szeto and Shui, 2018). The works provide firm ground to apply the ABC 270
algorithm in solving our dynamic ride-hailing sharing problem. 271
 272
Unlike the literature, to solve the proposed dynamic ride-hailing sharing problem, we first 273
decompose the whole planning horizon evenly into smaller time intervals and then adopt the 274
ABC algorithm with path relinking in each time interval. Path relinking is an enhancement 275
strategy proposed by Glover (1997) to explore the better solution between elite solutions 276
obtained by tabu search or scatter search (e.g., Glover, 1997; Glover et al., 2000). Applying 277
path relinking into the GRASP has significantly improved the solution time and quality 278
(Resendel and Ribeiro, 2005). The GRASP with path relinking was first used in the ride-hailing 279
sharing problem and achieved better performance than that without path relinking (Santos and 280
Xavier, 2015). Furthermore, to speed up the matching between the requests and the vehicles, 281
the vantage-point tree (VP tree) was used to do range queries to search for feasible vehicles 282
around the origin of the request within a given radius. As a data structure for partitioning 283
general metric space in a hierarchical way proposed by Yianilos (1993), the VP tree was widely 284
used for efficient nearest neighbor queries (Nielsen et al., 2009; Fu et al., 2000). The resultant 285
solution method is referred to as the MABC algorithm. 286
 287
3. Dynamic Ride-hailing Sharing Problem 288

In this section, we first present the notations adopted in this problem and then give a detailed 289
problem statement of the dynamic ride-hailing sharing problem. Afterward, the mathematical 290
formulation of the static subproblem is presented in detail. 291
 292
3.1. Notations 293

The notations used in this paper are listed as follows. 294
 295

Sets/indices 296
V Set of all vertices (points) on the road network;

E Set of all edges on the road network;

8

 Set of all requests that are waiting to match;
 Set of all matched requests;

 Set of all ride-hailing vehicles available in the system;

W Set that contains all origins and destinations of requests in ;

U Set that contains all origins and destinations of requests in ;

i Request i ;

i+ Origin of request i , i V+  ;

i− Destination of request i , i V−  ;

j Ride-hailing vehicle j ;

j+ Starting point of vehicle j , j V+  ;

j− Dummy destination of vehicle j ;

jR Route of vehicle j , where  0 1, , ,
j

j j j

j ZR v v v= ;

j

zv The z th point in the route of vehicle j ,
j

zv V ;

()j

zi v Request i with either pickup or delivery at point
j

zv .

 297
Parameters 298

ip Number of passengers of request i ;
order

iT Order time of request i (i.e., time of customers making request i);

p

iT Latest pickup time of request i ;

d

iT Latest delivery time of request i ;

dir

icost
Total passengers’ out-of-pocket cost of request i through the direct trip

without sharing ride-hailing vehicles;

jZ Total number of pickup and delivery points in the route of vehicle j ;

jq Capacity of ride-hailing vehicle j ;

j
zv

s Service time at point
j

zv ;

1,
jj

z zv v
t

+

 Shortest travel time from
j

zv to 1

j

zv + in the route of vehicle j ;

1,
jj

z zv v
c

+

 Fare from
j

zv to 1

j

zv + in the route of vehicle j ;

1b Weight for each request;

2b Weight for the travel cost ratio;

3b Weight for the travel time ratio;

iDT Shortest travel time from the origin to the destination of request i without

sharing ride-hailing vehicles;
j

nowu Location of vehicle j at the beginning of the current time interval;

uBT Arrival time at u U before any new requests were inserted into routes;

()j u Matched vehicle for u U before any new requests were inserted into

routes.

 299
Decision Variables 300

j
zv

AT Arrival time of vehicle j at
j

zv ;

j
zv

P Number of passengers on vehicle j after leaving point
j

zv ;

9

,

j

u vX 1 if the route of vehicle j passes through vertex v immediately after

vertex u ; 0, otherwise;

Variables
real

icost Actual total passengers’ out-of-pocket cost associated with request i ;

iTT Total waiting and in-vehicle travel times associated with request i ;

1,
jj

z z

i

v v
pc

+

 Cost of the passengers of request i from
j

zv to 1

j

zv + .

 301
3.2. Problem statement 302

 303
3.2.1. Inputs 304
We consider a ride-hailing service provided by a private company. Let (,)G V E be a complete 305

undirected graph representing the road network. The ride-hailing sharing problem starts with a 306
set of requests waiting to match and a set of ride-hailing vehicles currently available on the 307
road network. Each request contains the information related to the origin, destination, order 308
time, and number of passengers. The order time of request i is associated with the latest 309

pickup time
p

iT and the latest delivery time
d

iT . The matched vehicle should pick up the 310

passengers of request i at point i+ no later than
p

iT and drop them off at point i− no later 311

than
d

iT . According to i+ and i− , the shortest distance can be determined and then converted 312

to the cost of the direct trip
dir

icost by multiplying the distance by ride-hailing fare per 313

distance. This cost of the direct trip is also the upper bound of the ride-hailing sharing trip of 314
request i (after considering cost sharing of all passengers) to ensure that each passenger 315
would not pay more by ride-hailing sharing than by making a direct trip. Each vehicle has its 316
own information, including the starting point, capacity, and occupancy status. 317
 318
3.2.2. Routes of vehicles 319

The route of vehicle j consists of starting point 0

jv and other points (from 1

jv to
j

j

Zv) 320

corresponding to the origins or destinations of the requests that are served by vehicle j . The 321

points in the route are arranged in chronological order, and the destination of a request is 322
definitely after its corresponding origin in the route. Except for the starting point, other points 323
in the route are associated with the information of the arrival time, load, and corresponding 324
request (whose origin or destination is located at this point) in order to check the time window 325

and capacity constraints during ride-hailing sharing. The arrival time of the vehicle at point
j

zv , 326

denoted as j
zv

AT , can be determined only when the arrival time of the vehicle at the previous 327

point, the travel time between those two points
1 ,

j j
zzv v

t
−

, and service time
1

j
zv

s
−

are known, which 328

is expressed as
1 1 1,
+j j jj

zz z zv v v v
AT t s

− − −

+ . j
zv

AT has to obey corresponding pickup and delivery time 329

windows, which implies that j
zv

AT must be less than
()
p

j
zi v

T if
j

zv is the origin of request 330

()j

zi v , and must be less than
()
d

j
zi v

T if
j

zv is the destination of request ()j

zi v . For the load j
zv

P 331

after leaving point
j

zv , it is expressed as
()1

j j
z z

v i v
P p

−

+ and
()1

j j
z z

v i v
P p

−

− if
j

zv is the origin and 332

10

the destination of request ()j

zi v , respectively. j
z

j

v
P must not exceed vehicle capacity jq . 333

 334
3.2.3. Cost allocation 335
A critical part of ride-hailing sharing is the calculation of the sharing cost for each request. Due 336
to the complexity of the ride-hailing sharing pattern, it is impossible to determine the exact cost 337
of serving passengers of a request in advance until all passengers in this request finish their 338
trips. In this study, we adopt the equal-cost division principle on each pair of adjacent points 339
as the cost allocation strategy. For each pair of adjacent points, the fare between those two 340
points is allocated equally by all passengers traveling on this route segment. If request i is 341

served by vehicle j between
j

zv and 1

j

zv + , we can obtain 1

1

,

,

jj
z z

jj
z z

j
z

iv vi

v v

v

c p
pc

P

+

+


= . The actual 342

total cost
real

icost spent by the passengers of request i in their whole trip is the sum of the 343

cost spent in all route segments that they pass through, which means
1

real

,
jj

z z

i

i v v
z

cost pc
+

= , 344

where the range of z is determined by the route segments of vehicle j that the passengers 345

of request i travel through. As the main reason for customers choosing ride-hailing sharing 346

services is to reduce their out-of-pocket cost, the total cost
real

icost spent on the trip must be 347

equal to or less than the cost of the direct trip
dir

icost without sharing. 348

 349
3.2.4. Dynamic problem setting 350
Not all requests are received at the beginning of the modeling horizon, and we cannot know 351
the timing of receiving new requests in advance as in practice. Therefore, we cannot solve the 352
dynamic ride-hailing sharing problem as a whole. Instead, we divide the modeling horizon into 353
many intervals of equal length and divide the problem into many consecutive static ride-hailing 354
sharing subproblems. Each subproblem corresponds to one time interval. The subproblems are 355
solved in chronological order. 356
 357
Define the current time interval as the interval associated with the subproblem concerned or to 358
be solved. Before this interval, some requests were received. Some of them have not been 359
served and are still waiting to be served. During the current time interval, all requests waiting 360
to be served are handled simultaneously by solving the corresponding static ride-hailing 361
sharing subproblem. 362
 363
A longer time interval considers more requests at each execution, which leads to better 364
matching performance, whereas the passengers require waiting longer to obtain the final 365
matching result. Therefore, setting the time interval requires balancing both the matching 366
performance and the users’ waiting time. 367
 368
In this paper, for simplicity, we assume that each vehicle stays in the last drop-off location to 369
wait for requests assigned by the system if there are no passengers to deliver or pick up. This 370
assumption can be easily relaxed by adding an endpoint to the vehicle route. We also assume 371
that all customers are willing to share vehicles with others. Moreover, we do not consider the 372
effect of traffic signals and assume uniform speed, and thus the travel time and the fare between 373
two vertices are in proportion to the travel distance and remain unchanged throughout the 374
modeling horizon. At the beginning of each time interval, the new requests received in the last 375
time interval are collected by the system and added into set . At the end of each time interval, 376
the requests that have already been matched to vehicles or the order times of the requests that 377

11

exceed their corresponding latest pickup times are removed from set . Set contains all 378
the vehicles available during the current time interval. The routes of all available vehicles are 379
inherited from the matching results of the last time interval. When a vehicle is available for 380
ride-hailing sharing services, the vehicle is added to set . The vehicles are removed from 381
if they are not available. The new requests can be added to any positions of the routes if no 382
constraints are violated. Note that the requests that were matched in the previous time intervals 383
cannot be removed from the routes because the notices of matching results had already been 384
sent to the corresponding vehicles and customers. The dynamic ride-hailing sharing problem 385
is formed by linking consecutive static ride-hailing sharing subproblems. 386
 387
3.3. Mathematical model of the static ride-hailing sharing subproblem 388

The static subproblem starts with set and set . Set , which contains all requests 389
waiting to be matched, consists of (a) the new requests whose order times are during the last 390
time interval and (b) the previous unmatched requests that were received earlier than the last 391
time interval and have no matched vehicles in the previous time intervals, while the current 392
time does not exceed the latest pickup times of the requests. Set contains all available 393
vehicles during the current time interval. 394
 395

To formulate this problem, we introduce dummy destination j− for all vehicles. Let 396

 ,W i i i+ −=  be a set that contains all origins and destinations of requests in . Set 397

contains all matched requests. { , }U i i i+ −=  is the set that contains all origins and 398

destinations of requests in . u U is associated with two pieces of information: arrival 399

time uBT and matched vehicle ()j u . 400

 401

To formulate the subproblem, we define the current location
j

nowu V based on the current 402

time. The current time cT is set as the time at the end of the time interval in concern, not the 403

beginning of the time interval. Then, the current location
j

nowu V is set as the first vertex that 404

vehicle j will visit after cT on the road network. The reason for those settings is that the 405

routes in the latter time intervals, not the current time interval, can be adjusted. As shown in 406
Figure 1, the large circles represent the origins or destinations of requests, and the small circle 407
represents a point in set V . Meanwhile, the diamond shape represents the starting point of the 408

route. The current location
j

nowu is not necessarily the origin or destination of a request; it can 409

be the point in set V between two adjacent pickup (or delivery) points where the vehicle 410
passes through. 411
 412

12

Current

location

0

jv 1

jv

2

jv 3

jv

4

jv

1+

new+ new−

1−

 413
FIGURE 1 An example of inserting a new request into a vehicle route 414

 415
 416
The mathematical model of the static ride-hailing sharing subproblem in each time interval is 417
shown as follows: 418
 419

() +

real

, 1 2 3dir d order,
max , ,j j

z z

j j i i
u v iv v i v

i j v W U i i i

cost TT
f X P AT X b p b b

cost T T   

 
= − − 

− 
  420

 (1) 421
subject to 422

, {0,1}j

u vX  , , , { , }j u v W U j j+ −      ; (2) 423

+ ,
1j

i v
j v W U

X
  

  , i  ; (3) 424

+ ,
{ }

1j

j v
v W U j

X
−  

= ,  j ; (4) 425

,
{ }

1j

u j
u W U j

X −

+  

= ,  j ; (5) 426

, ,

{ } { }

0j j

v u u v

v W U j v W U j

X X
+ −     

− =  , ,j u W U     ; (6) 427

-, ,
0j j

i v v i
v W U v W U

X X+

   

− =  , ,j i     ; (7) 428

()

,

{ }

1j u

u v

v W U j

X
−  

= ,  u U ; (8) 429

()()  =j u
now

u u uu
BT BT AT BT ,  u U ; (9) 430

() , ,() (1)  =  = + +j v
now

j

v u v v u u v uu
BT BT X AT AT t s , 431

, { , },j u W U j j v U+ −        ; (10) 432

() (() ())  =  u v u vBT BT j u j v AT AT , , u v U ; (11) 433

, ,(1)=  = + +j

u v v u u v uX AT AT t s , 434

, { , },j u W U j j v W+ −        ; (12) 435

+,
(1)+ −=   j

now

j

i v u i i
X BT AT AT , ,j i   ; (13) 436

+

p0 ii
AT T  , i  ; (14) 437

d0 ii
AT T−  , i  ; (15) 438

13

,(1) ()+=  =  = +j j j

u v v u iX v i P P p , 439

, , , { , }j i u v W U j j+ −         ; (16) 440

,(1) ()−=  =  = −j j j

u v v u iX v i P P p , 441

, , , { , }j i u v W U j j+ −         ; (17) 442

j

u jP q , ,j u W U     ; (18) 443

+

,

, ,(1) ()−


=     =

u v ij i

u v u u v ji i
u

c p
X AT AT AT pc

P
, 444

, , ,j i u v W U        ; (19) 445
real dir

,

,

i

i u v i

u v V

cost pc cost


=  , i  ; (20) 446

order
−= −i ii

TT AT T , i  . (21) 447

 448
Objective function (1) consists of three terms: the number of served customers, travel cost ratio, 449

and travel time ratio. 1b , 2b , and 3b are all positive weight coefficients that define the 450

relative importance of these three components, respectively. It is noted that the smaller 451

real dir/i icost cost is, the more cost savings are; it is also noted that the smaller
d order

i

i i

TT

T T−
 is, 452

the smaller increment in travel time compared with no ride-hailing sharing case is. Therefore, 453
the objective value is larger if we get more matched requests, more savings in costs, and a 454
smaller increment in travel time. Moreover, the objective value is larger when the matched 455
request is associated with more passengers. 456
 457

Constraint (2) defines ,

j

u vX to be binary. Constraint (3) guarantees that a request can only be 458

matched by at most one vehicle. Constraints (4) and (5) ensure that each vehicle has an origin 459
and a destination in its route. Constraint (6) is a flow conservation constraint to make sure that 460
u W U  served by a vehicle must have one point on the route before and after u . 461
Constraint (7) ensures that the origin and destination must be served by the same vehicle if the 462
request is served. Constraint (8) ensures that the matching between requests and vehicles 463
formed by previous time intervals cannot be changed. Constraints (9)-(11) guarantee that the 464
order of the visited points in the route inherited from the last time interval is not changed after 465
inserting new requests. Constraints (12) and (13) ensure that new requests can only be inserted 466
after the current locations of the vehicles. Constraints (14) and (15) are the time window 467
constraints for all requests, while constraints (16)-(18) are the capacity constraints. Constraint 468
(19) calculates the passengers’ travel cost of each route segment, whereas constraint (20) 469
ensures that the total passengers’ travel cost of each request is not higher than the total 470
passengers’ travel cost without ride-hailing sharing. Constraint (21) calculates the total travel 471
time of passengers of request i if they are matched in this interval. 472
 473
In our proposed model, the origins and destinations of new requests are allowed to be inserted 474
anywhere in the vehicle route after the current vehicle location if the time, cost, capacity 475
constraints are satisfied. However, the model proposed by Santos and Xavier (2015) allowed 476
new requests to be added only after the destination point of the last delivered passenger aboard 477
if there are passengers aboard the vehicle at the current time. Moreover, constraint (8) ensures 478
that the matching between requests and vehicles formed by previous time intervals cannot 479
change so that passengers just need to accept the matching results once. This constraint cannot 480

14

be found in their model. Furthermore, both travel time and cost ratios are considered in our 481
objective function while Santos and Xavier (2015) only considered the travel cost ratio in their 482
objective function. To sum up, our model is different from the counterparts of the related 483
studies in terms of the objective function and constraints. 484
 485
4. Solution Method 486

Like Santos and Xavier (2015) and Alonso-Mora et al. (2017), we solve the dynamic ride-487
hailing sharing problem by solving its subproblems in chronological order. Unlike Santos and 488
Xavier (2015) and Alonso-Mora et al. (2017), we develop a method based on the modified 489
artificial bee colony algorithm with path relinking to solve the static ride-hailing sharing 490
subproblem for the time interval concerned. 491
 492
4.1. Modified artificial bee colony algorithm with path relinking 493

4.1.1. Basic artificial bee colony algorithm 494
The ABC algorithm is an optimization algorithm that simulates the behavior of a honey bee 495
swarm in search of food. The artificial bee colony consists of three groups of bees: employed 496
bee, onlookers, and scouts, with the objective of finding the good food source(s). Each 497
employed bee is responsible for one food source. It searches for food around a food source. 498
The employed bees share the information on their best food sources found so far with the 499
onlooker bees. Each onlooker then chooses a food source among those found by the employed 500
bees by probability, where a more profitable (better) food source has a higher probability of 501
being chosen. When the employed bee cannot find a better food source near the current source 502
after some time, the employed bee turns to be a scout to exploit a new food source in the vicinity 503
of the hive. 504
 505
The ABC algorithm is a population-based heuristic, in which a food source represents a 506
solution for the optimization problem, and the nectar amount of the food source represents the 507
fitness of the corresponding solution. The ABC algorithm begins by generating a set of 508
solutions randomly as the initial food sources, and each food source is assigned to an employed 509
bee. After initial solutions are generated, employed bees, onlookers, and scouts exploit the food 510
sources near the hive repeatedly during each iteration. In each iteration, each employed bee 511
finds a new food source near the current source using a neighborhood operator and the nectar 512
amount of the new food source (solution fitness, which is the increment on the objective 513
function value in our study) is evaluated. If the nectar amount of the new food source is more 514
than the old one, the employed bee abandons the current food source and is allocated to the 515
new food source. Otherwise, the employed bee remains assigned to the current food source. 516
Then each onlooker chooses a food source based on the nectar amount of the food sources (i.e., 517
solution fitness) shared by employed bees by the roulette wheel selection method. Onlookers 518
also exploit new food sources near the selected food sources using a neighborhood operator 519
and evaluate the nectar amount of the new food sources. After all onlookers finish the 520
exploitation process, the best new food source found by the onlookers near each food source 521
of the employed bee is determined. If the nectar amount of the best new food source is more 522
than the old one of the employed bee, the employed bee abandons the old food source and is 523
assigned to the best new one. After that, if the nectar amount of a food source has not been 524
improved for limit successive iterations, the employed bee becomes a scout, exploits a new 525
food source randomly, becomes an employed bee again, and replaces the old food source with 526
the new one. After all current food sources are checked, the new iteration of the ABC algorithm 527
starts. The whole process is repeated to search for good solutions until the stop condition is 528
reached. The steps of the ABC algorithm are presented as follows: 529

15

 530
1. Inputs: Population size (number of food sources) n , maximum number of iterations 531

M , and limit L . 532
2. Randomly generate a set of solutions as the initial food sources , 1, ,ix i n= . Each 533

food source is allocated to an employed bee. 534
3. Calculate the fitness ()if x of food source , 1, ,ix i n= . Set 0, 1, ,il i n= = . 535

4. For iteration 1m = to M , do 536
For 1i = to n , do 537

i. Perform a neighborhood operator on the food source ix to determine a new 538

food source ix near the food source. 539

ii. If () ()i if x f x , then replace ix with ix for the corresponding employed 540

bee and 0il = , else 1i il l= + . 541

End for 542
 543
Set

iG = , where iG is the set of new neighbor food sources of ix found by the 544

onlookers. 545
 546
For 1j = to n , do 547

i. Select a food source ix using the roulette wheel selection method based on 548

the fitness of all food sources. 549
ii. Perform a neighborhood operator on ix to obtain a new food source ix near 550

the food source. 551
iii.

i i iG G x=  552

End for 553
 554
For 1i = to n , do 555

i. Select ˆ arg max ()
ii x Gx f x= , where ˆ

ix is the best food source in iG . 556

ii. If ˆ() ()i if x f x , then replace ix with ˆ
ix for the corresponding employed 557

bee and 0il = , else 1i il l= + . 558

End for 559
 560
For 1i = to n , do 561

i. If
il L= , randomly determine a new food source ix and replace ix with 562

ix . 563

End for 564
End for 565
 566

4.1.2. Modified artificial bee colony algorithm 567
 568
The ABC algorithm is the main algorithm to determine routes of ride-hailing vehicles. To speed 569
up finding a good solution, path relinking is embedded into the ABC algorithm to explore new 570
and better solutions between two known solutions. It is implemented when a new current best 571
solution is found while executing the ABC algorithm. To further improve the solution search 572
efficiency, the vantage-point tree is deployed to reduce the solution search space and 573
constructed before establishing the initial solution. Contraction hierarchies is incorporated into 574

16

the ABC algorithm to determine the shortest path in the studied problem. The detailed 575
information about the vantage-point tree and path relinking will be described in Section 4.2 576
and Section 4.8, respectively. Figure 2 shows the procedure of the resultant solution method, 577
namely the modified artificial bee colony algorithm. The algorithm ends when running time 578

runT reaches the time limit, which is equal to the length of time interval intervalT . 579

 580

Start

Vantage point

tree

Initial solution

Employed bee

Food selection and

onlooker

Scout

No

Path relinking

Yes

No

Yes

End

Memorize the

incumbent

 581
FIGURE 2 Flowchart of the modified artificial bee colony algorithm 582

 583
 584
4.2. Vantage-point tree 585

A VP tree is a metric tree that segregates the whole set of vertices of the network into small 586
sets by choosing vantage points (i.e., vantage vertices). The VP tree is efficient in conducting 587
the nearest neighbor search because the vertices are stored in the tree structure, and the search 588
can happen only in small parts of the tree (Yianilos, 1993). The VP tree contains two important 589
segments, including the construction segment and the searching segment. For the construction 590
segment, a vantage point (vp) is determined to divide all the vertices into two smaller parts 591
during each partition. The vertices whose distance to the vantage point is less than a threshold 592
(mu) are stored in the left sub-tree, and the vertices whose distance to the vantage point is larger 593
than the threshold are stored in the right sub-tree. Each node in the tree stores the information 594
of the vantage point and threshold. A tree data structure is created by recursively implementing 595
this procedure to divide the data starting from the root. After building the tree using the 596
construction segment, the searching segment is executed at the beginning of the static 597

17

subproblem, when the information of new requests is known. In this study, the range nearest 598
neighbor search is used in the searching segment, in which we want to determine all the vertices 599
within the radius tau around the query vertex q . Let the distance between any two vertices 600

m and n be ()dist ,m n . The pseudo-code of the VP tree in this paper is summarized as follows: 601

 602
 603
Part 1: Construction segment 604

1. Inputs: A set S containing all vertices. 605
2. Build_VP_tree (S). 606
3. Return a VP tree. 607

function Build_VP_tree (S): 608
i. If S = , then return  . 609

ii. Establish a new node: new(node). 610
iii. Determine the vantage point at the node (node.vp := Select_vp (S)) and 611

determine the threshold at the node (node.mu := Median (,)S vp). 612

iv. Determine the set of vertices in the left sub-tree 613

(:= { { } dist(,)< }L s S vp vp s mu −) and determine the set of vertices in the 614

right sub-tree (:= { { } dist(,) }R s S vp vp s mu − ); 615

v. Construct the new nodes in the next level (:= Build_VP_tree ()node.left L , 616

 := Build_VP_tree ()node.right R). 617

vi. return node. 618
function Select_vp (S): 619

i. Choose a random sample P from S . 620
ii. Set := 0best_spread . 621

iii. For p P , do 622

1) Choose a random sample D from S . 623
2) Determine the value of spread (:= SecondMoment (,)spread D p). 624

3) If spread > best_spread, then replace best_spread with spread and 625
replace best_p with p. 626

End for 627
iv. return best_p . 628

function Median (,)S p : 629

i. Sort in accordance with the distance from S p . 630

ii. Determine threshold mu (the distance that is equal to the median among all 631
distances from all vertices in S to p). 632

iii. Return mu. 633
function SecondMoment ()D, p : 634

i. Calculate  with
dist()

d D
d, p

N


, where N is the number of vertices in D. 635

ii. Calculate spread with

2(dist(,))
d D

d p

N




−
. 636

iii. return spread. 637
 638
Part 2: Searching segment 639

1. Inputs: A query vertex q , the desired radius tau , and the VP tree. 640

18

2. Search_VP_tree (root_node). 641
3. Return the vertices around the query vertex within tau . 642

 643
procedure Search_VP_tree (node) 644

i. If node = , then, return  . 645
ii. If dist(, .)q node vp tau mu−  , then Search_VP_tree (node.left); if 646

dist(, .)+q node vp tau mu , then Search_VP_tree (node.right). 647

In this study, the VP tree is used to find the available vehicles around the origin of a request 648
within a radius. The radius for each request is different because it is calculated based on the 649
latest pickup and delivery times of the request, which means the vehicles outside this circle are 650
impossible to pick up the customers of this request timely. At the beginning of each time 651
interval, request i has matching set

iK , the latest pickup time, and the last delivery time. 652

Matching set
iK of request i is built by inserting all vehicles still available into the set. To 653

determine the radius of request i , we define the maximum slack time of request i , which is 654
the maximum time that a vehicle can spend to pick up customers from its current location to 655
the origin of the request. The maximum slack time of request i is equal to 656

p d ,min(,)o d

i c i c iT T T T st− − − , where p

iT is the latest pickup time, d

iT is the latest delivery 657

time, cT is the current time, and ,o d

ist is the shortest travel time from the origin to the 658

destination for request i . By multiplying the vehicle speed, the maximum slack time can be 659
transformed into the maximum pickup distance, which is the radius of the circle with the origin 660
of request i as the center and can be used to distinguish infeasible matching between request 661
i and vehicles. All vehicles outside this circle at the current time are impossible to reach the 662
origin or destination in time and hence they are removed from the matching set

iK . After that, 663

request i can only match the vehicles selected from
iK during executing the algorithm to 664

narrow the search space for each request and to improve the computational efficiency. 665
 666
4.3. Solution representation 667

The solution (food source) of the MABC algorithm is a matching result between requests and 668
drivers. The solution is formed by a set of routes of vehicles. Each route is represented in the 669
form of a vector with the length of 1 2n+ , in which n is the number of requests matched to 670
this vehicle route, and the first element in the vector means the starting point of this vehicle. 671
Figure 3 illustrates a representation of a route for a ride-hailing vehicle after inserting a new 672

request, in which point 0 in the route is the starting point of the vehicle. Points L+ and L− 673
(L=1,2,new) represent the origin and destination of request L , respectively. In MABC, each 674

point in the route stores additional information, including the number of passengers aboard and 675
the arrival time at this point. 676
 677

1+ 2+ 1− new+ new−
2−0

 678
FIGURE 3 Solution representation of a vehicle route 679

 680
 681
4.4. Initial solution 682

An empty set M is created to store the matched new requests during the initial solution 683
process. An initial solution is created by assigning a vehicle from the matching set

iK 684

randomly at a time to a request in but not in M . The request is inserted into all possible 685

19

locations in the route of that vehicle. If there are insertions that satisfy both the time window 686
and the capacity constraints, then the insertion with the maximum objective value is selected, 687
the corresponding vehicle is assigned to this request, and this request is added into M . 688
Otherwise, this request is skipped, and the next request in but not in M is chosen. Unlike 689
the capacity and the time window constraints that are difficult to satisfy with the increasing 690
detours caused by adding requests, travel cost constraints are usually satisfied—the travel cost 691
of each request usually decreases due to ride-hailing sharing. Therefore, the travel cost 692
constraints of the corresponding vehicle route for each request are checked only after the 693
capacity and time window constraints are checked. If the travel cost constraints are not satisfied 694
by the route of that vehicle, the requests in that were assigned to this route are removed 695
from M . This route is restored to the status without those new requests. The above procedure 696
is repeated until M collects all requests in , or a pre-defined maximum number of 697
iterations is reached. 698
 699
4.5. Selection of food sources 700

At each iteration of the MABC algorithm, each onlooker selects a food source based on the 701
information shared by the employed bees. The method used in choosing a food source is the 702
roulette-wheel selection method. The probability of choosing food source ix is equal to 703

1

()
()

()

i
i n

ii

z x
p x

z x
=


=


, where ()iz x is the increment in the objective value of food source ix 704

after inserting new requests. This increment means the contribution of the new requests to the 705
objective value. A better solution has a larger increment. 706
 707
4.6. Neighborhood operators 708

A neighborhood operator is applied to search for a new solution around the current solution. 709
Two neighborhood operators, namely add operator and swap operator, are used in the MABC 710
algorithm considering the characteristics of the ride-hailing sharing problem. Whenever 711
employed bees or onlookers seek a new solution, one of the two neighborhood operators is 712
used randomly. If a better solution is found by the neighborhood operator, the current solution 713
is replaced with that new solution. 714
 715
4.6.1. Transfer operator 716
The transfer operator randomly selects request i from set . If request i is matched a 717
vehicle, the operator chooses vehicle j different from the currently matched vehicle from the 718

corresponding matching set
iK . Then an attempt to remove request i from the original route 719

and insert i into the new route of vehicle j is made (and the insertion method will be 720

described in Section 4.7). If request i has not been matched a vehicle, the request is randomly 721

added to vehicle j from the matching set
iK . In each case, if the insertion is feasible and the 722

objective function of the new solution is larger than the current one, the new solution replaces 723
the current one, and the limit count of this food source is reset as zero. Otherwise, the limit 724
count increases by one. 725
 726
4.6.2. Swap operator 727
Each swap operator randomly chooses two requests 1i and 2i from set and their 728

corresponding matched vehicles are 1j and 2j , respectively. Before changing the vehicle 729

routes, we require to check the matching sets of both requests. If 1j is in the matching set 730

20

2i
K and 2j is in the matching set

1i
K , 1i and 2i are removed from their original routes and 731

then 1i and 2i are inserted into the new routes of vehicle 2j and 1j , respectively (the 732

insertion method will also be described in Section 4.7). If a new, feasible, and better solution 733
is found by the swap operator, the current solution is replaced with the new solution, and the 734
limit count of this new food source is set as zero; otherwise, the limit count increases by one. 735
Note that if the condition that 1j is in matching set

2i
K and 2j is in matching set

1i
K is not 736

satisfied, the transfer operator, instead of the swap operator, will be used for neighborhood 737
search. 738
 739
4.7. Insertion method 740

When request i is matched to vehicle j , both origin i+ and destination i− of request i 741

are required to insert into the route of j . The idea of inserting a request into the route is to 742

check all possible insertion locations and then determine the best location to insert the request. 743

There are two principles to determine the possible insertion locations: First, i+ and i− can 744
be inserted only after the points whose arrival time is later than the current time; second, origin 745

i+ must be located before destination i− . For each possible insertion attempt, the vehicle route 746
is restructured, and the distance between each pair of adjacent vertices (e.g., the origin of a 747
request, the destination of a request, and the current location of the vehicle) in the route is 748
calculated based on the shortest path between them using contraction hierarchies (Geisberger 749
et al., 2008). Then we can recalculate the arrival time and the number of passengers right after 750
the points of the vehicle route that are obtained after the insertion, as well as the travel cost of 751
each request and the objective value. The points that have been influenced by the insertion are 752
evaluated to check whether there are violations of the time window, capacity, and travel cost 753
constraints. The new and feasible insertions are recorded, and the insertion that yields the best 754
objective value among these insertions is chosen as the new solution to replace the old one. 755
However, no insertion will be undergone if none of the possible insertions satisfied all the 756
constraints. 757
 758
Note that contraction hierarchies is a speed-up method for searching for the shortest path in a 759
network. It is a two-phase approach consisting of the preprocessing and query phases. 760
Contraction hierarchies has advantages of quick preprocessing times, low space requirements, 761
and fast query times. Each query only needs to take a short time (microseconds). Therefore, it 762
can be used in solving large-scale problems (Geisberger et al., 2012). 763
 764
4.8. Path relinking 765

In this study, path relinking is incorporated into the ABC algorithm to improve solution quality. 766
The idea of path relinking is to try to determine a new better solution between two known good 767
solutions. Path relinking is performed when the limit count of at least one food source 2s is 768

equal to the limit L. 769
 770
At the beginning of path relinking, there are two known good solutions, including incumbent 771

1s and food source 2s with the limit count equal to L. If 2s is better than
1s , we replace

1s 772

with 2s and stop. Otherwise, path relinking is applied to those two solutions. When executing 773

path relinking,
1s is set as the initial solution (i.e., 1s s=) and food source 2s with the limit 774

count equal to L is set as the guiding solution. The initial solution is transformed into the 775
guiding solution during path relinking by implementing a series of operations sequentially to 776

21

search for the new solutions (if any) that are better than both the initial and guiding solutions. 777
The reason for choosing the best solution as the initial solution is that the new and better 778
solutions are more probably found near incumbent

1s . 779

 780
At each iteration of path relinking, the differences between s and 2s are first identified. 781

There are three possible situations for each of the requests in , including: (a) the matched 782
vehicles of the request in s and 2s are different, (b) the request matches a vehicle in s but 783

does not match any vehicles in 2s , and (c) the request does not match any vehicles in s but 784

matches a vehicle in 2s . The transformations for s consist of (a) removing the request from 785

the route of the matched vehicle in s and inserting the request to the route of the matched 786
vehicle in 2s for the first situation, (b) removing the request from the vehicle route for the 787

second situation, and (c) adding the request into the route of the matched vehicle in 2s for the 788

third situation. By revising each difference between s and 2s separately, we can get several 789

new solutions compared to s . If all new solutions are not better than s , the path relinking 790
procedure stops. Otherwise, the solution with the best improvement on the objective function 791
value among new solutions is adopted and replaces s , and the next iteration begins. After path 792

relinking,
1s is replaced with s found by path relinking. 793

 794
5. Computational Experiments 795

This section presents the results and analyses involving the MABC algorithm for the ride-796
hailing sharing problem. The GRASP heuristic described by Santos and Xavier (2015) is taken 797
as a benchmark, and its performance is used to compare with the performance of the MABC 798
algorithm proposed in this paper. All experiments are performed on an Intel Core i7-4770 3.40 799
GHz CPU desktop computer, with 32 GB memory. The code is implemented in C++ with GCC 800
(GNU Compiler Collection) using Linux (Ubuntu 16.04). 801
 802
The ride-hailing fare is assumed to be proportional to travel distance and is set as one dollar 803
per kilometer. The speed of all vehicles on all roads is set as 30 km/hour so that the travel time 804
of each link can be calculated using the given link distance and speed. The coefficients of

1b , 805

2b , and 3b are set as 2, 0.9, and 0.9, respectively. For simplicity, the service time at each 806

pickup or delivery point is set as 0. Unless stated otherwise, the length of a time interval is set 807
as 10 s. All experiments are executed 20 times, and the result of each experiment is obtained 808
from the average value in 20 runs. 809
 810
Each request may have several ride-hailing customers to take a vehicle in reality. However, we 811
set the number of ride-hailing customers in each request equal to 1 for simplicity. We also set 812

that the latest pickup time p

iT is 5 min (i.e., 300 s) later than the order time order

iT , which 813

means that ride-hailing customers cannot wait for more than 5 min at their origin. The latest 814

delivery time d

iT of request i is set as the order time order

iT plus the maximum allowable 815

delay. To calculate the maximum allowable delay, we define
delayco as the delay coefficient, 816

which is greater than 1 and represents the tolerance of the passengers due to the increase in 817
travel time caused by the detours in ride-hailing sharing. The maximum allowable delay is 818
equal to the product of

delayco and the shortest travel time between the origin and destination 819

of request i (which can be determined by the contraction hierarchies highlighted in Section 820

22

4). Unless specified otherwise, the delay coefficient
delayco is 1.3. 821

 822
5.1. Data description 823

The ride-hailing request data in Chengdu, China, are used in the computational experiments. 824
Chengdu is a typical city with a circular layout, centered on Tianfu Square, which can also be 825
reflected in the layout of the road network in Chengdu. The map of Chengdu is shown in Figure 826
4. The whole city is connected by a “ring and radial” highway network, and the circular road 827
network divides the city into multiple regions. The Chengdu map data used in our study is 828
downloaded from Open Street Map, which consists of 34,186 vertices and 78,157 edges. This 829
map data are used to create a road network for the ride-hailing sharing problem. 830
 831
The number of orders varies over time of day, and there are few orders in the night time. To 832
illustrate a worst-case scenario, we process one-hour ride-hailing request data between 0:00 833
am and 1:00 am on November 1, 2016, in Chengdu, China, obtained from Didi. The total 834
number of orders is 3,661 in one hour. Each order has a set of information, including the order 835
ID, order time, and longitudes and latitudes of the origin and destination. A sample of the ride-836
hailing data is shown in Table 2. The order ID is desensitized by Didi to protect the privacy, 837
and the order time is represented through the time stamp. The geolocations are given according 838
to the GCJ-02 coordinate. As shown in Figure 5, the spatial distributions of the request origins 839
and destinations have a similar pattern, in which the orders are denser when they are closer to 840
the city center. 841
 842
 843

 844
Figure 4 The map of Chengdu, China 845

 846
Table 2 A sample of the ride-hailing data in Chengdu, China 847

Order ID Order time
Longitude

(origin)

Latitude

(origin)

Longitude

(destination)

Latitude

(destination)

fbcgi49b7j5yv 1477964797 104.09464 30.703971 104.08927 30.65085

48adc4bhcb6t 1477985585 104.076509 30.76743 104.0637 30.58951

aci8afhg8k@ 1478004952 104.019699 30.689007 104.105324 30.66395

6fhhfe952dar 1477989840 104.03609 30.62269 104.04386 30.68232

bd7ea2ld3b7z 1477958005 104.115997 30.652313 104.104421 30.695113

…… …… …… …… …… ……

 848

23

 849

 850
 (a) Distribution of order origins (b) Distribution of order destinations 851

Figure 5 Distributions of order origins and destinations in Chengdu, China 852
 853
 854
The vehicles used in the study are randomly generated based on the regions, and the number 855
of ride-hailing vehicles is similar to the real situation. We analyze the trajectory data of the 856
ride-hailing vehicles in a day in Chengdu and determine the number of available vehicles in 857
each hour of the day. The number of vehicles is around 2,400 between 0:00 to 1:00, so we 858
generate 2,400 vehicles in this study to serve customers. Based on the circular road network, 859
as shown in Figure 4, we can roughly divide Chengdu into five regions. Each ring road is 860
approximately represented by a circle, and the center of all circles is the center of the city 861
(Tianfu Square). The radii of the four concentric circles are approximately 4.8 km, 9.5 km, 13.6 862
km, and 35 km. The circles separate the city into five parts, in which region one is within the 863
4.8-km radius circle, region two is between the 4.8-km and the 9.5-km radius circles, region 864
three is between the 9.5-km and the 13.6-km radius circles, region four is between the 13.6-km 865
and the 35-km radius circles, and region five is beyond the 35-km radius circle. The distribution 866
of vehicles in each region at the beginning is according to the number of request origins in this 867
area. The ratios of request origins in each region are obtained to be 0.5865, 0.3189, 0.0744, 868
0.0299, and 0.0004, respectively. To determine the origin of each vehicle, a region is randomly 869
selected using the above ratios as selection probabilities, and then the origin of each vehicle is 870
randomly chosen from the vertices in the selected region. 871
 872
5.2. Parameter tuning 873

The MABC has three parameters to tune, including the number of food sources, limit, and the 874
maximum number of iterations. However, in the current dynamic ride-hailing sharing problem, 875
the running time of the algorithm for each subproblem is equal to the time interval of each 876
subproblem. Therefore, we set the stopping condition to be the length of the time interval 877
instead of the maximum number of iterations. In other words, the algorithm must stop when 878
the running time reaches the given length of the time interval, and the number of iterations can 879
be ignored. Therefore, we require tuning only two parameters: the number of food sources and 880
limit. Figure 6 displays the results of the parameter tuning with different numbers of food 881
sources and limit values. 882
 883

24

 884
(a) (b) 885

Figure 6 Parameter tuning with the time interval of 10 s and the delay coefficient of 886
1.3: (a) Tuning of limit; (b) Tuning of the number of food sources 887

 888
As shown in Figure 6(a), the objective value increases with limit until reaching a threshold. A 889
too small limit value restricts the algorithm to obtain very good nearly local optima, whereas a 890
too large limit value restricts the algorithm to explore more new solutions. As shown in Figure 891
6(b), the objective value decreases with the increasing number of food sources except for the 892
limit of 900. By comparing the results, the best combination of the parameters is achieved when 893
the number of food sources is 3, and the limit equals 900. Therefore, the subsequent sections 894
adopt this setting. Providing that the number of requests is roughly uniform within an hour, 895
when the time interval is longer, it is expected that the value of limit should be larger to handle 896
the increase in the number of requests. Based on Figure 6, parameter limit is proportional to 897
the length of time interval e, and this value is approximately equal to 90e. Thus limit = 90e is 898
used in all the experiments in the following subsections. 899
 900
5.3. Effect of the time interval 901

In ride-hailing sharing operations, customers are not willing to spend too much time on 902
matching. However, the system requires time to collect information about the requests and 903
vehicles and run the matching algorithm. In this study, we consider three time intervals, i.e., 10 904
s, 30 s, and 60 s. The maximum waiting time from placing a ride-hailing order by phone to 905
receiving the matching result equals twice the length of the time interval. For instance, the 906
maximum waiting time is 2 min for the time interval of 60 s, in which customers have to wait 907
for 60 s for the operator of the ride-hailing service to collect all requests during the interval and 908
another 60 s for waiting for the matching results. 909
 910
To compare the results under different time interval lengths, seven performance measures are 911
adopted, as shown in Table 3. The objective value is the most important and comprehensive 912
measure, which evaluates the combined effects of the number of served customers, the travel 913
cost ratio, and the travel time ratio simultaneously. The matching percentage is the percentage 914
of the matched requests in the total requests collected. The sharing percentage is the percentage 915
of requests involving ride-hailing sharing in all matched requests. The average out-of-pocket 916
cost saving percentage per passenger (

moneyR), due to the benefits of sharing ride-hailing fares, 917

is expressed as 918
dir real

' '

' '
'dir dir real

' ' ' '
'dir

'' '

' '

' '

()

()

100% 100%

i i

i i
i

i D i i i
i

i Di i
money

i i

i D i D

cost cost

p p
p

cost cost cost
p

p cost
R

p p





 

−


−



=  = 




 
, (22) 919

25

where D is the set of matched requests and real

'icost and dir

'icost are the total passengers’ out-920

of-pocket costs from the origin to the destination of request 'i with and without ride-hailing 921
sharing, respectively. The percentage of total out-of-pocket cost saving (

moneyRT) is expressed 922

as 923
dir real

dir real' '
' ' '

' ' ' '

dir dir

' '
' '

' '

(()) ()

100%= 100%

()

i i
i i i

i D i i i D
money

i i
i i D

i D i

cost cost
p cost cost

p p
RT

cost cost
p

p

 




−  −

=  



 


. (23) 924

Since the travel fare per unit distance is fixed,
moneyRT can also be interpreted as the 925

percentage of total vehicle travel distance saving of the whole system. Regarding the increment 926
in time, the average travel time increment percentage per passenger timeR , which is brought by 927

the detours in ride-hailing sharing, is expressed as 928
real dir

' '
'dir

' '

'

'

()

100%

i i
i

i D i
time

i

i D

t t
p

t
R

p





−


= 




, (24) 929

where real

'it is the actual combined in-vehicle travel and waiting time and dir

'it is the shortest 930

travel time from the origin to the destination of request 'i without ride-hailing sharing. 931
Moreover, the percentage of total travel time increment

timeRT is expressed as 932
real dir

' ' '

'

dir

' '

'

()

100%
()

i i i

i M
time

i i

i M

t t p

RT
t p





− 

= 





. (25) 933

It is noted that
moneyR and timeR are respectively the out-of-pocket cost saving percentage and 934

the travel time increment percentage based on individuals whereas
moneyRT and

timeRT are 935

the corresponding measures based on the whole system. 936
 937
As shown in Table 3, a longer time interval results in a larger objective value. In this paper, we 938
assume that all matched requests in the previous time intervals cannot be modified in later time 939
intervals. Therefore, when the time interval is longer, the static subproblems have more chances 940
to get better solutions. Meanwhile, a longer time interval can have a larger average out-of-941
pocket cost saving percentage per passenger, which means that ride-hailing sharing can 942
generate more economic benefits (i.e., cost reduction) for each request when the length of the 943
time interval is longer. Moreover, by comparing the values of

moneyRT and
timeRT , it can be 944

seen that a longer time interval can result in a larger overall saving in money and a smaller 945
overall increment in time. However, a longer time interval has no advantage in the matching 946
percentage and sharing percentage, because a longer interval implies a lower frequency of 947
matching, which leads to a higher probability of missing feasible vehicles for matching. 948
 949
Regarding the general impact brought by ride-hailing sharing, Table 3 shows that the average 950
out-of-pocket cost saving percentage per passenger

moneyR can reach more than 26%, and the 951

average travel time increment percentage per passenger timeR is only around 15%. This means 952

that passengers can use less proportion of extra travel time to exchange for a larger proportion 953
of money-saving due to ride-hailing sharing. This implies that ride-hailing sharing is a good 954
choice for those who have a high tolerance for time and want to save money. 955

26

 956
Table 4 presents the t-test results of the differences in the average objective values between the 957
experiments with different time intervals. From the results in Table 3 and Table 4, we can 958
conclude that the differences in the objective values in different groups are significant, and the 959
60-second time interval achieves the best results, as it performs the best in most of the 960
performance measures. These results imply that customers have to spend more time waiting 961
for the matching results when the operator wants to improve system performance. 962

 963
Table 3 Performance comparison in terms of different time intervals 964

Time

interval

Objective

value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s 1677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%

30 s 1682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%

60 s 1689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%

 965
Table 4 T-tests on the difference between average objective values 966

Test Difference in mean t-statistic p-value

10 s vs. 30 s 5.64 5.34 0.00

30 s vs. 60 s 6.97 5.04 0.00

 967
5.4. Effect of path relinking 968

This section investigates the effect of the inclusion of path relinking into the resultant solution 969
algorithm. Table 5 shows that all the differences in objective values with and without path 970
relinking are statistically significant (as reflected from the p-value), and the inclusion of path 971
relinking can significantly improve the solution quality regardless of the length of the time 972
interval. Among all three time intervals, the solution algorithm with path relinking (i.e., the 973
proposed MABC algorithm) can achieve a larger sharing percentage, a higher percentage of 974
travel cost sharing per passenger, and a higher percentage of total out-of-pocket cost saving. 975
Therefore, it is better to integrate path relinking into the solution algorithm to achieve a better 976
solution. 977
 978
Table 5 Performance comparison of solution methods with or without path relinking 979

Time

interval
PR

Objective

Value

p-

value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s
With PR 1,677.33

0.00
85.24% 72.10% 26.32% 15.48% 25.73% 16.25%

Without PR 1,668.81 85.27% 71.35% 25.84% 15.35% 25.11% 16.01%

30 s
With PR 1,682.97

0.00
85.08% 73.28% 26.70% 15.56% 25.73% 16.23%

Without PR 1,675.86 84.94% 72.71% 26.43% 15.50% 25.47% 16.15%

60 s
With PR 1,689.94

0.04
85.15% 73.11% 26.87% 15.51% 26.03% 16.14%

Without PR 1,686.38 85.08% 73.03% 26.79% 15.55% 25.97% 16.12%

Note: ‘PR’ stands for ‘path relinking’. 980
 981
5.5. Effect of the number of vehicles and percentage of willingness-to-share 982

In the previous section, we assume that all passengers are willing to share a vehicle with others. 983
The percentage of willingness-to-share means the proportion of passengers who want to take 984
ride-hailing sharing services in the total number of passengers who want to take ride-hailing 985
services. When the value of the percentage of willingness-to-share is 50%, half of the 986
passengers want to share the vehicles, while the other half of passengers only want to ride alone 987

27

without sharing. In this section, the length of time interval used in the simulation is 60 s. The 988
passengers who want to share a vehicle are randomly chosen from all requests when the 989
percentage of willingness-to-share is 50%. Moreover, when additional candidate vehicles are 990
introduced into this experiment, the origins of those additional vehicles are determined 991
randomly according to the strategy described in Section 5.1. As shown in Tables 6 and 7, the 992
objective value and the matching percentage increase when the number of vehicles increases 993
and vice versa. However, the upward trend becomes slow when the number of vehicles is larger 994
than 10,000. When the percentage of willingness-to-share decreases, both the objective value 995
and the matching percentage decrease. Moreover, when the number of vehicles is large, the 996
matching percentage slightly increases as the percentage of willingness-to-share increases. 997
Table 8 shows that the sharing percentage decreases with the decreasing percentage of 998
willingness-to-share and the increasing number of vehicles. It demonstrates that few vehicles 999
for ride-hailing services can promote ride-hailing sharing. Overall, the trends agree with our 1000
expectations. 1001
 1002

Table 6 Comparison of the objective value in terms of the number of vehicles and 1003
percentage of willingness-to-share 1004

Objective value
Number of vehicles

1,000 2,400 6,000 10,000 15,000

The

percentage

of

willingness-

to-share

0 551.76 977.90 1,235.85 1,307.50 1,349.07

50% 807.74 1,265.21 1,465.05 1,522.57 1,562.37

100% 1,210.15 1,689.94 1,840.11 1,882.02 1,905.40

 1005
Table 7 Comparison of the matching percentage in terms of the number of vehicles 1006

and percentage of willingness-to-share 1007

Matching percentage
Number of vehicles

1,000 2,400 6,000 10,000 15,000

Percentage

of

willingness-

to-share

0 47.75% 77.68% 89.54% 92.13% 93.50%

50% 54.14% 81.23% 90.17% 92.35% 93.72%

100% 61.49% 85.15% 91.51% 93.01% 93.99%

 1008
Table 8 Comparison of the sharing percentage in terms of the number of vehicles and 1009

percentage of willingness-to-share 1010

Sharing percentage
Number of vehicles

1,000 2,400 6,000 10,000 15,000

Percentage

of

willingness-

to-share

0 0.00% 0.00% 0.00% 0.00% 0.00%

50% 36.98% 32.58% 31.35% 30.46% 30.25%

100% 77.43% 73.11% 71.19% 70.51% 70.21%

 1011
5.6. Effect of the delay coefficient 1012

This section discusses the effect of the delay coefficient
delayco on the performance measures 1013

introduced in Section 5.3. Table 9 compares the results with different lengths of time intervals 1014
using different values of

delayco . For all lengths of time intervals, a higher delay coefficient 1015

28

achieves better results on the objective value and all performance measures except for timeR 1016

and
timeRT . It is reasonable because a larger coefficient means a larger tolerance of passengers 1017

to longer travel time, which allows the operators to have more feasible matches but leads to 1018
larger timeR and

timeRT . 1019

 1020
Table 9 Performance comparison in terms of delay coefficients 1021

Time

interval

Delay

coefficient

Objective

value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s
1.3 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%

1.5 2,136.25 88.20% 80.12% 33.53% 23.37% 32.17% 24.82%

30 s
1.3 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%

1.5 2,149.78 88.35% 80.35% 33.89% 23.39% 32.64% 24.72%

60 s
1.3 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%

1.5 2,157.17 88.25% 80.72% 34.28% 23.48% 32.83% 24.73%

 1022
5.7. Analysis of the objective function 1023

In this paper, there are three components considered in the objective function, including the 1024
number of served customers, the travel cost ratio, and the travel time ratio. Either a too small 1025
travel cost ratio or a too large travel time ratio can prevent customers from selecting ride-hailing 1026
sharing services. To illustrate the importance of considering travel time and cost ratios in the 1027
objective function, two new objective functions are introduced. The first one excludes the travel 1028
time ratio by setting 3b as zero, while keeping

1b and 2b unchanged. The second one 1029

excludes the travel cost ratio by setting 2b as zero, while keeping
1b and 3b unchanged. 1030

 1031
As shown in Table 10, when the travel time ratio is not considered in the objective function, 1032
the average travel time increment percentage per passenger and the percentage of total travel 1033
time increment increase significantly. The ride-hailing matching trips allow long detours to 1034
serve customers. However, long detours lower the allowable number of additional passengers 1035
served in the later time intervals due to the fixed time window of passengers aboard, leading 1036
to the reduction in the sharing percentage and thus the reduction in

moneyR and
moneyRT . When 1037

the travel cost ratio is not considered in the objective function, the sharing percentage, the 1038
average out-of-pocket cost saving percentage per passenger, and the percentage of total out-of-1039
pocket cost saving decrease significantly because ride-hailing sharing requires vehicles to 1040
detour to pick up customers and increase the travel time ratio. Meanwhile, the reduction in the 1041
sharing percentage induces the decrease in timeR and

timeRT because fewer ride-hailing 1042

sharing activities imply fewer detours experienced by the passengers. Therefore, both the travel 1043
time ratio and travel cost ratio are important components in the objective function to achieve 1044
better ride-hailing sharing services. 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054

29

Table 10 Comparison of different objective functions 1055

Time

interval

Objective

Function

Objective

value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s

Normal 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%

TIME- 4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83%

COST- 3,904.86 86.07% 35.86% 9.75% 9.89% 7.06% 9.06%

30 s

Normal 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%

TIME- 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71%

COST- 3,908.42 86.10% 35.47% 9.51% 9.78% 6.74% 9.02%

60 s

Normal 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%

TIME- 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64%

COST- 3,897.30 85.77% 34.04% 8.94% 9.61% 6.49% 8.87%
Note: Normal = the objective function with the three components mentioned in Equation (1), TIME- = the 1056
objective function with the number of matched requests and the travel cost ratios only, COST- = the objective 1057
function with the number of matched requests and the travel time ratios only. 1058
 1059
5.8. Comparison to GRASP with path relinking 1060

The performance of the proposed method is compared to GRASP with path relinking proposed 1061
by Santos and Xavier (2015). There are four substantial differences between the MABC 1062
algorithm of this paper and their method (named GRASP). First, the adopted main algorithm is 1063
different (i.e., the ABC algorithm versus GRASP). Second, the MABC algorithm incorporates 1064
the VP tree to narrow the search range for the requests. Due to the adoption of the VP tree, the 1065
solution initialization methods between the MABC algorithm and GRASP are different, in 1066
which GRASP uses the greedy method to match vehicles with feasible requests, while the 1067
MABC algorithm uses the greedy method to match requests with feasible vehicles (described 1068
in Section 4.4). Third, this paper introduces a transfer operator in addition to the swap operator 1069
that has been adopted in GRASP. Fourth, GRASP allows new requests to be added only after 1070
the destination point of the last delivered passenger aboard if there are passengers aboard the 1071
vehicle at the current time, while the MABC algorithm has no such restriction (e.g., Figure 1). 1072
The MABC algorithm can be viewed as the solution method obtained by introducing the four 1073
major modifications to GRASP. To have a fair comparison of the performance between GRASP 1074
and the MABC algorithm, the parameter setting for GRASP is determined based on the strategy 1075
presented by Santos and Xavier (2015) and the dataset mentioned in Section 5.1. 1076
 1077
To clearly illustrate the effects of introducing each modification to GRASP on solving the 1078
studied problem, three additional new methods, which are the variants of either the MABC 1079
algorithm or GRASP, are proposed. Table 11 describes these variants. Each method in Table 11 1080
only has one difference compared with its adjacent method. 1081
 1082

Table 11 Comparison of different methods solving the dynamic ride-hailing sharing 1083
problem 1084

Method Main algorithm
Initialization

Method
Operators

Insertion

restriction

GRASP (Santos

and Xavier, 2015)

GRASP Vehicle Swap Yes

GRASP+ GRASP Vehicle Swap No

ABC-- ABC Vehicle Swap No

ABC- ABC Vehicle Swap + transfer No

MABC ABC Request + VP Swap + transfer No

30

tree
Note: Vehicle = initialization method using the greedy method to match vehicles with feasible requests; Request 1085
= initialization method using the greedy method to match requests with feasible vehicles; Swap = swap operator, 1086
Transfer = transfer operator. 1087
 1088
As shown in Table 12, the method using the MABC algorithm proposed in this paper (MABC) 1089
performs the best. The variants of the MABC algorithm and GRASP, which include new 1090
features to the ABC algorithm, yield a better solution compared with GRASP. The comparison 1091
between GRASP and GRASP+ shows that removing the insertion restriction (the fourth aspect) 1092
is an effective way to improve solution quality. It can improve the chance for ride-hailing 1093
sharing, simultaneously complying with the time window, capacity, and travel cost constraints 1094
for each request. The comparison between GRASP+ and ABC-- demonstrate that, without the 1095
transfer operator, GRASP achieves a better objective value in longer time intervals, and the 1096
ABC algorithm performs better in shorter time intervals. The comparison between ABC-- and 1097
ABC- showed that the transfer operator greatly improves the performance. The comparison 1098
between the MABC algorithm and ABC- demonstrates that the modified initialization method 1099
and the VP tree used in this paper are more effective than the initialization method used in 1100
GRASP because the latter is time-consuming. In summary, Table 12 shows that the proposed 1101
MABC algorithm performs well in solving the dynamic ride-hailing sharing problem and that 1102
the modifications to GRASP are effective. 1103
 1104
Table 13 shows the performance of the MABC algorithm and GRASP in terms of the objective 1105
function adopted by Santos and Xavier (2015), who consider the number of matched requests 1106
and travel cost ratio. The results demonstrate that the sharing percentage increases significantly, 1107
and the customers can save more money when using the proposed MABC algorithm, which 1108
also leads to an increment in the objective value. Comparing Table 12 with Table 13, it can be 1109
observed that the customers need to waste more travel time to finish trips when ignoring the 1110
travel time ratio in the objective function. 1111
 1112
Table 12 Performance comparison between different variants of the MABC algorithm 1113

and GRASP 1114

Time

interval
Algorithm

Objective

Value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s

GRASP 1,211.71 85.22% 17.60% 5.93% 12.02% 5.60% 11.08%

GRASP+ 1,362.77 88.15% 43.11% 12.50% 14.64% 11.08% 14.20%

ABC-- 1,388.19 88.53% 44.31% 13.25% 14.36% 12.22% 13.99%

ABC- 1,433.01 88.04% 51.10% 15.32% 14.62% 14.51% 14.36%

MABC 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%

30 s

GRASP 1,274.66 85.66% 22.51% 7.71% 10.95% 7.39% 10.10%

GRASP+ 1,566.38 88.61% 56.81% 16.87% 14.16% 16.22% 14.32%

ABC-- 1,548.72 88.42% 57.77% 18.68% 14.16% 17.39% 14.27%

ABC- 1,642.22 88.06% 67.93% 22.92% 15.11% 22.16% 15.50%

MABC 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%

60 s

GRASP 1,292.96 85.30% 23.02% 7.89% 10.82% 7.60% 10.14%

GRASP+ 1,617.69 88.20% 62.34% 20.54% 14.17% 18.83% 14.44%

ABC-- 1,603.08 88.39% 62.73% 20.58% 14.17% 18.86% 14.37%

ABC- 1,661.39 87.49% 69.25% 24.06% 15.26% 23.35% 15.86%

MABC 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%

 1115
 1116

31

Table 13 Performance comparison between the MABC algorithm and GRASP in 1117
terms of the objective function without travel time ratio 1118

Time

interval
Algorithm

Objective

Value
Matching Sharing moneyR

timeR moneyRT
timeRT

10 s
GRASP 3,599.15 85.56% 15.78% 5.45% 18.40% 5.17% 16.80%

MABC 4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83%

30 s
GRASP 3,688.64 86.38% 21.16% 7.38% 18.67% 7.54% 17.13%

MABC 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71%

60 s
GRASP 3,720.96 86.63% 24.59% 8.14% 18.79% 8.14% 17.44%

MABC 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64%

 1119
 1120
6. Conclusions 1121

In this paper, a dynamic ride-hailing sharing problem is proposed, which aims to maximize the 1122
weighted difference between the number of served customers and the sum of the travel cost 1123
ratio and travel time ratio. Meanwhile, the time window and travel cost constraints of the 1124
passengers and the capacity constraint of the vehicles are considered simultaneously. To handle 1125
the dynamic characteristics of the ride-hailing sharing problem, the problem was divided into 1126
many static subproblems with an identical time interval length. In each time interval, the 1127
request collection and matching algorithm were executed simultaneously. To solve 1128
subproblems, we propose a method based on the artificial bee colony algorithm, in which the 1129
vantage-point tree is used to narrow the search space of the algorithm and path relinking is 1130
incorporated to accelerate the solution speed to get the better solution. The method using the 1131
GRASP with path relinking proposed by Santos and Xavier (2015) was selected as the 1132
benchmark for the comparison. The results show that our proposed method outperforms the 1133
benchmark. The results also demonstrate the following. (a) With a longer time interval, the 1134
performance of the proposed method is better. However, it should be noted that a longer time 1135
interval leads to a longer time of data collection and algorithm execution, which requires the 1136
passengers to wait longer for matching results. (b) Embedding path relinking into the ABC 1137
algorithm significantly improves the performance of the resultant solution method. (c) The 1138
percentage of willingness-to-share and the number of ride-hailing vehicles can significantly 1139
influence the matching percentage and the sharing percentage of the ride-hailing sharing 1140
problem. (d) With a higher tolerance for the detouring time due to ride-hailing sharing, the 1141
proposed method can perform significantly better. (e) Considering both travel cost and travel 1142
time ratios into the design objective can achieve the best sharing percentage, and balance the 1143
increase in travel time ratio and the decrease in travel cost ratio compared with the design 1144
objectives that miss either the travel time or the travel cost ratio. (f) Ride-hailing sharing can 1145
generate benefits to the passengers as the passengers can spend less money on ride-hailing fares 1146
by spending a little bit more time due to the detours. 1147
 1148
This study opens the following interesting future research directions. First, our solution method 1149
is simple and efficient but does not consider the lookahead policy. Introducing the lookahead 1150
policy can often improve the performance of some classical transportation systems (e.g., 1151
Mitrović-Minić et al., 2004; Spivey and Powell, 2004; Sayarshad et al., 2020; Sayarshad & 1152
Gao, 2020). Therefore, one of the future search directions is to extend our solution method to 1153
incorporate this lookahead policy. Second, in this study, we only consider the ride-hailing 1154
service offered by a private company. If the company was public operated, the taxi charge 1155
could be lower if the passengers waiting time was longer. This socially efficient price could be 1156
examined by modifying the price mechanism in the proposed formulation, which is an 1157

32

interesting research direction. In the future, we can analyze socially efficient prices in a ride-1158
hailing sharing problem similar to the studies of Figliozzi et al. (2007) and Sayarshad and Chow 1159
(2015). 1160
 1161
 1162
References 1163

 1164
Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P., & Wang, X. (2011). Dynamic ride-1165

sharing: a simulation study in metro Atlanta. Transportation Research Part B 1166
Methodological, 45(9), 1450-1464. 1167

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand 1168
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the 1169
National Academy of Sciences, 114(3), 462-467. 1170

Attanasio, A., Cordeau, J. F., Ghiani, G., & Laporte, G. (2004). Parallel tabu search heuristics 1171
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3), 377-387. 1172

Baugh Jr., J. W., Kakivaya, G. K. R., & Stone, J. R. (1998). Intractability of the dial-a-ride 1173
problem and a multiobjective solution using simulated annealing. Engineering 1174
Optimization, 30(2), 91-123. 1175

Beaudry, A., Laporte, G., Melo, T., & Nickel, S. (2010). Dynamic transportation of patients in 1176
hospitals. OR Spectrum, 32(1), 77-107. 1177

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. 1178
European Journal of Operational Research, 202(1), 8-15. 1179

Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals 1180
of Operations Research, 153(1), 29-46. 1181

Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of 1182
unexpected customers for a dynamic dial-a-ride problem. European Journal of 1183
Operational Research, 175(3), 1605-1615. 1184

Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with time 1185
windows. European Journal of Operational Research, 54(1), 7-22. 1186

Figliozzi, M. A., Mahmassani, H. S., Jaillet, P. (2007). Pricing in dynamic vehicle routing 1187
problems. Transportation Science, 41(3), 302-318. 1188

Fu, A. W. C., Chan, P. M. S., Cheung, Y. L., & Moon, Y. S. (2000). Dynamic VP-tree indexing 1189
for N-nearest neighbor search given pair-wise distances. The VLDB Journal, 9(2), 154-1190
173. 1191

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: Faster 1192
and simpler hierarchical routing in road networks. In International Workshop on 1193
Experimental and Efficient Algorithms (pp. 319-333). Springer, Berlin, Heidelberg. 1194

Geisberger, R., Sanders, P., Schultes, D., & Vetter, C. (2012). Exact routing in large road 1195
networks using contraction hierarchies. Transportation Science, 46(3), 388-404. 1196

Glover, F. (1997). Tabu search and adaptive memory programming—Advances, applications 1197
and challenges. In Interfaces in Computer Science & Operations Research (pp. 1-75). 1198
Springer, Boston, MA. 1199

Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search and path relinking. 1200
Control & Cybernetics, 29(3), 653-684. 1201

Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey 1202
of dial-a-ride problems: Literature review and recent developments. Transportation 1203
Research Part B: Methodological, 111, 395-241. 1204

Horn, M. E. (2002). Fleet scheduling and dispatching for demand-responsive passenger 1205
services. Transportation Research Part C: Emerging Technologies, 10(1), 35-63. 1206

Intergovernmental Panel on Climate Change (IPCC) (2015). Climate Change 2014: Mitigation 1207

33

of Climate Change (Vol. 3). Cambridge University Press. 1208
Jaw, J. J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. (1986). A heuristic algorithm for the 1209

multi-vehicle advance request dial-a-ride problem with time windows. Transportation 1210
Research Part B: Methodological, 20(3), 243-257. 1211

Jensen, P. (2005). Indicator: Occupancy Rates of Passenger Vehicles. Technical Report, 1212
European Environmental Agency. Retrieved from https://www.eea.europa.eu/data-and-1213
maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-1214
vehicles. 1215

Jung, J., Jayakrishnan, R., & Park, J. Y. (2016). Dynamic shared-taxi dispatch algorithm with 1216
hybrid-simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 31(4), 1217
275-291. 1218

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization (Vol. 1219
200). Technical Report-TR06, Erciyes University, Engineering Faculty, Computer 1220
Engineering Department. 1221

Karaboga, D., & Ozturk, C. (2009). Neural networks training by artificial bee colony algorithm 1222
on pattern classification. Neural Network World, 19(3), 279-292. 1223

Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital 1224
IIR filters. Journal of the Franklin Institute, 346(4), 328-348. 1225

Liang, X., de Almeida Correia, G. H., An, K., & van Arem, B. (2020). Automated taxis’ dial-1226
a-ride problem with ride-sharing considering congestion-based dynamic travel times. 1227
Transportation Research Part C: Emerging Technologies, 112, 260-281. 1228

Long, J., Szeto, W. Y., & Huang, H. J. (2014). A bi-objective turning restriction design problem 1229
in urban road networks. European Journal of Operational Research, 237(2), 426-439. 1230

Ma, S., Zheng, Y., & Wolfson, O. (2013). T-share: A large-scale dynamic taxi ridesharing 1231
service. In 2013 IEEE 29th International Conference on Data Engineering (pp. 410-421). 1232
IEEE Computer Society. 1233

Ma, S., Zheng, Y., & Wolfson, O. (2015). Real-time city-scale taxi ridesharing. IEEE 1234
Transactions on Knowledge & Data Engineering, 27(7), 1782-1795. 1235

Madsen, O. B. G., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-1236
ride problem with time windows, multiple capacities, and multiple objectives. Annals of 1237
Operations Research, 60(1), 193-208. 1238

Melachrinoudis, E., Ilhan, A. B., & Min, H. (2007). A dial-a-ride problem for client 1239
transportation in a health-care organization. Computers & Operations Research, 34(3), 1240
742-759. 1241

Mitrović-Minić, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics 1242
for the dynamic pickup and delivery problem with time windows. Transportation 1243
Research Part B, 38(8), 669-685. 1244

Nielsen, F., Piro, P., & Barlaud, M. (2009). Bregman vantage point trees for efficient nearest 1245
neighbor queries. In IEEE International Conference on Conference: Multimedia and Expo, 1246
2009 (pp. 878-881). 1247

Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many 1248
immediate request dial-a-ride problem. Transportation Science, 14(2), 130-154. 1249

Resendel, M. G., & Ribeiro, C. C. (2005). GRASP with path-relinking: Recent advances and 1250
applications. In Metaheuristics: Progress as Real Problem Solvers (pp. 29-63). Springer, 1251
Boston, MA. 1252

Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., & Liss, S. (2011). Summary of Travel 1253
Trends: 2009 National Household Travel Survey. Technical Report, Federal Highway 1254
Administration, US Department of Transportation. 1255

Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing: A dynamic dial-a-ride problem 1256
with money as an incentive. Expert Systems with Applications, 42(19), 6728-6737. 1257

https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles

34

Sayarshad, H. R., & Chow, J. Y. J. (2015). A scalable non-myopic dynamic dial-a-ride and 1258
pricing problem. Transportation Research Part B: Methodological, 81(2), 539-554. 1259

Sayarshad, H. R., & Gao, H. O. (2018). A scalable non-myopic dynamic dial-a-ride and pricing 1260
problem for competitive on-demand mobility systems. Transportation Research Part C: 1261
Emerging Technologies, 91, 192-208. 1262

Sayarshad, H. R., & Gao, H. O. (2020). Optimizing dynamic switching between fixed and 1263
flexible transit services with an idle-vehicle relocation strategy and reductions in 1264
emissions. Transportation Research Part A: Policy and Practice, 135, 198-214. 1265

Sayarshad, H. R., Mahmoodian, V., & Gao, H. O. (2020). Dynamic non-myopic routing of 1266
electric taxis with battery swapping station. Sustainable Cities and Society, 57, 102113. 1267

Schilde, M., Doerner, K. F., & Hartl, R. F. (2014). Integrating stochastic time-dependent travel 1268
speed in solution methods for the dynamic dial-a-ride problem. European Journal of 1269
Operational Research, 238(1), 18-30. 1270

Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). 2015 Urban Mobility Scorecard. 1271
Technical Report, Texas A&M Transportation Institute. 1272

Singh, A. (2009). An artificial bee colony algorithm for the leaf-constrained minimum 1273
spanning tree problem. Applied Soft Computing, 9(2), 625-631. 1274

Spivey, M. Z., & Powell, W. B. (2004). The dynamic assignment problem. Transportation 1275
Science, 38(4), 399-419. 1276

Szeto, W. Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle 1277
routing problem. European Journal of Operational Research, 215(1), 126-135. 1278

Szeto, W. Y., & Jiang, Y. (2014). Transit route and frequency design: Bi-level modeling and 1279
hybrid artificial bee colony algorithm approach. Transportation Research Part B: 1280
Methodological, 67(9), 235-263. 1281

Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static multi-1282
vehicle bike repositioning problem. Transportation Research Part B: 1283
Methodological, 109, 176-211. 1284

Wang, Y., Zheng, B., & Lim, E. P. (2018). Understanding the effects of taxi ride-sharing—A 1285
case study of Singapore. Computers, Environment and Urban Systems, 69, 124-132. 1286

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in general 1287
metric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete 1288
Algorithms (pp. 311-321). Society for Industrial and Applied Mathematics. 1289

 1290
 1291
 1292

