

A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing Sharing Problem

Xingbin Zhan

Department of Civil Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: xbzhan@hku.hk

mail: xbzhan@hku.hk

W. Y. Szeto, Ph.D.

Department of Civil Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: ceszeto@hku.hk

Email: ceszeto@hku.hk

C. S. Shui, Ph.D.

Department of Transportation and Logistics Management
National Chiao Tung University
Hsinchu, Taiwan
Email: csshui@nctu.edu.tw

Xiqun (Michael) Chen, Ph.D.
College of Civil Engineering and Architecture
Zhejiang University
Hangzhou 310058, China
Email: chenxiqun@zju.edu.cn

Acknowledgments

This research is jointly supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region of China (HKU 17201217) and a grant from the University Research Committee of the University of Hong Kong (201811159080). The fourth author Xiqun Chen is financially supported by the National Key Research and Development Program of China (2018YFB1600900), the National Natural Science Foundation of China (71771198, 71922019), the joint project of the National Natural Science Foundation of China and Joint Programming Initiative Urban Europe (NSFC – JPI UE) ('U-PASS', 71961137005), and the Zhejiang Provincial Natural Science Foundation of China (LR17E080002). We would like to thank Didi to provide ride-hailing data.

44 **A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing**
45 **Sharing Problem**

46
47 **Abstract**

48 Ride-hailing sharing involves grouping ride-hailing customers with similar trips and time
49 schedules to share the same ride-hailing vehicle to reduce their total travel cost. With the
50 current information and communication technology, ride-hailing customers and drivers can be
51 matched in real-time via a ride-hailing platform. This paper formulates a dynamic ride-hailing
52 sharing problem that simultaneously maximizes the number of served customers, minimizes
53 the travel cost and travel time ratios, and considers the capacity, time window, and travel cost
54 constraints. The travel cost ratio is the ratio of actual passengers' fare to the passengers' fare
55 without ride-hailing sharing, whereas the travel time ratio is defined as the actual travel time
56 (including waiting time) over the maximum allowable travel time. To solve the dynamic
57 problem, it is divided into many small and continuous static subproblems with an equal time
58 interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm
59 with path relinking, while the contraction hierarchies and vantage point tree are used to
60 determine the shortest path and accelerate the algorithm, respectively. Problem properties and
61 the performance of the proposed solution method are demonstrated using large-scale real-time
62 data from Didi that is the largest ride-hailing company in China. The proposed method is shown
63 to outperform the benchmark, i.e., greedy randomized adaptive search procedure (GRASP)
64 with path relinking. The proposed method also performs better when the length of each time
65 interval is longer, and the tolerance for the incremental travel time caused by detours is higher.
66 We also demonstrate that (a) considering both travel cost and travel time ratios in the objective
67 can achieve a better sharing percentage, and balance the increase in the travel time ratio and
68 the decrease in the travel cost ratio compared with the objective that misses either travel time
69 or the travel cost ratio; and (b) the passengers can gain a large out-of-pocket cost saving in the
70 case of ride-hailing sharing while enduring a relatively small increase in travel time compared
71 with the case without ride-hailing sharing.

72
73 *Keywords:* Dynamic ride-hailing sharing; artificial bee colony algorithm; path relinking;
74 vantage point tree.

75
76 **1. Introduction**

77 With the development of social economy and motorization, increasing traffic congestion in
78 urban road networks, finite oil supplies, and environmental pollution have aroused great
79 attention from the public. According to Jensen (2005) and Santos et al. (2011), the private car
80 occupancy rates (the number of travelers per vehicle) are quite low in both Europe and the US,
81 reaching 1.8 persons per vehicle for leisure trips and 1.1 for commuting trips. The low
82 occupancy rate has led to a huge waste of social resources. The annual cost of wasted time and
83 fuel caused by traffic congestion in the US was approximately 160 billion dollars in 2015
84 (Schrink et al., 2015). Moreover, greenhouse gases emitted by vehicles have increased more
85 than double since 1970, while the annual greenhouse emissions were still growing (IPCC,
86 2015). Another issue is that more travelers choose ride-hailing services (e.g., Didi, Uber, and
87 Lyft) for convenience with an increase in income. The supply of ride-hailing vehicles usually
88 does not meet the travel demand during peak hours, and consequently, travelers have to wait
89 for a long time before using the services or abandon the services and shift to other modes.

90
91 One solution to the above problems is ride-hailing sharing. Ride-hailing sharing is a type of
92 ride-hailing service that groups the customers with similar trips and time schedules to share the

same ride-hailing vehicle, which can consequently reduce the total driving distance and fuel cost of the vehicles and increase the vehicle occupancy rate. Ride-hailing sharing services have been provided by private companies such as Didi, Uber, Lyft, etc. in recent years and proved that both the passengers and drivers could benefit from these services. The passengers with loose travel time windows can receive compensation as a return of the increase in travel time, while ride-hailing drivers can serve more passengers and earn more during their available working time. As a real-time service that connects multiple passengers and ride-hailing drivers, the operations of ride-hailing sharing require a third-party platform to provide technical support, including collecting the travel information of ride-hailing drivers and customers (e.g., current locations and customers' preferences) and matching the requests of ride-hailing customers with the vehicles. With the increasing smartphone penetration rate and the development of wireless communication technology, both ride-hailing drivers and customers can access information timely and accurately to implement ride-hailing sharing.

Dynamic ride-hailing sharing problems with different objectives have been studied in the literature. The commonly adopted objectives include maximizing the number of served customers and minimizing the travel time (distance or delay). Moreover, passengers' travel cost is a critical measure when providing ride-hailing sharing services as it often influences whether travelers choose to share rides or not. Santos and Xavier (2015) formulated it in the form of the travel cost ratio, which is the ratio of actual passengers' travel cost to the passengers' travel cost without ride-hailing sharing. However, using the travel cost ratio in the objective function does not prevent the travel time increment due to the detour caused by ride-hailing sharing to be acceptable by passengers. Therefore, we formulate a new dynamic ride-hailing sharing problem that simultaneously maximizes the number of served customers, and minimizes the travel cost and travel time ratios, where the travel time ratio is defined as the actual travel time (including waiting time) over the maximum allowable travel time. To solve the dynamic problem, it is divided into many small and continuous static subproblems with an equal time interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm with path relinking, while the contraction hierarchies and vantage point tree are used to determine the shortest path and accelerate the algorithm, respectively. Problem properties and the performance of the proposed solution method are demonstrated using large-scale real-time data from Didi.

The main contributions of this paper can be summarized as follows:

- We present a novel dynamic ride-hailing sharing problem that simultaneously maximizes the weighted number of served customers, minimizes the weighted sum of travel cost and travel time ratios, and considers the constraints of capacity, time window, and travel cost. This problem considers both the travel cost and travel time in the objective function, since two of the most important factors that affect taking ride-hailing sharing service is the cost and time.
- We divide the problem into many small and continuous static subproblems with an equal time interval. We propose a new solution method based on the MABC algorithm to solve the subproblem. To accelerate the solution search, we use the vantage-point (VP) tree to narrow the solution search space of each request by identifying the ride-hailing vehicles near the pickup point of the passengers within a pre-defined radius. The overall solution approach is proved to be efficient in solving large-scale ride-hailing sharing problems.

143 • Based on real ride-hailing data, we illustrate the performance of the proposed solution
144 approach and show that our approach is more effective than the existing solution
145 method proposed by Santos and Xavier (2015) for the dynamic ride-hailing sharing
146 problem.

147
148 The remainder of this paper is organized as follows. In Section 2, we provide an in-depth
149 literature review to show the research gaps. In Section 3, we describe the dynamic ride-hailing
150 sharing problem and formulate the static subproblem. Section 4 proposes the MABC algorithm.
151 Section 5 presents the computational results. Finally, Section 6 concludes the paper and
152 provides an outlook on future research.

153 **2. Literature Review**

155 In the literature, the ride-hailing sharing problem can be regarded as a variant of the dial-a-ride
156 problem (DARP). The DARP aims to determine vehicle routes and schedules for the users who
157 specify requests with pickup and delivery locations (Cordeau and Laporte, 2007) and has
158 various applications, including freight transportation (e.g., Dumas et al., 1991), and elderly or
159 disabled personnel transportation (e.g., Madsen et al., 1995; Melachrinoudis et al., 2007;
160 Beaudry et al., 2010). There are two differences between the DARP and the ride-hailing sharing
161 problem. First, dial-a-ride vehicles start from the depot(s) to pick up passengers in the DARP,
162 while the start locations of ride-hailing vehicles can be anywhere in the ride-hailing sharing
163 problem. Second, besides the time window constraint that the DARP focuses on, the ride-
164 hailing sharing problem requires considering the travel cost (fare) constraint for each passenger
165 to ensure that the out-of-pocket cost of each passenger is lower in a shared vehicle than a non-
166 shared vehicle. It is noted that in the literature, the taxi sharing problem is a special type of the
167 ride-hailing sharing problem, in which the ride-hailing sharing services may include not only
168 taxis but also private cars (e.g., Didi).

169
170 Ho et al. (2018) pointed out that the DARP problem could be classified into four categories:
171 static-deterministic, static-stochastic, dynamic-deterministic, and dynamic-stochastic. If the
172 existing plans can (cannot) be modified when new information enters the system, the problem
173 is dynamic (static). If the information received is certain (is unknown or uncertain) when
174 making a decision, the problem is deterministic (stochastic). The ride-hailing sharing problem
175 is a dynamic-deterministic problem. As ride-hailing customers who are willing to share a ride
176 always want to match a ride-hailing vehicle as soon as possible and their requests can enter the
177 system at random times, they often match drivers on very short notice. Previous studies have
178 adopted several strategies to deal with the dynamic nature of the ride-hailing sharing problem.
179 One strategy is that the model processes a request immediately after the system receives the
180 request (Ma et al., 2013). Though the customers can get feedback in a short time, this strategy
181 usually provides “shortsighted” solutions as it does not consider the influence of near-future
182 requests, and thus leads to poor solution quality. Another strategy is to adopt the rolling horizon
183 strategy, in which the solutions are determined using all known information within a planning
184 horizon, but the final decisions have not been made until necessitated by a deadline of the
185 requests (Agatz et al., 2011). This strategy can obtain a better solution than the first strategy as
186 it considers more information, but the customers require longer time waiting for the final
187 matching results. To balance the waiting time for matching results and solution quality, this
188 study adopts the strategy that the dynamic problem is divided into small continuous static
189 subproblems (Santos and Xavier, 2015; Alonso-Mora et al., 2017). Each static subproblem
190 handles a scene corresponding to a specific time interval. This strategy can handle multiple
191 requests simultaneously, and the time interval we set is short enough such that the customers
192 do not wait too long for receiving feedback.

Table 1 Characteristics for representative DARPs and ride-hailing sharing problems

Reference	Type	Objective(s)	Constraint(s) ²	Scenario	Solution method(s)
Psaraftis (1980)	DARP	Minimize a weighted sum of the total travel time and dissatisfaction of customers	Capacity and MPS	D/S	Dynamic programming
Jaw et al. (1986)	DARP	Minimize a weighted sum of disutility to the system's customers and of operator costs	Time and capacity	S	Advanced dial-a-ride with time windows (ADARTW) heuristic
Madsen et al. (1995)	DARP	Multiple objectives ¹	Time and capacity	D	REBUS heuristic
Horn (2002)	DARP	Minimize total travel time while maximizing ridership using a weighted sum approach	Time and capacity	D	L2sched system
Attanasio et al. (2004)	DARP	Minimize total routing cost	Time and capacity	D	Tabu search
Coslovich et al. (2006)	DARP	Maximize the number of served customers	Time	D	Two-phase insertion technique
Beaudry et al. (2010)	DARP	Minimize a weighted sum of total travel time, total lateness, and total earliness	Time and capacity	D	Two-phase heuristic procedure
Schilde et al. (2014)	DARP	Minimize the sum of tardiness, earliness, and travel time violations	Time and capacity	D	Metaheuristic solution approaches based on dynamic variable neighborhood search
Ma et al. (2013, 2015)	RHSP	Minimize the total travel distance	Time, capacity, and cost	D	Dual-side vehicle searching algorithm
Santos and Xavier (2015)	RHSP	Maximize the number of served requests while minimizing the travel cost ratio	Time, capacity, and cost	D	GRASP with path relinking
Jung et al. (2016)	RHSP	Minimize total passenger travel times; maximize system profit	Time and capacity	D	Nearest vehicle dispatch algorithm/ Insertion heuristic/ Hybrid Simulated Annealing
Alonso-Mora et al. (2017)	RHSP	Minimize the travel delay of all passengers while maximizing the number of served requests	Time and capacity	D	Greedy assignment with Mosek and parallel computing
Sayarshad and Gao (2018)	DARP	Maximize social welfare	Capacity	D	A novel dynamic optimization algorithm with a Markov decision process
Wang et al. (2018)	RHSP	Minimize travel time	Time, capacity, and cost	D	A greedy strategy
Liang et al. (2020)	DARP	Maximize revenue, the number of matched customers while minimizing the fuel cost and delay	Time and capacity	D	A customized Lagrangian relaxation algorithm
This paper	RHSP	Maximize the weighted number of served customers while minimizing the weighted sum of the travel cost ratio and the travel time ratio	Time, capacity, and cost	D	Rolling horizon approach with MABC and path relinking

195 Note: RHSP = Ride-hailing sharing problem, MPS = maximum position shift (i.e., the maximum difference
 196 between the position of a customer in the sequence of deliveries/pickups and the first-come-first-served position
 197 of that customer in the initial list of requests); D = dynamic problem, S = static problem, D/S = dynamic problem
 198 and static problem; 1: The objective is formed by the mixture of objectives choosing from minimizing total driving

199 time, minimizing the number of vehicles, minimizing total waiting time, minimizing the deviation from promise
200 service, and minimizing the total cost of operation of the vehicles. 2: time constraints refer to time window
201 constraints, and cost constraints refer to travel cost constraints.

202
203 Table 1 summarizes the characteristics of the existing DARP^s and ride-hailing sharing
204 problems in the literature in terms of the problem type, design objectives, design constraints,
205 operational scenarios, and solution methods. It can be seen that ride-hailing sharing problems
206 have been studied in recent years, while DARP^s have a long history. Different from the
207 conventional DARP^s, the ride-hailing sharing problem includes the passengers' travel cost (i.e.,
208 fare or out-of-pocket) into constraints to control the expense of each passenger on the trip due
209 to the detour caused by ride-hailing sharing (e.g., Ma et al., 2013, 2015; Santos and Xavier,
210 2015). Regarding the design objectives, the commonly adopted objectives include maximizing
211 the number of served customers (e.g., Coslovich et al., 2006) and minimizing the travel time
212 (distance or delay) (e.g., Attanasio et al., 2004; Ma et al., 2013, 2015; Wang et al., 2018),
213 whereas some studies formulated their design problems with more than one design objective
214 (e.g., Jaw et al., 1986; Horn, 2002; Beaudry et al., 2010; Schilde et al., 2014; Santos and Xavier,
215 2015; Jung et al., 2016; Alonso-Mora et al., 2017; Sayarshad and Gao, 2018). On the other
216 hand, passengers' travel cost is an important measure when providing ride-hailing sharing
217 services as it often influences whether travelers choose a ride-hailing sharing service or just a
218 ride-hailing service. Santos and Xavier (2015) formulated it in the form of the travel cost ratio.
219 However, using this ratio in the objective function does not prevent the travel time increment
220 due to the detour caused by ride-hailing sharing to be acceptable by passengers. Therefore, the
221 objective function in our studied problem includes not only the travel cost ratio but also the
222 travel time ratio that compares the actual travel time with the maximum allowable travel time
223 (i.e., the maximum time that a passenger can spend for a ride) to limit the increase in travel
224 time.

225
226 A wide range of solution methods have been proposed to solve the DARP and the ride-hailing
227 sharing problem in the literature. Psaraftis (1980) developed an exact optimization procedure
228 based on dynamic programming to solve the DARP (with ridesharing). Unlike the static version
229 of the problem that does not consider the immediate requests, the dynamic version considers
230 the immediate requests during the operation while it is limited to only the case with a single
231 vehicle and many customers. The computational time of this algorithm is an exponential
232 function of the number of customers. Alonso-Mora et al. (2017) built a request-trip-vehicle
233 graph, which consisted of all possible combinations of the requests and vehicles according to
234 the time window constraints. An integer linear program was formulated to determine the
235 optimal assignment with the best objective function value (or the best objective value) based
236 on the request-trip-vehicle graph. In the worst case, the method can be seen as an exhaustive
237 search, so the parallel computations are used to speed up the method. However, the
238 computational time of this method increases rapidly with the maximum waiting time. As
239 DARP^s and ride-hailing sharing problems are NP-hard (Baugh Jr., 1998; Santos and Xavier,
240 2015), exact methods are usually impossible to solve for optimal solutions in large instances
241 efficiently. Heuristics or metaheuristics can search for near-optimal solutions efficiently and
242 thus become widely adopted in the existing literature (e.g., Horn, 2002; Attanasio et al., 2004;
243 Beaudry et al., 2010; Santos and Xavier, 2015; Jung et al., 2016). Meanwhile, many other
244 methods are proposed to solve the DARP and ride-hailing sharing problem. For example, Ma
245 et al. (2013) proposed a vehicle searching algorithm using a spatial-temporal index to find
246 candidate vehicles and then a scheduling algorithm was applied to achieve matching and check
247 constraints. This method for solving ride-hailing sharing problems is demonstrated to be very
248 efficient and can be used in large-scale ride-hailing sharing problems. However, this method
249 only suits the problem that minimizes the total travel distance or total travel time. New solution

250 methods may be required to handle other or more objectives. Sayarshad and Gao (2018)
251 divided the DARP problem into multiple traveling salesman problems and solved them by a
252 traveling salesman problem with pickup and deliver (TSPPD) algorithm. The Markov decision
253 process was used to obtain information to calculate social welfare. Liang et al. (2020) solved
254 the problem using a customized Lagrangian relaxation algorithm, and this algorithm was time-
255 consuming (15.9 min for 50 iterations for a network with 66 road links and 46 nodes), leading
256 to long waiting time for customers. Please refer to more comprehensive reviews on the solution
257 methods of DARPs by Berbeglia et al. (2010) and Ho et al. (2018).

258
259 As reviewed by Ho et al. (2018), recently proposed metaheuristics have not been adopted in
260 solving the DARP and its variants. As one of the recent methods mentioned in their review, the
261 artificial bee colony (ABC) algorithm is adopted to solve our proposed problem. As a powerful
262 metaheuristic proposed by Karaboga (2005), the ABC algorithm has been demonstrated with
263 good performance in solving many problems, including numerical function optimization (e.g.,
264 Karaboga and Ozturk, 2009), structural inverse analysis (e.g., Karaboga, 2009), pattern
265 classification (e.g., Karaboga and Ozturk, 2009), the leaf-constrained minimum spanning tree
266 problem (e.g., Singh, 2009), and so on. It has also been applied in solving different logistics
267 and transportation problems with satisfactory performance, such as capacitated vehicle routing
268 problems (e.g., Szeto et al., 2011), return restriction design problems (e.g., Long et al., 2014),
269 transit routes and frequency settings (e.g., Szeto and Jiang, 2014), and bicycle repositioning
270 problems (e.g., Szeto and Shui, 2018). The works provide firm ground to apply the ABC
271 algorithm in solving our dynamic ride-hailing sharing problem.

272
273 Unlike the literature, to solve the proposed dynamic ride-hailing sharing problem, we first
274 decompose the whole planning horizon evenly into smaller time intervals and then adopt the
275 ABC algorithm with path relinking in each time interval. Path relinking is an enhancement
276 strategy proposed by Glover (1997) to explore the better solution between elite solutions
277 obtained by tabu search or scatter search (e.g., Glover, 1997; Glover et al., 2000). Applying
278 path relinking into the GRASP has significantly improved the solution time and quality
279 (Resendel and Ribeiro, 2005). The GRASP with path relinking was first used in the ride-hailing
280 sharing problem and achieved better performance than that without path relinking (Santos and
281 Xavier, 2015). Furthermore, to speed up the matching between the requests and the vehicles,
282 the vantage-point tree (VP tree) was used to do range queries to search for feasible vehicles
283 around the origin of the request within a given radius. As a data structure for partitioning
284 general metric space in a hierarchical way proposed by Yianilos (1993), the VP tree was widely
285 used for efficient nearest neighbor queries (Nielsen et al., 2009; Fu et al., 2000). The resultant
286 solution method is referred to as the MABC algorithm.

287 288 **3. Dynamic Ride-hailing Sharing Problem**

289 In this section, we first present the notations adopted in this problem and then give a detailed
290 problem statement of the dynamic ride-hailing sharing problem. Afterward, the mathematical
291 formulation of the static subproblem is presented in detail.

292 293 **3.1. Notations**

294 The notations used in this paper are listed as follows.

295 296 **Sets/indices**

V	Set of all vertices (points) on the road network;
E	Set of all edges on the road network;

\mathbb{N}	Set of all requests that are waiting to match;
\mathbb{Q}	Set of all matched requests;
\mathbb{Z}	Set of all ride-hailing vehicles available in the system;
W	Set that contains all origins and destinations of requests in \mathbb{N} ;
U	Set that contains all origins and destinations of requests in \mathbb{Q} ;
i	Request i ;
i^+	Origin of request i , $i^+ \in V$;
i^-	Destination of request i , $i^- \in V$;
j	Ride-hailing vehicle j ;
j^+	Starting point of vehicle j , $j^+ \in V$;
j^-	Dummy destination of vehicle j ;
R_j	Route of vehicle j , where $R_j = \{v_0^j, v_1^j, \dots, v_{Z_j}^j\}$;
v_z^j	The z th point in the route of vehicle j , $v_z^j \in V$;
$i(v_z^j)$	Request i with either pickup or delivery at point v_z^j .

297

298 **Parameters**

p_i	Number of passengers of request i ;
T_i^{order}	Order time of request i (i.e., time of customers making request i);
T_i^p	Latest pickup time of request i ;
T_i^d	Latest delivery time of request i ;
$cost_i^{\text{dir}}$	Total passengers' out-of-pocket cost of request i through the direct trip without sharing ride-hailing vehicles;
Z_j	Total number of pickup and delivery points in the route of vehicle j ;
q_j	Capacity of ride-hailing vehicle j ;
$s_{v_z^j}$	Service time at point v_z^j ;
$t_{v_z^j, v_{z+1}^j}$	Shortest travel time from v_z^j to v_{z+1}^j in the route of vehicle j ;
$c_{v_z^j, v_{z+1}^j}$	Fare from v_z^j to v_{z+1}^j in the route of vehicle j ;
b_1	Weight for each request;
b_2	Weight for the travel cost ratio;
b_3	Weight for the travel time ratio;
DT_i	Shortest travel time from the origin to the destination of request i without sharing ride-hailing vehicles;
u_{now}^j	Location of vehicle j at the beginning of the current time interval;
BT_u	Arrival time at $u \in U$ before any new requests were inserted into routes;
$j(u)$	Matched vehicle for $u \in U$ before any new requests were inserted into routes.

299

300 **Decision Variables**

$AT_{v_z^j}$	Arrival time of vehicle j at v_z^j ;
$P_{v_z^j}$	Number of passengers on vehicle j after leaving point v_z^j ;

$X_{u,v}^j$ 1 if the route of vehicle j passes through vertex v immediately after vertex u ; 0, otherwise;

Variables

$cost_i^{\text{real}}$ Actual total passengers' out-of-pocket cost associated with request i ;

TT_i Total waiting and in-vehicle travel times associated with request i ;

$pc_{v_z^j, v_{z+1}^j}^i$ Cost of the passengers of request i from v_z^j to v_{z+1}^j .

301

302 **3.2. Problem statement**

303

304 **3.2.1. Inputs**

305 We consider a ride-hailing service provided by a private company. Let $G(V, E)$ be a complete
 306 undirected graph representing the road network. The ride-hailing sharing problem starts with a
 307 set of requests waiting to match and a set of ride-hailing vehicles currently available on the
 308 road network. Each request contains the information related to the origin, destination, order
 309 time, and number of passengers. The order time of request i is associated with the latest
 310 pickup time T_i^p and the latest delivery time T_i^d . The matched vehicle should pick up the
 311 passengers of request i at point i^+ no later than T_i^p and drop them off at point i^- no later
 312 than T_i^d . According to i^+ and i^- , the shortest distance can be determined and then converted
 313 to the cost of the direct trip $cost_i^{\text{dir}}$ by multiplying the distance by ride-hailing fare per
 314 distance. This cost of the direct trip is also the upper bound of the ride-hailing sharing trip of
 315 request i (after considering cost sharing of all passengers) to ensure that each passenger
 316 would not pay more by ride-hailing sharing than by making a direct trip. Each vehicle has its
 317 own information, including the starting point, capacity, and occupancy status.

318

319 **3.2.2. Routes of vehicles**

320 The route of vehicle j consists of starting point v_0^j and other points (from v_1^j to $v_{Z_j}^j$)
 321 corresponding to the origins or destinations of the requests that are served by vehicle j . The
 322 points in the route are arranged in chronological order, and the destination of a request is
 323 definitely after its corresponding origin in the route. Except for the starting point, other points
 324 in the route are associated with the information of the arrival time, load, and corresponding
 325 request (whose origin or destination is located at this point) in order to check the time window
 326 and capacity constraints during ride-hailing sharing. The arrival time of the vehicle at point v_z^j ,
 327 denoted as $AT_{v_z^j}$, can be determined only when the arrival time of the vehicle at the previous
 328 point, the travel time between those two points $t_{v_{z-1}^j, v_z^j}$, and service time $s_{v_{z-1}^j}$ are known, which
 329 is expressed as $AT_{v_{z-1}^j} + t_{v_{z-1}^j, v_z^j} + s_{v_{z-1}^j}$. $AT_{v_z^j}$ has to obey corresponding pickup and delivery time
 330 windows, which implies that $AT_{v_z^j}$ must be less than $T_{i(v_z^j)}^p$ if v_z^j is the origin of request
 331 $i(v_z^j)$, and must be less than $T_{i(v_z^j)}^d$ if v_z^j is the destination of request $i(v_z^j)$. For the load $P_{v_z^j}$
 332 after leaving point v_z^j , it is expressed as $P_{v_{z-1}^j} + p_{i(v_z^j)}$ and $P_{v_{z-1}^j} - p_{i(v_z^j)}$ if v_z^j is the origin and

333 the destination of request $i(v_z^j)$, respectively. $P_{v_z^j}^j$ must not exceed vehicle capacity q_j .

334

335 **3.2.3. Cost allocation**

336 A critical part of ride-hailing sharing is the calculation of the sharing cost for each request. Due
337 to the complexity of the ride-hailing sharing pattern, it is impossible to determine the exact cost
338 of serving passengers of a request in advance until all passengers in this request finish their
339 trips. In this study, we adopt the equal-cost division principle on each pair of adjacent points
340 as the cost allocation strategy. For each pair of adjacent points, the fare between those two
341 points is allocated equally by all passengers traveling on this route segment. If request i is

342 served by vehicle j between v_z^j and v_{z+1}^j , we can obtain $pc_{v_z^j, v_{z+1}^j}^i = \frac{c_{v_z^j, v_{z+1}^j} \times p_i}{P_{v_z^j}}$. The actual

343 total cost $cost_i^{\text{real}}$ spent by the passengers of request i in their whole trip is the sum of the
344 cost spent in all route segments that they pass through, which means $cost_i^{\text{real}} = \sum_z pc_{v_z^j, v_{z+1}^j}^i$,

345 where the range of z is determined by the route segments of vehicle j that the passengers
346 of request i travel through. As the main reason for customers choosing ride-hailing sharing
347 services is to reduce their out-of-pocket cost, the total cost $cost_i^{\text{real}}$ spent on the trip must be
348 equal to or less than the cost of the direct trip $cost_i^{\text{dir}}$ without sharing.

349

350 **3.2.4. Dynamic problem setting**

351 Not all requests are received at the beginning of the modeling horizon, and we cannot know
352 the timing of receiving new requests in advance as in practice. Therefore, we cannot solve the
353 dynamic ride-hailing sharing problem as a whole. Instead, we divide the modeling horizon into
354 many intervals of equal length and divide the problem into many consecutive static ride-hailing
355 sharing subproblems. Each subproblem corresponds to one time interval. The subproblems are
356 solved in chronological order.

357

358 Define the current time interval as the interval associated with the subproblem concerned or to
359 be solved. Before this interval, some requests were received. Some of them have not been
360 served and are still waiting to be served. During the current time interval, all requests waiting
361 to be served are handled simultaneously by solving the corresponding static ride-hailing
362 sharing subproblem.

363

364 A longer time interval considers more requests at each execution, which leads to better
365 matching performance, whereas the passengers require waiting longer to obtain the final
366 matching result. Therefore, setting the time interval requires balancing both the matching
367 performance and the users' waiting time.

368

369 In this paper, for simplicity, we assume that each vehicle stays in the last drop-off location to
370 wait for requests assigned by the system if there are no passengers to deliver or pick up. This
371 assumption can be easily relaxed by adding an endpoint to the vehicle route. We also assume
372 that all customers are willing to share vehicles with others. Moreover, we do not consider the
373 effect of traffic signals and assume uniform speed, and thus the travel time and the fare between
374 two vertices are in proportion to the travel distance and remain unchanged throughout the
375 modeling horizon. At the beginning of each time interval, the new requests received in the last
376 time interval are collected by the system and added into set \mathbb{N} . At the end of each time interval,
377 the requests that have already been matched to vehicles or the order times of the requests that

378 exceed their corresponding latest pickup times are removed from set \mathbb{N} . Set \mathbb{Z} contains all
379 the vehicles available during the current time interval. The routes of all available vehicles are
380 inherited from the matching results of the last time interval. When a vehicle is available for
381 ride-hailing sharing services, the vehicle is added to set \mathbb{Z} . The vehicles are removed from \mathbb{Z}
382 if they are not available. The new requests can be added to any positions of the routes if no
383 constraints are violated. Note that the requests that were matched in the previous time intervals
384 cannot be removed from the routes because the notices of matching results had already been
385 sent to the corresponding vehicles and customers. The dynamic ride-hailing sharing problem
386 is formed by linking consecutive static ride-hailing sharing subproblems.

387

388 3.3. Mathematical model of the static ride-hailing sharing subproblem

389 The static subproblem starts with set \mathbb{N} and set \mathbb{Z} . Set \mathbb{N} , which contains all requests
390 waiting to be matched, consists of (a) the new requests whose order times are during the last
391 time interval and (b) the previous unmatched requests that were received earlier than the last
392 time interval and have no matched vehicles in the previous time intervals, while the current
393 time does not exceed the latest pickup times of the requests. Set \mathbb{Z} contains all available
394 vehicles during the current time interval.

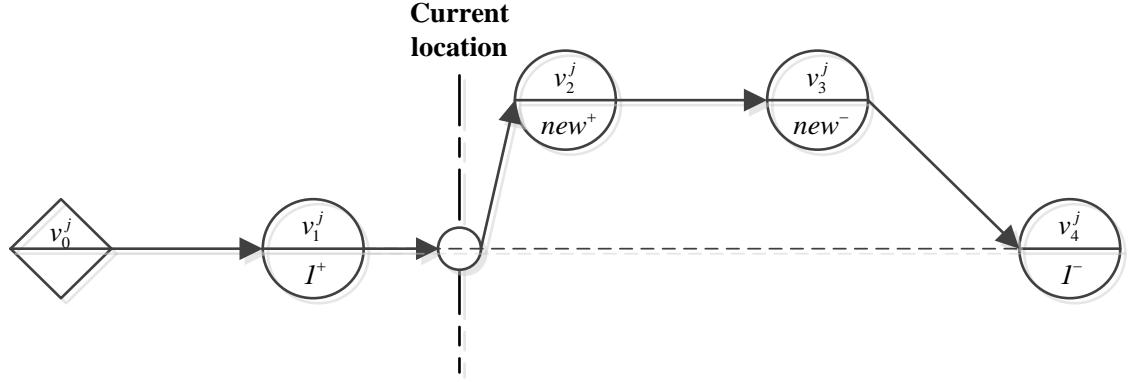
395

396 To formulate this problem, we introduce dummy destination j^- for all vehicles. Let
397 $W = \{i^+, i^- \mid i \in \mathbb{N}\}$ be a set that contains all origins and destinations of requests in \mathbb{N} . Set \mathbb{Q}
398 contains all matched requests. $U = \{i^+, i^- \mid i \in \mathbb{Q}\}$ is the set that contains all origins and
399 destinations of requests in \mathbb{Q} . $u \in U$ is associated with two pieces of information: arrival
400 time BT_u and matched vehicle $j(u)$.

401

402 To formulate the subproblem, we define the current location $u_{now}^j \in V$ based on the current
403 time. The current time T_c is set as the time at the end of the time interval in concern, not the
404 beginning of the time interval. Then, the current location $u_{now}^j \in V$ is set as the first vertex that
405 vehicle j will visit after T_c on the road network. The reason for those settings is that the
406 routes in the latter time intervals, not the current time interval, can be adjusted. As shown in
407 Figure 1, the large circles represent the origins or destinations of requests, and the small circle
408 represents a point in set V . Meanwhile, the diamond shape represents the starting point of the
409 route. The current location u_{now}^j is not necessarily the origin or destination of a request; it can
410 be the point in set V between two adjacent pickup (or delivery) points where the vehicle
411 passes through.

412



413
414
415
416
417
418
419

FIGURE 1 An example of inserting a new request into a vehicle route

The mathematical model of the static ride-hailing sharing subproblem in each time interval is shown as follows:

$$420 \quad \max f\left(X_{u,v}^j, P_{v_i^j}, AT_{v_i^j}\right) = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{Z}} \sum_{v \in W \cup U} X_{i^+, v}^j \left(b_1 p_i - b_2 \frac{cost_i^{\text{real}}}{cost_i^{\text{dir}}} - b_3 \frac{TT_i}{T_i^{\text{d}} - T_i^{\text{order}}} \right) \quad (1)$$

421 subject to

$$423 \quad X_{u,v}^j \in \{0,1\}, \quad \forall j \in \mathbb{Z}, \quad \forall u, v \in W \cup U \cup \{j^+, j^-\}; \quad (2)$$

$$424 \quad \sum_{j \in \mathbb{Z}} \sum_{v \in W \cup U} X_{i^+, v}^j \leq 1, \quad \forall i \in \mathbb{N}; \quad (3)$$

$$425 \quad \sum_{v \in W \cup U \cup \{j^-\}} X_{j^+, v}^j = 1, \quad \forall j \in \mathbb{Z}; \quad (4)$$

$$426 \quad \sum_{u \in W \cup U \cup \{j^+\}} X_{u, j^-}^j = 1, \quad \forall j \in \mathbb{Z}; \quad (5)$$

$$427 \quad \sum_{v \in W \cup U \cup \{j^+\}} X_{v, u}^j - \sum_{v \in W \cup U \cup \{j^-\}} X_{u, v}^j = 0, \quad \forall j \in \mathbb{Z}, \forall u \in W \cup U; \quad (6)$$

$$428 \quad \sum_{v \in W \cup U} X_{i^+, v}^j - \sum_{v \in W \cup U} X_{v, i^-}^j = 0, \quad \forall j \in \mathbb{Z}, \forall i \in \mathbb{N} \cup \mathbb{Q}; \quad (7)$$

$$429 \quad \sum_{v \in W \cup U \cup \{j^-\}} X_{u, v}^{j(u)} = 1, \quad \forall u \in U; \quad (8)$$

$$430 \quad (BT_u \leq BT_{u_{\text{now}}^{j(u)}}) \Rightarrow AT_u = BT_u, \quad \forall u \in U; \quad (9)$$

$$431 \quad (BT_v > BT_{u_{\text{now}}^{j(v)}}) \wedge (X_{u,v}^j = 1) \Rightarrow AT_v = AT_u + t_{u,v} + s_u, \\ \forall j \in \mathbb{Z}, \forall u \in W \cup U \cup \{j^+, j^-\}, \forall v \in U; \quad (10)$$

$$433 \quad (BT_u \leq BT_v) \wedge (j(u) = j(v)) \Rightarrow AT_u \leq AT_v, \quad \forall u, v \in U; \quad (11)$$

$$434 \quad (X_{u,v}^j = 1) \Rightarrow AT_v = AT_u + t_{u,v} + s_u, \\ \forall j \in \mathbb{Z}, \forall u \in W \cup U \cup \{j^+, j^-\}, \forall v \in W; \quad (12)$$

$$436 \quad (X_{i^+, v}^j = 1) \Rightarrow BT_{u_{\text{now}}^j} \leq AT_{i^-} \leq AT_{i^+}, \quad \forall j \in \mathbb{Z}, i \in \mathbb{N}; \quad (13)$$

$$437 \quad 0 \leq AT_{i^+} \leq T_i^{\text{p}}, \quad \forall i \in \mathbb{N}; \quad (14)$$

$$438 \quad 0 \leq AT_{i^-} \leq T_i^{\text{d}}, \quad \forall i \in \mathbb{N}; \quad (15)$$

439 $(X_{u,v}^j = 1) \wedge (v = i^+) \Rightarrow P_v^j = P_u^j + p_i,$
 440 $\forall j \in \mathbb{Z}, \forall i \in \mathbb{N} \cup \mathbb{Q}, \forall u, v \in W \cup U \cup \{j^+, j^-\};$ (16)

441 $(X_{u,v}^j = 1) \wedge (v = i^-) \Rightarrow P_v^j = P_u^j - p_i,$
 442 $\forall j \in \mathbb{Z}, \forall i \in \mathbb{N} \cup \mathbb{Q}, \forall u, v \in W \cup U \cup \{j^+, j^-\};$ (17)

443 $P_u^j \leq q_j, \forall j \in \mathbb{Z}, \forall u \in W \cup U;$ (18)

444 $(X_{u,v}^j = 1) \wedge (AT_{i^+} \leq AT_u < AT_{i^-}) \Rightarrow pc_{u,v}^i = \frac{c_{u,v} \times p_i}{P_u^j},$
 445 $\forall j \in \mathbb{Z}, \forall i \in \mathbb{N} \cup \mathbb{Q}, \forall u, v \in W \cup U;$ (19)

446 $cost_i^{\text{real}} = \sum_{u,v \in V} pc_{u,v}^i \leq cost_i^{\text{dir}}, \forall i \in \mathbb{N};$ (20)

447 $TT_i = AT_{i^-} - T_i^{\text{order}}, \forall i \in \mathbb{N}.$ (21)

448
 449 Objective function (1) consists of three terms: the number of served customers, travel cost ratio,
 450 and travel time ratio. b_1 , b_2 , and b_3 are all positive weight coefficients that define the
 451 relative importance of these three components, respectively. It is noted that the smaller
 452 $cost_i^{\text{real}} / cost_i^{\text{dir}}$ is, the more cost savings are; it is also noted that the smaller $\frac{TT_i}{T_i^{\text{d}} - T_i^{\text{order}}}$ is,
 453 the smaller increment in travel time compared with no ride-hailing sharing case is. Therefore,
 454 the objective value is larger if we get more matched requests, more savings in costs, and a
 455 smaller increment in travel time. Moreover, the objective value is larger when the matched
 456 request is associated with more passengers.

457
 458 Constraint (2) defines $X_{u,v}^j$ to be binary. Constraint (3) guarantees that a request can only be
 459 matched by at most one vehicle. Constraints (4) and (5) ensure that each vehicle has an origin
 460 and a destination in its route. Constraint (6) is a flow conservation constraint to make sure that
 461 $u \in W \cup U$ served by a vehicle must have one point on the route before and after u .
 462 Constraint (7) ensures that the origin and destination must be served by the same vehicle if the
 463 request is served. Constraint (8) ensures that the matching between requests and vehicles
 464 formed by previous time intervals cannot be changed. Constraints (9)-(11) guarantee that the
 465 order of the visited points in the route inherited from the last time interval is not changed after
 466 inserting new requests. Constraints (12) and (13) ensure that new requests can only be inserted
 467 after the current locations of the vehicles. Constraints (14) and (15) are the time window
 468 constraints for all requests, while constraints (16)-(18) are the capacity constraints. Constraint
 469 (19) calculates the passengers' travel cost of each route segment, whereas constraint (20)
 470 ensures that the total passengers' travel cost of each request is not higher than the total
 471 passengers' travel cost without ride-hailing sharing. Constraint (21) calculates the total travel
 472 time of passengers of request i if they are matched in this interval.

473
 474 In our proposed model, the origins and destinations of new requests are allowed to be inserted
 475 anywhere in the vehicle route after the current vehicle location if the time, cost, capacity
 476 constraints are satisfied. However, the model proposed by Santos and Xavier (2015) allowed
 477 new requests to be added only after the destination point of the last delivered passenger aboard
 478 if there are passengers aboard the vehicle at the current time. Moreover, constraint (8) ensures
 479 that the matching between requests and vehicles formed by previous time intervals cannot
 480 change so that passengers just need to accept the matching results once. This constraint cannot

481 be found in their model. Furthermore, both travel time and cost ratios are considered in our
482 objective function while Santos and Xavier (2015) only considered the travel cost ratio in their
483 objective function. To sum up, our model is different from the counterparts of the related
484 studies in terms of the objective function and constraints.

485

486 **4. Solution Method**

487 Like Santos and Xavier (2015) and Alonso-Mora et al. (2017), we solve the dynamic ride-
488 hailing sharing problem by solving its subproblems in chronological order. Unlike Santos and
489 Xavier (2015) and Alonso-Mora et al. (2017), we develop a method based on the modified
490 artificial bee colony algorithm with path relinking to solve the static ride-hailing sharing
491 subproblem for the time interval concerned.

492

493 **4.1. Modified artificial bee colony algorithm with path relinking**

494 **4.1.1. Basic artificial bee colony algorithm**

495 The ABC algorithm is an optimization algorithm that simulates the behavior of a honey bee
496 swarm in search of food. The artificial bee colony consists of three groups of bees: employed
497 bee, onlookers, and scouts, with the objective of finding the good food source(s). Each
498 employed bee is responsible for one food source. It searches for food around a food source.
499 The employed bees share the information on their best food sources found so far with the
500 onlooker bees. Each onlooker then chooses a food source among those found by the employed
501 bees by probability, where a more profitable (better) food source has a higher probability of
502 being chosen. When the employed bee cannot find a better food source near the current source
503 after some time, the employed bee turns to be a scout to exploit a new food source in the vicinity
504 of the hive.

505

506 The ABC algorithm is a population-based heuristic, in which a food source represents a
507 solution for the optimization problem, and the nectar amount of the food source represents the
508 fitness of the corresponding solution. The ABC algorithm begins by generating a set of
509 solutions randomly as the initial food sources, and each food source is assigned to an employed
510 bee. After initial solutions are generated, employed bees, onlookers, and scouts exploit the food
511 sources near the hive repeatedly during each iteration. In each iteration, each employed bee
512 finds a new food source near the current source using a neighborhood operator and the nectar
513 amount of the new food source (solution fitness, which is the increment on the objective
514 function value in our study) is evaluated. If the nectar amount of the new food source is more
515 than the old one, the employed bee abandons the current food source and is allocated to the
516 new food source. Otherwise, the employed bee remains assigned to the current food source.
517 Then each onlooker chooses a food source based on the nectar amount of the food sources (i.e.,
518 solution fitness) shared by employed bees by the roulette wheel selection method. Onlookers
519 also exploit new food sources near the selected food sources using a neighborhood operator
520 and evaluate the nectar amount of the new food sources. After all onlookers finish the
521 exploitation process, the best new food source found by the onlookers near each food source
522 of the employed bee is determined. If the nectar amount of the best new food source is more
523 than the old one of the employed bee, the employed bee abandons the old food source and is
524 assigned to the best new one. After that, if the nectar amount of a food source has not been
525 improved for *limit* successive iterations, the employed bee becomes a scout, exploits a new
526 food source randomly, becomes an employed bee again, and replaces the old food source with
527 the new one. After all current food sources are checked, the new iteration of the ABC algorithm
528 starts. The whole process is repeated to search for good solutions until the stop condition is
529 reached. The steps of the ABC algorithm are presented as follows:

```

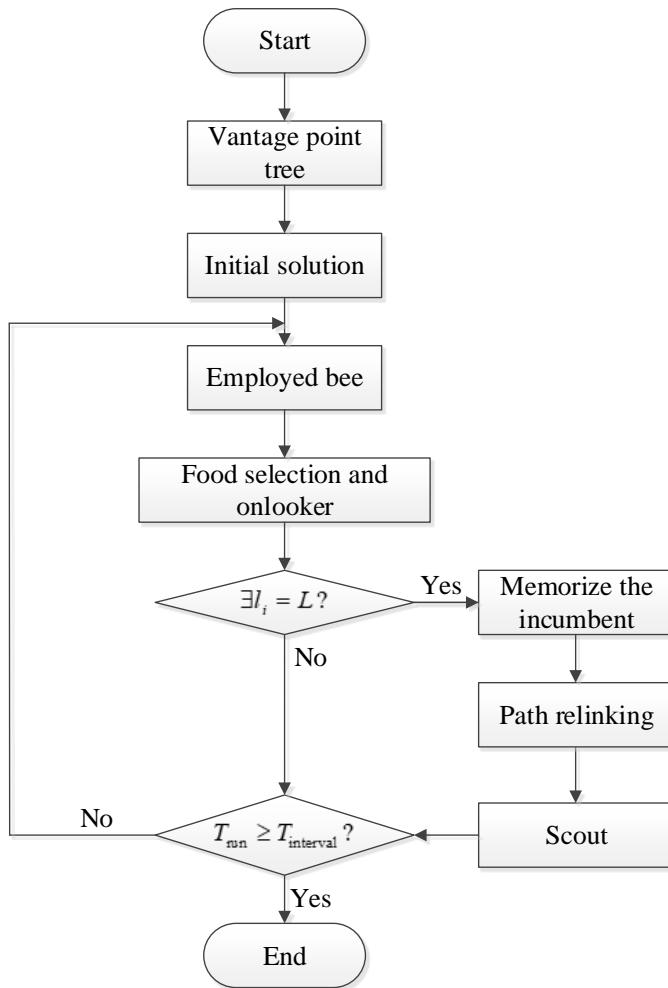
530
531 1. Inputs: Population size (number of food sources)  $n$ , maximum number of iterations
532  $M$ , and  $limit$   $L$ .
533 2. Randomly generate a set of solutions as the initial food sources  $x_i, i = 1, \dots, n$ . Each
534 food source is allocated to an employed bee.
535 3. Calculate the fitness  $f(x_i)$  of food source  $x_i, i = 1, \dots, n$ . Set  $l_i = 0, i = 1, \dots, n$ .
536 4. For iteration  $m = 1$  to  $M$ , do
537   For  $i = 1$  to  $n$ , do
538     i. Perform a neighborhood operator on the food source  $x_i$  to determine a new
539       food source  $\tilde{x}_i$  near the food source.
540     ii. If  $f(\tilde{x}_i) > f(x_i)$ , then replace  $x_i$  with  $\tilde{x}_i$  for the corresponding employed
541       bee and  $l_i = 0$ , else  $l_i = l_i + 1$ .
542   End for
543
544   Set  $G_i = \emptyset$ , where  $G_i$  is the set of new neighbor food sources of  $x_i$  found by the
545   onlookers.
546
547   For  $j = 1$  to  $n$ , do
548     i. Select a food source  $x_i$  using the roulette wheel selection method based on
549       the fitness of all food sources.
550     ii. Perform a neighborhood operator on  $x_i$  to obtain a new food source  $\tilde{x}_i$  near
551       the food source.
552     iii.  $G_i = G_i \cup \tilde{x}_i$ 
553   End for
554
555   For  $i = 1$  to  $n$ , do
556     i. Select  $\hat{x}_i = \arg \max_{x \in G_i} f(x)$ , where  $\hat{x}_i$  is the best food source in  $G_i$ .
557     ii. If  $f(\hat{x}_i) > f(x_i)$ , then replace  $x_i$  with  $\hat{x}_i$  for the corresponding employed
558       bee and  $l_i = 0$ , else  $l_i = l_i + 1$ .
559   End for
560
561   For  $i = 1$  to  $n$ , do
562     i. If  $l_i = L$ , randomly determine a new food source  $\tilde{x}_i$  and replace  $x_i$  with
563        $\tilde{x}_i$ .
564   End for
565 End for
566

```

4.1.2. Modified artificial bee colony algorithm

567 The ABC algorithm is the main algorithm to determine routes of ride-hailing vehicles. To speed
568 up finding a good solution, path relinking is embedded into the ABC algorithm to explore new
569 and better solutions between two known solutions. It is implemented when a new current best
570 solution is found while executing the ABC algorithm. To further improve the solution search
571 efficiency, the vantage-point tree is deployed to reduce the solution search space and
572 constructed before establishing the initial solution. Contraction hierarchies is incorporated into
573
574

575 the ABC algorithm to determine the shortest path in the studied problem. The detailed
 576 information about the vantage-point tree and path relinking will be described in Section 4.2
 577 and Section 4.8, respectively. Figure 2 shows the procedure of the resultant solution method,
 578 namely the modified artificial bee colony algorithm. The algorithm ends when running time
 579 T_{run} reaches the time limit, which is equal to the length of time interval T_{interval} .
 580



581
 582 **FIGURE 2 Flowchart of the modified artificial bee colony algorithm**
 583
 584

585 **4.2. Vantage-point tree**

586 A VP tree is a metric tree that segregates the whole set of vertices of the network into small
 587 sets by choosing vantage points (i.e., vantage vertices). The VP tree is efficient in conducting
 588 the nearest neighbor search because the vertices are stored in the tree structure, and the search
 589 can happen only in small parts of the tree (Yianilos, 1993). The VP tree contains two important
 590 segments, including the construction segment and the searching segment. For the construction
 591 segment, a vantage point (*vp*) is determined to divide all the vertices into two smaller parts
 592 during each partition. The vertices whose distance to the vantage point is less than a threshold
 593 (*mu*) are stored in the *left* sub-tree, and the vertices whose distance to the vantage point is larger
 594 than the threshold are stored in the *right* sub-tree. Each node in the tree stores the information
 595 of the vantage point and threshold. A tree data structure is created by recursively implementing
 596 this procedure to divide the data starting from the root. After building the tree using the
 597 construction segment, the searching segment is executed at the beginning of the static

598 subproblem, when the information of new requests is known. In this study, the range nearest
 599 neighbor search is used in the searching segment, in which we want to determine all the vertices
 600 within the radius tau around the query vertex q . Let the distance between any two vertices
 601 m and n be $dist(m, n)$. The pseudo-code of the VP tree in this paper is summarized as follows:
 602
 603

604 **Part 1: Construction segment**

605 1. **Inputs:** A set S containing all vertices.
 606 2. **Build_VP_tree** (S).
 607 3. **Return** a VP tree.

608 **function** **Build_VP_tree** (S):
 609 i. If $S = \emptyset$, then **return** \emptyset .
 610 ii. Establish a new *node*: $new(node)$.
 611 iii. Determine the vantage point at the *node* ($node.vp := Select_vp (S)$) and
 612 determine the threshold at the *node* ($node.mu := Median (S, vp)$).
 613 iv. Determine the set of vertices in the *left* sub-tree
 614 ($L := \{s \in S - \{vp\} \mid dist(vp, s) < mu\}$) and determine the set of vertices in the
 615 *right* sub-tree ($R := \{s \in S - \{vp\} \mid dist(vp, s) \geq mu\}$);
 616 v. Construct the new *nodes* in the next level ($node.left := Build_VP_tree (L)$,
 617 $node.right := Build_VP_tree (R)$).
 618 vi. **return** *node*.

619 **function** **Select_vp** (S):
 620 i. Choose a random sample P from S .
 621 ii. Set $best_spread := 0$.
 622 iii. **For** $p \in P$, **do**
 623 1) Choose a random sample D from S .
 624 2) Determine the value of *spread* ($spread := SecondMoment (D, p)$).
 625 3) If $spread > best_spread$, then replace *best_spread* with *spread* and
 626 replace *best_p* with p .
 627 **End for**
 628 iv. **return** *best_p* .

629 **function** **Median** (S, p):
 630 i. Sort S in accordance with the distance from p .
 631 ii. Determine threshold mu (the distance that is equal to the median among all
 632 distances from all vertices in S to p).
 633 iii. **Return** mu .

634 **function** **SecondMoment** (D, p):
 635 i. Calculate μ with $\frac{\sum_{d \in D} dist(d, p)}{N}$, where N is the number of vertices in D .
 636 ii. Calculate *spread* with $\frac{\sum_{d \in D} (dist(d, p) - \mu)^2}{N}$.
 637 iii. **return** *spread*.

638
 639 **Part 2: Searching segment**

640 1. **Inputs:** A query vertex q , the desired radius tau , and the VP tree.

641 2. `Search_VP_tree (root_node).`
 642 3. **Return** the vertices around the query vertex within τ_{au} .
 643
procedure `Search_VP_tree (node)`
 645 i. If $node = \emptyset$, then, **return** \emptyset .
 646 ii. If $dist(q, node.vp) - \tau_{au} < mu$, then `Search_VP_tree (node.left);` if
 647 $dist(q, node.vp) + \tau_{au} > mu$, then `Search_VP_tree (node.right).`

648 In this study, the VP tree is used to find the available vehicles around the origin of a request
 649 within a radius. The radius for each request is different because it is calculated based on the
 650 latest pickup and delivery times of the request, which means the vehicles outside this circle are
 651 impossible to pick up the customers of this request timely. At the beginning of each time
 652 interval, request i has matching set K_i , the latest pickup time, and the last delivery time.
 653 Matching set K_i of request i is built by inserting all vehicles still available into the set. To
 654 determine the radius of request i , we define the maximum slack time of request i , which is
 655 the maximum time that a vehicle can spend to pick up customers from its current location to
 656 the origin of the request. The maximum slack time of request i is equal to
 657 $\min(T_i^p - T_c, T_i^d - T_c - st_i^{o,d})$, where T_i^p is the latest pickup time, T_i^d is the latest delivery
 658 time, T_c is the current time, and $st_i^{o,d}$ is the shortest travel time from the origin to the
 659 destination for request i . By multiplying the vehicle speed, the maximum slack time can be
 660 transformed into the maximum pickup distance, which is the radius of the circle with the origin
 661 of request i as the center and can be used to distinguish infeasible matching between request
 662 i and vehicles. All vehicles outside this circle at the current time are impossible to reach the
 663 origin or destination in time and hence they are removed from the matching set K_i . After that,
 664 request i can only match the vehicles selected from K_i during executing the algorithm to
 665 narrow the search space for each request and to improve the computational efficiency.
 666

667 4.3. Solution representation

668 The solution (food source) of the MABC algorithm is a matching result between requests and
 669 drivers. The solution is formed by a set of routes of vehicles. Each route is represented in the
 670 form of a vector with the length of $1 + 2n$, in which n is the number of requests matched to
 671 this vehicle route, and the first element in the vector means the starting point of this vehicle.
 672 Figure 3 illustrates a representation of a route for a ride-hailing vehicle after inserting a new
 673 request, in which point 0 in the route is the starting point of the vehicle. Points L^+ and L^-
 674 ($L=1, 2, new$) represent the origin and destination of request L , respectively. In MABC, each
 675 point in the route stores additional information, including the number of passengers aboard and
 676 the arrival time at this point.
 677

0	1^+	2^+	1^-	new^+	new^-	2^-
---	-------	-------	-------	---------	---------	-------

678
 679 **FIGURE 3 Solution representation of a vehicle route**
 680
 681

682 4.4. Initial solution

683 An empty set M is created to store the matched new requests during the initial solution
 684 process. An initial solution is created by assigning a vehicle from the matching set K_i
 685 randomly at a time to a request in \mathbb{N} but not in M . The request is inserted into all possible

686 locations in the route of that vehicle. If there are insertions that satisfy both the time window
687 and the capacity constraints, then the insertion with the maximum objective value is selected,
688 the corresponding vehicle is assigned to this request, and this request is added into M .
689 Otherwise, this request is skipped, and the next request in \mathbb{N} but not in M is chosen. Unlike
690 the capacity and the time window constraints that are difficult to satisfy with the increasing
691 detours caused by adding requests, travel cost constraints are usually satisfied—the travel cost
692 of each request usually decreases due to ride-hailing sharing. Therefore, the travel cost
693 constraints of the corresponding vehicle route for each request are checked only after the
694 capacity and time window constraints are checked. If the travel cost constraints are not satisfied
695 by the route of that vehicle, the requests in \mathbb{N} that were assigned to this route are removed
696 from M . This route is restored to the status without those new requests. The above procedure
697 is repeated until M collects all requests in \mathbb{N} , or a pre-defined maximum number of
698 iterations is reached.

699

700 4.5. Selection of food sources

701 At each iteration of the MABC algorithm, each onlooker selects a food source based on the
702 information shared by the employed bees. The method used in choosing a food source is the
703 roulette-wheel selection method. The probability of choosing food source x_i is equal to

704
$$p(x_i) = \frac{\Delta z(x_i)}{\sum_{i=1}^n \Delta z(x_i)}$$
, where $\Delta z(x_i)$ is the increment in the objective value of food source x_i

705 after inserting new requests. This increment means the contribution of the new requests to the
706 objective value. A better solution has a larger increment.

707

708 4.6. Neighborhood operators

709 A neighborhood operator is applied to search for a new solution around the current solution.
710 Two neighborhood operators, namely add operator and swap operator, are used in the MABC
711 algorithm considering the characteristics of the ride-hailing sharing problem. Whenever
712 employed bees or onlookers seek a new solution, one of the two neighborhood operators is
713 used randomly. If a better solution is found by the neighborhood operator, the current solution
714 is replaced with that new solution.

715

716 4.6.1. Transfer operator

717 The transfer operator randomly selects request i from set \mathbb{N} . If request i is matched a
718 vehicle, the operator chooses vehicle j different from the currently matched vehicle from the
719 corresponding matching set K_i . Then an attempt to remove request i from the original route
720 and insert i into the new route of vehicle j is made (and the insertion method will be
721 described in Section 4.7). If request i has not been matched a vehicle, the request is randomly
722 added to vehicle j from the matching set K_i . In each case, if the insertion is feasible and the
723 objective function of the new solution is larger than the current one, the new solution replaces
724 the current one, and the *limit* count of this food source is reset as zero. Otherwise, the *limit*
725 count increases by one.

726

727 4.6.2. Swap operator

728 Each swap operator randomly chooses two requests i_1 and i_2 from set \mathbb{N} and their
729 corresponding matched vehicles are j_1 and j_2 , respectively. Before changing the vehicle
730 routes, we require to check the matching sets of both requests. If j_1 is in the matching set

731 K_{i_2} and j_2 is in the matching set K_{i_1} , i_1 and i_2 are removed from their original routes and
732 then i_1 and i_2 are inserted into the new routes of vehicle j_2 and j_1 , respectively (the
733 insertion method will also be described in Section 4.7). If a new, feasible, and better solution
734 is found by the swap operator, the current solution is replaced with the new solution, and the
735 *limit* count of this new food source is set as zero; otherwise, the *limit* count increases by one.
736 Note that if the condition that j_1 is in matching set K_{i_2} and j_2 is in matching set K_{i_1} is not
737 satisfied, the transfer operator, instead of the swap operator, will be used for neighborhood
738 search.

739

740 4.7. Insertion method

741 When request i is matched to vehicle j , both origin i^+ and destination i^- of request i
742 are required to insert into the route of j . The idea of inserting a request into the route is to
743 check all possible insertion locations and then determine the best location to insert the request.
744 There are two principles to determine the possible insertion locations: First, i^+ and i^- can
745 be inserted only after the points whose arrival time is later than the current time; second, origin
746 i^+ must be located before destination i^- . For each possible insertion attempt, the vehicle route
747 is restructured, and the distance between each pair of adjacent vertices (e.g., the origin of a
748 request, the destination of a request, and the current location of the vehicle) in the route is
749 calculated based on the shortest path between them using contraction hierarchies (Geisberger
750 et al., 2008). Then we can recalculate the arrival time and the number of passengers right after
751 the points of the vehicle route that are obtained after the insertion, as well as the travel cost of
752 each request and the objective value. The points that have been influenced by the insertion are
753 evaluated to check whether there are violations of the time window, capacity, and travel cost
754 constraints. The new and feasible insertions are recorded, and the insertion that yields the best
755 objective value among these insertions is chosen as the new solution to replace the old one.
756 However, no insertion will be undergone if none of the possible insertions satisfied all the
757 constraints.

758

759 Note that contraction hierarchies is a speed-up method for searching for the shortest path in a
760 network. It is a two-phase approach consisting of the preprocessing and query phases.
761 Contraction hierarchies has advantages of quick preprocessing times, low space requirements,
762 and fast query times. Each query only needs to take a short time (microseconds). Therefore, it
763 can be used in solving large-scale problems (Geisberger et al., 2012).

764

765 4.8. Path relinking

766 In this study, path relinking is incorporated into the ABC algorithm to improve solution quality.
767 The idea of path relinking is to try to determine a new better solution between two known good
768 solutions. Path relinking is performed when the *limit* count of at least one food source s_2 is
769 equal to the limit L .

770

771 At the beginning of path relinking, there are two known good solutions, including incumbent
772 s_1 and food source s_2 with the *limit* count equal to L . If s_2 is better than s_1 , we replace s_1
773 with s_2 and stop. Otherwise, path relinking is applied to those two solutions. When executing
774 path relinking, s_1 is set as the initial solution (i.e., $s = s_1$) and food source s_2 with the *limit*
775 count equal to L is set as the guiding solution. The initial solution is transformed into the
776 guiding solution during path relinking by implementing a series of operations sequentially to

777 search for the new solutions (if any) that are better than both the initial and guiding solutions.
778 The reason for choosing the best solution as the initial solution is that the new and better
779 solutions are more probably found near incumbent s_1 .

780
781 At each iteration of path relinking, the differences between s and s_2 are first identified.
782 There are three possible situations for each of the requests in \mathbb{N} , including: (a) the matched
783 vehicles of the request in s and s_2 are different, (b) the request matches a vehicle in s but
784 does not match any vehicles in s_2 , and (c) the request does not match any vehicles in s but
785 matches a vehicle in s_2 . The transformations for s consist of (a) removing the request from
786 the route of the matched vehicle in s and inserting the request to the route of the matched
787 vehicle in s_2 for the first situation, (b) removing the request from the vehicle route for the
788 second situation, and (c) adding the request into the route of the matched vehicle in s_2 for the
789 third situation. By revising each difference between s and s_2 separately, we can get several
790 new solutions compared to s . If all new solutions are not better than s , the path relinking
791 procedure stops. Otherwise, the solution with the best improvement on the objective function
792 value among new solutions is adopted and replaces s , and the next iteration begins. After path
793 relinking, s_1 is replaced with s found by path relinking.

794
795 **5. Computational Experiments**

796 This section presents the results and analyses involving the MABC algorithm for the ride-
797 hailing sharing problem. The GRASP heuristic described by Santos and Xavier (2015) is taken
798 as a benchmark, and its performance is used to compare with the performance of the MABC
799 algorithm proposed in this paper. All experiments are performed on an Intel Core i7-4770 3.40
800 GHz CPU desktop computer, with 32 GB memory. The code is implemented in C++ with GCC
801 (GNU Compiler Collection) using Linux (Ubuntu 16.04).

802
803 The ride-hailing fare is assumed to be proportional to travel distance and is set as one dollar
804 per kilometer. The speed of all vehicles on all roads is set as 30 km/hour so that the travel time
805 of each link can be calculated using the given link distance and speed. The coefficients of b_1 ,
806 b_2 , and b_3 are set as 2, 0.9, and 0.9, respectively. For simplicity, the service time at each
807 pickup or delivery point is set as 0. Unless stated otherwise, the length of a time interval is set
808 as 10 s. All experiments are executed 20 times, and the result of each experiment is obtained
809 from the average value in 20 runs.

810
811 Each request may have several ride-hailing customers to take a vehicle in reality. However, we
812 set the number of ride-hailing customers in each request equal to 1 for simplicity. We also set
813 that the latest pickup time T_i^p is 5 min (i.e., 300 s) later than the order time T_i^{order} , which
814 means that ride-hailing customers cannot wait for more than 5 min at their origin. The latest
815 delivery time T_i^d of request i is set as the order time T_i^{order} plus the maximum allowable
816 delay. To calculate the maximum allowable delay, we define co_{delay} as the delay coefficient,
817 which is greater than 1 and represents the tolerance of the passengers due to the increase in
818 travel time caused by the detours in ride-hailing sharing. The maximum allowable delay is
819 equal to the product of co_{delay} and the shortest travel time between the origin and destination
820 of request i (which can be determined by the contraction hierarchies highlighted in Section

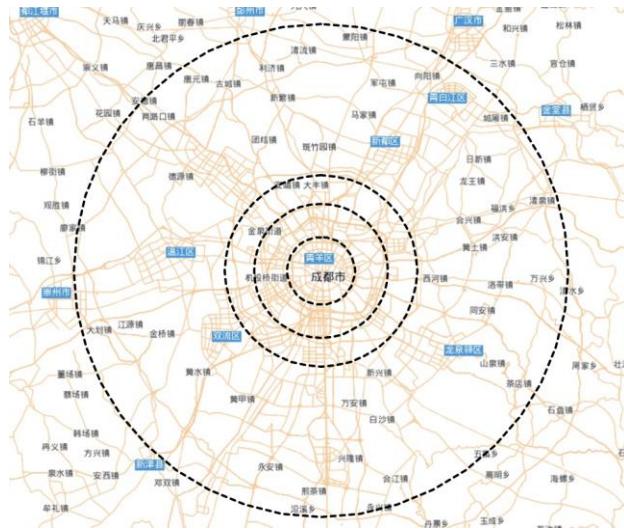
821 4). Unless specified otherwise, the delay coefficient co_{delay} is 1.3.

822

823 5.1. Data description

824 The ride-hailing request data in Chengdu, China, are used in the computational experiments.
 825 Chengdu is a typical city with a circular layout, centered on Tianfu Square, which can also be
 826 reflected in the layout of the road network in Chengdu. The map of Chengdu is shown in Figure
 827 4. The whole city is connected by a “ring and radial” highway network, and the circular road
 828 network divides the city into multiple regions. The Chengdu map data used in our study is
 829 downloaded from Open Street Map, which consists of 34,186 vertices and 78,157 edges. This
 830 map data are used to create a road network for the ride-hailing sharing problem.

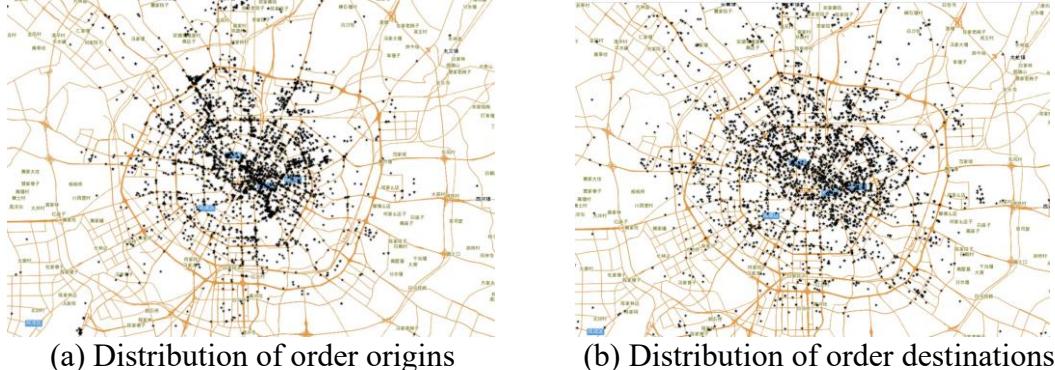
831
 832 The number of orders varies over time of day, and there are few orders in the night time. To
 833 illustrate a worst-case scenario, we process one-hour ride-hailing request data between 0:00
 834 am and 1:00 am on November 1, 2016, in Chengdu, China, obtained from Didi. The total
 835 number of orders is 3,661 in one hour. Each order has a set of information, including the order
 836 ID, order time, and longitudes and latitudes of the origin and destination. A sample of the ride-
 837 hailing data is shown in Table 2. The order ID is desensitized by Didi to protect the privacy,
 838 and the order time is represented through the time stamp. The geolocations are given according
 839 to the GCJ-02 coordinate. As shown in Figure 5, the spatial distributions of the request origins
 840 and destinations have a similar pattern, in which the orders are denser when they are closer to
 841 the city center.



844
 845 Figure 4 The map of Chengdu, China
 846

847 Table 2 A sample of the ride-hailing data in Chengdu, China

Order ID	Order time	Longitude (origin)	Latitude (origin)	Longitude (destination)	Latitude (destination)
fbcgi49b7j5yv	1477964797	104.09464	30.703971	104.08927	30.65085
48adc4bhc6t	1477985585	104.076509	30.76743	104.0637	30.58951
aci8afhg8k@	1478004952	104.019699	30.689007	104.105324	30.66395
6fhf952dar	1477989840	104.03609	30.62269	104.04386	30.68232
bd7ea2ld3b7z	1477958005	104.115997	30.652313	104.104421	30.695113
.....

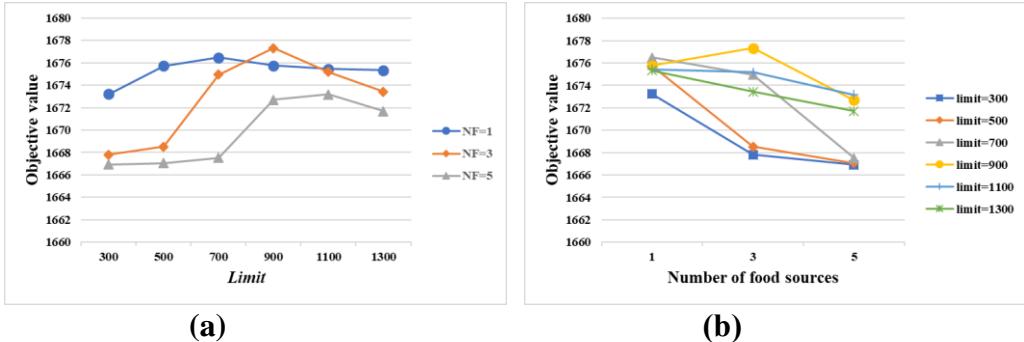


850
851
852
853
854
Figure 5 **Distributions of order origins and destinations in Chengdu, China**

855 The vehicles used in the study are randomly generated based on the regions, and the number
856 of ride-hailing vehicles is similar to the real situation. We analyze the trajectory data of the
857 ride-hailing vehicles in a day in Chengdu and determine the number of available vehicles in
858 each hour of the day. The number of vehicles is around 2,400 between 0:00 to 1:00, so we
859 generate 2,400 vehicles in this study to serve customers. Based on the circular road network,
860 as shown in Figure 4, we can roughly divide Chengdu into five regions. Each ring road is
861 approximately represented by a circle, and the center of all circles is the center of the city
862 (Tianfu Square). The radii of the four concentric circles are approximately 4.8 km, 9.5 km, 13.6
863 km, and 35 km. The circles separate the city into five parts, in which region one is within the
864 4.8-km radius circle, region two is between the 4.8-km and the 9.5-km radius circles, region
865 three is between the 9.5-km and the 13.6-km radius circles, region four is between the 13.6-km
866 and the 35-km radius circles, and region five is beyond the 35-km radius circle. The distribution
867 of vehicles in each region at the beginning is according to the number of request origins in this
868 area. The ratios of request origins in each region are obtained to be 0.5865, 0.3189, 0.0744,
869 0.0299, and 0.0004, respectively. To determine the origin of each vehicle, a region is randomly
870 selected using the above ratios as selection probabilities, and then the origin of each vehicle is
871 randomly chosen from the vertices in the selected region.

872
873 **5.2. Parameter tuning**

874 The MABC has three parameters to tune, including the number of food sources, $limit$, and the
875 maximum number of iterations. However, in the current dynamic ride-hailing sharing problem,
876 the running time of the algorithm for each subproblem is equal to the time interval of each
877 subproblem. Therefore, we set the stopping condition to be the length of the time interval
878 instead of the maximum number of iterations. In other words, the algorithm must stop when
879 the running time reaches the given length of the time interval, and the number of iterations can
880 be ignored. Therefore, we require tuning only two parameters: the number of food sources and
881 $limit$. Figure 6 displays the results of the parameter tuning with different numbers of food
882 sources and $limit$ values.



884
885
886 **Figure 6 Parameter tuning with the time interval of 10 s and the delay coefficient of**
887 **1.3: (a) Tuning of *limit*; (b) Tuning of the number of food sources**
888

889 As shown in Figure 6(a), the objective value increases with *limit* until reaching a threshold. A
890 too small *limit* value restricts the algorithm to obtain very good nearly local optima, whereas a
891 too large *limit* value restricts the algorithm to explore more new solutions. As shown in Figure
892 6(b), the objective value decreases with the increasing number of food sources except for the
893 limit of 900. By comparing the results, the best combination of the parameters is achieved when
894 the number of food sources is 3, and the *limit* equals 900. Therefore, the subsequent sections
895 adopt this setting. Providing that the number of requests is roughly uniform within an hour,
896 when the time interval is longer, it is expected that the value of *limit* should be larger to handle
897 the increase in the number of requests. Based on Figure 6, parameter *limit* is proportional to
898 the length of time interval *e*, and this value is approximately equal to $90e$. Thus *limit* = $90e$ is
899 used in all the experiments in the following subsections.
900

901 5.3. Effect of the time interval

902 In ride-hailing sharing operations, customers are not willing to spend too much time on
903 matching. However, the system requires time to collect information about the requests and
904 vehicles and run the matching algorithm. In this study, we consider three time intervals, i.e., 10
905 s, 30 s, and 60 s. The maximum waiting time from placing a ride-hailing order by phone to
906 receiving the matching result equals twice the length of the time interval. For instance, the
907 maximum waiting time is 2 min for the time interval of 60 s, in which customers have to wait
908 for 60 s for the operator of the ride-hailing service to collect all requests during the interval and
909 another 60 s for waiting for the matching results.
910

911 To compare the results under different time interval lengths, seven performance measures are
912 adopted, as shown in Table 3. The objective value is the most important and comprehensive
913 measure, which evaluates the combined effects of the number of served customers, the travel
914 cost ratio, and the travel time ratio simultaneously. The matching percentage is the percentage
915 of the matched requests in the total requests collected. The sharing percentage is the percentage
916 of requests involving ride-hailing sharing in all matched requests. The average out-of-pocket
917 cost saving percentage per passenger (R_{money}), due to the benefits of sharing ride-hailing fares,
918 is expressed as

$$919 R_{money} = \frac{\sum_{i \in D} \left(\frac{\frac{cost_{i'}^{\text{dir}}}{cost_{i'}^{\text{real}}}}{\frac{p_{i'}}{\sum_{i' \in D} p_{i'}}} \times p_{i'} \right)}{\sum_{i \in D} p_{i'}} \times 100\% = \frac{\sum_{i \in D} \left(\frac{cost_{i'}^{\text{dir}} - cost_{i'}^{\text{real}}}{cost_{i'}^{\text{dir}}} \times p_{i'} \right)}{\sum_{i \in D} p_{i'}} \times 100\% , \quad (22)$$

920 where D is the set of matched requests and $cost_{i'}^{\text{real}}$ and $cost_{i'}^{\text{dir}}$ are the total passengers' out-
921 of-pocket costs from the origin to the destination of request i' with and without ride-hailing
922 sharing, respectively. The percentage of total out-of-pocket cost saving (RT_{money}) is expressed
923 as

$$924 \quad RT_{\text{money}} = \frac{\sum_{i' \in D} \left(\frac{cost_{i'}^{\text{dir}}}{p_{i'}} - \frac{cost_{i'}^{\text{real}}}{p_{i'}} \right) \times p_{i'}}{\sum_{i' \in D} \left(\frac{cost_{i'}^{\text{dir}}}{p_{i'}} \times p_{i'} \right)} \times 100\% = \frac{\sum_{i' \in D} (cost_{i'}^{\text{dir}} - cost_{i'}^{\text{real}})}{\sum_{i' \in D} cost_{i'}^{\text{dir}}} \times 100\%. \quad (23)$$

925 Since the travel fare per unit distance is fixed, RT_{money} can also be interpreted as the
926 percentage of total vehicle travel distance saving of the whole system. Regarding the increment
927 in time, the average travel time increment percentage per passenger R_{time} , which is brought by
928 the detours in ride-hailing sharing, is expressed as

$$929 \quad R_{\text{time}} = \frac{\left(\sum_{i' \in D} \frac{t_{i'}^{\text{real}} - t_{i'}^{\text{dir}}}{t_{i'}^{\text{dir}}} \times p_{i'} \right)}{\sum_{i' \in D} p_{i'}} \times 100\%, \quad (24)$$

930 where $t_{i'}^{\text{real}}$ is the *actual* combined in-vehicle travel and waiting time and $t_{i'}^{\text{dir}}$ is the shortest
931 travel time from the origin to the destination of request i' without ride-hailing sharing.
932 Moreover, the percentage of total travel time increment RT_{time} is expressed as

$$933 \quad RT_{\text{time}} = \frac{\sum_{i' \in M} (t_{i'}^{\text{real}} - t_{i'}^{\text{dir}}) \times p_{i'}}{\sum_{i' \in M} (t_{i'}^{\text{dir}} \times p_{i'})} \times 100\%. \quad (25)$$

934 It is noted that R_{money} and R_{time} are respectively the out-of-pocket cost saving percentage and
935 the travel time increment percentage based on individuals whereas RT_{money} and RT_{time} are
936 the corresponding measures based on the whole system.

937 As shown in Table 3, a longer time interval results in a larger objective value. In this paper, we
938 assume that all matched requests in the previous time intervals cannot be modified in later time
939 intervals. Therefore, when the time interval is longer, the static subproblems have more chances
940 to get better solutions. Meanwhile, a longer time interval can have a larger average out-of-
941 pocket cost saving percentage per passenger, which means that ride-hailing sharing can
942 generate more economic benefits (i.e., cost reduction) for each request when the length of the
943 time interval is longer. Moreover, by comparing the values of RT_{money} and RT_{time} , it can be
944 seen that a longer time interval can result in a larger overall saving in money and a smaller
945 overall increment in time. However, a longer time interval has no advantage in the matching
946 percentage and sharing percentage, because a longer interval implies a lower frequency of
947 matching, which leads to a higher probability of missing feasible vehicles for matching.

949
950 Regarding the general impact brought by ride-hailing sharing, Table 3 shows that the average
951 out-of-pocket cost saving percentage per passenger R_{money} can reach more than 26%, and the
952 average travel time increment percentage per passenger R_{time} is only around 15%. This means
953 that passengers can use less proportion of extra travel time to exchange for a larger proportion
954 of money-saving due to ride-hailing sharing. This implies that ride-hailing sharing is a good
955 choice for those who have a high tolerance for time and want to save money.

956
957 Table 4 presents the t-test results of the differences in the average objective values between the
958 experiments with different time intervals. From the results in Table 3 and Table 4, we can
959 conclude that the differences in the objective values in different groups are significant, and the
960 60-second time interval achieves the best results, as it performs the best in most of the
961 performance measures. These results imply that customers have to spend more time waiting
962 for the matching results when the operator wants to improve system performance.

963
964 **Table 3 Performance comparison in terms of different time intervals**

Time interval	Objective value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	1677.33	85.24%	72.10%	26.32%	15.48%	25.73%	16.25%
30 s	1682.97	85.08%	73.28%	26.70%	15.56%	25.73%	16.23%
60 s	1689.94	85.15%	73.11%	26.87%	15.51%	26.03%	16.14%

965
966 **Table 4 T-tests on the difference between average objective values**

Test	Difference in mean	t-statistic	p-value
10 s vs. 30 s	5.64	5.34	0.00
30 s vs. 60 s	6.97	5.04	0.00

967 968 **5.4. Effect of path relinking**

969 This section investigates the effect of the inclusion of path relinking into the resultant solution
970 algorithm. Table 5 shows that all the differences in objective values with and without path
971 relinking are statistically significant (as reflected from the p-value), and the inclusion of path
972 relinking can significantly improve the solution quality regardless of the length of the time
973 interval. Among all three time intervals, the solution algorithm with path relinking (i.e., the
974 proposed MABC algorithm) can achieve a larger sharing percentage, a higher percentage of
975 travel cost sharing per passenger, and a higher percentage of total out-of-pocket cost saving.
976 Therefore, it is better to integrate path relinking into the solution algorithm to achieve a better
977 solution.

978
979 **Table 5 Performance comparison of solution methods with or without path relinking**

Time interval	PR	Objective Value	p-value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	With PR	1,677.33	0.00	85.24%	72.10%	26.32%	15.48%	25.73%	16.25%
	Without PR	1,668.81		85.27%	71.35%	25.84%	15.35%	25.11%	16.01%
30 s	With PR	1,682.97	0.00	85.08%	73.28%	26.70%	15.56%	25.73%	16.23%
	Without PR	1,675.86		84.94%	72.71%	26.43%	15.50%	25.47%	16.15%
60 s	With PR	1,689.94	0.04	85.15%	73.11%	26.87%	15.51%	26.03%	16.14%
	Without PR	1,686.38		85.08%	73.03%	26.79%	15.55%	25.97%	16.12%

980 Note: 'PR' stands for 'path relinking'.

981 982 **5.5. Effect of the number of vehicles and percentage of willingness-to-share**

983 In the previous section, we assume that all passengers are willing to share a vehicle with others.
984 The percentage of willingness-to-share means the proportion of passengers who want to take
985 ride-hailing sharing services in the total number of passengers who want to take ride-hailing
986 services. When the value of the percentage of willingness-to-share is 50%, half of the
987 passengers want to share the vehicles, while the other half of passengers only want to ride alone

without sharing. In this section, the length of time interval used in the simulation is 60 s. The passengers who want to share a vehicle are randomly chosen from all requests when the percentage of willingness-to-share is 50%. Moreover, when additional candidate vehicles are introduced into this experiment, the origins of those additional vehicles are determined randomly according to the strategy described in Section 5.1. As shown in Tables 6 and 7, the objective value and the matching percentage increase when the number of vehicles increases and vice versa. However, the upward trend becomes slow when the number of vehicles is larger than 10,000. When the percentage of willingness-to-share decreases, both the objective value and the matching percentage decrease. Moreover, when the number of vehicles is large, the matching percentage slightly increases as the percentage of willingness-to-share increases. Table 8 shows that the sharing percentage decreases with the decreasing percentage of willingness-to-share and the increasing number of vehicles. It demonstrates that few vehicles for ride-hailing services can promote ride-hailing sharing. Overall, the trends agree with our expectations.

Table 6 Comparison of the objective value in terms of the number of vehicles and percentage of willingness-to-share

Objective value	Number of vehicles				
	1,000	2,400	6,000	10,000	15,000
The percentage of willingness-to-share	0	551.76	977.90	1,235.85	1,307.50
	50%	807.74	1,265.21	1,465.05	1,522.57
	100%	1,210.15	1,689.94	1,840.11	1,882.02

Table 7 Comparison of the matching percentage in terms of the number of vehicles and percentage of willingness-to-share

Matching percentage	Number of vehicles				
	1,000	2,400	6,000	10,000	15,000
Percentage of willingness-to-share	0	47.75%	77.68%	89.54%	92.13%
	50%	54.14%	81.23%	90.17%	92.35%
	100%	61.49%	85.15%	91.51%	93.01%

Table 8 Comparison of the sharing percentage in terms of the number of vehicles and percentage of willingness-to-share

Sharing percentage	Number of vehicles				
	1,000	2,400	6,000	10,000	15,000
Percentage of willingness-to-share	0	0.00%	0.00%	0.00%	0.00%
	50%	36.98%	32.58%	31.35%	30.46%
	100%	77.43%	73.11%	71.19%	70.51%

5.6. Effect of the delay coefficient

This section discusses the effect of the delay coefficient co_{delay} on the performance measures introduced in Section 5.3. Table 9 compares the results with different lengths of time intervals using different values of co_{delay} . For all lengths of time intervals, a higher delay coefficient

1016 achieves better results on the objective value and all performance measures except for R_{time}
 1017 and RT_{time} . It is reasonable because a larger coefficient means a larger tolerance of passengers
 1018 to longer travel time, which allows the operators to have more feasible matches but leads to
 1019 larger R_{time} and RT_{time} .

1020

1021 **Table 9 Performance comparison in terms of delay coefficients**

Time interval	Delay coefficient	Objective value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	1.3	1,677.33	85.24%	72.10%	26.32%	15.48%	25.73%	16.25%
	1.5	2,136.25	88.20%	80.12%	33.53%	23.37%	32.17%	24.82%
30 s	1.3	1,682.97	85.08%	73.28%	26.70%	15.56%	25.73%	16.23%
	1.5	2,149.78	88.35%	80.35%	33.89%	23.39%	32.64%	24.72%
60 s	1.3	1,689.94	85.15%	73.11%	26.87%	15.51%	26.03%	16.14%
	1.5	2,157.17	88.25%	80.72%	34.28%	23.48%	32.83%	24.73%

1022

1023 5.7. Analysis of the objective function

1024 In this paper, there are three components considered in the objective function, including the
 1025 number of served customers, the travel cost ratio, and the travel time ratio. Either a too small
 1026 travel cost ratio or a too large travel time ratio can prevent customers from selecting ride-hailing
 1027 sharing services. To illustrate the importance of considering travel time and cost ratios in the
 1028 objective function, two new objective functions are introduced. The first one excludes the travel
 1029 time ratio by setting b_3 as zero, while keeping b_1 and b_2 unchanged. The second one
 1030 excludes the travel cost ratio by setting b_2 as zero, while keeping b_1 and b_3 unchanged.

1031

1032 As shown in Table 10, when the travel time ratio is not considered in the objective function,
 1033 the average travel time increment percentage per passenger and the percentage of total travel
 1034 time increment increase significantly. The ride-hailing matching trips allow long detours to
 1035 serve customers. However, long detours lower the allowable number of additional passengers
 1036 served in the later time intervals due to the fixed time window of passengers aboard, leading
 1037 to the reduction in the sharing percentage and thus the reduction in R_{money} and RT_{money} . When
 1038 the travel cost ratio is not considered in the objective function, the sharing percentage, the
 1039 average out-of-pocket cost saving percentage per passenger, and the percentage of total out-of-
 1040 pocket cost saving decrease significantly because ride-hailing sharing requires vehicles to
 1041 detour to pick up customers and increase the travel time ratio. Meanwhile, the reduction in the
 1042 sharing percentage induces the decrease in R_{time} and RT_{time} because fewer ride-hailing
 1043 sharing activities imply fewer detours experienced by the passengers. Therefore, both the travel
 1044 time ratio and travel cost ratio are important components in the objective function to achieve
 1045 better ride-hailing sharing services.

1046

1047

1048

1049

1050

1051

1052

1053

1054

Table 10 Comparison of different objective functions

Time interval	Objective Function	Objective value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	Normal	1,677.33	85.24%	72.10%	26.32%	15.48%	25.73%	16.25%
	TIME-COST-	4,131.83	85.91%	68.65%	23.75%	19.98%	23.56%	19.83%
	COST-	3,904.86	86.07%	35.86%	9.75%	9.89%	7.06%	9.06%
30 s	Normal	1,682.97	85.08%	73.28%	26.70%	15.56%	25.73%	16.23%
	TIME-COST-	4,142.12	85.88%	68.89%	24.16%	19.88%	23.76%	19.71%
	COST-	3,908.42	86.10%	35.47%	9.51%	9.78%	6.74%	9.02%
60 s	Normal	1,689.94	85.15%	73.11%	26.87%	15.51%	26.03%	16.14%
	TIME-COST-	4,149.36	85.82%	69.54%	24.51%	19.78%	24.33%	19.64%
	COST-	3,897.30	85.77%	34.04%	8.94%	9.61%	6.49%	8.87%

1056 Note: Normal = the objective function with the three components mentioned in Equation (1), TIME- = the
 1057 objective function with the number of matched requests and the travel cost ratios only, COST- = the objective
 1058 function with the number of matched requests and the travel time ratios only.

1059

1060 5.8. Comparison to GRASP with path relinking

1061 The performance of the proposed method is compared to GRASP with path relinking proposed
 1062 by Santos and Xavier (2015). There are four substantial differences between the MABC
 1063 algorithm of this paper and their method (named *GRASP*). First, the adopted main algorithm is
 1064 different (i.e., the ABC algorithm versus GRASP). Second, the MABC algorithm incorporates
 1065 the VP tree to narrow the search range for the requests. Due to the adoption of the VP tree, the
 1066 solution initialization methods between the MABC algorithm and *GRASP* are different, in
 1067 which *GRASP* uses the greedy method to match vehicles with feasible requests, while the
 1068 MABC algorithm uses the greedy method to match requests with feasible vehicles (described
 1069 in Section 4.4). Third, this paper introduces a transfer operator in addition to the swap operator
 1070 that has been adopted in *GRASP*. Fourth, *GRASP* allows new requests to be added only after
 1071 the destination point of the last delivered passenger aboard if there are passengers aboard the
 1072 vehicle at the current time, while the MABC algorithm has no such restriction (e.g., Figure 1).
 1073 The MABC algorithm can be viewed as the solution method obtained by introducing the four
 1074 major modifications to *GRASP*. To have a fair comparison of the performance between *GRASP*
 1075 and the MABC algorithm, the parameter setting for *GRASP* is determined based on the strategy
 1076 presented by Santos and Xavier (2015) and the dataset mentioned in Section 5.1.

1077

1078 To clearly illustrate the effects of introducing each modification to *GRASP* on solving the
 1079 studied problem, three additional new methods, which are the variants of either the MABC
 1080 algorithm or *GRASP*, are proposed. Table 11 describes these variants. Each method in Table 11
 1081 only has one difference compared with its adjacent method.

1082

1083 1084 Table 11 Comparison of different methods solving the dynamic ride-hailing sharing problem

Method	Main algorithm	Initialization Method	Operators	Insertion restriction
<i>GRASP</i> (Santos and Xavier, 2015)	GRASP	Vehicle	Swap	Yes
<i>GRASP+</i>	GRASP	Vehicle	Swap	No
<i>ABC--</i>	ABC	Vehicle	Swap	No
<i>ABC-</i>	ABC	Vehicle	Swap + transfer	No
<i>MABC</i>	ABC	Request + VP	Swap + transfer	No

tree

1085 Note: Vehicle = initialization method using the greedy method to match vehicles with feasible requests; Request
1086 = initialization method using the greedy method to match requests with feasible vehicles; Swap = swap operator,
1087 Transfer = transfer operator.

1088
1089 As shown in Table 12, the method using the MABC algorithm proposed in this paper (*MABC*)
1090 performs the best. The variants of the MABC algorithm and *GRASP*, which include new
1091 features to the ABC algorithm, yield a better solution compared with *GRASP*. The comparison
1092 between *GRASP* and *GRASP+* shows that removing the insertion restriction (the fourth aspect)
1093 is an effective way to improve solution quality. It can improve the chance for ride-hailing
1094 sharing, simultaneously complying with the time window, capacity, and travel cost constraints
1095 for each request. The comparison between *GRASP+* and *ABC--* demonstrate that, without the
1096 transfer operator, *GRASP* achieves a better objective value in longer time intervals, and the
1097 ABC algorithm performs better in shorter time intervals. The comparison between *ABC--* and
1098 *ABC-* showed that the transfer operator greatly improves the performance. The comparison
1099 between the MABC algorithm and *ABC-* demonstrates that the modified initialization method
1100 and the VP tree used in this paper are more effective than the initialization method used in
1101 *GRASP* because the latter is time-consuming. In summary, Table 12 shows that the proposed
1102 MABC algorithm performs well in solving the dynamic ride-hailing sharing problem and that
1103 the modifications to *GRASP* are effective.

1104
1105 Table 13 shows the performance of the MABC algorithm and GRASP in terms of the objective
1106 function adopted by Santos and Xavier (2015), who consider the number of matched requests
1107 and travel cost ratio. The results demonstrate that the sharing percentage increases significantly,
1108 and the customers can save more money when using the proposed MABC algorithm, which
1109 also leads to an increment in the objective value. Comparing Table 12 with Table 13, it can be
1110 observed that the customers need to waste more travel time to finish trips when ignoring the
1111 travel time ratio in the objective function.

1112
1113 **Table 12 Performance comparison between different variants of the MABC algorithm**
1114 **and GRASP**

Time interval	Algorithm	Objective Value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	<i>GRASP</i>	1,211.71	85.22%	17.60%	5.93%	12.02%	5.60%	11.08%
	<i>GRASP+</i>	1,362.77	88.15%	43.11%	12.50%	14.64%	11.08%	14.20%
	<i>ABC--</i>	1,388.19	88.53%	44.31%	13.25%	14.36%	12.22%	13.99%
	<i>ABC-</i>	1,433.01	88.04%	51.10%	15.32%	14.62%	14.51%	14.36%
	<i>MABC</i>	1,677.33	85.24%	72.10%	26.32%	15.48%	25.73%	16.25%
30 s	<i>GRASP</i>	1,274.66	85.66%	22.51%	7.71%	10.95%	7.39%	10.10%
	<i>GRASP+</i>	1,566.38	88.61%	56.81%	16.87%	14.16%	16.22%	14.32%
	<i>ABC--</i>	1,548.72	88.42%	57.77%	18.68%	14.16%	17.39%	14.27%
	<i>ABC-</i>	1,642.22	88.06%	67.93%	22.92%	15.11%	22.16%	15.50%
	<i>MABC</i>	1,682.97	85.08%	73.28%	26.70%	15.56%	25.73%	16.23%
60 s	<i>GRASP</i>	1,292.96	85.30%	23.02%	7.89%	10.82%	7.60%	10.14%
	<i>GRASP+</i>	1,617.69	88.20%	62.34%	20.54%	14.17%	18.83%	14.44%
	<i>ABC--</i>	1,603.08	88.39%	62.73%	20.58%	14.17%	18.86%	14.37%
	<i>ABC-</i>	1,661.39	87.49%	69.25%	24.06%	15.26%	23.35%	15.86%
	<i>MABC</i>	1,689.94	85.15%	73.11%	26.87%	15.51%	26.03%	16.14%

1115
1116

1117 **Table 13 Performance comparison between the MABC algorithm and GRASP in**
 1118 **terms of the objective function without travel time ratio**

Time interval	Algorithm	Objective Value	Matching	Sharing	R_{money}	R_{time}	RT_{money}	RT_{time}
10 s	GRASP	3,599.15	85.56%	15.78%	5.45%	18.40%	5.17%	16.80%
	MABC	4,131.83	85.91%	68.65%	23.75%	19.98%	23.56%	19.83%
30 s	GRASP	3,688.64	86.38%	21.16%	7.38%	18.67%	7.54%	17.13%
	MABC	4,142.12	85.88%	68.89%	24.16%	19.88%	23.76%	19.71%
60 s	GRASP	3,720.96	86.63%	24.59%	8.14%	18.79%	8.14%	17.44%
	MABC	4,149.36	85.82%	69.54%	24.51%	19.78%	24.33%	19.64%

6. Conclusions

In this paper, a dynamic ride-hailing sharing problem is proposed, which aims to maximize the weighted difference between the number of served customers and the sum of the travel cost ratio and travel time ratio. Meanwhile, the time window and travel cost constraints of the passengers and the capacity constraint of the vehicles are considered simultaneously. To handle the dynamic characteristics of the ride-hailing sharing problem, the problem was divided into many static subproblems with an identical time interval length. In each time interval, the request collection and matching algorithm were executed simultaneously. To solve subproblems, we propose a method based on the artificial bee colony algorithm, in which the vantage-point tree is used to narrow the search space of the algorithm and path relinking is incorporated to accelerate the solution speed to get the better solution. The method using the GRASP with path relinking proposed by Santos and Xavier (2015) was selected as the benchmark for the comparison. The results show that our proposed method outperforms the benchmark. The results also demonstrate the following. (a) With a longer time interval, the performance of the proposed method is better. However, it should be noted that a longer time interval leads to a longer time of data collection and algorithm execution, which requires the passengers to wait longer for matching results. (b) Embedding path relinking into the ABC algorithm significantly improves the performance of the resultant solution method. (c) The percentage of willingness-to-share and the number of ride-hailing vehicles can significantly influence the matching percentage and the sharing percentage of the ride-hailing sharing problem. (d) With a higher tolerance for the detouring time due to ride-hailing sharing, the proposed method can perform significantly better. (e) Considering both travel cost and travel time ratios into the design objective can achieve the best sharing percentage, and balance the increase in travel time ratio and the decrease in travel cost ratio compared with the design objectives that miss either the travel time or the travel cost ratio. (f) Ride-hailing sharing can generate benefits to the passengers as the passengers can spend less money on ride-hailing fares by spending a little bit more time due to the detours.

This study opens the following interesting future research directions. First, our solution method is simple and efficient but does not consider the lookahead policy. Introducing the lookahead policy can often improve the performance of some classical transportation systems (e.g., Mitrović-Minić et al., 2004; Spivey and Powell, 2004; Sayarshad et al., 2020; Sayarshad & Gao, 2020). Therefore, one of the future search directions is to extend our solution method to incorporate this lookahead policy. Second, in this study, we only consider the ride-hailing service offered by a private company. If the company was public operated, the taxi charge could be lower if the passengers waiting time was longer. This socially efficient price could be examined by modifying the price mechanism in the proposed formulation, which is an

1158 interesting research direction. In the future, we can analyze socially efficient prices in a ride-
1159 hailing sharing problem similar to the studies of Figliozzi et al. (2007) and Sayarshad and Chow
1160 (2015).

1163 References

1164

1165 Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P., & Wang, X. (2011). Dynamic ride-
1166 sharing: a simulation study in metro Atlanta. *Transportation Research Part B
1167 Methodological*, 45(9), 1450-1464.

1168 Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand
1169 high-capacity ride-sharing via dynamic trip-vehicle assignment. *Proceedings of the
1170 National Academy of Sciences*, 114(3), 462-467.

1171 Attanasio, A., Cordeau, J. F., Ghiani, G., & Laporte, G. (2004). Parallel tabu search heuristics
1172 for the dynamic multi-vehicle dial-a-ride problem. *Parallel Computing*, 30(3), 377-387.

1173 Baugh Jr., J. W., Kakivaya, G. K. R., & Stone, J. R. (1998). Intractability of the dial-a-ride
1174 problem and a multiobjective solution using simulated annealing. *Engineering
1175 Optimization*, 30(2), 91-123.

1176 Beaudry, A., Laporte, G., Melo, T., & Nickel, S. (2010). Dynamic transportation of patients in
1177 hospitals. *OR Spectrum*, 32(1), 77-107.

1178 Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems.
1179 *European Journal of Operational Research*, 202(1), 8-15.

1180 Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. *Annals
1181 of Operations Research*, 153(1), 29-46.

1182 Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of
1183 unexpected customers for a dynamic dial-a-ride problem. *European Journal of
1184 Operational Research*, 175(3), 1605-1615.

1185 Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with time
1186 windows. *European Journal of Operational Research*, 54(1), 7-22.

1187 Figliozzi, M. A., Mahmassani, H. S., Jaillet, P. (2007). Pricing in dynamic vehicle routing
1188 problems. *Transportation Science*, 41(3), 302-318.

1189 Fu, A. W. C., Chan, P. M. S., Cheung, Y. L., & Moon, Y. S. (2000). Dynamic VP-tree indexing
1190 for N-nearest neighbor search given pair-wise distances. *The VLDB Journal*, 9(2), 154-
1191 173.

1192 Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: Faster
1193 and simpler hierarchical routing in road networks. In *International Workshop on
1194 Experimental and Efficient Algorithms* (pp. 319-333). Springer, Berlin, Heidelberg.

1195 Geisberger, R., Sanders, P., Schultes, D., & Vetter, C. (2012). Exact routing in large road
1196 networks using contraction hierarchies. *Transportation Science*, 46(3), 388-404.

1197 Glover, F. (1997). Tabu search and adaptive memory programming—Advances, applications
1198 and challenges. In *Interfaces in Computer Science & Operations Research* (pp. 1-75).
1199 Springer, Boston, MA.

1200 Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search and path relinking.
1201 *Control & Cybernetics*, 29(3), 653-684.

1202 Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey
1203 of dial-a-ride problems: Literature review and recent developments. *Transportation
1204 Research Part B: Methodological*, 111, 395-241.

1205 Horn, M. E. (2002). Fleet scheduling and dispatching for demand-responsive passenger
1206 services. *Transportation Research Part C: Emerging Technologies*, 10(1), 35-63.

1207 Intergovernmental Panel on Climate Change (IPCC) (2015). *Climate Change 2014: Mitigation*

1208 of *Climate Change* (Vol. 3). Cambridge University Press.

1209 Jaw, J. J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. (1986). A heuristic algorithm for the
1210 multi-vehicle advance request dial-a-ride problem with time windows. *Transportation
1211 Research Part B: Methodological*, 20(3), 243-257.

1212 Jensen, P. (2005). *Indicator: Occupancy Rates of Passenger Vehicles*. Technical Report,
1213 European Environmental Agency. Retrieved from [https://www.eea.europa.eu/data-and-
maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-
vehicles](https://www.eea.europa.eu/data-and-
1214 maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-
1215 vehicles).

1216 Jung, J., Jayakrishnan, R., & Park, J. Y. (2016). Dynamic shared-taxi dispatch algorithm with
1217 hybrid-simulated annealing. *Computer-Aided Civil and Infrastructure Engineering*, 31(4),
1218 275-291.

1219 Karaboga, D. (2005). *An Idea Based on Honey Bee Swarm for Numerical Optimization* (Vol.
1220 200). Technical Report-TR06, Erciyes University, Engineering Faculty, Computer
1221 Engineering Department.

1222 Karaboga, D., & Ozturk, C. (2009). Neural networks training by artificial bee colony algorithm
1223 on pattern classification. *Neural Network World*, 19(3), 279-292.

1224 Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital
1225 IIR filters. *Journal of the Franklin Institute*, 346(4), 328-348.

1226 Liang, X., de Almeida Correia, G. H., An, K., & van Arem, B. (2020). Automated taxis' dial-
1227 a-ride problem with ride-sharing considering congestion-based dynamic travel times.
1228 *Transportation Research Part C: Emerging Technologies*, 112, 260-281.

1229 Long, J., Szeto, W. Y., & Huang, H. J. (2014). A bi-objective turning restriction design problem
1230 in urban road networks. *European Journal of Operational Research*, 237(2), 426-439.

1231 Ma, S., Zheng, Y., & Wolfson, O. (2013). T-share: A large-scale dynamic taxi ridesharing
1232 service. In *2013 IEEE 29th International Conference on Data Engineering* (pp. 410-421).
1233 IEEE Computer Society.

1234 Ma, S., Zheng, Y., & Wolfson, O. (2015). Real-time city-scale taxi ridesharing. *IEEE
1235 Transactions on Knowledge & Data Engineering*, 27(7), 1782-1795.

1236 Madsen, O. B. G., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-
1237 ride problem with time windows, multiple capacities, and multiple objectives. *Annals of
1238 Operations Research*, 60(1), 193-208.

1239 Melachrinoudis, E., Ilhan, A. B., & Min, H. (2007). A dial-a-ride problem for client
1240 transportation in a health-care organization. *Computers & Operations Research*, 34(3),
1241 742-759.

1242 Mitrović-Minić, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics
1243 for the dynamic pickup and delivery problem with time windows. *Transportation
1244 Research Part B*, 38(8), 669-685.

1245 Nielsen, F., Piro, P., & Barlaud, M. (2009). Bregman vantage point trees for efficient nearest
1246 neighbor queries. In *IEEE International Conference on Conference: Multimedia and Expo,
1247 2009* (pp. 878-881).

1248 Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many
1249 immediate request dial-a-ride problem. *Transportation Science*, 14(2), 130-154.

1250 Resendel, M. G., & Ribeiro, C. C. (2005). GRASP with path-relinking: Recent advances and
1251 applications. In *Metaheuristics: Progress as Real Problem Solvers* (pp. 29-63). Springer,
1252 Boston, MA.

1253 Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., & Liss, S. (2011). *Summary of Travel
1254 Trends: 2009 National Household Travel Survey*. Technical Report, Federal Highway
1255 Administration, US Department of Transportation.

1256 Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing: A dynamic dial-a-ride problem
1257 with money as an incentive. *Expert Systems with Applications*, 42(19), 6728-6737.

1258 Sayarshad, H. R., & Chow, J. Y. J. (2015). A scalable non-myopic dynamic dial-a-ride and
1259 pricing problem. *Transportation Research Part B: Methodological*, 81(2), 539-554.

1260 Sayarshad, H. R., & Gao, H. O. (2018). A scalable non-myopic dynamic dial-a-ride and pricing
1261 problem for competitive on-demand mobility systems. *Transportation Research Part C: Emerging Technologies*, 91, 192-208.

1262 Sayarshad, H. R., & Gao, H. O. (2020). Optimizing dynamic switching between fixed and
1263 flexible transit services with an idle-vehicle relocation strategy and reductions in
1264 emissions. *Transportation Research Part A: Policy and Practice*, 135, 198-214.

1265 Sayarshad, H. R., Mahmoodian, V., & Gao, H. O. (2020). Dynamic non-myopic routing of
1266 electric taxis with battery swapping station. *Sustainable Cities and Society*, 57, 102113.

1267 Schilde, M., Doerner, K. F., & Hartl, R. F. (2014). Integrating stochastic time-dependent travel
1268 speed in solution methods for the dynamic dial-a-ride problem. *European Journal of
1269 Operational Research*, 238(1), 18-30.

1270 Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). *2015 Urban Mobility Scorecard*.
1271 Technical Report, Texas A&M Transportation Institute.

1272 Singh, A. (2009). An artificial bee colony algorithm for the leaf-constrained minimum
1273 spanning tree problem. *Applied Soft Computing*, 9(2), 625-631.

1274 Spivey, M. Z., & Powell, W. B. (2004). The dynamic assignment problem. *Transportation
1275 Science*, 38(4), 399-419.

1276 Szeto, W. Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle
1277 routing problem. *European Journal of Operational Research*, 215(1), 126-135.

1278 Szeto, W. Y., & Jiang, Y. (2014). Transit route and frequency design: Bi-level modeling and
1279 hybrid artificial bee colony algorithm approach. *Transportation Research Part B: Methodological*, 67(9), 235-263.

1280 Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static multi-
1281 vehicle bike repositioning problem. *Transportation Research Part B: Methodological*, 109, 176-211.

1282 Wang, Y., Zheng, B., & Lim, E. P. (2018). Understanding the effects of taxi ride-sharing—A
1283 case study of Singapore. *Computers, Environment and Urban Systems*, 69, 124-132.

1284 Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in general
1285 metric spaces. In *Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
1286 Algorithms* (pp. 311-321). Society for Industrial and Applied Mathematics.

1287

1288

1289

1290

1291

1292