OO UTLHA WD -

A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing

Sharing Problem

Xingbin Zhan
Department of Civil Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: xbzhan@hku.hk

W.Y. Szeto, Ph.D.
Department of Civil Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: ceszeto@hku.hk

C. S. Shui, Ph.D.
Department of Transportation and Logistics Management
National Chiao Tung University
Hsinchu, Taiwan
Email: csshui@nctu.edu.tw

Xiqun (Michael) Chen, Ph.D.
College of Civil Engineering and Architecture
Zhejiang University
Hangzhou 310058, China
Email: chenxiqun@zju.edu.cn

Acknowledgments

This research is jointly supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region of China (HKU 17201217) and a grant from the
University Research Committee of the University of Hong Kong (201811159080). The fourth
author Xiqun Chen is financially supported by the National Key Research and Development
Program of China (2018 YFB1600900), the National Natural Science Foundation of China
(71771198, 71922019), the joint project of the National Natural Science Foundation of China
and Joint Programming Initiative Urban Europe (NSFC — JPI UE) (‘U-PASS’, 71961137005),
and the Zhejiang Provincial Natural Science Foundation of China (LR17E080002). We would

like to thank Didi to provide ride-hailing data.

44

45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

A Modified Artificial Bee Colony Algorithm for the Dynamic Ride-hailing
Sharing Problem

Abstract

Ride-hailing sharing involves grouping ride-hailing customers with similar trips and time
schedules to share the same ride-hailing vehicle to reduce their total travel cost. With the
current information and communication technology, ride-hailing customers and drivers can be
matched in real-time via a ride-hailing platform. This paper formulates a dynamic ride-hailing
sharing problem that simultaneously maximizes the number of served customers, minimizes
the travel cost and travel time ratios, and considers the capacity, time window, and travel cost
constraints. The travel cost ratio is the ratio of actual passengers’ fare to the passengers’ fare
without ride-hailing sharing, whereas the travel time ratio is defined as the actual travel time
(including waiting time) over the maximum allowable travel time. To solve the dynamic
problem, it is divided into many small and continuous static subproblems with an equal time
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm
with path relinking, while the contraction hierarchies and vantage point tree are used to
determine the shortest path and accelerate the algorithm, respectively. Problem properties and
the performance of the proposed solution method are demonstrated using large-scale real-time
data from Didi that is the largest ride-hailing company in China. The proposed method is shown
to outperform the benchmark, i.e., greedy randomized adaptive search procedure (GRASP)
with path relinking. The proposed method also performs better when the length of each time
interval is longer, and the tolerance for the incremental travel time caused by detours is higher.
We also demonstrate that (a) considering both travel cost and travel time ratios in the objective
can achieve a better sharing percentage, and balance the increase in the travel time ratio and
the decrease in the travel cost ratio compared with the objective that misses either travel time
or the travel cost ratio; and (b) the passengers can gain a large out-of-pocket cost saving in the
case of ride-hailing sharing while enduring a relatively small increase in travel time compared
with the case without ride-hailing sharing.

Keywords: Dynamic ride-hailing sharing; artificial bee colony algorithm; path relinking;
vantage point tree.

1. Introduction

With the development of social economy and motorization, increasing traffic congestion in
urban road networks, finite oil supplies, and environmental pollution have aroused great
attention from the public. According to Jensen (2005) and Santos et al. (2011), the private car
occupancy rates (the number of travelers per vehicle) are quite low in both Europe and the US,
reaching 1.8 persons per vehicle for leisure trips and 1.1 for commuting trips. The low
occupancy rate has led to a huge waste of social resources. The annual cost of wasted time and
fuel caused by traffic congestion in the US was approximately 160 billion dollars in 2015
(Schrank et al., 2015). Moreover, greenhouse gases emitted by vehicles have increased more
than double since 1970, while the annual greenhouse emissions were still growing (IPCC,
2015). Another issue is that more travelers choose ride-hailing services (e.g., Didi, Uber, and
Lyft) for convenience with an increase in income. The supply of ride-hailing vehicles usually
does not meet the travel demand during peak hours, and consequently, travelers have to wait
for a long time before using the services or abandon the services and shift to other modes.

One solution to the above problems is ride-hailing sharing. Ride-hailing sharing is a type of
ride-hailing service that groups the customers with similar trips and time schedules to share the

2

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

same ride-hailing vehicle, which can consequently reduce the total driving distance and fuel
cost of the vehicles and increase the vehicle occupancy rate. Ride-hailing sharing services have
been provided by private companies such as Didi, Uber, Lyft, etc. in recent years and proved
that both the passengers and drivers could benefit from these services. The passengers with
loose travel time windows can receive compensation as a return of the increase in travel time,
while ride-hailing drivers can serve more passengers and earn more during their available
working time. As a real-time service that connects multiple passengers and ride-hailing drivers,
the operations of ride-hailing sharing require a third-party platform to provide technical support,
including collecting the travel information of ride-hailing drivers and customers (e.g., current
locations and customers’ preferences) and matching the requests of ride-hailing customers with
the vehicles. With the increasing smartphone penetration rate and the development of wireless
communication technology, both ride-hailing drivers and customers can access information
timely and accurately to implement ride-hailing sharing.

Dynamic ride-hailing sharing problems with different objectives have been studied in the
literature. The commonly adopted objectives include maximizing the number of served
customers and minimizing the travel time (distance or delay). Moreover, passengers’ travel cost
is a critical measure when providing ride-hailing sharing services as it often influences whether
travelers choose to share rides or not. Santos and Xavier (2015) formulated it in the form of
the travel cost ratio, which is the ratio of actual passengers’ travel cost to the passengers’ travel
cost without ride-hailing sharing. However, using the travel cost ratio in the objective function
does not prevent the travel time increment due to the detour caused by ride-hailing sharing to
be acceptable by passengers. Therefore, we formulate a new dynamic ride-hailing sharing
problem that simultaneously maximizes the number of served customers, and minimizes the
travel cost and travel time ratios, where the travel time ratio is defined as the actual travel time
(including waiting time) over the maximum allowable travel time. To solve the dynamic
problem, it is divided into many small and continuous static subproblems with an equal time
interval. Each subproblem is solved by a modified artificial bee colony (MABC) algorithm
with path relinking, while the contraction hierarchies and vantage point tree are used to
determine the shortest path and accelerate the algorithm, respectively. Problem properties and
the performance of the proposed solution method are demonstrated using large-scale real-time
data from Didi.

The main contributions of this paper can be summarized as follows:

e We present a novel dynamic ride-hailing sharing problem that simultaneously
maximizes the weighted number of served customers, minimizes the weighted sum
of travel cost and travel time ratios, and considers the constraints of capacity, time
window, and travel cost. This problem considers both the travel cost and travel time
in the objective function, since two of the most important factors that affect taking
ride-hailing sharing service is the cost and time.

e We divide the problem into many small and continuous static subproblems with an
equal time interval. We propose a new solution method based on the MABC algorithm
to solve the subproblem. To accelerate the solution search, we use the vantage-point
(VP) tree to narrow the solution search space of each request by identifying the ride-
hailing vehicles near the pickup point of the passengers within a pre-defined radius.
The overall solution approach is proved to be efficient in solving large-scale ride-
hailing sharing problems.

143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

e Based on real ride-hailing data, we illustrate the performance of the proposed solution
approach and show that our approach is more effective than the existing solution
method proposed by Santos and Xavier (2015) for the dynamic ride-hailing sharing
problem.

The remainder of this paper is organized as follows. In Section 2, we provide an in-depth
literature review to show the research gaps. In Section 3, we describe the dynamic ride-hailing
sharing problem and formulate the static subproblem. Section 4 proposes the MABC algorithm.
Section 5 presents the computational results. Finally, Section 6 concludes the paper and
provides an outlook on future research.

2. Literature Review

In the literature, the ride-hailing sharing problem can be regarded as a variant of the dial-a-ride
problem (DARP). The DARP aims to determine vehicle routes and schedules for the users who
specify requests with pickup and delivery locations (Cordeau and Laporte, 2007) and has
various applications, including freight transportation (e.g., Dumas et al., 1991), and elderly or
disabled personnel transportation (e.g., Madsen et al., 1995; Melachrinoudis et al., 2007,
Beaudry et al., 2010). There are two differences between the DARP and the ride-hailing sharing
problem. First, dial-a-ride vehicles start from the depot(s) to pick up passengers in the DARP,
while the start locations of ride-hailing vehicles can be anywhere in the ride-hailing sharing
problem. Second, besides the time window constraint that the DARP focuses on, the ride-
hailing sharing problem requires considering the travel cost (fare) constraint for each passenger
to ensure that the out-of-pocket cost of each passenger is lower in a shared vehicle than a non-
shared vehicle. It is noted that in the literature, the taxi sharing problem is a special type of the
ride-hailing sharing problem, in which the ride-hailing sharing services may include not only
taxis but also private cars (e.g., Didi).

Ho et al. (2018) pointed out that the DARP problem could be classified into four categories:
static-deterministic, static-stochastic, dynamic-deterministic, and dynamic-stochastic. If the
existing plans can (cannot) be modified when new information enters the system, the problem
is dynamic (static). If the information received is certain (is unknown or uncertain) when
making a decision, the problem is deterministic (stochastic). The ride-hailing sharing problem
is a dynamic-deterministic problem. As ride-hailing customers who are willing to share a ride
always want to match a ride-hailing vehicle as soon as possible and their requests can enter the
system at random times, they often match drivers on very short notice. Previous studies have
adopted several strategies to deal with the dynamic nature of the ride-hailing sharing problem.
One strategy is that the model processes a request immediately after the system receives the
request (Ma et al., 2013). Though the customers can get feedback in a short time, this strategy
usually provides “shortsighted” solutions as it does not consider the influence of near-future
requests, and thus leads to poor solution quality. Another strategy is to adopt the rolling horizon
strategy, in which the solutions are determined using all known information within a planning
horizon, but the final decisions have not been made until necessitated by a deadline of the
requests (Agatz et al., 2011). This strategy can obtain a better solution than the first strategy as
it considers more information, but the customers require longer time waiting for the final
matching results. To balance the waiting time for matching results and solution quality, this
study adopts the strategy that the dynamic problem is divided into small continuous static
subproblems (Santos and Xavier, 2015; Alonso-Mora et al., 2017). Each static subproblem
handles a scene corresponding to a specific time interval. This strategy can handle multiple
requests simultaneously, and the time interval we set is short enough such that the customers
do not wait too long for receiving feedback.
4

193
194

Table 1 Characteristics for representative DARPs and ride-hailing sharing problems

Reference Type Objective(s) Constraint(s)’ Scenario Solution method(s)
Psaraftis DARP Minimize a weighted sum of the total ~ Capacity and D/S Dynamic programming
(1980) travel time and dissatisfaction of MPS
customers
Jaw et al. DARP Minimize a weighted sum of Time and capacity S Advanced dial-a-ride
(1986) disutility to the system’s customers with time windows
and of operator costs (ADARTW) heuristic
Madsenet DARP Multiple objectives’ Time and capacity D REBUS heuristic
al. (1995)
Horn DARP Minimize total travel time while Time and capacity D L2sched system
(2002) maximizing ridership using a
weighted sum approach
Attanasio DARP Minimize total routing cost Time and capacity D Tabu search
etal.
(2004)
Coslovich DARP Maximize the number of served Time D Two-phase insertion
et al. customers technique
(2006)
Beaudryet DARP Minimize a weighted sum of total Time and capacity D Two-phase heuristic
al. (2010) travel time, total lateness, and total procedure
earliness
Schildeet DARP Minimize the sum of tardiness, Time and capacity D Metaheuristic solution
al. (2014) earliness, and travel time violations approaches based on
dynamic variable
neighborhood search
Ma et al. RHSP Minimize the total travel Time, capacity, D Dual-side vehicle
(2013, distance and cost searching algorithm
2015)
Santosand RHSP Maximize the number of served Time, capacity, D GRASP with path
Xavier requests while minimizing the travel ~ and cost relinking
(2015) cost ratio
Jungetal. RHSP Time and capacity D Nearest vehicle
(2016) Minimize total passenger travel dispatch algorithm/
times; maximize system profit Insertion heuristic/
Hybrid Simulated
Annealing
Alonso- RHSP Minimize the travel delay of all Time and capacity D Greedy assignment
Mora et al. passengers while maximizing the with Mosek and
(2017) number of served requests parallel computing
Sayarshad DARP Maximize social welfare Capacity D A novel dynamic
and Gao optimization
(2018) algorithm with a
Markov decision
process
Wang etal. RHSP Minimize travel time Time, capacity, D A greedy strategy
(2018) and cost
Liang etal. DARP Maximize revenue, the number of Time and capacity D A customized
(2020) matched customers while minimizing Lagrangian relaxation
the fuel cost and delay algorithm
This paper RHSP Maximize the weighted number of Time, capacity, D Rolling horizon
served customers while minimizing and cost approach with MABC
the weighted sum of the travel cost and path relinking

ratio and the travel time ratio

Note: RHSP = Ride-hailing sharing problem, MPS = maximum position shift (i.e., the maximum difference
between the position of a customer in the sequence of deliveries/pickups and the first-come-first-served position
of that customer in the initial list of requests); D = dynamic problem, S = static problem, D/S = dynamic problem
and static problem; 1: The objective is formed by the mixture of objectives choosing from minimizing total driving

5

time, minimizing the number of vehicles, minimizing total waiting time, minimizing the deviation from promise
service, and minimizing the total cost of operation of the vehicles. 2: time constraints refer to time window
constraints, and cost constraints refer to travel cost constraints.

Table 1 summarizes the characteristics of the existing DARPs and ride-hailing sharing
problems in the literature in terms of the problem type, design objectives, design constraints,
operational scenarios, and solution methods. It can be seen that ride-hailing sharing problems
have been studied in recent years, while DARPs have a long history. Different from the
conventional DARPs, the ride-hailing sharing problem includes the passengers’ travel cost (i.e.,
fare or out-of-pocket) into constraints to control the expense of each passenger on the trip due
to the detour caused by ride-hailing sharing (e.g., Ma et al., 2013, 2015; Santos and Xavier,
2015). Regarding the design objectives, the commonly adopted objectives include maximizing
the number of served customers (e.g., Coslovich et al., 2006) and minimizing the travel time
(distance or delay) (e.g., Attanasio et al., 2004; Ma et al., 2013, 2015; Wang et al., 2018),
whereas some studies formulated their design problems with more than one design objective
(e.g.,Jaw et al., 1986; Horn, 2002; Beaudry et al., 2010; Schilde et al., 2014; Santos and Xavier,
2015; Jung et al., 2016; Alonso-Mora et al., 2017; Sayarshad and Gao, 2018). On the other
hand, passengers’ travel cost is an important measure when providing ride-hailing sharing
services as it often influences whether travelers choose a ride-hailing sharing service or just a
ride-hailing service. Santos and Xavier (2015) formulated it in the form of the travel cost ratio.
However, using this ratio in the objective function does not prevent the travel time increment
due to the detour caused by ride-hailing sharing to be acceptable by passengers. Therefore, the
objective function in our studied problem includes not only the travel cost ratio but also the
travel time ratio that compares the actual travel time with the maximum allowable travel time
(i.e., the maximum time that a passenger can spend for a ride) to limit the increase in travel
time.

A wide range of solution methods have been proposed to solve the DARP and the ride-hailing
sharing problem in the literature. Psaraftis (1980) developed an exact optimization procedure
based on dynamic programming to solve the DARP (with ridesharing). Unlike the static version
of the problem that does not consider the immediate requests, the dynamic version considers
the immediate requests during the operation while it is limited to only the case with a single
vehicle and many customers. The computational time of this algorithm is an exponential
function of the number of customers. Alonso-Mora et al. (2017) built a request-trip-vehicle
graph, which consisted of all possible combinations of the requests and vehicles according to
the time window constraints. An integer linear program was formulated to determine the
optimal assignment with the best objective function value (or the best objective value) based
on the request-trip-vehicle graph. In the worst case, the method can be seen as an exhaustive
search, so the parallel computations are used to speed up the method. However, the
computational time of this method increases rapidly with the maximum waiting time. As
DARPs and ride-hailing sharing problems are NP-hard (Baugh Jr., 1998; Santos and Xavier,
2015), exact methods are usually impossible to solve for optimal solutions in large instances
efficiently. Heuristics or metaheuristics can search for near-optimal solutions efficiently and
thus become widely adopted in the existing literature (e.g., Horn, 2002; Attanasio et al., 2004;
Beaudry et al., 2010; Santos and Xavier, 2015; Jung et al., 2016). Meanwhile, many other
methods are proposed to solve the DARP and ride-hailing sharing problem. For example, Ma
et al. (2013) proposed a vehicle searching algorithm using a spatial-temporal index to find
candidate vehicles and then a scheduling algorithm was applied to achieve matching and check
constraints. This method for solving ride-hailing sharing problems is demonstrated to be very
efficient and can be used in large-scale ride-hailing sharing problems. However, this method
only suits the problem that minimizes the total travel distance or total travel time. New solution

6

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

289
290
291
292
293

294
295
296

methods may be required to handle other or more objectives. Sayarshad and Gao (2018)
divided the DARP problem into multiple traveling salesman problems and solved them by a
traveling salesman problem with pickup and deliver (TSPPD) algorithm. The Markov decision
process was used to obtain information to calculate social welfare. Liang et al. (2020) solved
the problem using a customized Lagrangian relaxation algorithm, and this algorithm was time-
consuming (15.9 min for 50 iterations for a network with 66 road links and 46 nodes), leading
to long waiting time for customers. Please refer to more comprehensive reviews on the solution
methods of DARPs by Berbeglia et al. (2010) and Ho et al. (2018).

As reviewed by Ho et al. (2018), recently proposed metaheuristics have not been adopted in
solving the DARP and its variants. As one of the recent methods mentioned in their review, the
artificial bee colony (ABC) algorithm is adopted to solve our proposed problem. As a powerful
metaheuristic proposed by Karaboga (2005), the ABC algorithm has been demonstrated with
good performance in solving many problems, including numerical function optimization (e.g.,
Karaboga and Ozturk, 2009), structural inverse analysis (e.g., Karaboga, 2009), pattern
classification (e.g., Karaboga and Ozturk, 2009), the leaf-constrained minimum spanning tree
problem (e.g., Singh, 2009), and so on. It has also been applied in solving different logistics
and transportation problems with satisfactory performance, such as capacitated vehicle routing
problems (e.g., Szeto et al., 2011), return restriction design problems (e.g., Long et al., 2014),
transit routes and frequency settings (e.g., Szeto and Jiang, 2014), and bicycle repositioning
problems (e.g., Szeto and Shui, 2018). The works provide firm ground to apply the ABC
algorithm in solving our dynamic ride-hailing sharing problem.

Unlike the literature, to solve the proposed dynamic ride-hailing sharing problem, we first
decompose the whole planning horizon evenly into smaller time intervals and then adopt the
ABC algorithm with path relinking in each time interval. Path relinking is an enhancement
strategy proposed by Glover (1997) to explore the better solution between elite solutions
obtained by tabu search or scatter search (e.g., Glover, 1997; Glover et al., 2000). Applying
path relinking into the GRASP has significantly improved the solution time and quality
(Resendel and Ribeiro, 2005). The GRASP with path relinking was first used in the ride-hailing
sharing problem and achieved better performance than that without path relinking (Santos and
Xavier, 2015). Furthermore, to speed up the matching between the requests and the vehicles,
the vantage-point tree (VP tree) was used to do range queries to search for feasible vehicles
around the origin of the request within a given radius. As a data structure for partitioning
general metric space in a hierarchical way proposed by Yianilos (1993), the VP tree was widely
used for efficient nearest neighbor queries (Nielsen et al., 2009; Fu et al., 2000). The resultant
solution method is referred to as the MABC algorithm.

3. Dynamic Ride-hailing Sharing Problem

In this section, we first present the notations adopted in this problem and then give a detailed
problem statement of the dynamic ride-hailing sharing problem. Afterward, the mathematical
formulation of the static subproblem is presented in detail.

3.1. Notations

The notations used in this paper are listed as follows.

Sets/indices
Vv Set of all vertices (points) on the road network;
E Set of all edges on the road network;

7

N Set of all requests that are waiting to match;

Q Set of all matched requests;

7 Set of all ride-hailing vehicles available in the system;

W Set that contains all origins and destinations of requests in N ;
U Set that contains all origins and destinations of requests in Q ;
i Request i;

Origin of request i, i" eV

i Destination of request i, i €V ;

i Ride-hailing vehicle j;

J Starting point of vehicle j, j" eV ;

i Dummy destination of vehicle j;

R, Route of vehicle j, where R, = {vc{ ,vlj,...,vzjj } :

v) The zth point in the route of vehicle j, V) eV ;
i(v) Request i with either pickup or delivery at point V..

297
298 Parameters

P; Number of passengers of request i ;

T Order time of request i (i.c., time of customers making request i);

T.° Latest pickup time of request i;
Tid Latest delivery time of request i;
cost®" Total passengers’ out-of-pocket cost of request i through the direct trip
i without sharing ride-hailing vehicles;
Z, Total number of pickup and delivery points in the route of vehicle |;
q, Capacity of ride-hailing vehicle j;
ey Service time at point V) ;
t\,zj i, Shortest travel time from sz to sz+1 in the route of vehicle j;
Cyvi, Fare from v} to V), in the route of vehicle j;
b, Weight for each request;
b, Weight for the travel cost ratio;
b, Weight for the travel time ratio;
DT, Shortest travel time from the origin to the destination of request i without
sharing ride-hailing vehicles;
Urfow Location of vehicle | at the beginning of the current time interval;
BT, Arrival time at Ue€U before any new requests were inserted into routes;
ju) Matched vehicle for ueU before any new requests were inserted into
routes.
299
300 Decision Variables
ATVZJ- Arrival time of vehicle | at sz ;
P) Number of passengers on vehicle j after leaving point sz ;

8

301
302

303
304
305

306
307
308
309

310
311
312

313

314
315
316
317
318
319

320

321

322
323
324
325

326
327

328
329
330

331

332

X uiv 1 if the route of vehicle | passes through vertex vV immediately after
vertex U; 0, otherwise;

Variables

COStireal Actual total passengers’ out-of-pocket cost associated with request i ;
1T, Total waiting and in-vehicle travel times associated with request i ;
pC\i,ZJ v, Costof the passengers of request i from sz to sz+1.

3.2. Problem statement

3.2.1. Inputs
We consider a ride-hailing service provided by a private company. Let G(V,E) bea complete

undirected graph representing the road network. The ride-hailing sharing problem starts with a
set of requests waiting to match and a set of ride-hailing vehicles currently available on the
road network. Each request contains the information related to the origin, destination, order
time, and number of passengers. The order time of request i is associated with the latest

pickup time T and the latest delivery time T¢. The matched vehicle should pick up the

passengers of request i atpoint i* no later than T.” and drop them off at point i~ no later

than Tid .Accordingto i* and i, the shortest distance can be determined and then converted

to the cost of the direct trip COS'[idir by multiplying the distance by ride-hailing fare per

distance. This cost of the direct trip is also the upper bound of the ride-hailing sharing trip of
request i (after considering cost sharing of all passengers) to ensure that each passenger
would not pay more by ride-hailing sharing than by making a direct trip. Each vehicle has its
own information, including the starting point, capacity, and occupancy status.

3.2.2. Routes of vehicles
The route of vehicle j consists of starting point V, and other points (from V/ to szj)

corresponding to the origins or destinations of the requests that are served by vehicle j. The

points in the route are arranged in chronological order, and the destination of a request is
definitely after its corresponding origin in the route. Except for the starting point, other points
in the route are associated with the information of the arrival time, load, and corresponding
request (whose origin or destination is located at this point) in order to check the time window

and capacity constraints during ride-hailing sharing. The arrival time of the vehicle at point sz ,

denoted as AT ;, can be determined only when the arrival time of the vehicle at the previous

point, the travel time between those two points t; ,, and service time s ; are known, which

-1 -1

is expressed as AT ; +t, +5S, .
Via 21:Vz Va

AT ; has to obey corresponding pickup and delivery time

windows, which implies that AT ; must be less than T2, if v} is the origin of request

()

i(v)), and must be less than T¢ = if V) is the destination of request i(V)). For the load P,

()

after leaving point V), it is expressed as P, +p, and P, —p if v} is the origin and

())

333

334
335
336
337
338
339
340
341

342

343
344

345
346
347

348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

the destination of request 1(v)), respectively. ij, must not exceed vehicle capacity (.

3.2.3. Cost allocation

A critical part of ride-hailing sharing is the calculation of the sharing cost for each request. Due
to the complexity of the ride-hailing sharing pattern, it is impossible to determine the exact cost
of serving passengers of a request in advance until all passengers in this request finish their
trips. In this study, we adopt the equal-cost division principle on each pair of adjacent points
as the cost allocation strategy. For each pair of adjacent points, the fare between those two
points is allocated equally by all passengers traveling on this route segment. If request i is
v vl

. i i
we can obtain pc; ; =————. The actual

Vi

served by vehicle | between sz and szﬂ,

i
Vi

total cost COS'[ireal spent by the passengers of request i in their whole trip is the sum of the

z+1

cost spent in all route segments that they pass through, which means cost™ = Z pC\i,j o
z a

where the range of z is determined by the route segments of vehicle | that the passengers
of request i travel through. As the main reason for customers choosing ride-hailing sharing
services is to reduce their out-of-pocket cost, the total cost COStireall spent on the trip must be

equal to or less than the cost of the direct trip COS'[idir without sharing.

3.2.4. Dynamic problem setting

Not all requests are received at the beginning of the modeling horizon, and we cannot know
the timing of receiving new requests in advance as in practice. Therefore, we cannot solve the
dynamic ride-hailing sharing problem as a whole. Instead, we divide the modeling horizon into
many intervals of equal length and divide the problem into many consecutive static ride-hailing
sharing subproblems. Each subproblem corresponds to one time interval. The subproblems are
solved in chronological order.

Define the current time interval as the interval associated with the subproblem concerned or to
be solved. Before this interval, some requests were received. Some of them have not been
served and are still waiting to be served. During the current time interval, all requests waiting
to be served are handled simultaneously by solving the corresponding static ride-hailing
sharing subproblem.

A longer time interval considers more requests at each execution, which leads to better
matching performance, whereas the passengers require waiting longer to obtain the final
matching result. Therefore, setting the time interval requires balancing both the matching
performance and the users’ waiting time.

In this paper, for simplicity, we assume that each vehicle stays in the last drop-off location to
wait for requests assigned by the system if there are no passengers to deliver or pick up. This
assumption can be easily relaxed by adding an endpoint to the vehicle route. We also assume
that all customers are willing to share vehicles with others. Moreover, we do not consider the
effect of traffic signals and assume uniform speed, and thus the travel time and the fare between
two vertices are in proportion to the travel distance and remain unchanged throughout the
modeling horizon. At the beginning of each time interval, the new requests received in the last
time interval are collected by the system and added into set N . At the end of each time interval,
the requests that have already been matched to vehicles or the order times of the requests that

10

378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395

396
397

398

399
400
401
402
403

404
405

406
407
408

409

410
411
412

exceed their corresponding latest pickup times are removed from set N. Set 7Z contains all
the vehicles available during the current time interval. The routes of all available vehicles are
inherited from the matching results of the last time interval. When a vehicle is available for
ride-hailing sharing services, the vehicle is added to set 7Z . The vehicles are removed from 7
if they are not available. The new requests can be added to any positions of the routes if no
constraints are violated. Note that the requests that were matched in the previous time intervals
cannot be removed from the routes because the notices of matching results had already been
sent to the corresponding vehicles and customers. The dynamic ride-hailing sharing problem
is formed by linking consecutive static ride-hailing sharing subproblems.

3.3. Mathematical model of the static ride-hailing sharing subproblem

The static subproblem starts with set N and set Z . Set N, which contains all requests
waiting to be matched, consists of (a) the new requests whose order times are during the last
time interval and (b) the previous unmatched requests that were received earlier than the last
time interval and have no matched vehicles in the previous time intervals, while the current
time does not exceed the latest pickup times of the requests. Set 7Z contains all available
vehicles during the current time interval.

To formulate this problem, we introduce dummy destination j~ for all vehicles. Let

W = {i+,i‘ |i eN } be a set that contains all origins and destinations of requests in N. Set Q

contains all matched requests. U :{i+,i"i €@} is the set that contains all origins and

destinations of requests in Q. ueU is associated with two pieces of information: arrival
time BT, and matched vehicle j(u).

To formulate the subproblem, we define the current location u,fow €V based on the current

time. The current time T_ is set as the time at the end of the time interval in concern, not the

4

beginning of the time interval. Then, the current location unjow eV s set as the first vertex that

vehicle j will visit after T, on the road network. The reason for those settings is that the
routes in the latter time intervals, not the current time interval, can be adjusted. As shown in

Figure 1, the large circles represent the origins or destinations of requests, and the small circle
represents a point in set V . Meanwhile, the diamond shape represents the starting point of the

route. The current location U

wow 18 not necessarily the origin or destination of a request; it can

be the point in set V between two adjacent pickup (or delivery) points where the vehicle
passes through.

11

413
414

415
416
417
418
419

420

421
422

423
424

425

426

427

428

429

430
431

432
433
434
435
436
437

438

Current

location _ ,
AN

g VAR
N NE

FIGURE 1 An example of inserting a new request into a vehicle route

The mathematical model of the static ride-hailing sharing subproblem in each time interval is
shown as follows:

real
maxf(xu{v,PVZ,.,ATvzi)zzz 3 Xi’l,vlblpi‘b cost b, = jid]

ieN jeZ vew U 2 COStid "
(1)
subject to
XJ, {0}, VjeZ, vuveWuUu{j,j};)
> > X1 <1, VieN; 3)
JeZ vew LU '
> XL,=l Vjel; 4)
veWou g’y
> XJ. =1, Vjel; S
ueW Uty
> XL- > X[,=0, VjeZVueWuU; (6)
veWuU {j*} vewuu u{j}
Y XL = XI.=0, vjezvieNuQ; (7)
veW uuU veW wU
> xJW=1, vueU; (8)
vew U u{j}
(BT, <BT,,)= AT, =BT,, VueU;)
(BT, > BT,) A (X)), =1) = AT, = AT, +1,, +s,,
VjeZ,YyueWulU u{j", jhveU; (10)
(BT, <BT,)A(j(u)= j(v)) = AT, <AT,, Yu,veU; (11)
(XJ,=1)= AT, = AT, +t,, +5,,
VjeZ,YueWulU U{j", j 1hvwweW; (12)
(X! =1)=BT, <AT_<AT,, VjeZieN; (13)
0< AT, <TF, VieN; (14)
0<AT <TY, VieN; (15)

12

439

440
441

442
443

444

445
446

447

448
449

450
451

452

453
454
455
456
457

458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

(XJ,=DA(v=i")=P =P} +p,

VjeZ,VieNuQ,vu,veWuU U{j", j}; (16)
(XJ,=)A(v=i)=>PR =P/ -p,

VjeZ,VieNuQ,vuveWuU U, |} (17)
P/ <0, VjeZVueW uU; (18)

j i Cuvx pi

(X, =) A (AT, <AT, <AT_)= pc,, :T

VjeZ, VieNUQ,Vu,veW uU ; (19)
cost™ = > pc,, <cost™, VieN; (20)

u,veV

TT, = AT_-T™, VieN. 21)

Objective function (1) consists of three terms: the number of served customers, travel cost ratio,
and travel time ratio. b, b,, and b, are all positive weight coefficients that define the

relative importance of these three components, respectively. It is noted that the smaller
TT.

cost™ /cost™ is, the more cost savings are; it is also noted that the smaller To o is,
il

the smaller increment in travel time compared with no ride-hailing sharing case is. Therefore,
the objective value is larger if we get more matched requests, more savings in costs, and a
smaller increment in travel time. Moreover, the objective value is larger when the matched
request is associated with more passengers.

Constraint (2) defines Xuj’V to be binary. Constraint (3) guarantees that a request can only be

matched by at most one vehicle. Constraints (4) and (5) ensure that each vehicle has an origin
and a destination in its route. Constraint (6) is a flow conservation constraint to make sure that
ueWuU served by a vehicle must have one point on the route before and after U .
Constraint (7) ensures that the origin and destination must be served by the same vehicle if the
request is served. Constraint (8) ensures that the matching between requests and vehicles
formed by previous time intervals cannot be changed. Constraints (9)-(11) guarantee that the
order of the visited points in the route inherited from the last time interval is not changed after
inserting new requests. Constraints (12) and (13) ensure that new requests can only be inserted
after the current locations of the vehicles. Constraints (14) and (15) are the time window
constraints for all requests, while constraints (16)-(18) are the capacity constraints. Constraint
(19) calculates the passengers’ travel cost of each route segment, whereas constraint (20)
ensures that the total passengers’ travel cost of each request is not higher than the total
passengers’ travel cost without ride-hailing sharing. Constraint (21) calculates the total travel
time of passengers of request i if they are matched in this interval.

In our proposed model, the origins and destinations of new requests are allowed to be inserted
anywhere in the vehicle route after the current vehicle location if the time, cost, capacity
constraints are satisfied. However, the model proposed by Santos and Xavier (2015) allowed
new requests to be added only after the destination point of the last delivered passenger aboard
if there are passengers aboard the vehicle at the current time. Moreover, constraint (8) ensures
that the matching between requests and vehicles formed by previous time intervals cannot
change so that passengers just need to accept the matching results once. This constraint cannot

13

481
482
483
484
485
486

487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

be found in their model. Furthermore, both travel time and cost ratios are considered in our
objective function while Santos and Xavier (2015) only considered the travel cost ratio in their
objective function. To sum up, our model is different from the counterparts of the related
studies in terms of the objective function and constraints.

4. Solution Method

Like Santos and Xavier (2015) and Alonso-Mora et al. (2017), we solve the dynamic ride-
hailing sharing problem by solving its subproblems in chronological order. Unlike Santos and
Xavier (2015) and Alonso-Mora et al. (2017), we develop a method based on the modified
artificial bee colony algorithm with path relinking to solve the static ride-hailing sharing
subproblem for the time interval concerned.

4.1. Modified artificial bee colony algorithm with path relinking

4.1.1. Basic artificial bee colony algorithm

The ABC algorithm is an optimization algorithm that simulates the behavior of a honey bee
swarm in search of food. The artificial bee colony consists of three groups of bees: employed
bee, onlookers, and scouts, with the objective of finding the good food source(s). Each
employed bee is responsible for one food source. It searches for food around a food source.
The employed bees share the information on their best food sources found so far with the
onlooker bees. Each onlooker then chooses a food source among those found by the employed
bees by probability, where a more profitable (better) food source has a higher probability of
being chosen. When the employed bee cannot find a better food source near the current source
after some time, the employed bee turns to be a scout to exploit a new food source in the vicinity
of the hive.

The ABC algorithm is a population-based heuristic, in which a food source represents a
solution for the optimization problem, and the nectar amount of the food source represents the
fitness of the corresponding solution. The ABC algorithm begins by generating a set of
solutions randomly as the initial food sources, and each food source is assigned to an employed
bee. After initial solutions are generated, employed bees, onlookers, and scouts exploit the food
sources near the hive repeatedly during each iteration. In each iteration, each employed bee
finds a new food source near the current source using a neighborhood operator and the nectar
amount of the new food source (solution fitness, which is the increment on the objective
function value in our study) is evaluated. If the nectar amount of the new food source is more
than the old one, the employed bee abandons the current food source and is allocated to the
new food source. Otherwise, the employed bee remains assigned to the current food source.
Then each onlooker chooses a food source based on the nectar amount of the food sources (i.e.,
solution fitness) shared by employed bees by the roulette wheel selection method. Onlookers
also exploit new food sources near the selected food sources using a neighborhood operator
and evaluate the nectar amount of the new food sources. After all onlookers finish the
exploitation process, the best new food source found by the onlookers near each food source
of the employed bee is determined. If the nectar amount of the best new food source is more
than the old one of the employed bee, the employed bee abandons the old food source and is
assigned to the best new one. After that, if the nectar amount of a food source has not been
improved for /imit successive iterations, the employed bee becomes a scout, exploits a new
food source randomly, becomes an employed bee again, and replaces the old food source with
the new one. After all current food sources are checked, the new iteration of the ABC algorithm
starts. The whole process is repeated to search for good solutions until the stop condition is
reached. The steps of the ABC algorithm are presented as follows:

14

530
531
532
533

534
535

536
537
538
539
540
541
542
543
544
545
546
547
548

549
550

551
552

553
554
555
556

557
558

559
560
561
562

563

564
565
566
567
568
569
570
571
572
573
574

1. Inputs: Population size (number of food sources) N, maximum number of iterations
M , and limit L.
2. Randomly generate a set of solutions as the initial food sources X,i=1,...,n. Each

food source is allocated to an employed bee.
3. Calculate the fitness f(X) of food source X,i=1,...,n.Set |, =0,i=1...,n.

4. For iteration m=1 to M, do
For i=1 to n,do
I. Perform a neighborhood operator on the food source X, to determine a new
food source X, near the food source.
. If f(X)> f(x),thenreplace x, with X, for the corresponding employed
beeand |, =0,else | =1 +1.
End for

Set G, =¢, where G, is the set of new neighbor food sources of X; found by the
onlookers.

For j=1 to n,do
I. Select a food source X. using the roulette wheel selection method based on

the fitness of all food sources.
ii. Perform a neighborhood operator on X; to obtain a new food source X; near
the food source.
iii. G =G UX
End for

For i=1 to n,do
I. Select & =argmax, f(x),where X is the best food sourcein G,;.

ii. If f(X)> f(x),thenreplace x, with X, forthe corresponding employed
beeand |, =0,else |, =1 +1.
End for

For i=1 to n,do
i. If I, =L, randomly determine a new food source &; and replace x; with

e

End for
End for

4.1.2. Modified artificial bee colony algorithm

The ABC algorithm is the main algorithm to determine routes of ride-hailing vehicles. To speed
up finding a good solution, path relinking is embedded into the ABC algorithm to explore new
and better solutions between two known solutions. It is implemented when a new current best
solution is found while executing the ABC algorithm. To further improve the solution search
efficiency, the vantage-point tree is deployed to reduce the solution search space and
constructed before establishing the initial solution. Contraction hierarchies is incorporated into

15

575
576
577
578
579

580

581
582

583
584
585

586
587
588
589
590
591
592
593
594
595
596
597

the ABC algorithm to determine the shortest path in the studied problem. The detailed
information about the vantage-point tree and path relinking will be described in Section 4.2
and Section 4.8, respectively. Figure 2 shows the procedure of the resultant solution method,
namely the modified artificial bee colony algorithm. The algorithm ends when running time
T, reaches the time limit, which is equal to the length of time interval T.

run interval *
Start)

A
Vantage point
tree

A

Initial solution

»

A

Employed bee

A
Food selection and

onlooker

Memorize the
incumbent

Path relinking

Scout

FIGURE 2 Flowchart of the modified artificial bee colony algorithm

4.2. Vantage-point tree

A VP tree is a metric tree that segregates the whole set of vertices of the network into small
sets by choosing vantage points (i.e., vantage vertices). The VP tree is efficient in conducting
the nearest neighbor search because the vertices are stored in the tree structure, and the search
can happen only in small parts of the tree (Yianilos, 1993). The VP tree contains two important
segments, including the construction segment and the searching segment. For the construction
segment, a vantage point (vp) is determined to divide all the vertices into two smaller parts
during each partition. The vertices whose distance to the vantage point is less than a threshold
(mu) are stored in the /eft sub-tree, and the vertices whose distance to the vantage point is larger
than the threshold are stored in the right sub-tree. Each node in the tree stores the information
of the vantage point and threshold. A tree data structure is created by recursively implementing
this procedure to divide the data starting from the root. After building the tree using the
construction segment, the searching segment is executed at the beginning of the static

16

598
599
600

601

602
603
604
605
606
607
608
609
610
611
612
613
614

615

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635

636

637
638
639
640

subproblem, when the information of new requests is known. In this study, the range nearest
neighbor search is used in the searching segment, in which we want to determine all the vertices
within the radius tau around the query vertex (. Let the distance between any two vertices

m and n be diSt(m, n) . The pseudo-code of the VP tree in this paper is summarized as follows:

Part 1: Construction segment

1. Inputs: A set S containing all vertices.

2. Build VP tree (S).

3. Return a VP tree.

function Build VP tree (S):
i If S=0,thenreturn .
ii. Establish a new node: new(node).
iii. Determine the vantage point at the node (node.vp := Select vp (S)) and
determine the threshold at the node (node.mu :=Median (S,vp)).

iv. Determine the set of wvertices in the left sub-tree

(L :={seS—{vp}Yf dist(vp, s)<mu}) and determine the set of vertices in the
right sub-tree (R:={seS —{vp}| dist(vp, s) > mu});
V. Construct the new nodes in the next level (node.left:= Build_VP_tree (L),
node.right := Build_VP_tree (R)).
Vi, return node.
function Select vp (S):
I Choose a random sample P from S.
ii. Set best_spread :=0.
iii. For peP, do
1) Choose a random sample D from S.
2) Determine the value of spread (spread := SecondMoment (D, p)).
3) If spread> best_spread, then replace best spread with spread and
replace best p with p.
End for
iv. return best p.
function Median (S, p):
i. Sort S in accordance with the distance from p .
ii. Determine threshold mu (the distance that is equal to the median among all
distances from all vertices in S to p).
iii. Return mu.
function SecondMoment (D, p):

I. Calculate x with , where N is the number of vertices in D.

D ..o dist(d, p)
N

>, o (ist(d, p) - 1"

ii. Calculate spread with N

iii. return spread.

Part 2: Searching segment
1. Inputs: A query vertex q, the desired radius tau, and the VP tree.

17

641
642
643
644
645
646
647
648
649
650
651
652

653

654
655
656
657

658

659
660
661
662
663

664

665
666
667

668
669
670
671
672
673
674
675
676
677

678
679

680
681
682

683
684

685

2. Search VP _tree (root node).
3. Return the vertices around the query vertex within tau.

procedure Search VP tree (node)
i If node =, then, return .
ii. If dist(g, node.vp)—tau<mu , then Search VP tree (node.left); if
dist(q, node.vp)+tau > mu, then Search VP _tree (node.right).

In this study, the VP tree is used to find the available vehicles around the origin of a request
within a radius. The radius for each request is different because it is calculated based on the
latest pickup and delivery times of the request, which means the vehicles outside this circle are
impossible to pick up the customers of this request timely. At the beginning of each time
interval, request i has matching set K,, the latest pickup time, and the last delivery time.

Matching set K, ofrequest i is built by inserting all vehicles still available into the set. To

determine the radius of request i, we define the maximum slack time of request i, which is
the maximum time that a vehicle can spend to pick up customers from its current location to
the origin of the request. The maximum slack time of request i 1is equal to
min(T? -T,, T -T_—st>®), where TP is the latest pickup time, T is the latest delivery
time, T, is the current time, and st* is the shortest travel time from the origin to the

destination for request i. By multiplying the vehicle speed, the maximum slack time can be
transformed into the maximum pickup distance, which is the radius of the circle with the origin
of request i as the center and can be used to distinguish infeasible matching between request
i and vehicles. All vehicles outside this circle at the current time are impossible to reach the
origin or destination in time and hence they are removed from the matching set K, . After that,

request i can only match the vehicles selected from K, during executing the algorithm to
narrow the search space for each request and to improve the computational efficiency.

4.3. Solution representation

The solution (food source) of the MABC algorithm is a matching result between requests and
drivers. The solution is formed by a set of routes of vehicles. Each route is represented in the
form of a vector with the length of 1+2n, in which n is the number of requests matched to
this vehicle route, and the first element in the vector means the starting point of this vehicle.
Figure 3 illustrates a representation of a route for a ride-hailing vehicle after inserting a new
request, in which point 0 in the route is the starting point of the vehicle. Points L and L~
(L=1,2,new) represent the origin and destination of request L, respectively. In MABC, each
point in the route stores additional information, including the number of passengers aboard and
the arrival time at this point.

0 1" 2 | 1 |new' new | 2

FIGURE 3 Solution representation of a vehicle route

4.4. Initial solution
An empty set M is created to store the matched new requests during the initial solution
process. An initial solution is created by assigning a vehicle from the matching set K,

randomly at a time to a request in N but not in M . The request is inserted into all possible
18

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

701
702
703

704

705
706
707
708

709
710
711
712
713
714
715
716
717
718

719
720
721
722

723
724
725
726
727
728

729
730

locations in the route of that vehicle. If there are insertions that satisfy both the time window
and the capacity constraints, then the insertion with the maximum objective value is selected,
the corresponding vehicle is assigned to this request, and this request is added into M .
Otherwise, this request is skipped, and the next requestin N butnotin M is chosen. Unlike
the capacity and the time window constraints that are difficult to satisfy with the increasing
detours caused by adding requests, travel cost constraints are usually satisfied—the travel cost
of each request usually decreases due to ride-hailing sharing. Therefore, the travel cost
constraints of the corresponding vehicle route for each request are checked only after the
capacity and time window constraints are checked. If the travel cost constraints are not satisfied
by the route of that vehicle, the requests in N that were assigned to this route are removed
from M . This route is restored to the status without those new requests. The above procedure
is repeated until M collects all requests in N, or a pre-defined maximum number of
iterations is reached.

4.5. Selection of food sources

At each iteration of the MABC algorithm, each onlooker selects a food source based on the
information shared by the employed bees. The method used in choosing a food source is the
roulette-wheel selection method. The probability of choosing food source X, is equal to

Az(x,)

Z:]:lAZ(Xi)

after inserting new requests. This increment means the contribution of the new requests to the
objective value. A better solution has a larger increment.

, where Az(x;) is the increment in the objective value of food source X

p(Xi) =

4.6. Neighborhood operators

A neighborhood operator is applied to search for a new solution around the current solution.
Two neighborhood operators, namely add operator and swap operator, are used in the MABC
algorithm considering the characteristics of the ride-hailing sharing problem. Whenever
employed bees or onlookers seek a new solution, one of the two neighborhood operators is
used randomly. If a better solution is found by the neighborhood operator, the current solution
is replaced with that new solution.

4.6.1. Transfer operator
The transfer operator randomly selects request i from set N. If request i is matched a
vehicle, the operator chooses vehicle j different from the currently matched vehicle from the

corresponding matching set K, . Then an attempt to remove request i from the original route
and insert i into the new route of vehicle | is made (and the insertion method will be

described in Section 4.7). If request i has not been matched a vehicle, the request is randomly
added to vehicle j from the matching set K. In each case, if the insertion is feasible and the

objective function of the new solution is larger than the current one, the new solution replaces
the current one, and the /imit count of this food source is reset as zero. Otherwise, the /limit
count increases by one.

4.6.2. Swap operator
Each swap operator randomly chooses two requests i, and i, from set N and their

corresponding matched vehicles are j, and j,, respectively. Before changing the vehicle

routes, we require to check the matching sets of both requests. If j, is in the matching set

19

731

732

733
734
735
736

737
738
739
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

766
767
768
769
770
771
772

773
774

775
776

K; and j, isinthe matchingset K, i, and i, areremoved from their original routes and

I
then i, and i, are inserted into the new routes of vehicle j, and J,, respectively (the

insertion method will also be described in Section 4.7). If a new, feasible, and better solution
is found by the swap operator, the current solution is replaced with the new solution, and the
limit count of this new food source is set as zero; otherwise, the /imit count increases by one.
Note that if the condition that j, is in matching set K; and j, isinmatchingset K; isnot

satisfied, the transfer operator, instead of the swap operator, will be used for neighborhood
search.

4.7. Insertion method

When request i is matched to vehicle |, both origin i* and destination i~ of request i

are required to insert into the route of j. The idea of inserting a request into the route is to
check all possible insertion locations and then determine the best location to insert the request.
There are two principles to determine the possible insertion locations: First, i and i~ can
be inserted only after the points whose arrival time is later than the current time; second, origin
i” must be located before destination i~ . For each possible insertion attempt, the vehicle route
is restructured, and the distance between each pair of adjacent vertices (e.g., the origin of a
request, the destination of a request, and the current location of the vehicle) in the route is
calculated based on the shortest path between them using contraction hierarchies (Geisberger
et al., 2008). Then we can recalculate the arrival time and the number of passengers right after
the points of the vehicle route that are obtained after the insertion, as well as the travel cost of
each request and the objective value. The points that have been influenced by the insertion are
evaluated to check whether there are violations of the time window, capacity, and travel cost
constraints. The new and feasible insertions are recorded, and the insertion that yields the best
objective value among these insertions is chosen as the new solution to replace the old one.
However, no insertion will be undergone if none of the possible insertions satisfied all the
constraints.

Note that contraction hierarchies is a speed-up method for searching for the shortest path in a
network. It is a two-phase approach consisting of the preprocessing and query phases.
Contraction hierarchies has advantages of quick preprocessing times, low space requirements,
and fast query times. Each query only needs to take a short time (microseconds). Therefore, it
can be used in solving large-scale problems (Geisberger et al., 2012).

4.8. Path relinking

In this study, path relinking is incorporated into the ABC algorithm to improve solution quality.
The idea of path relinking is to try to determine a new better solution between two known good
solutions. Path relinking is performed when the /imit count of at least one food source s, is

equal to the limit L.

At the beginning of path relinking, there are two known good solutions, including incumbent
s, and food source S, with the /imit count equal to L. If s, is better than S , we replace s,

with s, and stop. Otherwise, path relinking is applied to those two solutions. When executing
path relinking, S, 1is set as the initial solution (i.e., S=§;) and food source s, with the limit

count equal to L is set as the guiding solution. The initial solution is transformed into the
guiding solution during path relinking by implementing a series of operations sequentially to

20

777
778
779

780
781

782
783

784
785

786
787

788
789

790
791
792
793

794
795

796
797
798
799
800
801
802
803
804
805

806

807
808
809
810
811
812
813

814
815

816

817
818
819

820

search for the new solutions (if any) that are better than both the initial and guiding solutions.
The reason for choosing the best solution as the initial solution is that the new and better
solutions are more probably found near incumbent s, .

At each iteration of path relinking, the differences between S and s, are first identified.

There are three possible situations for each of the requests in N, including: (a) the matched
vehicles of the requestin S and s, are different, (b) the request matches a vehiclein S but

does not match any vehicles in s,, and (c) the request does not match any vehicles in S but
matches a vehicle in S,. The transformations for S consist of (a) removing the request from

the route of the matched vehicle in S and inserting the request to the route of the matched
vehicle in S, for the first situation, (b) removing the request from the vehicle route for the

second situation, and (c) adding the request into the route of the matched vehicle in s, for the
third situation. By revising each difference between S and S, separately, we can get several

new solutions compared to S. If all new solutions are not better than S, the path relinking
procedure stops. Otherwise, the solution with the best improvement on the objective function
value among new solutions is adopted and replaces S, and the next iteration begins. After path
relinking, s, isreplaced with S found by path relinking.

5. Computational Experiments

This section presents the results and analyses involving the MABC algorithm for the ride-
hailing sharing problem. The GRASP heuristic described by Santos and Xavier (2015) is taken
as a benchmark, and its performance is used to compare with the performance of the MABC
algorithm proposed in this paper. All experiments are performed on an Intel Core 17-4770 3.40
GHz CPU desktop computer, with 32 GB memory. The code is implemented in C++ with GCC
(GNU Compiler Collection) using Linux (Ubuntu 16.04).

The ride-hailing fare is assumed to be proportional to travel distance and is set as one dollar
per kilometer. The speed of all vehicles on all roads is set as 30 km/hour so that the travel time
of each link can be calculated using the given link distance and speed. The coefficients of b,

b,, and b, are set as 2, 0.9, and 0.9, respectively. For simplicity, the service time at each

pickup or delivery point is set as 0. Unless stated otherwise, the length of a time interval is set
as 10 s. All experiments are executed 20 times, and the result of each experiment is obtained
from the average value in 20 runs.

Each request may have several ride-hailing customers to take a vehicle in reality. However, we
set the number of ride-hailing customers in each request equal to 1 for simplicity. We also set

that the latest pickup time T is 5 min (i.e., 300 s) later than the order time T, which

1
means that ride-hailing customers cannot wait for more than 5 min at their origin. The latest
delivery time T of request i is set as the order time T, plus the maximum allowable

delay. To calculate the maximum allowable delay, we define co,,, as the delay coefficient,

which is greater than 1 and represents the tolerance of the passengers due to the increase in
travel time caused by the detours in ride-hailing sharing. The maximum allowable delay is
equal to the product of c0,,,, and the shortest travel time between the origin and destination

of request i (which can be determined by the contraction hierarchies highlighted in Section

21

821

822
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

844
845

846
847

848

4). Unless specified otherwise, the delay coefficient coy,,, is1.3.

5.1. Data description

The ride-hailing request data in Chengdu, China, are used in the computational experiments.
Chengdu is a typical city with a circular layout, centered on Tianfu Square, which can also be
reflected in the layout of the road network in Chengdu. The map of Chengdu is shown in Figure
4. The whole city is connected by a “ring and radial” highway network, and the circular road
network divides the city into multiple regions. The Chengdu map data used in our study is
downloaded from Open Street Map, which consists of 34,186 vertices and 78,157 edges. This
map data are used to create a road network for the ride-hailing sharing problem.

The number of orders varies over time of day, and there are few orders in the night time. To
illustrate a worst-case scenario, we process one-hour ride-hailing request data between 0:00
am and 1:00 am on November 1, 2016, in Chengdu, China, obtained from Didi. The total
number of orders is 3,661 in one hour. Each order has a set of information, including the order
ID, order time, and longitudes and latitudes of the origin and destination. A sample of the ride-
hailing data is shown in Table 2. The order ID is desensitized by Didi to protect the privacy,
and the order time is represented through the time stamp. The geolocations are given according
to the GCJ-02 coordinate. As shown in Figure 5, the spatial distributions of the request origins
and destinations have a similar pattern, in which the orders are denser when they are closer to
the city center.

\\\\\\\\
- ~

i

S -

Figure 4 The map of Chéligdu, China

Table 2 A sample of the ride-hailing data in Chengdu, China
. Longitude Latitude Longitude Latitude
Order ID Order time (origin) (origin) (destination) (destination)

fbcgid9b7j5yv 1477964797 104.09464 30.703971 104.08927 30.65085
48adcdbhcb6t 1477985585 104.076509 30.76743 104.0637 30.58951
aci8afhg8k@ 1478004952 104.019699 30.689007 104.105324 30.66395
6fhhfe952dar 1477989840 104.03609 30.62269 104.04386 30.68232
bd7ea2ld3b7z 1477958005 104.115997 30.652313 104.104421 30.695113

22

849

850
851

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

874
875
876
877
878
879
880
881
882
883

(a) Distribution of order origins (b) Distribution of order destinations
Figure 5 Distributions of order origins and destinations in Chengdu, China

The vehicles used in the study are randomly generated based on the regions, and the number
of ride-hailing vehicles is similar to the real situation. We analyze the trajectory data of the
ride-hailing vehicles in a day in Chengdu and determine the number of available vehicles in
each hour of the day. The number of vehicles is around 2,400 between 0:00 to 1:00, so we
generate 2,400 vehicles in this study to serve customers. Based on the circular road network,
as shown in Figure 4, we can roughly divide Chengdu into five regions. Each ring road is
approximately represented by a circle, and the center of all circles is the center of the city
(Tianfu Square). The radii of the four concentric circles are approximately 4.8 km, 9.5 km, 13.6
km, and 35 km. The circles separate the city into five parts, in which region one is within the
4.8-km radius circle, region two is between the 4.8-km and the 9.5-km radius circles, region
three is between the 9.5-km and the 13.6-km radius circles, region four is between the 13.6-km
and the 35-km radius circles, and region five is beyond the 35-km radius circle. The distribution
of vehicles in each region at the beginning is according to the number of request origins in this
area. The ratios of request origins in each region are obtained to be 0.5865, 0.3189, 0.0744,
0.0299, and 0.0004, respectively. To determine the origin of each vehicle, a region is randomly
selected using the above ratios as selection probabilities, and then the origin of each vehicle is
randomly chosen from the vertices in the selected region.

5.2. Parameter tuning

The MABC has three parameters to tune, including the number of food sources, /imit, and the
maximum number of iterations. However, in the current dynamic ride-hailing sharing problem,
the running time of the algorithm for each subproblem is equal to the time interval of each
subproblem. Therefore, we set the stopping condition to be the length of the time interval
instead of the maximum number of iterations. In other words, the algorithm must stop when
the running time reaches the given length of the time interval, and the number of iterations can
be ignored. Therefore, we require tuning only two parameters: the number of food sources and
limit. Figure 6 displays the results of the parameter tuning with different numbers of food
sources and /imit values.

23

884
885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

919

1680 1680
1678 1678

1676 < o— g - 1676
@ @
3 1674 S 1674

= - i limit=300
= 1672 = 1672
@ @ limit=500
= 1670 —e—NF=1 = 1670
S] limit=700
£ 1668 NF=3 £ 1668
= = limit=900

é 1666 NF=5 8 1666
limit=1100
1664 1664
limit=1300
1662 1662
1660 1660
300 500 700 %00 1100 1300 1 3
Limir Number of food sources

Figure 6 Parameter tuning with the time interval of 10 s and the delay coefficient of
1.3: (a) Tuning of /imit; (b) Tuning of the number of food sources

As shown in Figure 6(a), the objective value increases with /imit until reaching a threshold. A
too small /imit value restricts the algorithm to obtain very good nearly local optima, whereas a
too large /imit value restricts the algorithm to explore more new solutions. As shown in Figure
6(b), the objective value decreases with the increasing number of food sources except for the
limit of 900. By comparing the results, the best combination of the parameters is achieved when
the number of food sources is 3, and the /imit equals 900. Therefore, the subsequent sections
adopt this setting. Providing that the number of requests is roughly uniform within an hour,
when the time interval is longer, it is expected that the value of /imit should be larger to handle
the increase in the number of requests. Based on Figure 6, parameter /imit is proportional to
the length of time interval e, and this value is approximately equal to 90e. Thus /imit = 90e is
used in all the experiments in the following subsections.

5.3. Effect of the time interval

In ride-hailing sharing operations, customers are not willing to spend too much time on
matching. However, the system requires time to collect information about the requests and
vehicles and run the matching algorithm. In this study, we consider three time intervals, i.e., 10
s, 30 s, and 60 s. The maximum waiting time from placing a ride-hailing order by phone to
receiving the matching result equals twice the length of the time interval. For instance, the
maximum waiting time is 2 min for the time interval of 60 s, in which customers have to wait
for 60 s for the operator of the ride-hailing service to collect all requests during the interval and
another 60 s for waiting for the matching results.

To compare the results under different time interval lengths, seven performance measures are
adopted, as shown in Table 3. The objective value is the most important and comprehensive
measure, which evaluates the combined effects of the number of served customers, the travel
cost ratio, and the travel time ratio simultaneously. The matching percentage is the percentage
of the matched requests in the total requests collected. The sharing percentage is the percentage
of requests involving ride-hailing sharing in all matched requests. The average out-of-pocket
cost saving percentage per passenger (R__), due to the benefits of sharing ride-hailing fares,

money
is expressed as
cost™ cost/*

Z(Pi- i P % pl)

£ cost " cost’" — cost™
D 2. cost P
Rroney = b x100% = === - x100%, (22)
Z P;: Z p;:
i'eD i'eD

24

920

921
922

923

924

925

926
927

928

929

930

931
932

933

934
935

936
937
938
939
940
941
942
943
944

945
946
947
948
949
950
951

952

953
954
955

real

where D is the set of matched requests and cost'™ and cost™" are the total passengers’ out-

of-pocket costs from the origin to the destination of request i' with and without ride-hailing
sharing, respectively. The percentage of total out-of-pocket cost saving (RT___) is expressed

money

as
cost! cost’™ .
D (=) xpy) > (cost™ —cost™)
RT oney = =2 e air ik x100%= <2 @ x100% . (23)
cost; > cost"
z(x pi') i'eD
i'eD pi'

Since the travel fare per unit distance is fixed, RT,

money Can also be interpreted as the
percentage of total vehicle travel distance saving of the whole system. Regarding the increment
in time, the average travel time increment percentage per passenger R,;.., which is brought by
the detours in ride-hailing sharing, is expressed as
treal dir
.

~t;
(ZTX P
Rime = ~22—- x100% , (24)

Z P;:

i'eD
is the actual combined in-vehicle travel and waiting time and t*" is the shortest

where t/™
travel time from the origin to the destination of request i' without ride-hailing sharing.

Moreover, the percentage of total travel time increment RT. = is expressed as

time
3 (= 9y x p,

RT, =1 . x100% . 25
time Z (tid-" x p,) ()
i'eM
Itisnoted that R . and Ry, arerespectively the out-of-pocket cost saving percentage and
the travel time increment percentage based on individuals whereas RT . and RT; . are

the corresponding measures based on the whole system.

As shown in Table 3, a longer time interval results in a larger objective value. In this paper, we
assume that all matched requests in the previous time intervals cannot be modified in later time
intervals. Therefore, when the time interval is longer, the static subproblems have more chances
to get better solutions. Meanwhile, a longer time interval can have a larger average out-of-
pocket cost saving percentage per passenger, which means that ride-hailing sharing can
generate more economic benefits (i.e., cost reduction) for each request when the length of the
time interval is longer. Moreover, by comparing the values of RT and RT, ., it can be

money time >
seen that a longer time interval can result in a larger overall saving in money and a smaller
overall increment in time. However, a longer time interval has no advantage in the matching
percentage and sharing percentage, because a longer interval implies a lower frequency of
matching, which leads to a higher probability of missing feasible vehicles for matching.

Regarding the general impact brought by ride-hailing sharing, Table 3 shows that the average
out-of-pocket cost saving percentage per passenger R can reach more than 26%, and the

money

average travel time increment percentage per passenger R, . isonly around 15%. This means

time
that passengers can use less proportion of extra travel time to exchange for a larger proportion
of money-saving due to ride-hailing sharing. This implies that ride-hailing sharing is a good

choice for those who have a high tolerance for time and want to save money.

25

956

957 Table 4 presents the t-test results of the differences in the average objective values between the
958 experiments with different time intervals. From the results in Table 3 and Table 4, we can
959 conclude that the differences in the objective values in different groups are significant, and the
960 60-second time interval achieves the best results, as it performs the best in most of the
961 performance measures. These results imply that customers have to spend more time waiting
962 for the matching results when the operator wants to improve system performance.
963
964 Table 3 Performance comparison in terms of different time intervals
i Il’It‘:lfi’eal Ol‘)"]ael(l:lt;Ve MatChing Shar ing Rmoney Rtime RTmoney RTtime
10s 1677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%
30s 1682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%
60 s 1689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%
965
966 Table 4 T-tests on the difference between average objective values
Test Difference in mean t-statistic p-value
10svs.30s 5.64 5.34 0.00
30svs. 60s 6.97 5.04 0.00
967
968 5.4. Effect of path relinking
969 This section investigates the effect of the inclusion of path relinking into the resultant solution
970 algorithm. Table 5 shows that all the differences in objective values with and without path
971 relinking are statistically significant (as reflected from the p-value), and the inclusion of path
972 relinking can significantly improve the solution quality regardless of the length of the time
973 interval. Among all three time intervals, the solution algorithm with path relinking (i.e., the
974 proposed MABC algorithm) can achieve a larger sharing percentage, a higher percentage of
975 travel cost sharing per passenger, and a higher percentage of total out-of-pocket cost saving.
976 Therefore, it is better to integrate path relinking into the solution algorithm to achieve a better
977 solution.
978
979 Table S Performance comparison of solution methods with or without path relinking
in’It‘::lVeal PR Ol\)}]:lcl:l(leVe v ;)lll e MatChillg Sharing F\)money Rtime RTmoney RTtime
10’ With PR 1,677.33 0.00 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%
Without PR 1,668.81) 85.27% 71.35% 25.84% 15.35% 25.11% 16.01%
30's With PR 1,682.97 0.00 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%
Without PR 1,675.86] 84.94% T72.71% 26.43% 15.50% 25.47% 16.15%
60 s With PR 1,689.94 0.04 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%
Without PR 1,686.38 ' 85.08% 73.03% 26.79% 15.55% 25.97% 16.12%
980 Note: ‘PR’ stands for “path relinking’.
981
982 5.5. Effect of the number of vehicles and percentage of willingness-to-share
983 In the previous section, we assume that all passengers are willing to share a vehicle with others.
984 The percentage of willingness-to-share means the proportion of passengers who want to take
985 ride-hailing sharing services in the total number of passengers who want to take ride-hailing
986 services. When the value of the percentage of willingness-to-share is 50%, half of the
987 passengers want to share the vehicles, while the other half of passengers only want to ride alone

26

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

1005
1006
1007

1008
1009
1010

1011
1012

1013

1014
1015

without sharing. In this section, the length of time interval used in the simulation is 60 s. The
passengers who want to share a vehicle are randomly chosen from all requests when the
percentage of willingness-to-share is 50%. Moreover, when additional candidate vehicles are
introduced into this experiment, the origins of those additional vehicles are determined
randomly according to the strategy described in Section 5.1. As shown in Tables 6 and 7, the
objective value and the matching percentage increase when the number of vehicles increases
and vice versa. However, the upward trend becomes slow when the number of vehicles is larger
than 10,000. When the percentage of willingness-to-share decreases, both the objective value
and the matching percentage decrease. Moreover, when the number of vehicles is large, the
matching percentage slightly increases as the percentage of willingness-to-share increases.
Table 8 shows that the sharing percentage decreases with the decreasing percentage of
willingness-to-share and the increasing number of vehicles. It demonstrates that few vehicles
for ride-hailing services can promote ride-hailing sharing. Overall, the trends agree with our
expectations.

Table 6 Comparison of the objective value in terms of the number of vehicles and
percentage of willingness-to-share
Number of vehicles

Objective value

1,000 2,400 6,000 10,000 15,000
The 0 551.76 977.90 1,235.85 1,307.50 1,349.07
percentage 50% 807.74 1,265.21 1,465.05 1,522.57 1,562.37

of
willingness- 100% 1,210.15 1,689.94 1,840.11 1,882.02 1,905.40
to-share

Table 7 Comparison of the matching percentage in terms of the number of vehicles
and percentage of willingness-to-share
Number of vehicles

Matching percentage

1,000 2,400 6,000 10,000 15,000

Percentage 0 47.75% 77.68% 89.54% 92.13% 93.50%

of 50% 54.14% 81.23% 90.17% 92.35% 93.72%
willingness-

100% 61.49% 85.15% 91.51% 93.01% 93.99%
to-share

Table 8 Comparison of the sharing percentage in terms of the number of vehicles and
percentage of willingness-to-share

Number of vehicles

Sharing percentage

1,000 2,400 6,000 10,000 15,000

Percentage 0 0.00% 0.00% 0.00% 0.00% 0.00%

of 50% 36.98% 32.58% 31.35% 3046% 30.25%

willingness- 0, 7743% 73.11% 71.19% 7051% 70.21%
to-share

5.6. Effect of the delay coefficient

This section discusses the effect of the delay coefficient co on the performance measures

delay
introduced in Section 5.3. Table 9 compares the results with different lengths of time intervals
using different values of co,,, . For all lengths of time intervals, a higher delay coefficient

27

1016 achieves better results on the objective value and all performance measures except for R,
1017 and RT,, . Itis reasonable because a larger coefficient means a larger tolerance of passengers
1018 to longer travel time, which allows the operators to have more feasible matches but leads to
1019 larger Ry, and RT,.
1020
1021 Table 9 Performance comparison in terms of delay coefficients
Time Dela Objective . .
interval coefﬁci):ant VJalue Matching Sharing oo, Rine Rlrorey RTum
10's 1.3 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%
1.5 2,136.25 88.20% 80.12% 33.53% 23.37% 32.17% 24.82%
30's 1.3 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%
1.5 2,149.78 88.35% 80.35% 33.89% 23.39% 32.64% 24.72%
60's 1.3 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%
1.5 2,157.17 88.25% 80.72% 34.28% 23.48% 32.83% 24.73%
1022
1023 5.7. Analysis of the objective function
1024 In this paper, there are three components considered in the objective function, including the
1025 number of served customers, the travel cost ratio, and the travel time ratio. Either a too small
1026 travel costratio or a too large travel time ratio can prevent customers from selecting ride-hailing
1027 sharing services. To illustrate the importance of considering travel time and cost ratios in the
1028 objective function, two new objective functions are introduced. The first one excludes the travel
1029 time ratio by setting b, as zero, while keeping b, and b, unchanged. The second one
1030 excludes the travel cost ratio by setting b, as zero, while keeping b, and b, unchanged.
1031
1032 As shown in Table 10, when the travel time ratio is not considered in the objective function,
1033 the average travel time increment percentage per passenger and the percentage of total travel
1034 time increment increase significantly. The ride-hailing matching trips allow long detours to
1035 serve customers. However, long detours lower the allowable number of additional passengers
1036 served in the later time intervals due to the fixed time window of passengers aboard, leading
1037 to the reduction in the sharing percentage and thus the reductionin R ;.. and RT .. . When
1038 the travel cost ratio is not considered in the objective function, the sharing percentage, the
1039 average out-of-pocket cost saving percentage per passenger, and the percentage of total out-of-
1040 pocket cost saving decrease significantly because ride-hailing sharing requires vehicles to
1041 detour to pick up customers and increase the travel time ratio. Meanwhile, the reduction in the
1042 sharing percentage induces the decrease in Ry, and RT, . because fewer ride-hailing
1043 sharing activities imply fewer detours experienced by the passengers. Therefore, both the travel
1044 time ratio and travel cost ratio are important components in the objective function to achieve
1045 better ride-hailing sharing services.
1046
1047
1048
1049
1050
1051
1052
1053
1054

28

1055 Table 10 Comparison of different objective functions
Time Objective Objective Matching ~ Sharing R R RT RT.
interval Function value money time money time
Normal 1,677.33 85.24% 72.10% 26.32% 15.48% 25.73% 16.25%
10s TIME- 4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83%
COST- 3,904.86 86.07% 35.86% 9.75% 9.89% 7.06% 9.06%
Normal 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%
30s TIME- 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71%
COST- 3,908.42 86.10% 3547% 951% 9.78% 6.74% 9.02%
Normal 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%
60 s TIME- 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64%
COST- 3,897.30 85.77% 34.04% 894% 9.61% 6.49% 8.87%
1056 Note: Normal = the objective function with the three components mentioned in Equation (1), TIME- = the
1057 objective function with the number of matched requests and the travel cost ratios only, COST- = the objective
%823 function with the number of matched requests and the travel time ratios only.
1060 5.8. Comparison to GRASP with path relinking
1061 The performance of the proposed method is compared to GRASP with path relinking proposed
1062 by Santos and Xavier (2015). There are four substantial differences between the MABC
1063 algorithm of this paper and their method (named GRASP). First, the adopted main algorithm is
1064 different (i.e., the ABC algorithm versus GRASP). Second, the MABC algorithm incorporates
1065 the VP tree to narrow the search range for the requests. Due to the adoption of the VP tree, the
1066 solution initialization methods between the MABC algorithm and GRASP are different, in
1067 which GRASP uses the greedy method to match vehicles with feasible requests, while the
1068 MABC algorithm uses the greedy method to match requests with feasible vehicles (described
1069 in Section 4.4). Third, this paper introduces a transfer operator in addition to the swap operator
1070 that has been adopted in GRASP. Fourth, GRASP allows new requests to be added only after
1071 the destination point of the last delivered passenger aboard if there are passengers aboard the
1072 vehicle at the current time, while the MABC algorithm has no such restriction (e.g., Figure 1).
1073 The MABC algorithm can be viewed as the solution method obtained by introducing the four
1074 major modifications to GRASP. To have a fair comparison of the performance between GRASP
1075 and the MABC algorithm, the parameter setting for GRASP is determined based on the strategy
1076 presented by Santos and Xavier (2015) and the dataset mentioned in Section 5.1.
1077
1078 To clearly illustrate the effects of introducing each modification to GRASP on solving the
1079 studied problem, three additional new methods, which are the variants of either the MABC
1080 algorithm or GRASP, are proposed. Table 11 describes these variants. Each method in Table 11
1081 only has one difference compared with its adjacent method.
1082
1083 Table 11 Comparison of different methods solving the dynamic ride-hailing sharing
1084 problem
Method Main algorithm Im&ﬂgigon Operators rIeI;ireirgiOOI;
GRASP (Santos GRASP Vehicle Swap Yes
and Xavier, 2015)
GRASP+ GRASP Vehicle Swap No
ABC-- ABC Vehicle Swap No
ABC- ABC Vehicle Swap + transfer No
MABC ABC Request + VP Swap + transfer No

29

tree

1085 Note: Vehicle = initialization method using the greedy method to match vehicles with feasible requests; Request
1086 =initialization method using the greedy method to match requests with feasible vehicles; Swap = swap operator,
1087 Transfer = transfer operator.
1088
1089 As shown in Table 12, the method using the MABC algorithm proposed in this paper (MABC)
1090 performs the best. The variants of the MABC algorithm and GRASP, which include new
1091 features to the ABC algorithm, yield a better solution compared with GRASP. The comparison
1092 between GRASP and GRASP+ shows that removing the insertion restriction (the fourth aspect)
1093 is an effective way to improve solution quality. It can improve the chance for ride-hailing
1094 sharing, simultaneously complying with the time window, capacity, and travel cost constraints
1095 for each request. The comparison between GRASP+ and ABC-- demonstrate that, without the
1096 transfer operator, GRASP achieves a better objective value in longer time intervals, and the
1097 ABC algorithm performs better in shorter time intervals. The comparison between ABC-- and
1098 ABC- showed that the transfer operator greatly improves the performance. The comparison
1099 between the MABC algorithm and ABC- demonstrates that the modified initialization method
1100 and the VP tree used in this paper are more effective than the initialization method used in
1101 GRASP because the latter is time-consuming. In summary, Table 12 shows that the proposed
1102 MABC algorithm performs well in solving the dynamic ride-hailing sharing problem and that
1103 the modifications to GRASP are effective.
1104
1105 Table 13 shows the performance of the MABC algorithm and GRASP in terms of the objective
1106 function adopted by Santos and Xavier (2015), who consider the number of matched requests
1107 and travel cost ratio. The results demonstrate that the sharing percentage increases significantly,
1108 and the customers can save more money when using the proposed MABC algorithm, which
1109 also leads to an increment in the objective value. Comparing Table 12 with Table 13, it can be
1110 observed that the customers need to waste more travel time to finish trips when ignoring the
1111 travel time ratio in the objective function.
1112
1113 Table 12 Performance comparison between different variants of the MABC algorithm
1114 and GRASP
Time Algorithm Objective Matching Sharing R Ry RT RT,
interval Value money time money time
GRASP 1,211.71 85.22% 17.60% 593% 12.02% 5.60% 11.08%
GRASP+ 1,362.77 88.15% 43.11% 12.50% 14.64% 11.08% 14.20%
10s ABC-- 1,388.19 88.53% 4431% 13.25% 14.36% 12.22% 13.99%
ABC- 1,433.01 88.04% 51.10% 15.32% 14.62% 14.51% 14.36%
MABC 1,677.33 85.24% 72.10% 26.32% 1548% 25.73% 16.25%
GRASP 1,274.66 85.66% 22.51% 7.71% 10.95% 7.39% 10.10%
GRASP+ 1,566.38 88.61% 56.81% 16.87% 14.16% 16.22% 14.32%
30s ABC-- 1,548.72 88.42% 57.77% 18.68% 14.16% 17.39% 14.27%
ABC- 1,642.22 88.06% 67.93% 22.92% 15.11% 22.16% 15.50%
MABC 1,682.97 85.08% 73.28% 26.70% 15.56% 25.73% 16.23%
GRASP 1,292.96 85.30% 23.02% 7.89% 10.82% 7.60% 10.14%
GRASP+ 1,617.69 88.20% 62.34% 20.54% 14.17% 18.83% 14.44%
60 s ABC-- 1,603.08 88.39% 62.73% 20.58% 14.17% 18.86% 14.37%
ABC- 1,661.39 87.49% 69.25% 24.06% 15.26% 23.35% 15.86%
MABC 1,689.94 85.15% 73.11% 26.87% 15.51% 26.03% 16.14%
1115
1116

30

1117 Table 13 Performance comparison between the MABC algorithm and GRASP in
1118 terms of the objective function without travel time ratio
in’lt‘::;eal Algorithm Ol{}]:lcut;ve Matching Sharing R Riime RT oney RTie
10 s GRASP 3,599.15 85.56% 15.78% 545% 18.40% 5.17% 16.80%
MABC 4,131.83 85.91% 68.65% 23.75% 19.98% 23.56% 19.83%
30's GRASP 3,688.64 86.38% 21.16% 738% 18.67% 7.54% 17.13%
MABC 4,142.12 85.88% 68.89% 24.16% 19.88% 23.76% 19.71%
60's GRASP 3,720.96 86.63% 24.59% 8.14% 18.79% 8.14% 17.44%
MABC 4,149.36 85.82% 69.54% 24.51% 19.78% 24.33% 19.64%
1119
1120
1121 6. Conclusions
1122 Inthis paper, a dynamic ride-hailing sharing problem is proposed, which aims to maximize the
1123 weighted difference between the number of served customers and the sum of the travel cost
1124 ratio and travel time ratio. Meanwhile, the time window and travel cost constraints of the
1125 passengers and the capacity constraint of the vehicles are considered simultaneously. To handle
1126 the dynamic characteristics of the ride-hailing sharing problem, the problem was divided into
1127 many static subproblems with an identical time interval length. In each time interval, the
1128 request collection and matching algorithm were executed simultaneously. To solve
1129 subproblems, we propose a method based on the artificial bee colony algorithm, in which the
1130 vantage-point tree is used to narrow the search space of the algorithm and path relinking is
1131 incorporated to accelerate the solution speed to get the better solution. The method using the
1132 GRASP with path relinking proposed by Santos and Xavier (2015) was selected as the
1133 benchmark for the comparison. The results show that our proposed method outperforms the
1134 benchmark. The results also demonstrate the following. (a) With a longer time interval, the
1135 performance of the proposed method is better. However, it should be noted that a longer time
1136 interval leads to a longer time of data collection and algorithm execution, which requires the
1137 passengers to wait longer for matching results. (b) Embedding path relinking into the ABC
1138 algorithm significantly improves the performance of the resultant solution method. (c¢) The
1139 percentage of willingness-to-share and the number of ride-hailing vehicles can significantly
1140 influence the matching percentage and the sharing percentage of the ride-hailing sharing
1141 problem. (d) With a higher tolerance for the detouring time due to ride-hailing sharing, the
1142 proposed method can perform significantly better. (¢) Considering both travel cost and travel
1143 time ratios into the design objective can achieve the best sharing percentage, and balance the
1144 increase in travel time ratio and the decrease in travel cost ratio compared with the design
1145 objectives that miss either the travel time or the travel cost ratio. (f) Ride-hailing sharing can
1146 generate benefits to the passengers as the passengers can spend less money on ride-hailing fares
1147 by spending a little bit more time due to the detours.
1148
1149 This study opens the following interesting future research directions. First, our solution method
1150 is simple and efficient but does not consider the lookahead policy. Introducing the lookahead
1151 policy can often improve the performance of some classical transportation systems (e.g.,
1152 Mitrovi¢-Mini¢ et al., 2004; Spivey and Powell, 2004; Sayarshad et al., 2020; Sayarshad &
1153 Gao, 2020). Therefore, one of the future search directions is to extend our solution method to
1154 incorporate this lookahead policy. Second, in this study, we only consider the ride-hailing
1155 service offered by a private company. If the company was public operated, the taxi charge
1156 could be lower if the passengers waiting time was longer. This socially efficient price could be
1157 examined by modifying the price mechanism in the proposed formulation, which is an

31

1158
1159
1160
1161
1162
1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

interesting research direction. In the future, we can analyze socially efficient prices in a ride-
hailing sharing problem similar to the studies of Figliozzi et al. (2007) and Sayarshad and Chow
(2015).

References

Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P., & Wang, X. (2011). Dynamic ride-
sharing: a simulation study in metro Atlanta. Transportation Research Part B
Methodological, 45(9), 1450-1464.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3), 462-467.

Attanasio, A., Cordeau, J. F., Ghiani, G., & Laporte, G. (2004). Parallel tabu search heuristics
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3), 377-387.

Baugh Jr., J. W., Kakivaya, G. K. R., & Stone, J. R. (1998). Intractability of the dial-a-ride
problem and a multiobjective solution using simulated annealing. Engineering
Optimization, 30(2), 91-123.

Beaudry, A., Laporte, G., Melo, T., & Nickel, S. (2010). Dynamic transportation of patients in
hospitals. OR Spectrum, 32(1), 77-107.

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems.
European Journal of Operational Research, 202(1), 8-15.

Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals
of Operations Research, 153(1), 29-46.

Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of
unexpected customers for a dynamic dial-a-ride problem. European Journal of
Operational Research, 175(3), 1605-1615.

Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with time
windows. European Journal of Operational Research, 54(1), 7-22.

Figliozzi, M. A., Mahmassani, H. S., Jaillet, P. (2007). Pricing in dynamic vehicle routing
problems. Transportation Science, 41(3), 302-318.

Fu, A. W. C,, Chan, P. M. S., Cheung, Y. L., & Moon, Y. S. (2000). Dynamic VP-tree indexing
for N-nearest neighbor search given pair-wise distances. The VLDB Journal, 9(2), 154-
173.

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: Faster
and simpler hierarchical routing in road networks. In International Workshop on
Experimental and Efficient Algorithms (pp. 319-333). Springer, Berlin, Heidelberg.

Geisberger, R., Sanders, P., Schultes, D., & Vetter, C. (2012). Exact routing in large road
networks using contraction hierarchies. Transportation Science, 46(3), 388-404.

Glover, F. (1997). Tabu search and adaptive memory programming—Advances, applications
and challenges. In Interfaces in Computer Science & Operations Research (pp. 1-75).
Springer, Boston, MA.

Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search and path relinking.
Control & Cybernetics, 29(3), 653-684.

Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey
of dial-a-ride problems: Literature review and recent developments. Transportation
Research Part B: Methodological, 111, 395-241.

Horn, M. E. (2002). Fleet scheduling and dispatching for demand-responsive passenger
services. Transportation Research Part C: Emerging Technologies, 10(1), 35-63.

Intergovernmental Panel on Climate Change (IPCC) (2015). Climate Change 2014: Mitigation

32

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

of Climate Change (Vol. 3). Cambridge University Press.

Jaw, J. J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. (1986). A heuristic algorithm for the
multi-vehicle advance request dial-a-ride problem with time windows. Transportation
Research Part B: Methodological, 20(3), 243-257.

Jensen, P. (2005). Indicator: Occupancy Rates of Passenger Vehicles. Technical Report,
European Environmental Agency. Retrieved from https://www.eea.europa.eu/data-and-
maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-
vehicles.

Jung, J., Jayakrishnan, R., & Park, J. Y. (2016). Dynamic shared-taxi dispatch algorithm with
hybrid-simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 31(4),
275-291.

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization (Vol.
200). Technical Report-TR06, Erciyes University, Engineering Faculty, Computer
Engineering Department.

Karaboga, D., & Ozturk, C. (2009). Neural networks training by artificial bee colony algorithm
on pattern classification. Neural Network World, 19(3), 279-292.

Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital
IIR filters. Journal of the Franklin Institute, 346(4), 328-348.

Liang, X., de Almeida Correia, G. H., An, K., & van Arem, B. (2020). Automated taxis’ dial-
a-ride problem with ride-sharing considering congestion-based dynamic travel times.
Transportation Research Part C: Emerging Technologies, 112, 260-281.

Long, J., Szeto, W. Y., & Huang, H. J. (2014). A bi-objective turning restriction design problem
in urban road networks. European Journal of Operational Research, 237(2), 426-439.

Ma, S., Zheng, Y., & Wolfson, O. (2013). T-share: A large-scale dynamic taxi ridesharing
service. In 2013 IEEE 29th International Conference on Data Engineering (pp. 410-421).
IEEE Computer Society.

Ma, S., Zheng, Y., & Wolfson, O. (2015). Real-time city-scale taxi ridesharing. IEEE
Transactions on Knowledge & Data Engineering, 27(7), 1782-1795.

Madsen, O. B. G., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-
ride problem with time windows, multiple capacities, and multiple objectives. Annals of
Operations Research, 60(1), 193-208.

Melachrinoudis, E., Ilhan, A. B., & Min, H. (2007). A dial-a-ride problem for client
transportation in a health-care organization. Computers & Operations Research, 34(3),
742-759.

Mitrovi¢-Mini¢, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics
for the dynamic pickup and delivery problem with time windows. Transportation
Research Part B, 38(8), 669-685.

Nielsen, F., Piro, P., & Barlaud, M. (2009). Bregman vantage point trees for efficient nearest
neighbor queries. In IEEE International Conference on Conference: Multimedia and Expo,
2009 (pp. 878-881).

Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2), 130-154.

Resendel, M. G., & Ribeiro, C. C. (2005). GRASP with path-relinking: Recent advances and
applications. In Metaheuristics: Progress as Real Problem Solvers (pp. 29-63). Springer,
Boston, MA.

Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., & Liss, S. (2011). Summary of Travel
Trends: 2009 National Household Travel Survey. Technical Report, Federal Highway
Administration, US Department of Transportation.

Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing: A dynamic dial-a-ride problem
with money as an incentive. Expert Systems with Applications, 42(19), 6728-6737.

33

https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

Sayarshad, H. R., & Chow, J. Y. J. (2015). A scalable non-myopic dynamic dial-a-ride and
pricing problem. Transportation Research Part B: Methodological, 81(2), 539-554.
Sayarshad, H. R., & Gao, H. O. (2018). A scalable non-myopic dynamic dial-a-ride and pricing
problem for competitive on-demand mobility systems. Transportation Research Part C:

Emerging Technologies, 91, 192-208.

Sayarshad, H. R., & Gao, H. O. (2020). Optimizing dynamic switching between fixed and
flexible transit services with an idle-vehicle relocation strategy and reductions in
emissions. Transportation Research Part A: Policy and Practice, 135, 198-214.

Sayarshad, H. R., Mahmoodian, V., & Gao, H. O. (2020). Dynamic non-myopic routing of
electric taxis with battery swapping station. Sustainable Cities and Society, 57, 102113.

Schilde, M., Doerner, K. F., & Hartl, R. F. (2014). Integrating stochastic time-dependent travel
speed in solution methods for the dynamic dial-a-ride problem. European Journal of
Operational Research, 238(1), 18-30.

Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). 2015 Urban Mobility Scorecard.
Technical Report, Texas A&M Transportation Institute.

Singh, A. (2009). An artificial bee colony algorithm for the leaf-constrained minimum
spanning tree problem. Applied Soft Computing, 9(2), 625-631.

Spivey, M. Z., & Powell, W. B. (2004). The dynamic assignment problem. Transportation
Science, 38(4), 399-419.

Szeto, W. Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle
routing problem. European Journal of Operational Research, 215(1), 126-135.

Szeto, W. Y., & Jiang, Y. (2014). Transit route and frequency design: Bi-level modeling and
hybrid artificial bee colony algorithm approach. Transportation Research Part B:
Methodological, 67(9), 235-263.

Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static multi-
vehicle bike repositioning problem. Transportation Research Part B:
Methodological, 109, 176-211.

Wang, Y., Zheng, B., & Lim, E. P. (2018). Understanding the effects of taxi ride-sharing—A
case study of Singapore. Computers, Environment and Urban Systems, 69, 124-132.
Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in general
metric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete

Algorithms (pp. 311-321). Society for Industrial and Applied Mathematics.

34

