
Received December 21, 2020, accepted January 25, 2021, date of publication February 1, 2021, date of current version March 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055947

Efficient Hardware Realization of a New Variable
Regularized PAST Algorithm With Multiple
Deflation
WEI ZHAO 1,2, SHING-CHOW CHAN 3, (Member, IEEE), AND JIAN-QIANG LIN 3
1Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
3Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Corresponding author: Jian-Qiang Lin (jqlin@eee.hku.hk)

ABSTRACT This paper proposes a new variant of the projection approximation subspace tracking (PAST)
algorithm with multiple deflation (MD) and its efficient hardware architecture. It extends the PAST with
deflation (PAST-d) algorithm by performing multiple deflations at each step and relies on a recently intro-
duced variable forgetting factor, and variable regularized PAST algorithm to improve the overall convergence
rate, steady-state error, and numerical properties. It shares the same simple hardware structure of the PAST-d
algorithm in pipeline realization but offering a more flexible tradeoff between complexity and performance.
Moreover, methods for estimating the eigenvalues and the dimension of the signal subspace are proposed.
Novel simplifications of the proposed variable forgetting factor (VFF) and variable regularization (VR)
PAST-MD algorithm are also developed to avoid the expensive cubic root and division operations involved
to facilitate its hardware implementation. Moreover, a combined data-regularization update is introduced to
avoid the additional QR decomposition (QRD) update associated with the regularization, at the expense of
very slight performance degradation. A novel pipelined hardware implementation of the simplified VFF-VR-
PAST-MD algorithm based on the QRD and the COordinate Rotation DIgital Computer (CORDIC) is also
proposed and implemented in Xilinx field programmable gate array (FPGA). Thanks to the proposed ‘‘root-
and division- free’’ schemes, our proposed architecture can achieve around 20.2% higher working speed
and save 1.9% lookup tables (LUTs), 1.8% slice register, and 22.8% digital signal processors (DSPs) over
conventional implementation of the proposed architecture. Compared to the previous work, which is based
on PAST-d algorithm, the proposed QRD-based algorithms offer better performance and a more flexible
tradeoff between hardware resources and performance.

INDEX TERMS Forgetting factor, FPGA, hardware implementation, projection approximation, subspace
tracking.

I. INTRODUCTION
Subspace estimation and tracking have important applica-
tions in array signal processing [1], [2], system identification
[3], [4], speech processing [5], directions of arrival (DOA)
estimation in radar, sonar, and mobile/wireless communica-
tion systems [6]–[8], etc. For instance, subspace-based meth-
ods have been proposed for high-resolution spatial domain
spectral analysis in multiple signal classification (MUSIC)
method [9], the minimum-norm method [10], the estima-
tion of signal parameter via rotational invariance techniques
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(ESPRIT) method [11] and the weighted subspace fitting
(WSF) method [12]. These methods are also widely used
for estimation and tracking of DOA in antenna arrays. Con-
ventional methods for computing the subspace are usually
based on the batch eigenvalue decomposition (ED) or singular
value decomposition (SVD) of the data covariance matrix,
which can be computational intensive, especially for mov-
ing sources. To reduce the arithmetic complexity, efficient
subspace tracking algorithms with much lower arithmetic
complexity have been proposed [1], [13]–[17]. An efficient
algorithm is the projection approximation subspace tracking
(PAST) [13] method, which has a low computational com-
plexity of onlyO(Nr), whereN and r denote the dimension of
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the input data vector and the dimension of the subspace. Other
effective subspace tracking algorithms include the orthonor-
mal PAST (OPAST) algorithm [18], bi-iteration SVD algo-
rithm [16], Bi-LS [19], QS-decomposition-based algorithms
[20], fast approximated power iteration (FAPI) [14], YAST
[21], etc. For more information on these and other related
algorithms, please refer to [22] for more details.

Compared with other algorithms, the conventional PAST
algorithm and related algorithms such as the OPAST
algorithm are based on the recursive least squares (RLS) algo-
rithm using a fixed forgetting factor (FF). Consequently, effi-
cient hardware structure such as QR decomposition (QRD)
using the COordinate Rotation DIgital Computer (CORDIC)
technique can be used for its efficient realization. On the
other hand, it is known that using a variable FF in the RLS
algorithm can considerably improve its tracking speed in
time-varying environment and steady-state error in stationary
environment [23]–[26]. Another possible problem of the
conventional RLS algorithm is that the data covariancematrix
may become ill conditioned when the input is not persistently
exciting. This is often encountered in situations with signal
fading where the signal power level drops rapidly and hence,
the estimation error may increase dramatically. To tackle this
problem, regularization techniques are commonly employed
to reduce the estimation variance [27].

Due to the wide applications of subspace techniques in
real time systems, it is highly desirable to develop an effi-
cient hardware for realizing the PAST algorithm. To our best
knowledge, hardware realizations of subspace tracker are lim-
ited and pioneering works can be found in [28]–[31]. In [29],
an efficient parallel implementation of the ED algorithm was
proposed. Another novel hardware structure based on a spe-
cial case of the PAST algorithm called the PAST with defla-
tion (PAST-d) algorithm was proposed in [31]. The PAST-d
algorithm extracts the subspace vectors one at a time using
the PAST algorithm via the deflation technique. Therefore,
its can be realized efficiently in a pipelined structure with a
much lower hardware per stage than direct implementation
using the QRD [31]. In fact, the hardware complexity of
the CORDIC implementation of QRD grows with O(r2),
which can be substantial if r is large. Moreover, it is rather
complicated to vary r in applications where r is adaptively
determined. For PAST-d, one can cascade more pipelining
stages to determine the appropriate dimension to be used. For
QRD, increasing r may need a triangular array with much
more elements working in pipeline. However, due to possible
error accumulation of the deflation technique and the use of
a fixed FF, the steady-state error and tracking speed of the
PAST-d algorithm have to be considerably compromised.

Motivated by the needs for a subspace tracking algorithm
with good tracking performance and an efficient hardware
implementation, we propose in this paper a novel variable
FF (VFF) and variable regularized (VR) PAST algorithmwith
multiple deflation (MD), and its efficient hardware archi-
tecture. We first extend the conventional PAST-d algorithm
to perform multiple deflations at each step, which can be

achieved by applying successively the basic PAST algorithm
with a subspace of dimension P > 1, instead of restricting
it to one as in the PAST-d algorithm. This leads to a faster
algorithm and improved numerical properties at the expense
of slightly increased complexity at each stage. However, since
P is fixed, a QRD implementation would require a fixed
complexity ofO(P2). Moreover, multiple such QRDmodules
can be cascaded for pipeline implementation and can be
made variable to determine the appropriate dimension of the
subspace to be used. Thus, the proposed PAST-MD algorithm
shares the same hardware advantage of the PAST-d algorithm
in reusing the same basic hardware module for modular
and pipeline realization. Compared with the basic PAST-d
implementation, the error accumulation will be reduced lead-
ing to better overall accuracy. Therefore, by choosing an
appropriate subspace dimension at each deflation step, P,
a more flexible tradeoff between hardware complexity and
accuracy over the conventional PAST and PAST-d algorithms
in [13], [17], [31] can be achieved. Moreover, we show that
the eigenvalues and the dimension of the signal subspace can
also be estimated conveniently from the score and residual
vectors after each deflation. More precisely, the eigenvalues
associated with each extracted subspace can be obtained from
the roots of the characteristic equation associated with the
covariance matrix of the score vector. Using the ratio of the
power of the residual vector to that of the input power, one
can also determine the dimension of the signal subspace to
retain a given fraction of input power in the signal subspace.
To compensate for the degraded convergence and steady
mean square error of the PAST-MD algorithm due to the
use of multiple deflation, we focus on a recently proposed
VFF-VR PAST algorithm [17] as the basic hardware module
for improving the convergence speed, steady-state error and
stability of the proposed PAST-MD algorithm. In particular,
we shall make use of the VFF-VR PAST algorithm in [17]
at each stage of the deflation to improve the tracking speed,
steady state error and stability. The algorithm in [17] models
the channel using a local polynomial and optimizes the FF as
well as the regularization to minimize the asymptotic MSE.

Since the VFF scheme of the VFF-VR PAST algorithm
in [17] involves cubic root and division operations, novel
techniques are proposed in this work to reduce its processing
delay and hardware complexity. In particular, novel ‘‘root-
and division- free’’ discretized VFF and VR schemes are
introduced. Moreover, a combined data-regularization update
is introduced to avoid the additional QRD update required
for incorporating the regularization, at the expense of very
slight performance degradation. Furthermore, the constant
coefficient multiplications involved in the proposed VFF and
VR schemes are implemented using the canonical signed
digits (CSD) or sum-of-power-two numbers [32] resulting in
multiplier-less realization.

Finally, we propose a novel pipelined hardware implemen-
tation of our proposed VFF-VR-PAST-MD algorithm. The
architecture extracts a subspace of P dimension from the
input at each pipelined stage using the proposed modified
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VFF-VR PAST algorithm. The QR decomposition and the
COordinate Rotation DIgital Computer (CORDIC) technique
are used to realize the basic PAST algorithm due to its good
numerical property and attractive parallel implementation.
Moreover, the three-angle complex rotation (TACR) [33] is
adopted to simplify the Givens rotation for complex data.
Due to the ‘‘root- and division-free’’ schemes, the exces-
sive delay due to division can be avoided, resulting in a
lower hardware resources and higher throughput compared
to the conventional implementation. To verify the efficiency
of the proposed approach, the proposed QRD-based VFF-
VR-PAST-MD architecture is implemented in Xilinx Ver-
tex 7 (XC7VX980T) field programmable gate array (FPGA).
Compared to the previous work in [31], which is based on
the PAST-d algorithm, our proposed QRD-based VFF-VR-
PAST-MD algorithms offer better convergence and steady
state error performances and a more flexible tradeoff between
hardware resources and performance. For a 10-element uni-
form linear array (ULA), the proposed architecture can be
implemented in 22-bit wordlength with a very impressive
maximum operating speed of 143MHz for different values of
P at 5 MHz sampling rate. Compared with the conventional
implementation of the proposed architecture using multiplier
and divider, our proposed work can achieve around 20.2%
higher working speed and save 1.9% LUTs, 1.8% Slice Reg-
ister, and 22.8% DSPs, respectively.

The rest of this paper is organized as follows: the
proposed VFF-VR-PAST-MD algorithm will be intro-
duced in section II. The hardware-friendly QRD-based
VFF-VR-PAST algorithm and its efficient architecture are
described in sections III and IV respectively. Computer sim-
ulation, FPGA implementation and comparison with other
conventional works will be presented in section V and con-
clusion is drawn in section VI.

II. THE PROPOSED VFF-VR-PAST-MD ALGORITHM
A. SUBSPACE TRACKING AND DOA TRACKING
Subspace technique is frequently used in DOA estima-
tion. Consider for instance a uniform linear array (ULA)
with L omni-directional and identical sensors impinged by
K far-field narrow-band uncorrelated sources sk [n], k =
1, . . . ,K with DOAs θ1, . . . , θK , respectively. The signal
vector recorded from the L sensors at time instant n can then
be described by the following signal model:

x[n] = A(θ )s[n]+ η[n], (1)

where x[n] = [x1[n], . . . , xL[n]]T and
s[n] = [s1[n], . . . , sK [n]]T denote the sensor sig-
nal and the source signal vector respectively. A(θ) =
[a(θ1), a(θ2), . . . , a(θK )] contains the steering vectors asso-
ciated with the K DOAs, θ = [θ1, θ2, . . . , θK ]T, of the
sources, and η[n] is the additive sensor noise vector which is
modeled as an independent and identically distributed (IID)
white Gaussian noise (AWGN) with zero mean and covari-
ance matrix σ 2I , where I is the identity matrix. For ULAs,

the steering vector of a source with angle θ can be written as

a(θ ) = [1, ej2πλ
−1d sin(θ), . . . , ej2πλ

−1(L−1)d sin(θ)]T, (2)

where λ is the wavelength of the propagating signals and d
is the inter-sensor spacing. From (1), one gets the following
relationship between the signal covariance matrixRxx and the
matrix A(θ)

Rxx = E[x[n]xH[n]] = A(θ)RSAH(θ )+ σ 2I, (3)

where RS = E[s[n]sH[n]] is the source signal covariance
matrix. As the K source signals are uncorrelated, the covari-
ance matrix in (3) can be expressed in terms of the signal and
noise subspaces as follows

Rxx = US6SUH
S + UN6NUH

N , (4)

where US = [u1,u2, . . . ,uK ] and
UN = [uK+1,uK+2, . . . ,uL] are respectively the signal
subspace and noise subspace, and 6S and 6N are diagonal
matrices containing the eigenvalues associated with the K
source signals and sensor noise, respectively. In practice,
the covariance matrix is estimated from snapshots of the
signal vector x[n] as R̂xx = 1

M

∑M
n=1 x[n]x

H[n], where M
is the number of snapshots. Since the desired steering vectors
are in the signal subspace and they are orthogonal to the noise
subspace, this implies that aH(θi)UN = 0. Hence, the DOAs
can be found from the local peaks of the MUSIC spectrum

P(θ) =
1

aH(θ )UNUH
Na(θ )

=
1

‖aH(θ )UN‖
2
2

, (5)

through grid search in the angles given the steering vector
of an array. When the number of sources is small, it is
advantageous to estimate the signal subspace US and hence
the noise subspace by UN = I − USUH

S . For DOA tracking,
the continuous estimation of US is computational intensive
and recursive algorithm such as the PAST algorithm can
significantly reduce the arithmetic complexity. In this paper,
we shall focus on the applications of the proposed VFF-
VR-PAST-MD algorithm and hardware architecture to the
problem of DOA estimation and tracking.

B. THE PROPOSED PAST ALGORITHM WITH MULTIPLE
DEFLATION (PAST-MD)
The signal subspace containing the major P̃ eigenvectors of
Rxx can be recursively estimated from x[n] by minimizing the
following least squares (LS) function

J (W [n]) =
n∑
i=1

λn−i‖x[i]−W [n]y[i]‖22, (6)

where W [n] ∈ CL×P̃, x̂[i] = W [n]y[i], y[i] = WH[n]x[i]
is the projection of x[i] in W [n], and λ is a positive forget-
ting factor less than 1. Hence, the energy outside the space
spanned byW [n], ‖e[i]‖22 = ‖x[i]−W [n]y[i]‖22 is minimized.
In PAST, the projection approximation ȳ[i] ≈ WH[n− 1]x[i]
is used so that (6) can be simplified and solved using the
recursive least squares (RLS) algorithm. Since ‖e[i]‖22 is the
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sum of the squared values of its components, the PAST algo-
rithm can also be viewed as the following L LS sub-problems
with the same input ȳ[i]

J̃ (wl[n]) =
L∑
l=1

n∑
i=1

λn−i‖xl[i]− wH
l [n]ȳ[i]‖

2
2, (7)

l = 1, . . . ,L, where wH
l [n] denotes the l-th row of W [n].

It should be noted that these sub-problems are independent
of each other and hence, they can be solved independently
and the optimal solution to (7) is

wl[n] = R−1ȳȳ Rȳxl [n], (8)

where Rȳȳ[n] =
∑n

i=1 λ
n−iȳ[i]ȳH[i] and Rȳxl =∑n

i=1 λ
n−iȳ[i]x∗n[i]. Applying the RLS algorithm for solv-

ing (8), one gets the PAST algorithm in Table 1.

TABLE 1. The PAST algorithm [13].

1) PAST-D AND PAST-MD
In the PAST with deflation (PAST-d) algorithm, the subspace
is extracted one by one by means of deflation. Specifically,
let the optimal weight vector at the first stage of the deflation
process be w(1)[n] and x(0)[n] = x[n]. Then, the residual
vector after extraction, x(1)[n] = x(0)[n]−w(1)[n]ȳ(0)[n], will
consist of components from the remaining subspace and the
process can be repeated for x(1)[n] and so on to give

x(r)[n] = x(r−1)[n]− w(r)[n]ȳ(r−1)[n], (9a)

ȳ(r−1)[n] = (w(r)[n− 1])Hx(r−1)[n], r = 1, . . . , P̃, (9b)

and hence the eigenvectors can be successively extracted as
w(r)[n], r = 1, . . . , P̃. The final subspace has a dimension of
P̃. The PAST-d algorithm is summarized in Table 2.

One of the advantages of the conventional PAST-d algo-
rithm is its simplicity, especially for hardware implementa-
tion as the basic module for extracting one eigenvector can
be time multiplexed or pipelined for efficient realization.
On the other hand, the deflation process in (9a) may affect
the orthogonality of the vectors extracted due to error accu-
mulation and its convergence rate will also be slower.

TABLE 2. The PAST-d algorithm [13].

Here, we extend the conventional PAST-d algorithm to
performmultiple deflations at each step. This leads to a faster
algorithm and improved numerical properties at the expenses
of slightly increased complexity. More precisely, we propose
to extract a subspace of small dimension successively instead
of one. This is possible by using successively the basic PAST
algorithm with a subspace of dimension P, say, as follows

x(r)[n] = x(r−1)[n]−W (r)[n]ȳ(r−1)[n], (10a)

ȳ(r−1)[n] = (W (r)[n− 1])Hx(r−1)[n], r = 1, . . . ,R, (10b)

where W (r)[n] ∈ CL×P, R denotes the number or stage of
deflation and the final subspace dimension has a size of RP.
Specifically, when P = 1, the PAST-MD algorithm will be
reduced to the PAST-d algorithm.

In general, the size of the subspace extracted at each step
of deflation may be different. Of course, using the same
size has the advantage of possible reuse of hardware mod-
ules and modular hardware realization in pipeline realization.
Thus, the proposed algorithm offers a more flexible trade-
off between arithmetic and hardware complexity over the
conventional PAST and PAST-d algorithms. The proposed
PAST-MD algorithm is summarized in Table 3. A compar-
ison of arithmetic complexity of the PAST, PAST-d, and
PAST-MD algorithms is given in Table 4. We now proposed
novel VFF and VR schemes for improving the convergence
speed, steady-state error and stability of these algorithms. The
hardware architecture for their efficient realization will be
discussed later in Section IV.

2) EIGENVALUES ESTIMATION AND ADAPTIVE SUBSPACE
DIMENSION DETERMINATION
One of the advantage of the PAST-d algorithm is its simplicity
in estimating the eigenvalues of the subspace, which is in
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fact the power of the projected score ȳ(r−1)[n] in (9b). In the
PAST-MD algorithm, each extract subspace has a dimen-
sion of P, and hence the projected score ȳ(r−1)[n] will be
a P-th vector. Since W (r)[n] ∈ CL×P only span the sub-
space and they are not eigenvectors, one cannot estimate the
corresponding eigenvalues from the power of the elements
in ȳ(r−1)[n] as in PAST-d. In fact, the eigenvalues can be
estimated from the eigenvalues of the covariance matrix of
ȳ(r−1)[n],Cy(r−1) = E[ȳ(r−1)[n]ȳ(r−1)[n]H]. Since P is usually
not a very large number, the eigenvalues of Cy(r−1) can be
estimated by solving the roots of the characteristic equations
as follows

p(r−1)(λ) = |Cy(r−1) − λI| = 0. (11)

Moreover, for P less than or equal to 4, analytical formulas
are available to compute all the roots of p(r−1)(λ), which
allows the eigenvalues to be computed on the fly. From our
simulation in the supplementary materials, the eigenvalues
can be estimated quickly with high accuracy.

Another advantage of the PAST-d and PAST-MD algo-
rithms is its convenient in determining the dimension of the
subspace to be tracked. This can be done by examining the
ratio of the powers of the residual vector at the r-th deflation
step to that of the input:

E (r)
= E[‖x(r)‖22]/E[‖x‖

2
2], (12)

E (r) represents the fraction of the input energy in the residual
vector after the r-th stage of deflation. Therefore, if it is
sufficiently small, one can terminate the deflation process and
determine the dimension of the signal subspace of interest.
Next, we shall focus on methods to improve the convergence
speed and the steady-state error of the basic PAST algorithm.

C. THE PROPOSED VFF-VR-PAST-MD ALGORITHM
The FF of the PAST algorithm plays an important role in its
convergence speed and steady-state error. In stationary envi-
ronment, a large FF is desirable to achieve a low mean square
error (MSE). For time-varying environment, a relatively small
forgetting factor should be employed to achieve fast tracking
speed. Thus, a variable FF is desirable for both stationary and
dynamic environment. Due to the close relationship between
the RLS algorithm and the PAST algorithm, the VFF-VR
scheme for real-valued RLS algorithm [34] recently pro-
posed by one of the authors can be extended to the complex
case [17]. In particular, the steady-state MSD of wl[n] in (7)
under the local polynomial time-varying model of the RLS is
given by [34],

JMSD(wl[n]) ≈
1− λ[n]
1+ λ[n]

σ 2
6l
Tr(R−1ȳȳ )+

λ2[n]
(1− λ[n])2

σ 2
wl ,

(13)

where σ 2
6l

and σ 2
wl represent the total error variance

E[‖e[n]‖22] and the variance of the true parameter wl[n],
respectively. For notational convenience, we shall drop the
subscript (r) in describing the operations at the r-th deflation

step in the subsequent discussion. Thus, the VFF and VR pro-
cedures described will be applied to the PAST algorithm at
each stage of deflation. The expression is the same as the
real-valued case but the variance σ 2

6l
and σ 2

wl are for the
complex noise and weight vector. The estimation of these
quantities will be discussed later in this section. Since the
mean squares deviation (MSD) of the PAST estimator is equal
to the sum of all its component, one can obtained from [34]
the MSD of W [n] by summing (13) for all l = 1, . . . ,L,
which yields

JMSD(n) ≈
1− λ[n]
1+ λ[n]

σ 2
6Tr(R

−1
ȳȳ )+

λ2[n]
(1− λ[n])2

σ 2
W , (14)

where σ 2
6 =

∑L
l=1 σ

2
6l

and σ 2
W =

∑L
l=1 σ

2
wl denote the total

noise variance and variance of the true parameter W [n] (or
system variance), respectively. Similarly to [34], the locally
optimal λ[n] at time n, which minimizes JMSD[n], can be
obtained by partial differentiating (14) with respect to λ[n]
and setting the resultant derivative to zero, which yields

−2
(1+ λ[n])2

σ 2
6Tr(R

−1
ȳȳ )+

2λ[n]
(1− λ[n])3

σ 2
W = 0. (15)

Using the change of variable µ = (1 + λ[n])/(1 − λ[n]) as
in [34], (13) can be reduced to µ2(µ−1) = 2σ 2

6Tr(R
−1
ȳȳ )/σ

2
h .

Assuming that the value of µ is much larger than one when
λ[n] is near to one, we have µ − 1 ≈ µ and the desired FF
can be simplified to

λopt = (µ− 1)/(µ+ 1), (16)

where µ = (2σ 2
6Tr(R

−1
ȳȳ )/σ

2
W )1/3. It should be noticed that

the term Tr(R−1ȳȳ ) can be estimated by using the value of P[n]
in the PAST algorithm as (

∑n
i=1 λ[i])Tr(P[n]). On the other

hand, the noise variance and system variance can be estimated
from the error vector e[n] = x[n]−W [n]ȳ[n] and difference
of weight vector 1W [n] = W [n]−W [n− 1] as follows:

σ̂ 2
6[n] = λL σ̂

2
6[n− 1]+ (1− λL)‖e[n]‖22, (17)

σ̂ 2
W [n] = λ[n]σ̂ 2

W [n− 1]+ (1− λ[n])‖1W [n]‖22, (18)

where λL and λ[n] denote respectively a large fixed FF and
the FF obtained at time n. Due to the use of a large FF to
estimate the steady-state noise, it may experience a lag when
sudden system change occurs. To address this issue, a system
change detection scheme is employed based on the long-term
and short-term estimates of noise variance, in which (17) can
be regarded as a long-term estimate σ̂ 2

6_L and the short-term
estimate is given by

σ̂ 2
6_S [n] = λS σ̂

2
6_S [n− 1]+ (1− λS )‖e[n]‖22, (20)

where λS is a relatively small FF compared to λL .
Suppose that σ̂ 2

6_S > χσ̂ 2
6_L[n] for some sufficiently

large constant χ , it suggests that there is a sudden system
change. Under this situation, the system variance is roughly
equal to the total error variance and a smaller FF should be
used for the latter update. Hence, we suggest to estimate
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TABLE 3. Summary of efficient QRD-based VFF-VR-PAST-MD Algorithm.

σ̂ 2
W [n] by σ̂ 2

6_S [n]. When σ̂ 2
6_S [n] < χσ̂ 2

6_L[n], the algo-
rithm is converging and hence the system variance should
be updated by (18). This suggests the following equation
for updating σ̂ 2

W [n], shown at the bottom of this page, and
χ is an algorithmic parameter which can be chosen as 4,
which corresponds to 99.99% confidence that system changes
have been detected. From simulation results to be presented
in Section V, it is found that the VFF scheme can improve
considerably the convergence speed and steady-state error
over the conventional PAST algorithm.

In practical applications, the input power may be
time-varying and may not be persistently exciting especially
at low signal level, the covariance matrix may be in poor con-
dition or even singular, which may affect numerical stability
of the PAST algorithm as it is based on the RLS algorithm.
To tackle this problem, the regularized RLS algorithm can be
used where a regularization term κ[n]D is added to the covari-
ance matrixRȳȳ[n] in (8) to improve its condition number and
hence the variance of the estimator in exchange for a certain
bias. The resulting solution is given by

(Rȳȳ + κ[n]D)w[n] = Rȳx[n], (21)

where D is a positive definite symmetric matrix and κ[n] >
0 is a regularization parameter. Here, we adopt the variable
regularization parameter proposed in [27] with D = I and

κ[n] =
√
γ [n]σ 2

6σ
2
ȳ ‖W0‖

−2
2 , (22)

TABLE 4. Complexity comparison of PAST, PAST-d and VFF-VR-PAST-MD
algorithms.

where σ 2
6 and σ 2

ȳ represent the total noise power and signal
power, respectively.W0 denotes the theoretical weight vector
and γ [n] = (1 − λ[n])/( 2L λ[n] + (1 − λ[n])(1 + L)). Since
the subspace vectors should be orthogonal to each other and
has unit norm, hence ‖W0‖

2
2 is equal to P.

The arithmetic complexity comparison of various algo-
rithms is shown in Table 4. The arithmetic complexities of
the PAST and PAST-MD algorithms are 3LP̃ + O(P̃2) and
4LP̃ + O(P̃) per update, respectively, where P̃ is the dimen-
sion of the tracked subspace and L is the dimension of the
input data vector. The proposed VFF and VR schemes require
additional 3LP̃ + 3L + 7P̃ and 2P̃ operations, respectively,
per update. Hence, the total arithmetic complexity of the
proposed VFF-VR-PAST-MD is 7LP̃ + 3L + 9P̃ + O(P̃).
It should be noted that P̃ = RP and when P is equal to one,
the PAST-MD approach will reduce to the PAST-d algorithm.
It can be noticed that the proposed approach has compara-
ble and acceptable arithmetic complexity compared to other
algorithms.

III. HARDWARE-FRIENDLY SIMPLIFICATIONS OF THE
PROPOSED VFF-VR-PAST-MD ALGORITHM
In Section II, we have proposed an efficient class of VFF-VR-
PAST-MD algorithms. The proposed VFF and VR schemes
lead to better convergence speed and steady-state error. Using
deflation with more than one vector at a time, a more flexible
tradeoff between arithmetic complexity, convergence speed
and numerical accuracy can be achieved. Moreover, it is
amenable to hardware implementation in a pipelined manner
through iterative reuse of the basic RLS hardware module.

The basic VFF-VR-PAST-MD algorithm however still
present certain challenges to efficient hardware implemen-
tation: 1) Firstly, from the expression of FF in (16), it can
be seen that it requires the cubic root operation, which is
rather complicated to evaluate and implement in hardware.
Secondly, it also involves a division, which may introduce
much latency in pipeline implementation and hence lead to
a lower operating frequency. 2) The basic RLS is rather
sensitive to numerical error and hence QR decomposition
(QRD)-based algorithm using CORDIC is usually preferred.
In this case, the term Tr(R−1ȳȳ ) is expensive to compute since
QRD updates only the Cholesky factor of Rȳȳ and computing

σ̂ 2
W [n] =

{
σ̂ 2
6_S [n], σ̂ 2

6_S [n] > χσ̂ 2
6_L[n]

λ[n]σ̂ 2
W [n− 1]+ (1− λ[n])‖1W [n]‖22, σ̂ 2

6_S [n] < χσ̂ 2
6_L[n]

(19)
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R−1ȳȳ is expensive. In [34], it is proposed to approximate Rȳȳ
as a diagonal matrix so that R−1ȳȳ can be more conveniently
computed from the reciprocal of the diagonal elements of
Rȳȳ. Though this approach considerably simplifies the updat-
ing of the VFF and yields good performance, the division
operations may limit the maximum operating frequency in
hardware implementation. Moreover, the incorporation of the
regularization term in the QRD usually requires an additional
QRD update, which will also slow down the throughput of
the QRD RLS algorithm.

We now propose several novel techniques to facilitate
the hardware implementation of the proposed VFF-VR-
PAST-MD algorithm and the overall architecture will be
presented later in Section IV. In particular, a novel ‘‘cubic
root- and division- free’’ discretized VFF and VR schemes
will be introduced for addressing the first challenge men-
tioned above. A novel ‘‘division-free’’ method is also pro-
posed for computing Tr(R−1ȳȳ ). Furthermore, a combined
data-regularization update is introduced to avoid the addi-
tional QRD update, at the expense of very slight performance
degradation.

A. THE DISCRETIZED VFF AND VR SCHEMES
From the expression of FF in (16), it can be seen that it
requires the cubic root operation, which is rather complicated
to evaluate and implement in hardware. Moreover, it also
involves a division, which may introduce much latency in
pipeline implementation and hence lead to a lower operat-
ing frequency. To tackle this problem, we propose a novel
discretized FF scheme to avoid these expansive operations.
More precisely, we quantize the FF inside the given range,
say [0.9, 1], into a set of representative FF values and select
the best one with the lowest MSD as given by (13).

J [λ̂j] ≈
1− λ̂j
1+ λ̂j

σ 2
6Tr(R

−1
ȳȳ )+

λ̂j

(1− λ̂j)2
σ 2
W , (23)

where λ̂j, j = 1, . . . ,F represent the set of F discretized val-
ues of FF. Moreover, these representative values are chosen
as canonical signed digits (CSD) or sum-of-powers-of-two
(SOPOT) coefficients so that the terms (1 − λ̂j)/(1 + λ̂j)
and λ̂j(1 − λ̂j)−2 involving λ̂j above can be pre-computed
and represented as CSD. Since multiplication with CSD
can be implemented as additions and hardware shifts, these
multiplications can be realized in additions only. Moreover,
the simultaneous multiplication of σ 2

6Tr(R
−1
ȳȳ ) and σ

2
W with

different values of (1 − λ̂j)/(1 + λ̂j) and λ̂j(1 − λ̂j)−2 for
j = 1, . . . ,F can be implemented as a multiplier block [35].
From the simulation to be presented in Section V, it is found
that F = 4 is sufficient to give a performance close to that
of (16)). Therefore, the proposed discretized FF significantly
reduces the arithmetic and hardware complexity in realizing
the VFF-PAST algorithm.

Meanwhile, since
√
γ /P in updating the VF in (8) is

also a function of these discretized FFs, they can again be
pre-computed and represented as CSD for multiplier-less

realization. Using the selected FF, say λ̂j, the correspond-
ing value of

√
γ̂j/P can then be multiplied to σ 2

η σ
2
ȳ .

Consequently, the arithmetic and hardware complexity of
computing the variable regularization in (22) can also be
reduced significantly. In summary, the discretized VFF-VR
version further simplifies the computation of the VFF and
VR schemes, which avoids the expensive cubic root and divi-
sion operations and simplifies the evaluation of regularization
parameter.

B. QRD-BASED VFF-VR-PAST ALGORITHM
In the QR-RLS algorithm, the rank-1 update of Rȳȳ =
λ[n]Rȳȳ[n − 1] + ȳ[n]ȳH[n] can be efficiently implemented
by updating the Cholesky factor R[n] of Rȳȳ[n] = RH[n]R[n]
recursively from the data using Givens rotation or House-
holder reflection. To avoid the complicated update of the
full rank term κ[n]D, it can be factorized as κ[n]D =

κ[n]
∑P

i=1 d id
T
i , where d i is a P-length vector. Hence, Rȳȳ[n]

can be updated once for the data vector [ȳT[n], xT[n]] fol-
lowed by the regularization vectors d i, i = 1, . . . ,P. To avoid
updating the regularization term at once, one can update one
d i per time so that the regularization term can be gradually
imposed over time. For D = I , updating d i among to using
a data vector [

√
κ[n]Pd i,0] in the QRD update, where d i

has its i-th element equal to one and zero otherwise. The
factor

√
P is to account for the reduced updating of the

each regularization vector. At each iteration, a regularization
vector can be randomly picked from d i, i = 1, . . . ,P, or it
may be presented in a sequential order.

To further reduce the number of QRD updates, we notice
that the data and regularization updates can be viewed
as two equations to be satisfied as follows: W [n]ȳ[n] =
x[n] and W [n]

√
κ[n]Pd i[n] = 0. Adding the equa-

tions gives W [n](ȳ[n] +
√
κ[n]Pd i[n]) = x[n], which

serves as an approximation to the original two measure-
ment equations. Using this approximate data input [ȳH[n] +
√
κ[n]PdH

i [n], x
H[n]] allows us to reduce the QRD update

from two to one. Simulation results show that satisfactory per-
formance can be achieved with a slight performance degrada-
tion. The reason is that normally κ[n] is close to zero when
the Rȳȳ[n] is well-conditioned. During input signal fading,
the presence of a regularization term greatly improves the
condition number and hence reduces the variances of the esti-
mator. On the other hand, the exact value of the regularization
term is less critical. This variant of the proposed algorithm is
referred to as combined VR (CVR) scheme and the resultant
algorithm is called VFF-CVR-PAST.

C. DIAGONAL AND DIVISION-FREE APPROXIMATION
OF Tr(R−1

ȳ ȳ [n])

As mentioned earlier, when computing the term Tr(R−1ȳȳ [n])
for updating the VFF, Rȳȳ[n] is treated as a diagonal matrix
and its p-th diagonal value is recursively estimated as follows

σ 2
ȳp [n] = λpσ

2
ȳp [n− 1]+ (1− λp)|ȳp[n]|2, (24)
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FIGURE 1. Data flow diagram of the proposed QRD-based VFF-VR-PAST-MD architecture.

where ȳp[n] is the p-th element of ȳ[n] and λp ∈ (0, 1] is a
forgetting factor. Computing Tr(R−1ȳȳ [n]) amounts to taking
the reciprocal of σ 2

ȳp [n], p = 1, . . . ,P, and adding them
together. This requires divisions which may limit the max-
imum operating speed in hardwire implementation. Here,
we propose to quantize σ 2

ȳp [n] to discrete levels so that the
reciprocals of these values can be precomputed and imple-
mented as multiplications. Moreover, since these are constant
coefficient multiplications, they can be implemented in CSD
using limited additions and shifts. More precisely, suppose
that the sensor signals are in normalized fixed-point format
with a magnitude less than one. Then |ȳp|2 = ‖wH

p [n −
1]x[n]‖22 6 ‖wp[n − 1]‖22‖x[n]‖

2
2 = L since wp, the p-th

column of W , has unit norm. As its power is limited to L,
it makes sense to quantize its value to a set of reconstruction
levels ŝj, j = 1, . . . , q, where q is the total number of discrete
levels in approximating σ 2

ȳp [n]. The quantization process can
be rewritten as

ŝj = Q[σ 2
ȳp [n]], j ∈ {1, . . . , q}. (25)

From simulations to be presented in SectionV, this approx-
imation gives satisfactory performance when σ 2

ȳp [n] is uni-
formly quantized to 16 levels for a L = 10 sensor array. For
an L-length sensor antenna, simulated experiments show that
discrete levels is 2blog2 2Lc or 2blog2 4Lc where bac denotes the
nearest integer smaller than a. Since ŝj, j ∈ {1, . . . , q}, is a set
of constants, their reciprocals can be computed offline as ŝ−1j ,
j ∈ {1, . . . , q}. Consequently, the division is now replaced by
a constant multiplication from one of these values. Moreover,
since they are constant coefficients multiplications, they can
be represented as CSD for multiplier-less realization. Our
derived efficient QRD-based VFF-VR-PAST-MD algorithm
is summarized in Table 3.

IV. HARDWARE ARCHITECTURE OF THE PROPOSED
QRD-BASED VFF-VR-PAST-MD ALGORITHM
According to the functionality of each operation, the pro-
posed architecture for QRD-based VFF-VR-PAST is divided
into six processing units, including projection approximation
unit, variable forgetting factor unit, variable regularization
unit, QRD-RLS weight extraction unit, and error computa-
tion unit. The processing units work in a pipelined manner

FIGURE 2. Basic structure of projection approximation.

and the data flow diagram of the proposed architecture is
shown in Fig. 1. This unit-based design can simplify the
modification of the hardware architecture for other alternative
subspace tracking algorithms. The structures and functional-
ities of these processing units at the r-th iteration are briefly
summarized as follows.

A. PROJECTION APPROXIMATION UNIT
The unit computes the projection approximation ȳ[n] =
WH[n− 1]x[n] as matrix-vector multiplication and its struc-
ture is illustrated in Fig 2.

B. VARIABLE FORGETTING FACTOR UNIT
As we described in Section II-B, the computation of VFF can
be simplified by using the discretized FF scheme. A set of
VFF candidates is evaluated with (23) and the one with the
minimum value will be chosen as the desired FF. The block
diagram of this unit is illustrated in Fig. 3 where the grey
area denotes the evaluation of (23) for a particular discretized
FF. According to (23), the computation is further divided
into three subunits for σ 2

6 , Tr(R
−1
ȳȳ ) and σ

2
W , which will be

described below.

1) σ2
6 COMPUTATION SUBUNIT

From (17), σ 2
6 is recursively updated using ‖e[n]‖22 =∑L

i=1 ei[n]e
∗
i [n] which requires 2L multipliers and 2L − 1

additions. Meanwhile, the constant multiplication with λL in
λL σ̂

2
6[n− 1] and (1− λL) in (1− λL)‖e[n]‖22 can be realized

using the SOPOT coefficients shown in Table 6 as a series
of additions and shifts. The block diagram of this subunit is
illustrated in Fig. 4.
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FIGURE 3. Structure of variable forgetting factor unit, where
αj = (1− λ̂j )/(1+ λ̂j ), βj = λ̂j (1− λ̂j )−2 and λ̂j , for j = 1, . . . ,4. MB:
multiplier block.

FIGURE 4. Structure of σ2
6

computation subunit.

2) Tr(R−1
ȳ ȳ ) COMPUTATION SUBUNIT

The subunit is based on the proposed division-free approach
where the quantization operation in (25) is performed by a
quantizer, where the input is successively compared with a
set of thresholds arranged in a tree-like structure to determine
which region it belongs to. Once the desired region or interval
is determined, the pre-stored reciprocal ŝ−1j can be forwarded
to a multiplier for approximating the division. In contrast to
a division, it only requires dlog2 qe comparisons, where q is
the total number of discrete levels. As DSP blocks in FPGA
device is very valuable, our division-free method using the
look-up-table to replace the division will result in consider-
able saving of DSPs. For uniform quantization, the quantizer
can be further simplified to the structure in Fig. 5. The diag-
onal values of the approximated R−1ȳȳ are sent to an adder tree
for accumulation.

3) σ2
W COMPUTATION SUBUNIT

From (17)-(20), we can see that the computation of σ 2
W

and σ̂ 2
6_S has the same computation operations with σ̂ 2

6_L .
Consequently, the structure for (IV-B1) can also be used
for computing σ 2

W and σ̂ 2
6_S in (IV-B3). Due to the page

limitation, the block diagram of this subunit is omitted.

C. VARIABLE REGULARIZATION UNIT
From (22), we can see that the value of κ[n] is directly
dependent on λ[n]. Forming the term

√
σ 2
6σ

2
ȳ requires a

multiplier for computing the product of σ 2
6 and σ 2

ȳ and a
square root operation. The term

√
γ̂jP can be precomputed

and represented as SOPOT coefficient, which is presented

FIGURE 5. Structure of computation of Tr(R−1
yy ) with q = 8. D: register;�

right shift;� left shift.

FIGURE 6. Structure of computation of κ[n].

in Table 6, to simply its multiplication with
√
σ 2
6σ

2
ȳ . The

block diagram of this unit is illustrated in Fig. 6.

D. QRD-RLS WEIGHT EXTRACTION UNIT
The Givens rotation implementation of QRD is attrac-
tive for its efficient parallel hardware implementation
[36]–[38] using say the CORDIC algorithm. For the conven-
tional implementation of complex-valued QRD, the complex
Givens rotation, Q[n], is employed to zero out the lower left
row of the matrix on the right hand side of (∗) in Table 3 so as
to restore the upper triangular matrix, R[n], on the left hand
side. In particular, the (1, 1) element of

√
λ[n]R[n−1] is used

to zero out the first element of ȳH[n] +
√
κ[n]PdH

i [n]. Simi-
larly, the (2, 2) element of

√
λ[n]R[n− 1] is used to zero out

the 2nd element of the rotated row of ȳH[n]+
√
κ[n]PdH

i [n].
The process is repeated until the entire row is zeroed out.
In summary, the QRD starts with the 1st row, and use its
first element with the newly appended row to compute the
corresponding rotation and apply it to the remaining elements
of the two rows. This is then repeated and for the j-th step,
it takes in the j-th row and the last row and uses its leading
nonzero coefficients to determine the rotation and apply it to
the remaining elements.

The weight vector can be solved from WH[n] =

R−1[n]U[n] by back-substitution using a divider, which
results in slow working speed and high hardware consump-
tion. An alternative method based on the extended QRD-RLS
algorithm [13] [39] can provide a fully concurrent computa-
tion for the weight extraction as (26), shown at the bottom of
the next page, and

w[n] = w[n− 1]− gH[n]c[n]. (27)

This algorithm can be easily implemented with a double tri-
angular systolic array [13] [38], which is illustrated in Fig. 7.
In our proposed structure, an alternative complex Givens

rotation matrix [33], namely three angle complex rota-
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FIGURE 7. The structure of a double triangular systolic array for QRD-RLS weight extraction, where R̃ = [R̃1, R̃2, . . . , R̃L], L = 4;
Ũ = [Ũ1, Ũ2, . . . , ŨP ], p = 1, . . . ,P .

tion (TACR), is used, which provides significant reduc-
tion of latency. In the TACR method, two Givens rota-
tions are operated sequentially in two stages, and each stage
has a similar hardware implementation. The basic idea of
TACR-based QRD can be illustrated by an example of 2× 2
complex-valued matrix A where we wish to zero out the
lower-left element of the matrix by Givens rotation:

A =
[
x1ejθx1 x2ejθx2
y1ejθy1 y2ejθy2

]
, (28)

where j =
√
−1, x1, x2, y1, y2 are the magnitudes and

θx1 , θx2 , θy1 , θy2 are the angles of the complex entries in
A. In particular, the complex Givens rotation matrix can be
expressed as

G =
[
cos(θ1)e−jθx1 − sin(θ1)e−jθy1
sin(θ1)e−jθx1 cos(θ1)e−jθy1

]
=

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
·

[
e−jθx1 0
0 e−jθy1

]
.

(29)

The computation process is performed in two stages.
In the first stage, it converts the leading-column entries to
real-valued elements as[

e−jθx1 0
0 e−jθy1

]
·

[
x1ejθx1 x2ejθx2
y1ejθy1 y2ejθy2

]
=

[
x1 x2ej(θx2−θx1 )

y1 y2ej(θy2−θy1 )

]
. (30)

Then, the real-valued Givens rotation matrix is applied in
the second stage to introduce a zero at the desired position[

cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
·

[
x1 x2ej(θy1−θx1 )

y1 y2ej(θy2−θx2 )

]
=

[√
x21 + y

2
1 x
′

2e
jθ ′x2

0 y′2e
jθ ′y2

]
.

(31)

From (29), we can see that the TACR method converts the
diagonal elements in real numbers except the one at the
lowest position, which implies that it requires one additional
rotation. This operation is illustrated in Fig. 8.

The required Givens rotation in the TACR can be effi-
ciently implemented based on the CORDIC algorithm men-
tioned earlier. The CORDIC-based QRD hardware structure
for processing each pair of input rows has its leading element
called vector normalization mode (NM), which determines
the rotation angle θ . Then, this angle will be applied to
other CORDIC elements operating in the vector rotation
mode (RM) in parallel for rotating the remaining elements
in the two rows. This operation can be pipelined and it
suggests an implementation in form of double triangular sys-
tolic array as shown in Fig. 7. The fully pipelined triangular
CORDIC-based QRDwill require (P+1)P/2 elements which
can be area and resource intensive for a large P. To reduce
the hardware resources, one can employ a linear pipelined
CORDIC structure for processing two rows at a time and use
it to process the N pairs of rows consecutively. This provides

[
R[n] U[n] R−H[n]
0H c[n] g[n]

]
= Q[n] ·

[ √
λ[n]R[n− 1]

√
λ[n]U[n− 1] (

√
λ[n])−1R−H[n− 1]

ȳH[n]+
√
κ[n]PdH

i [n] xH[n] c1

]
= Q[n] ·

[
R̃(L+1)×L[n− 1] Ũ (L+1)×P[n− 1] (

√
λ[n])−1R−H[n− 1]

c1

] (26)
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FIGURE 8. QRD structure based on two-stage TACR method for a 2× 2
matrix.

FIGURE 9. The block diagram for error computation, where nD: n delays.

another tradeoff between hardware resources and processing
speed and is attractive for lower speed applications.

Yet another method to reduce the arithmetic/hardware
complexity is to use a small value of P and then use multiple
stages of deflation, say R, to compute a subspace of size RP.
In this case, the above order-P CORDIC-QRD PAST can be
cascaded to yield very high throughput with modest complex-
ity at the expenses of slightly larger error and slower conver-
gence speed due to error accumulation during the deflation
process. The resulting hardware and arithmetic complexity is
of the order R(P + 1)P/2, rather than (RP + 1)RP/2 if the
conventional PAST is used.

E. ERROR VECTOR COMPUTATION UNIT
This unit computes the error vector e[n] = x[n]−W [n]ȳ[n],
where each inner product can be realized using L complex
multipliers and an adder tree is used to accumulate the final
result as shown in Fig. 9. The small grey rectangle stands for
one time delay.

F. DEFLATION COMPUTATION UNIT
The unit computes the deflation operation x(r)[n] =

x(r−1)[n] − w(r)[n]ȳ(r−1)[n] and its structure of this unit for
x(r)i [n] is illustrated in Fig. 10.

V. SIMULATION AND IMPLEMENTATION RESULTS
Simulation results are now presented to evaluate the per-
formance of the proposed QRD-based VFF-VR-PAST-
MD, VFF-PAST-MD, and other conventional work [31] in
DOA estimation and tracking. Simulations are performed
on a ULA with 10 sensors separated by half wavelength.
Both stationary and dynamic environments are investi-
gated. Unless specified otherwise, all results are averaged
over 100 Monte-Carlo simulations. A Verilog described
fixed-point VFF-VR-PAST-MD is also designed based on

FIGURE 10. The deflation computation unit for xi [n].

our proposed architecture to evaluate the performance of the
hardware implementation. The SOPOT coefficients of the
parameters used in our simulation as presented in Table 6.
This architecture has been simulated and synthesized using
Xilinx ISE 14.7 and successfully implemented on Xilinx Ver-
tex 7 (XC7VX980T) FPGA, and the implementation results
are shown in Table 5. Considering the tradeoff between hard-
ware resource and system performance from our simulation
result to be presented later, the wordlength for the QRD-based
VFF-VR-PAST-MD algorithm is chosen as 22 bits. The
resultant pipelined implementation achieves an impressive
maximum working speed of 143 MHz at 5 MHz sampling
rate for different values of P. If the proposed VFF-PAST-MD
approach is implemented using multipliers and dividers
(denoted by VFF-CVR-PAST-MD where C is referred to as
combined update) with the same P value, our proposed hard-
ware architecture can achieve around 20.2% higher working
speed and save 1.9% LUTs, 1.8% Slice Register, and 22.8%
DSPs, respectively. On the other hand, the full implemen-
tation of the proposed VFF-VR-PAST-MD architecture can
achieve the same working speed with our proposed one,
it will double the latency at the QRD update, which leads
to decreased system throughput. From the implementation
results, we can also see the VR scheme only requires a slight
increase in hardware, but it can improve considerably the
system robustness. In summary, the proposed architecture
offers high throughput rate and different tradeoffs between
hardware resources and performances, which will be further
elaborated in the following section.

A. DOA ESTIMATION IN STATIONARY ENVIRONMENTS
In this simulation study, four uncorrelated narrow band sig-
nals located at directions θ1 = 8◦, θ2 = 20◦, θ3 = 45◦ and
θ4 = 60◦ with equal power are considered. The short-term
and long-term FFs are chosen as 0.9 and 0.99, respectively
and the upper bound for the regularization parameter is set
at 0.2. The confidence factor χ is chosen as 4, which corre-
sponds to 99.99% confidence that a system change has been
detected. The number FF candidates is F = 4.
The FF of the PAST-MD is set to 0.98. The average DOA

deviation and the root mean squared error (RMSE) are used
to evaluate the performance of different algorithms

RMSE =

√√√√KM∑
i=1

K∑
n=1

(θn − θ̂i,n)2/(KMK ), (32)
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TABLE 5. Proposed QRD-based VFF-PAST-MD architectures implementation results, R=4.

TABLE 6. SOPOT coefficients of the parameters in QRD-based
VFF-VR-PAST algorithm.

TABLE 7. Average deviations of different number of discrete levels.

where KM and K denote respectively the number of
Monte-Carlo runs and the number of signals, θn represents
the n-th DOA and θ̂i,n is the n-th estimated DOA in the i-th
Monte-Carlo simulation.

1) EXPERIMENT 1
This experiment is carried out to evaluate the performance of
the VFF-VR-PAST-MD algorithm with different number of
discrete levels q for σ 2

ȳp [n] for P = 4 and L = 10 in a station-
ary environment. The deviation between the floating-point
division and division-free approaches for q = 4, 8, 16, 32 and
64 are shown in Fig. 11. It can be seen that when q is larger
than 16, the results are generally satisfactory. The average
deviations over the stimulated horizon as shown in Table 7
also reveals a similar observation. Considering the hardware
resource required and operation speed, q = 16 is adopted in
the subsequent experiments. For an L-length sensor antenna,
simulated experiments show that 2blog2 2Lc or 2blog2 4Lc yields
reasonable approximation where bac denotes the nearest inte-
ger smaller than a.

2) EXPERIMENT 2
This experiment is conducted to determine the appropri-
ate wordlength, including the integer bit and fractional bit,

FIGURE 11. Comparison of number of discrete levels.

FIGURE 12. Comparison of RMSEs under different integer bits.

for hardware implementation. The VFF-VR-PAST-MD algo-
rithm with P = 4 and L = 10 is utilized to compare
the performance. Firstly, we shall determine the integer bit.
Given sufficient fractional bit, say, 20 bits, the RMSEs
under different integer bits are shown in Fig. 12. It can be
seen that the RMSE decreases with increasing integer bit.
The gap between adjacent integer bits used is also decreas-
ing and the differences after 7 bits are much smaller than
before. Therefore, the integer bit is chosen to be 7 bits.
Fig. 13 shows the RMSEs under different fractional bits used.
As expected, the RMSEs decreases significantly initially
when the fractional bits used increases from a relatively small
value and then gradually level off after 14 bits. Hence, a frac-
tional part of 14 bits is adopted to guarantee a sufficiently
low RMSE. Thus, including the additional sign bit, a total
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FIGURE 13. Comparison of RMSEs under different fractional bits.

FIGURE 14. Comparison of DOA estimation accuracy in terms of RMSEs
for different methods under different SNRs in stationary environment. The
fixed-point implementation uses a 22-bit wordlength and q = 16 levels.

wordlength of 22 bits is used in our simulation and hardware
implementation.

3) EXPERIMENT 3
This experiment examines the DOA estimation accuracy of
the proposed algorithm under different single-to-noise ratios
(SNRs). A set of SNR levels ranging from -5 dB to 25 dB
are recorded at the 800-th snapshot, where the algorithms
have been converged. Fig. 14 illustrates the DOA estima-
tion results of different methods under different SNRs in
stationary environment. It is seen that the VFF-PAST-MD
algorithm performs better than the PAST-MD at high SNR
levels, while they are comparable at low SNR levels. The
proposed VR scheme further improves the performance at
low SNRs. As for VFF-VR-PAST-MD, larger P results in
better performance both in high and low SNRs. With the
increase of SNR, the superiority gradually increases and
the RMSE decreases. The performance degradation due to
the CVR QRD is acceptable with only half the arithmetic
complexity. The performance of the 22-bit fixed-point imple-
mentation with q = 16 has a slightly inferior initial con-
vergence speed as its floating point counterpart. This is due

FIGURE 15. Comparison of estimated DOA deviation from the
ground-truth using different methods under 5 dB SNR in stationary
environment.The algorithms are labelled using the same color scheme as
in Fig. 14.

TABLE 8. Convergence performance of different methods.

to the quantization of Tr(R−1ȳȳ ) which slow down the update
of the FF. On the other hand, the variation of the FF at
the steady-state is reduced and hence its steady-state perfor-
mance is better than its floating point counterpart.

4) EXPERIMENT 4
This experiment inspects the convergence performance of
different methods at 5dB SNR. Fig. 15 shows the average
deviation between DOAs of the four designated signals and
the estimated looking directions. To better illustrate the con-
vergence speed, Table 8 displays the convergence time, which
is denoted by the point after which the deviation is no more
than 10% of the average maximum deviation value of the
given method. It can be seen that the VFF-based algorithms
converge faster than the corresponding PAST-MD algorithm
with a constant FF. The VFF-VR-PAST-MD algorithm con-
verges slightly better than the VFF-PAST-MD algorithm.
The averaged error after convergence which is referred to as
the ‘‘convergence error’’ gradually decreases with increasing
values of P. The performance of CVR update is still com-
parable with the full update with only slight degradation.
The performances in floating-point arithmetic and fixed point
arithmetic for VFF-VR-PAST-MD algorithm with P = 4
are similar.

B. DOA TRACKING IN DYNAMIC ENVIRONMENTS
The case of four uncorrelated narrow band signals with equal
power is again considered. However, two sources are assumed
to be invariant and are located at directions θ1 = 8◦ and
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FIGURE 16. Comparison of DOA tracking using different methods under
5 dB SNR for time-varying DOAs.

θ4 = 60◦, while the other two signals are time varying. All
the settings for various methods are identical to the stationary
experiment.

1) EXPERIMENT 1
In this experiment, the DOA tracking performance of the
proposed method is evaluated in nonstationary cases under
SNR with 5 dB. θ2 and θ3 are assumed to be linearly and
slowly varying as follows

θ2 = 20− 1× 10−2t, 0 6 t 6 800,

θ3 = 45− 1.5× 10−2t, 0 6 t 6 800. (33)

Fig. 16 depicts the tracking results of different methods
for both invariant and time-varying DOAs. It is seen that for
P = 1, both VFF-PAST-MD and VFF-VR-PAST-MD algo-
rithms outperform PAST-MD method with smaller tracking
errors. Moreover, VR-based algorithms can achieve a slightly
better performance. Larger value of P yields a result closer to
the ground truth. Although the tracking performance of VFF-
CVR-PAST-MD with P = 4 suffers from slight degradation,
it is still comparable to the VFF-VR-PAST-MD algorithms
with P = 1 or P = 2. The fixed-point implementation of the
proposed approach is reasonably close to its floating-point
counterpart.

2) EXPERIMENT 2
To further verify the performance of the proposed VFF-VR-
PAST-MD algorithm, we carry out an experiment with signal
fading in which a short period with low signal power will be

FIGURE 17. Comparison of DOA tracking using different methods under
5 dB SNR for time-varying DOAs with signal fading.

experienced. The settings of the four sources are the same
as the last experiment. For illustration, the amplitudes of the
signals are given by

A(t) =



A0, 0 6 t < 400
[1− 0.9(t − 400)/80]A0, 400 6 t < 480
0.1A0, 480 6 t < 560
[0.1+ 0.9(t − 560)/80]A0, 560 6 t < 640
A0, 640 6 t 6 800

,

(34)

where A0 is the original signal amplitude.
Fig. 17 shows the resultant performance of the various

algorithms. VR-based algorithms generally offer improved
performances over the VFF and fixed FF algorithms due
to reduced estimation error variance. VFF-VR-PAST-MD
with larger P results in smaller tracking deviation from
the ground truth. The CVR-QRD also experienced accept-
able performance degradation. The performances between
floating-point arithmetic and fixed-point arithmetic are sim-
ilar for VFF-VR-PAST-MD algorithm with P = 4. In sum-
mary, the advantages of this MD algorithm is that 1) it can
be used to adaptively estimate the total subspace dimension
by monitoring the residuals at each stage. 2) it can be imple-
mented in a pipelinedmanner which is very efficient and scal-
able as it only requires the cascade of a core VFF-VR-PAST
module of a given size P, which can be easily optimized
rather than the original PAST or VFF-VR-PAST algorithms
which involves a complexity which grows with O((RP)2),
where R is the number of deflation stages which may be
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unknown in practice. This makes the hardware optimization
rather difficult. 3) it has a better performance than the PAST-d
algorithm with slight increase in hardware complexity, thus
offer amore flexible tradeoff between hardware resources and
performance.

VI. CONCLUSION
A new VFF-VR-PAST-MD algorithm for subspace tracking
and its related efficient hardware architecture have been pre-
sented. The VFF and VR schemes improve the convergence
speed, steady-state error and stability of the conventional
PAST algorithm. Novel simplifications of the VFF-VR-PAST
algorithm are also proposed to avoid the cubic root and
division operations involved to facilitate its hardware imple-
mentation. A novel pipelined hardware implementation of
the simplified VFF-VR-PAST-MD algorithm employing the
TACR-based QRD is developed. The proposed QRD-based
VFF-VR-PAST-MD architecture is successfully synthesized
and implemented in FPGAwith a reduced hardware resources
and higher operating speed than conventional approaches.
The proposed algorithms offer better performance and a
more flexible tradeoff between hardware resources and per-
formance. The efficient architecture can also be applied to
real-time scenarios including adaptive subspace identifica-
tion, digital communication, and etc.
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