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Simple security proofs for continuous variable quantum key
distribution with intensity fluctuating sources
Chenyang Li 1,2✉, Li Qian 1 and Hoi-Kwong Lo1,2,3

Despite tremendous theoretical and experimental progress in continuous variable (CV) quantum key distribution (QKD), the security
has not been rigorously established for most current continuous variable quantum key distribution systems that have
imperfections. Among these imperfections, intensity fluctuation is one of the principal problems affecting security. In this paper, we
provide simple security proofs for continuous variable quantum key distribution systems with intensity fluctuating sources.
Specifically, depending on device assumptions in the source, the imperfect systems are divided into two general cases for security
proofs. In the most conservative case, we prove the security based on the tagging idea, which is a main technique for the security
proof of discrete variable quantum key distribution. Our proofs are simple to implement without any hardware adjustment for
current continuous variable quantum key distribution systems. Also, we show that our proofs are able to provide secure secret keys
in the finite-size scenario.
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INTRODUCTION
Quantum key distribution (QKD) allows two distant parties to
share a common string of secret data1–3. Based on the laws of
quantum mechanics, QKD offers information-theoretical security.
QKD has aroused much interest in both theoretical protocol and
experimental demonstration, because it is considered a practical
application of quantum information science to reach commercial
maturity. For example, the implementation of discrete variable
(DV) QKD protocols including satellite-to-ground QKD4 and chip-
based QKD5–7 have demonstrated the potential for commercial
applications in the filed of quantum information. Besides, twin-
field QKD8,9 has been proposed to outperform the well-known
rate-loss limit10 and largely extend transmission limits. Compared
to DV protocols, continuous variable (CV) protocols have the
potential for high-key rate and low-cost implementations using
current standard telecom components such as homodyne
detectors3. Recently, CV QKD experiment has demonstrated the
secret key transmission over a long distance from 100 km11 to
more than 200 km12.
Despite the enormous progress in the field of QKD, the most

important question in quantum communication is always how
secure QKD really is. For example, are QKD systems secure when
implemented with practical devices? Fortunately, measurement-
device-independent QKD13 can remove all imperfections and
security loopholes in the measurement devices, and therefore we
only need to consider the imperfections in the source devices.
Imperfect sources, such as the correlated intensity fluctuations in
optical pulses14 and setting-choice-independently correlated light
sources15, have been recently analyzed in DV QKD systems.
However, the security research concerning CV QKD with imperfect
source has fallen behind that of its discrete variable cousin. For
instance, almost all existing CV QKD proofs require a perfect state
preparation16, i.e., Gaussian modulation, which cannot be
guaranteed in a practical CV QKD system with imperfections
and limitations17,18. The security of continuous variable quantum
key distribution with noisy coherent states has been analyzed in

refs. 19–21 by introducing an independent and additive Gaussian
noise to a perfect Gaussian modulation. However, in the practical
continuous variable modulation, the imperfections might not
work independently or additively with Gaussian modulation. For
example, intensity fluctuation is one of the potential practical
problems affecting Gaussian modulation due to its dependence
on modulated quadratures. Therefore, in this work we study
intensity fluctuations in practical CV QKD systems. Our intensity
fluctuation model is an arbitrary distributed random variable with
a unit mean value. Depending on whether the intensity
fluctuation information is accessible or not to Alice, our security
analysis of a QKD system can be generally divided into two cases:
(1) Alice can, and (2) Alice cannot monitor intensity fluctuation
values for every pulse.
In this work, we prove the security for the two cases based on

different techniques. Particularly, in case (1), because Alice’s
information can help modify her data, the security proof is based
on the integrating over the distribution of intensity fluctuations.
Also, a refined data analysis is developed to improve the QKD
performance over long distance. In case (2), Alice cannot exactly
monitor every signal pulse. Depending on whether Eve has the
intensity fluctuation information, we divide case (2) into two
subcases: (2A) Eve can, and (2B) Eve cannot monitor intensity
fluctuation values for every pulse. In subcase (2A), we prove the
security based on Gaussian extremality22,23. In the most con-
servative case (2B), we apply the concept of tagging, previously
developed for DV QKD in ref. 24, to the security proof of CV QKD.
Specifically, we divide up signals into two distinct sets, untagged
and tagged. Untagged signals are those whose intensities fall
inside a prescribed region, whereas tagged signals are those
whose intensities might fall outside the prescribed region. In the
actual protocol, the QKD system users do not need to know
whether each signal is tagged or untagged. They only need to be
able to set a bound for untagged signals, which would lead to the
security of their generated key. Moreover, given the distribution of
intensity fluctuations, the users could obtain the probability of
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untagged signals and further optimize the secret key rate by the
fraction of untagged signals. In the end, we demonstrate that our
proofs are able to provide secure secret keys in the finite-size
scenario over distances larger than 50 km. In conclusion, our
proofs for all cases are simple to implement without any hardware
adjustment for the current continuous variable quantum key
distribution system. Alice and Bob are free to choose different
security proofs to generate the secret key based on their device
assumptions.

RESULTS AND DISCUSSION
Intensity fluctuation model
Here, we define our model for experimental intensity fluctuations.
For example, suppose that a desired pulse intensity is IA; however,
Alice actually prepares a pulse with the intensity of kIA. We denote
k as a random variable to characterize the intensity fluctuations,
with mean value Ek and variance Vk. This intensity fluctuation can
be caused by power fluctuations of a laser or imperfect intensity
modulators25. In this paper, for simplicity, we assume the
following conditions of the random variable k:

(1) k is an independent and identically distributed (i.i.d.)
random variable.

(2) k has a mean value Ek and a variance Vk, where Ek is 1.
(3) k is independent of the pulse intensity IA.
(4) the probability distribution function of k can be obtained

before the experiment by testing the source device.
(5) the probability distribution function of k will not change

during the QKD transmission.

Here, these conditions are assumed to simplify our model for
experimental intensity fluctuations. Conditions (1)–(3) are the
intrinsic constraints and assumptions for the intensity fluctuations.
Conditions (4)–(5) are the assumptions for system characterization,
which is required before QKD transmission.

CV QKD system description
Figure 1 shows that, with the intensity fluctuation information,
QKD systems can be generally divided into two cases for security
proofs. To fairly compare the results, an ideal CV QKD system is
added as the baseline case (0) for benchmarking. Here, following24

we introduce a hypothetical party Fred, who controls the intensity
fluctuations k for every optical pulse, e.g., the intensity fluctuation
can be controlled by temperature drift. Through secure commu-
nication, Fred would choose to reveal the value of k to Alice. In
total, there are two cases:

(1) Fred discloses the actual value of k to Alice;
(2) Fred does not disclose the actual value of k to Alice.

In both cases, because the actual pulse intensity is kIA, the actual
encoded Gaussian random variable now becomes

ffiffiffi
k

p
XA and Alice

sends out a mode Â1 ¼ 0̂þ ffiffiffi
k

p
XA. In case (1), Alice has access to

the intensity fluctuation values k and can further revise her data
from XA to

ffiffiffi
k

p
XA for every pulse. In case (2), Alice does not have

access to the intensity fluctuation values k. Depending on whether
Eve has the intensity fluctuation side information, we divide case
(2) into two subcases (2A) and (2B) for security proofs.
For a QKD system, it is conventionally assumed that Eve often

has access to channel with only limitations from the laws of
physics. But the source should always be assumed to be secure
and no information in the source stage can be disclosed to Eve.
Here, we divide the QKD system into different cases based on the
source information leakage assumptions. It is open for Alice and
Bob to consider which case is acceptable in their QKD
transmission process. For case (1), the justification is that Alice
can have access to the device imperfection in real time. For case
(2A), the justification is that Alice should use a certified device,

which come from an honest manufacturer. For case (2B), this is
most conservative case. If Alice does not have enough confidence
on the device, they can always choose case (2B). Note that, the
authors in ref. 26 have applied a related idea to the detection stage
where they assume that the detection process is inaccessible to
eavesdroppers.

Security proof for case (0)
Here, we briefly review the security proof for an ideal CV QKD
system. Because the security against coherent attacks can be
reduced to that against collective attacks by using de Finetti
representation theorem for infinite dimensions27, for simplicity, we
only consider asymptotic security against collective attack . Given
reverse reconciliation communication, the asymptotic secret key
rate is given by the Devetak-Winter formula28–31:

R0 ¼ βIAB � χBE (1)

where β is the reverse reconciliation efficiency, IAB is the mutual
information between Alice and Bob, and χBE is the mutual Holevo
information between Bob and Eve. Given parameter estimations
of transmittance T and excess noise ε and modulation variance VA,
the computation for IAB and χBE can be found in the Supplemen-
tary Section I.

Security proof for case (1)
In case (1), Alice has access to the intensity fluctuation values k
and can further revise her data from XA to

ffiffiffi
k

p
XA for each pulse.

Fig. 1 Practical CV QKD system with different security assump-
tions. (a) Case (0): ideal CV QKD system (k = 1) (b) Case (1): k is
disclosed to Alice (c) Case (2): k is not disclosed to Alice. Here,
practical CV QKD systems can be divided into two cases based on
the Alice’s information about intensity fluctuations. One ideal case
(0) is added for comparison. In case (0), a CV QKD system does not
have any intensity fluctuations. In case (1), Alice can monitor the
intensity fluctuations. In case (2), Alice cannot monitor the intensity
fluctuations. Depending on whether Eve has intensity fluctuation
information or not, case (2) is divided into two subcases (2A) and
(2B). Here, Tc and εc are, respectively, the channel transmittance and
excess noise between Alice and Bob. η and vel are the the detection
efficiency and electronic noise of the homodyne detector. Here, the
symbol “?” in case (1) means that Eve may or may not have access to
the intensity fluctuation information. The No Entry sign in case (2)
means that the intensity fluctuation information will not be
disclosed to Alice or Eve.
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The security proof is based on two conclusions: (a) the strong
superadditivity of secret key rate; (b) the weak law of large
numbers.
Suppose Alice and Bob share n modes in a joint state

ρA1;2;:::nB1;2;:::n , and Alice has the intensity fluctuation information ki
for the ith mode. Conditional on the ki, The secret key rate for this
joint state can be shown as

R1 ¼ 1
n RðρA1;2;:::nB1;2;:::njk1k2:::knÞ � 1

n

Pn
i¼1

RðρAiBi jki Þ

! Eki ½RðρAiBi jki Þ� ¼
Rþ1
�1 PDFðkÞ½RðρABjkÞ�

dk ¼ Rþ1
�1 PDFðkÞR0ðk; TÞdk

(2)

where PDF(k) is the probability density function of k, RðρAiBi jki Þ is
the secret key rate conditional on the ki, R0(k, T) is the secret key
rate R0 with modulation variance of kVA and transmittance T. By
parameter estimation process, T and kVA can be directly estimated
from ρAB.
In the first line of Eq. ((2)), we use the strong superadditivity of

the secret key rate from ref. 23. Then in second line, we argue that
by the weak law of large numbers, the sum over all reduced
modes converges to the average over its probability density
function in the limit n→∞.
Given the intensity fluctuation information, we propose that a

simple refined data analysis can be adopted by Alice to improve
the maximum distance and defend against possible attacks based
on intensity fluctuations. Here, we describe a refined data analysis
process as below: (1) Based on the probability density function of
k, Alice will divide k into a number of sets with equal probability.
(2) Alice and Bob will perform the parameter estimation
individually for each set, obtaining the channel transmittance
and excess noise and verifying whether the channel transmittance
matches with that from another set. This process is used to defend
any possible attack for Eve based on intensity fluctuation
information. (3) For certain sets, if R0(k, T) < 0, Alice and Bob will
simply drop all the data from such sets.
After a refined data analysis, the secret key rate can be

expressed as

R1R ¼
Z þ1

�1
PDFðkÞmaxfR0ðk; TÞ; 0gdk (3)

Figure 2 shows the simulation result for the secret key rate R0,
R1, and R1R. We use the parameters listed in Table 1, where η and
vel are, respectively, the detection efficiency and electronic noise
of the homodyne detector, εc is the excess noise in the channel, VA
is the modulation variance and β is the reverse reconciliation
efficiency. In Fig. 2a, we choose the probability density function of
k to be an uniform distribution from 0.9 to 1.1. In Fig. 2b, we
choose the probability density function of k to be an uniform
distribution from 0.8 to 1.2. Through simulation, we find that the
secret key rate R1 is approximately same as R0. By refined data
analysis, the maximum transmission distance can be improved
from 94 to 130 km in Fig. 2a, and from 94 to 199 km in Fig. 2b. This
maximum transmission distance improvement is expected, since
the refined data analysis can be regarding as a preselection of
optimal Gaussian states for long distance.

Security proof for case (2A)
Here, we consider case (2A): Alice and Eve both have no intensity
fluctuation information. As shown in Fig. 3, for each pulse, Alice
has no intensity fluctuation information and can only record the
data XA. However, what Alice really encodes is the mode
Â1 ¼ 0̂þ ffiffiffi

k
p

XA. By considering reverse reconciliation with the
Bob’s recorded data XB, The secret key rate can be expressed as

R2A ¼ βIðXA; XBÞ � χðXB; EÞj ffiffi
k

p
XA

(4)

where I(XA, XB) is the mutual information between Alice’s and

Bob’s classical recorded data XA and XB, and χðXB; EÞj ffiffi
k

p
XA

is the
Holevo mutual information between Bob and Eve given the actual
input mode Â1 before the channel. Here, I(XA, XB) can be directly
obtained from the datasets, while an upper bound for χðXB; EÞj ffiffi

k
p

XA
is needed. Next, we use the Gaussian extremality22,23 that the
Holevo information χðXB; EÞj ffiffi

k
p

XA
between Eve’s and Bob’s classical

variables, is maximized when then the state ρAB shared by Alice
and Bob is Gaussian. In other words, we can obtain the
upper bound of χðXB; EÞj ffiffi

k
p

XA
by substituting Alice’s and

Bob’s actual mode Â1; B̂ with Gaussian modes, which have

Fig. 2 The secret key rate of case (1) with uniform distribution. (a)
Uniform distribution from 0.9 to 1.1 for R1 (b) Uniform distribution
from 0.8 to 1.2 for R1. Here, we compare the secret key rate, R0, R1,
and R1R. In panel (a), the intensity fluctuation model is a uniform
distribution from 0.9 to 1.1. The secret key rate R1 is approximately
same as the key rate R0 for ideal CV QKD system. In panel (b), the
intensity fluctuation model is a uniform distribution from 0.8 to 1.2.
It is clearly demonstrated that both maximum transmission
distances can be improved by refined data analysis.

Table 1. Evaluation parameters for fiber-based QKD.

η εc vel VA β

0.60 0.02 0.02 18 95.6
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the same first and second quadrature moments. By calculating the
mean value and variance of

ffiffiffi
k

p
XA, we can obtain that

<
ffiffiffi
k

p
XA> ¼ <XA> ¼ 0;<kX2

A> ¼ <X2
A> ¼ VA. Furthermore, we

obtain the upper bound that

χðXB; EÞj ffiffi
k

p
XA

� χðXG
B ; EÞjXG

A
(5)

where XG
A and XG

B are, respectively, the Gaussian random variable
with the same first and second moments as XA and XB.
Next, we will estimate the equivalent transmittance Ts and

excess noise εs in the source caused by the data mismatch.
According to the Supplementary Section II, suppose Alice records
XA and the actual encoded data are

ffiffiffi
k

p
XA, the equivalent Ts and εs

can be expressed as

Ts ¼ <
ffiffiffi
k

p
> 2 ’ ð1� 1

8 VkÞ2;
εs ¼ VA

Ts
� VA ’ 1

4 VAVk ;
(6)

In addition to the channel transmittance Tc and excess noise εc,
Alice and Bob would estimate an overall transmittance T and
excess noise ε such that

T ¼ TsTc;

ε ¼ εc=Ts þ εs
(7)

Figure 4 shows the secret key rate for case (2A). We still use the
channel and detector parameters listed in Table 1. In Fig. 4a, we
compute the secret key rates for the uniform distributed intensity.
Even if the pulse intensity fluctuate 5%, the maximum transmis-
sion distance will still drop about 10 km. In Fig. 4b, the secret key
rates are obtained for the Gaussian distributed intensity. The
variances of the Gaussian distribution range from 0 to 10−2. When
the variance increases to 10−2, the maximum transmission
distance will decrease by about 40 km. In other words, when the
standard deviation of Gaussian distribution is 10%, the maximum
transmission distance will drop significantly.

Security proof for case (2B)
In this section, we consider case (2B): Eve has intensity fluctuation
information while Alice has no information. Before we jump into
security proof, we first define the untagged Gaussian state. Here,
we apply the concept of "tagging"24 to case (2B) of CV QKD.
Suppose Alice sends out n Gaussian modulated coherent pulses to
Bob and the ith pulse has a intensity fluctuation value ki. However,
Alice has no information about the intensity fluctuation value for
each pulse, and Alice can only record dataset as ki= 1. Now we
define the Gaussian modulated coherent states with intensity
fluctuation value ki < 1 as untagged Gaussian states. It is easy to
verify that when Alice sends out a stronger pulse than what she is
supposed to send, Alice and Bob will definitely overestimate the
secret key rate by underestimating the channel loss and excess
noise. Therefore, the untagged Gaussian states are defined to be
the states from which Alice and Bob will not overestimate the
secret key rate. In other words, the untagged Gaussian states are

always conservative secure. Next, we can introduce an cutoff kmax

based on the intensity fluctuation probability density function. As
depicted in Fig. 5, if Alice chooses a cutoff kmax, the Gaussian
states associated with lower intensities than kmaxIA would always

Fig. 3 CV QKD system for case (2A). Here, we consider case (2A)
that Eve also has no intensity fluctuation information. Therefore, Eve
can only manipulate the signal states in the channel. Due to
intensity fluctuation, Alice will have a recorded data mismatched
with what she really encodes.

Fig. 4 The secret key rate of case (2A). (a) Uniform distribution (b)
Gaussian distribution. Here, we compute the secret key rates R2A
with two intensity fluctuation models. a The secret key rates versus
transmission distance for different intensity fluctuation models of
uniform distribution. b The secret key rates versus transmission
distance for different intensity fluctuation models of Gaussian
distribution.

Fig. 5 A cutoff for untagged state. Here, we apply a cutoff kmax to
increase the probability of untagged Gaussian states.
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be untagged. Then the probability to get untagged Gaussian
states can be expressed as

ps ¼
Z kmax

�1
PDFðkÞdk (8)

Note that a modified QKD protocol is needed to implement an
optimal cutoff for CV QKD. The modified protocol only requires a
different data recording process on the state preparation stage
while maintaining the same output states. In other words, suppose
Alice desires to encode XA and the actual encoded data are

ffiffiffi
k

p
XA,

Alice should always record the data as

XA0 ¼
ffiffiffiffiffiffiffiffiffi
kmax

p
XA (9)

rather than XA for each pulse.
Figure 6 shows the CV QKD system with untagged and tagged

Gaussian states. In Fig. 6a, an untagged Gaussian state is always
secure for Alice. Here, we conservatively assume the attenuation
from a stronger pulse A0 to a weaker pulse A1 can be controlled by
Eve. In Fig. 6b, for each tagged signal, the intensity is always larger
than the threshold value recorded by Alice. Following GLLP
security proof24, we conservatively assume that tagged signals are
insecure. Therefore, we only consider the secret key rate extracted
from untagged Gaussian states.
Suppose that a fraction ps of the pulses emitted by the source

are untagged by Eve. The secret key for direct reconciliation can
be extracted from untagged Gaussian states at an asymptotic rate
as24

RD2B ¼ psHðXA0 Þ � HðXA0 jXBÞ � χA0E;ps (10)

¼ IA0B � ð1� psÞHðXA0 Þ � χA0E;ps (11)

The secret key for reverse reconciliation can be shown as

RR2B ¼ psHðXBÞ � HðXBjXA0 Þ � χBE;ps
¼ psHðXBÞ � ½HðXBÞ � HðXA0 Þ þ HðXA0 jXBÞ� � χBE;ps
¼ IA0B � ð1� psÞHðXBÞ � χBE;ps

(12)

where XA0 and XB are Alice’s and Bob’s recording data, psHðXA0 Þ
and psHðXB0 Þ is the differential entropy used to generate the secret
key rate depending on direct reconciliation or reverse reconcilia-
tion, HðXA0 jXBÞ and HðXBjXA0 Þ is the conditional differential entropy
for error correction, χA0E;ps is the Holevo information between Alice

and Eve for the untagged states, and χBE;ps is the Holevo
information between Bob and Eve for the untagged states. The
Holevo information between Alice/Bob and Eve should be
eliminated by the privacy amplification process. HðXA0 Þ and
HðXA0 jXBÞ and H(XB) can be directly estimated by Alice and Bob’s
data. Given the reconciliation efficiency β, the secret key rate can
be shown as

RD2B ¼ βIA0B � ð1� psÞHðXA0 Þ � χA0E;ps

RR2B ¼ βIA0B � ð1� psÞHðXBÞ � χBE;ps
(13)

Next, we need to find a bound for the Holevo information.
Mathematically, it can be shown that Holevo information is
monotonically increasing on the domain of k. Physically, when the
input pulse has a stronger intensity, Eve can obtain more
information about Alice’s and Bob’s recorded results. Therefore,
for the untagged states, the Holevo information can be bounded

χBE;ps � psχBE;

χA0E;ps � psχA0E ;
(14)

where χA0E and χBE are the Holevo mutual information between
Alice/Bob and Eve estimated from Alice’s and Bob’s recording
results XA0 and XB.
Next, we will estimate the equivalent transmittance Ts and

excess noise εs. According to the Supplementary Section III, the
equivalent Ts and εs can be expressed as

Ts ¼ <
ffiffiffi
k

p
> 2=kmax ’ ð1� 1

8 VkÞ2=kmax;

εs ¼ VA
Ts
� kmaxVA ’ 1

4 VAVkkmax;
(15)

In addition to the channel transmittance Tc and excess noise εc,
Alice and Bob would estimate an overall transmittance T and
excess noise ε such that

T ¼ TsTc;

ε ¼ εc=Ts þ εs
(16)

For the secret key rate evaluation, we compare the secret key
rates for two intensity fluctuation models: Gaussian distribution
and uniform distribution. We still use the parameters in the Table
1. For the optimization, if we increase the kmax, ps will be
increased, while Ts will be decreased. Therefore, we need to
optimize kmax to get the maximum secret key rates.
Figure 7 shows the key rate optimization results for the uniform

distribution. Here, we consider the reverse reconciliation scheme.
Compared to case (2A), the maximum transmission distance
decreases faster due to intensity fluctuations. The maximum
transmission distance will drop by about 20 km even if the pulse
intensity fluctuates 5%. Meanwhile, the optimal kmax will always be
the maximum value of its domain for a uniform distribution.
Figure 8 shows the key rate optimization results for the

Gaussian distribution. Here, we also consider the reverse
reconciliation scheme. The maximum transmission distance
decreases rapidly when the intensity fluctuations increase. Other
than the uniform distribution, the optimal kmax will be mono-
tonically increasing as a function of distance. When comparing
these two intensity fluctuation models with same variance, we
find that QKD with Gaussian distributed variation will have a lower
key rate and transmission distance, since it always has a tail part
for tagged Gaussian states.

Secret key rate with finite-size effects
In this section, we compute the secret key rate under finite-size
scenario. Without loss of generality, we consider case (2B) as an
example. As discussed in refs. 32,33, by setting confidence intervals
for both T and ε, we can can obtain the lower bound of the
transmittance, TL, and the upper bound of the excess noise, εU. By
incorporating our tagging idea, we should also obtain the lower

Fig. 6 CV QKD system for case (2B). (a) Untagged Gaussian state (k
≤ kmax) (b) Tagged Gaussian state k > kmax. Here, we show the CV
QKD system with untagged and tagged Gaussian states. Suppose
that Alice always records the data as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxXA

p
and has a virtual

mode Â0 corresponding to the modulation Â0 ¼ 0̂þ ffiffiffiffiffiffiffiffiffi
kmax

p
XA. Alice’s

actual output mode is Â1 ¼ 0̂þ ffiffiffi
k

p
XA. In panel (a), untagged states

are always secure because we conservatively assume the attenua-
tion from a virtual mode Â0 to a actual output Â1 can be controlled
by Eve. In panel (b), tagged states are insecure if we consider the
same attenuation mentioned before is controlled by Eve.
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bound of the number of the untagged Gaussian states, mL. With
the three bounds, the secret key rate with finite-size effects, Rf, can
be shown as32,33:

Rf ¼ n
N
fRR2BðmL; TL; εUÞ � 4ðmLÞg (17)

where n is the number of Gaussian states used for secret key
transmission, mL is the lower bound of the number of the
untagged Gaussian states, N is the total number of received
Gaussian states, and Δ(mL) is related to the security of the privacy
amplification in the finite case. The details of estimating mL, TL, εU,
and Δ(mL) can be found in the supplementary section IV. Note that
the probability of the untagged Gaussian states satisfy pLs ¼ mL=n.
Here we consider the case (2B) with reverse reconciliation, and the
form of Eq. ((17)) can also be applied to other key rate formulas
such as RD2B.
Figure 9 shows the secret key rate,RR2B , with the finite-size

effects. Our method also works well for block sizes from 108 to

1012. For the distance less than 30 km, there is no distinct
advantage in terms of the secret key rate for larger block sizes,
which suggests that it may not be necessary to go to a very large
block size, especially for a small distance. On the other hand, it is
also expected that the key rates are approaching the asymptotic
limit when the block size increases.

Discussion
We have studied the security of CV QKD with intensity fluctuating
sources. Generally, We divide current CV QKD systems into two
cases for security proof. Depending on Alice’s realistic assump-
tions for the devices, Alice and Bob can choose different security
proofs and obtain different secret key rates. In case (1), Alice can
monitor the intensity fluctuation value for each pulse. She can
revise her data and obtain almost the same secret key rate as what
she can obtain from the ideal CV QKD systems. Furthermore, by a
refined data analysis, the maximum transmission distance can be
observably improved. In case (2), depending on the devices
assumptions, we also divide CV QKD systems into two subcases
(2A) and (2B). In case (2A), both Alice and Eve cannot obtain any
intensity fluctuation information of each pulse. Here, we prove the

Fig. 7 Optimization for case (2B) with uniform distribution. (a)
Secret key rate vs transmission distance. (b) Optimal kmax versus
transmission distance. Here, we optimize the secret key rate RR2B for
uniform distribution. a Optimal secret key rate versus transmission
distance for different uniform distributions. b Optimal kmax versus
transmission distance for different uniform distributions.

Fig. 8 Optimization for case (2B) with Gaussian distribution. Here,
we optimize the secret key rate RR2B for uniform distribution. a
Optimal secret key rate versus transmission distance for different
uniform distribution. b Optimal kmax versus transmission distance for
different uniform distribution.
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security based on Gaussian extremality. The secret key rate will
decrease if the intensity fluctuation increases. In case (2B), Eve
could have the intensity fluctuation information of each pulse
while Alice cannot. Here, we apply the tagging idea from24. We
divide the signals into tagged and untagged signals, and the
secret key will only be generated from untagged signals. After
considering the total error correction cost and privacy amplifica-
tion, the security of case (2B) can be proved. In addition, we also
compute the secret key rates under the finite-size regime. Overall,
our security proofs are simple to implement without any hardware
adjustment for current CV QKD systems. In the future, we are
looking for applying our methods to solve other imperfections
such as phase modulation errors or atmospheric channel effects.

DATA AVAILABILITY
Datasets generated and analyzed for simulation are available from the corresponding
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Fig. 9 The secret key rate with finite-size effects. Here, we
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