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A B S T R A C T   

Exploring the impact of climate change on drought under changing environmental conditions is crucial for 
agriculture, ecology, and human society. To evaluate the role of climate change on drought, this study selected 
the Songnen Plain (SNP) in Northeast China as a study area in which to quantify the relative contributions of 
climatic variables to the drought trend in accordance with the Standardized Precipitation and Evapotranspiration 
Index (SPEI). A series of SPEI-based numerical experiments, using combinations of observational and nonlinear 
detrended climatic variable data series, was used as a synthetic approach with which to analyze the relative 
impact of the individual climatic variables. Results indicated that drought on the SNP has been mitigated 
marginally during 1961–2016, mainly during spring, winter, the growing season, and on the annual timescale. 
Significant trends were detected in relation to temperature, sunshine duration, and wind speed, and these var
iables had differing roles in drought evolution. An increasing trend in temperature was found to aggravate 
drought tendency at all investigated timescales; however, decreasing trends in net radiation and wind speed 
offset the drought tendency caused by rising temperature. The positive contribution of wind speed was larger 
than the negative contribution of temperature, especially in areas around 46◦N. Although the change of pre
cipitation was not significant, it promoted drought mitigation on the SNP in spring, winter, the growing season, 
and on the annual timescale. The analysis framework used in this study was shown useful for improving un
derstanding of the relationship between climate change and drought evolution, and it could prove helpful in 
providing rational and regulatory policy strategies regarding drought relief.   

1. Introduction 

Increasing attention is being paid to the consequences of climate 
change owing to their profound impact on natural ecosystems and 
human society (Guzman-Morales and Gershunov, 2019; Tang, 2019). 
One of the effects of climate change is intensification of the hydrological 
cycle, which means that the magnitude, frequency of occurrence, and 
extent of the area affected by related extreme climatic events are pre
dicted to increase (Dai, 2011). Drought is one such extreme event that 
occurs frequently in almost all climatic regimes with observed trends of 
warming (Dai, 2013; Carrão et al., 2018). Recent work has suggested 

that warming trends are expected to continue into the future (Pachauri 
et al., 2014). For a given basin, an increase in temperature might 
accelerate the evaporative demand and increase both the occurrence 
and the uncertainty of extreme precipitation (Easterling et al., 2007; 
Allan and Soden, 2008; Giorgi et al., 2019; Papalexiou and Montanari, 
2019), which could lead to differences in the worldwide pattern of 
distribution of drought. Thus, it is very important to investigate the 
mechanism of drought, within the context of a changing environment, 
owing to its detrimental effects on agricultural production (Lobell et al., 
2011), ecological systems (Li et al., 2019), and socioeconomic security 
and stability (Hsiang et al., 2013). 
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The occurrence of drought, which is the result of water deficit over a 
long period, is relative to the moisture supply (precipitation) and the 
moisture fluxes from the surface to the atmosphere (evapotranspira
tion). Globally, both precipitation and evaporative demand are expected 
to increase under the conditions of a warming climate (Huntington, 
2006; Trenberth, 2011; Cook et al., 2014). Regionally, however, the 
increase in precipitation is predicted to occur mainly via heavy or 
extreme precipitation events and primarily in mesic areas, resulting in a 
“rich-get-richer/poor-get-poorer” scenario (Cook et al., 2014). Contrary 
to the expectation that evaporative demand would increase with global 
warming, both observed pan evapotranspiration and estimated potential 
evapotranspiration (PET) demonstrate a decreasing tendency in the 
United States (Irmak et al., 2012), Australia (Donohue et al., 2010), 
northeastern India (Jhajharia et al., 2012), southeastern Turkey 
(Ozdogan and Salvucci, 2004), and China (Liu, 2004; Zhang et al., 
2019a). This “pan evaporation paradox” phenomenon suggests that 
evapotranspiration change is not controlled primarily by temperature, 
but is susceptible to variation of other meteorological variables on 
seasonal–decadal scales. Zhang et al. (2019a) suggested that maximum 
temperature, relative humidity, and wind speed are the major control
ling factors affecting PET change over China, while Jiang et al. (2019) 
indicated that PET change in Southwest China is most sensitive to 
relative humidity, followed in descending order by sunshine duration, 
temperature, and wind speed. The mechanism of drought is complex due 
to the various interactions among different components within the sys
tem, such as soil moisture, evapotranspiration, precipitation, and 
anthropogenic-related warming (May et al., 2017; Samaniego et al., 
2018; Teuling, 2018). Therefore, an in-depth impact assessment of the 
different factors affecting drought is necessary for better understanding 
the drought mechanisms. 

Previous related studies have explored the impact of climate change 
on drought (Li and Sun, 2017; Sun et al., 2017; Sun and Ma, 2015; Zhang 
et al., 2016; Zhang et al., 2019b). Cook et al. (2014) indicated that the 
expansion in the global area of drought by 2080–2099 would be 
attributable to increased PET. Williams et al. (2015) separated the 
contributions of individual meteorological variables in relation to the 
California drought of 2012–2014 and found that anthropogenic warm
ing accounted for 8–27%. Chen and Sun (2017) suggested that external 
natural forcing is mainly responsible for the variability of drought in 
China but that anthropogenic activity influences drought trend of in
crease. Zhang et al. (2016) conducted quantitative investigation of the 
different impacts of the linear changes in climatic variables on drought, 
and found that rising temperature was the main forcing for the drought 
trend throughout China, then followed by decreasing wind speed and 
sunshine duration. Wu and Chen (2019) proposed a simple algorithm for 
quantification of the individual contributions of the linear changes in 
temperature and precipitation to the dryness/wetness trend in the Pearl 
River Basin in southern China. Their findings indicated that temperature 
change had greater effect than precipitation change. The approaches 
used in the above research on the impact of climate change on drought 
mostly considered linear detrending of the variables (Zhang et al., 2016; 
Wu and Chen, 2019), and the timescale over which the variables were 
detrended was generally monthly (Li and Sun, 2017; Wu and Chen, 
2019) or annually (Zhang et al., 2016). However, climatic variables will 
not necessarily change with the same trend over long periods (Li et al., 
2015). To obtain greater insight into the relationship between climate 
change and drought, it is important to reveal details by exploring the 
extent to which fine-scale climate change is relevant to drought at 
broader scales. Therefore, an empirical mode decomposition approach 
was used in this study to detrend the nonlinear trends of climatic vari
ables at the daily timescale, which were then used to investigate the 
impact of the individual climatic variables on drought at longer 
timescales. 

As an example of the impact of drought on agriculture, after 1980 s 
the absolute loss of grain was increased by 200–450 × 104 t in Northeast 
China and provinces such as Shanxi, Hubei, and Guizhou (Zhang et al., 

2015). Northeast China, which is a major food production base with a 
cultivated area of six million hectares, has experienced more frequent 
and intensified drought events since the 1990 s (Jiang et al., 2018; Xia 
et al., 2018). The Songnen Plain (SNP), which is the main grain pro
duction center of Northeast China, experienced a drying process in the 
previous century because of the expansion of the area of cultivated land 
(Zhang et al., 2018a) and the frequent occurrence of spring drought 
(Song et al., 2014). Several recent studies investigated the spatiotem
poral changes of drought on the SNP (Kang and Zhang, 2016; Yang et al., 
2017; Zuo et al., 2019), and others discussed the relationships between 
drought and certain controlling factors, e.g., extreme temperature and 
precipitation (Guo et al., 2019b), soil moisture (Meng et al., 2019), PET 
(Ma et al., 2017), and pan transpiration (Liang et al., 2011). However, 
quantification of the relative contributions of such climatic variables to 
drought on the SNP has been overlooked. 

A further consequence of extended meteorological drought is the 
occurrence of hydrological drought, agricultural drought, and even so
cioeconomic drought (Leng et al., 2015). Therefore, the objective of this 
study was to quantify and explicitly separate the relative contributions 
of the changes in different climatic variables to the tendency of meteo
rological drought on the SNP at different timescales. To achieve this 
purpose, we designed a series of numerical experiments based on the 
Standardized Precipitation Evapotranspiration Index (SPEI; Vicente- 
Serrano et al., 2010) that used daily data of certain meteorological 
variables from 21 meteorological stations (1961–2016) and a nonlinear 
detrending method. The SPEI provides a flexible means for estimation of 
the surface moisture balance, and it makes it possible to vary the inputs 
(e.g., precipitation, temperature, and net radiation) to separate and 
quantify the effect of specific variables on drought trend. Specifically, 
our study addressed the following three questions in relation to the SNP. 
(1) Which specific climatic variables changed significantly during the 
study period? (2) What has been the spatiotemporal distribution of 
meteorological drought in recent years? (3) What were the relative 
contributions of the significantly changed climate variables to the cur
rent drought tendency? 

2. Material and methods 

2.1. Study area 

The SNP lies in the region 42◦48′–49◦28′N, 121◦24′–128◦10′E, and it 
covers an area of 22.35 × 104 km2 that has elevation of 75–665 m 

Fig. 1. Location of meteorological stations on the Songnen Plain.  
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(Fig. 1). Cultivated land accounts for 58% of the SNP, which represents 
8% of the total area of cultivated land in China. Spring maize, soybean, 
and spring wheat are the main crops grown in this region. The SNP is 
dominated by a temperate continental monsoon climate, and it has clear 
seasonality with cold/dry winters and hot/wet summers influenced by 
the southeast monsoon. Average temperature varies from − 19 ℃ in 
January to 23 ℃ in July. Annual precipitation is in the range of 300–600 
mm (Chen et al., 2011b). Mean annual PET in the SNP increases from 
northeast to southwest with values of < 850 to > 1100 mm, respectively 
(Ma et al., 2017). 

2.2. Data 

The daily meteorological datasets (1961–2016) used in this study, 
obtained from the China Meteorological Data Sharing Service System 
(http://data.cma.cn/), represented 21 meteorological stations distrib
uted evenly across the SNP (Fig. 1). The major meteorological variables 
considered were maximum temperature (Tmax, ℃), average tempera
ture (Tave, ℃), minimum temperature (Tmin, ℃), precipitation (P, 
mm), air pressure (Pr, hPa), wind speed at 2 m above ground level (U2, 
m/s) that was converted from the 10-m wind speed using a standard 
conversion formula (Allen et al., 1998), sunshine duration (Sd, h), and 
relative humidity (RH, %). Missing data were filled via linear interpo
lation (Li and Sun, 2017) if the time gap was within 5 d; otherwise, they 
were replaced with the average values of those days in all other years. 

2.3. Methodology 

2.3.1. Selection of drought index 
Drought indices are important tools that can be used for detection, 

monitoring, and quantification of drought events. However, owing to 
the complexity of drought, no single index can adequately capture the 
duration, severity, magnitude, and spatial extent of a drought event 
(Heim, 2002). The indices used most commonly in drought analysis are 
the Standardized Precipitation Index (SPI) (McKee et al., 1993), SPEI 
(Vicente-Serrano et al., 2010), and Palmer Drought Severity Index 
(PDSI) (Wells et al., 2004). In comparison with both the SPI and the 
PDSI, Wang et al. (2015) found that the SPEI has stronger correlation 
with soil moisture. One of the disadvantages of the PDSI is its fixed 
timescale, which limits its universal application because droughts are 
multiscalar phenomena (Mishra and Singh, 2010). Although the SPI can 
detect drought events at different timescales through simple calculation, 
its use of precipitation data as the only input can result in misestimation 
of the drought condition in certain regions, especially where evapo
transpiration is greater than precipitation. Using the difference between 
precipitation and PET as input, the SPEI was developed as a generalized 
drought index that not only offers the same level of flexibility as the SPI, 
but also represents a simple climate water balance. The applicability of 
the SPEI to evaluation of drought events in different climatic regions has 
been validated in many earlier works (Liu et al., 2018; Nguvava et al., 
2019; Wang et al., 2014; Zhang and Shen, 2019). Thus, the SPEI was 
selected as the drought metric for use in this study. 

Precipitation and evapotranspiration are the main factors to consider 
when calculating the SPEI. Several equations are available for esti
mating PET based on theoretical and empirical models, e.g., the 
temperature-based Thornthwaite equation, temperature- and latitude- 
based Hamon equation (Hamon, 1961), radiation- and temperature- 
based Priestley–Taylor method (Priestley and Taylor, 1972), and Pen
man–Monteith equation (Allen et al., 1998), which is based on wind 
speed and humidity, as well as temperature and radiation. In compari
son with other methods, the Penman–Monteith equation additionally 
incorporates both the energy balance and aerodynamics theory; thus, it 
is recommended as the sole standard method for accurate PET estima
tion by both the World Meteorological Organization (WMO, 2006) and 
the Food and Agriculture Organization of the United Nations (Allen 
et al., 1998). The SPEI was developed by Vicente-Serrano et al. (2010) 

using the Thornthwaite equation to calculate PET; however, it is inad
visable to estimate PET using a method based primarily on temperature 
(Jeong et al., 2014). We also compared the differences between the PET 
calculated using the Thornthwaite equation (PET-TH) and the PET 
calculated using the Penman–Monteith equation (PET-PM). Although 
their spearman coefficients at the 21 stations were all > 0.9 at the annual 
timescale (Fig. 2a), the PET-PM over the SNP was generally larger than 
the PET-TH, and the differences were reflected mainly in the colder 
months (Fig. 2b). Comparatively, the Penman–Monteith equation has 
been used most widely in previous studies and found to provide results 
that are most consistent, reliable, and accurate (Yin et al., 2010; Pereira 
et al., 2015; Li et al., 2017). If the data needed are available, the Pen
man–Monteith method is generally superior for estimation of PET 
(Beguería et al., 2014). Therefore, in this study, we used the Pen
man–Monteith method to calculate PET: 

PET =
0.408Δ(Rn − G)+γ 900

T+273u2(es − ea)

Δ+γ(1+0.34u2)
, (1)where PET is the reference 

evapotranspiration (mm/d), Δ is the slope of the saturation vapor 
pressure curve at a given air temperature (kPa/℃), Rn is net radiation at 
the crop surface (MJ/(m2.d)), G is the soil heat flux density (MJ/(m2⋅d)), 
γ is the psychrometric constant (kPa/℃), T is the mean daily air tem
perature at 2-m height (℃), U2 is the wind speed at 2-m height (m/s), es 
is the saturation vapor pressure (kPa), ea is the actual vapor pressure 
(kPa), and (es − ea) is the saturation vapor pressure deficit (kPa). 

After calculating PET, the difference (D) between precipitation and 
PET can be aggregated at different timescales: 

Dk
n =

∑k− 1
i=0 Pn− i − PETn− i, (2)where k is the timescale of the aggre

gation (e.g., 1-, 3-, 6-, and 12-months) and n is the calendar calculation 
month (n = 1 to 12). 

For D values at different timescales, the cumulative distribution 
function of a three-parameter Log-logistic distributed variable can be 
calculated as follows: 

F(x) = (1 + ( α
x− γ)

β
)
− 1, (3)where α, β, and γ are the scale, shape, and 

origin parameters, respectively. 
Finally, the SPEI can be obtained by transforming F(x) to a normal 

variable based on the classical approximation (Abramowitz and Stegun, 
1965): 

SPEI =

Fig. 2. Comparison of PET-PM and PET-TH.  
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√

−

(

w −
c0 + c1w + c2w2

1 + d1w + d2w2 + dw3

)

; ifF(x) < 0.5,w =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ln(F(x))

√
, (4) 

where c0 = 2.51517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, 
d2 = 0.189269, and d3 = 0.001308. 

In this study, the SPEI at the 3-month timescale (denoted as SPEI3) 
was used to reflect the seasonal drought condition. The SPEI3 values in 
February, May, August, and November were taken as representative of 
the drought condition in winter, spring, summer, and autumn, respec
tively. The SPEI6 value in September was used to represent the drought 
condition in the growing season. The SPEI12 value in December was used 
to represent annual drought. 

2.3.2. Nonlinear detrending method 
The method of complete ensemble empirical mode decomposition 

with adaptive noise (CEEMDAN) was applied to decompose the mete
orological variables during the period 1961–2016 into their nonlinear 
trends. The CEEMDAN approach is based on the methods of empirical 
mode decomposition (EMD) and ensemble empirical mode decomposi
tion (EEMD), which are robust adaptive and temporal time series anal
ysis methods often used for analyzing nonlinear and nonstationary 
components in climate data (Huang et al., 1998; Wu et al., 2009). 
Compared with EMD and EEMD, the major advantage of the CEEMDAN 
method is that it reduces the reconstruction error to minimum (or even 
zero) and reduces the noise in each intrinsic mode function, resulting in 
a complete and accurate decomposition for the raw data series (Colo
minas et al., 2014). 

For a given target series x(t), the CEEMDAN algorithm can be 
described as follows: 

Step 1: Generate a new series x(i): 
x(i) = x(t) + βw(i), (5)where β > 0 and w(i) is a zero mean unit 

variance white noise realization (i = 1, 2, …, L). 
Step 2: Decompose completely each x(i) using EMD, following which 

the intrinsic mode function candidate d(i)
k (k = 1, 2, …, K) is obtained. As 

the k-th mode of x(t), dk is obtained by averaging the corresponding 
modes d(i)

k . Then, the first mode d1 can be obtained: 

d1 = dk = 1
L
∑L

i=1d(i)
1 , (6) 

Step 3: Separate the first residual r1 from the given series x(t): 
r1 = x(t) − d1, (7) 
Step 4: Use the first residual r1 as the new target series, and repeat 

Step 1 to Step 3. The second mode d2 can be obtained and the second 
residual r2 can be calculated as follows: 

r2 = r1 − d2, (8) 
Therefore, the k-th (k = 2, 3, …, K) residual is summarized as: 
rk = rk− 1 − dk, (9) 
Step 5: Go to Step 4 for the next k, until the obtained residual cannot 

be decomposed further using EMD. Then, K modes di and the final re
sidual component rk are obtained. Finally, the signal of x(t) can be 
expressed as: 

x(t) =
∑K

i=1dk + rK, (10)where x(t) is the raw data series, dk is the k- 
th intrinsic mode function, which could also represent different periodic 
characteristics of x(t), and rK is the final residual component, which 
could represent the nonlinear trend of x(t). 

Based on the CEEMDAN results, a detrended data series x_d can be 
obtained by removing the nonlinear trend from the raw data series x. To 
ensure that the initial value of the detrended data series remains equal to 
the initial value of the raw data series, e.g., x(1961)_d = x(1961), the 
first value of the residual series rK is added to the decomposed time 
series 

∑K
i=1di, which is addressed as described in previous studies (Sun 

and Ma, 2015; Li and Sun, 2017). Each daily climatic variable (except 
precipitation) on 365 calendar days per year (data on February 29 in a 
leap year were ignored) at the 21 stations was detrended using the 

CEEMDAN method. For precipitation, monthly data of the 12 calendar 
months per year at the 21 stations were detrended. 

2.3.3. Trend analysis 
The “Sen’s slope” method (Sen, 1968) does not require a specific 

sample distribution nor is it influenced by outliers; therefore, we used it 
to reflect the magnitude of the trend of the climatic variables and the 
SPEI in the SNP region during 1961–2016. The equation can be 
expressed as follows: 

β = Median
(

xj − xi
j− i

)

∀i < j, (11)where β indicates the trend magnitude 

of the data series, and xi and xj are the data values in the i-th and j-th 
years, respectively. An outcome where β > 0 (β < 0) represents a trend 
of increase (decrease). 

The significance of the trend was examined further based on the 
nonparametric Mann–Kendall (MK) method (Mann, 1945; Kendall, 
1975), which has been used widely for detection of the significance of 
trends in climatological and hydrological research (Liu et al., 2012; 
Soltani et al., 2012; Yue et al., 2018). The Z-statistic of the MK test 
follows the standard normal distribution with a mean value of 0 and 
standard deviation of 1. The null hypothesis means that there is no 
significant trend in the tested data series. An outcome where |Z| > Z1− α/2 

indicates that the null hypothesis is rejected and the trend of the tested 
time series is significant at the confidence level of α. This study used set 
values of α = 0.05 and Z1− α/2 = Z1− 0.05/2 = 1.96. 

2.4. Computation of contribution of meteorological variables to drought 

The flow diagram presented in Fig. 3 shows how the direct relative 

Fig. 3. General flow diagram of the procedure used to obtain the direct 
respective contributions of the meteorological variables to the trend of drought. 
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contributions of the meteorological variables to the drought trend in the 
SNP region were obtained. 

First, the significance of the change of each meteorological variable 
was tested using the MK method. 

Second, after finding the significantly changing variables, the 
CEEMDAN nonlinear detrending method was applied. In detail, the 
variable x series (i.e., daily temperature) from January 1, 1961 to 
December 31, 2016 was divided into 365 groups, as shown in the 

following square matrix 

⎡

⎢
⎢
⎣

x1,1,1961 x2,1,1961 ⋯ x31,12,1961
x1,1,1962 x2,1,1962 ⋯ x31,12,1962

⋮ ⋮ ⋮
x1,1,2016 x2,1,2016 ⋯ x31,12,2016

⎤

⎥
⎥
⎦, and the 

precipitation series from January 1961 to December 2016 was divided 
into 12 groups, as shown in the following square matrix 
⎡

⎢
⎢
⎣

x1,1961 x2,1961 ⋯ x12,1961
x1,1962 x2,1962 ⋯ x12,1962

⋮ ⋮ ⋮
x1,2016 x2,2016 ⋯ x12,2016

⎤

⎥
⎥
⎦. Each column in the matrix was 

considered a group, and the CEEMDAN method was used on each group 
to remove the nonlinear trend of the climatic variables. 

Third, by combining the detrended data series and the observed data 
series as the input for the SPEI calculation, we obtained a series of nu
merical experiments that served as the basis for the primary analysis. In 
this regard, SPEIOB-ALL was the index calculated using all the observed 
meteorological variables, which referenced the full calculation, incor
porating the changes in all the climatic variables. SPEIDE-ALL, which was 
calculated using all the detrended meteorological variables, indicated 
the base drought condition if the climate change was not significant. 

SPEIi was calculated using the observed meteorological variable i and 
other detrended meteorological variables. 

Finally, based on the above SPEI numerical experiments, the relative 
contributions of the significantly changing meteorological variables to 
the drought trend were distinguished. The trend slope of SPEIDE-ALL was 
defined as the baseline. Thus, the relative rate of change of the trend 
slopes of SPEIi to the trend of SPEIDE-ALL was regarded as the general 
contribution of meteorological variable i to the current drought trend in 
the SNP (expressed as Cri). The factors that affect drought consist not 
only of the significant climatic elements but also of other factors, e.g., 
human activities. Therefore, the relative rate of change of the trend 
slope of SPEIOB-ALL to the trend of SPEIDE-ALL could be regarded as the 
general contribution of all the different elements to the drought trend. 

The relative rates of change were calculated as follows: 
Cri =

TSPEIi − TSPEIDE− ALL
TSPEIDE− ALL

× 100%, (12) 

Crother =
TSPEIOB− ALL − TSPEIDE− ALL

TSPEIDE− ALL
× 100% − (

∑p
i=1Cri), (13)where TSPEIDE− ALL , 

TSPEIi , and TSPEIOB− ALL represent the trend slopes of the SPEI series in the 
different numerical experiments, and p denotes the number of signifi
cantly changing variables. 

To understand and compare the relative magnitudes of the contri
butions of these variables to drought trend, the sum of the relative rates 
of change is expressed as 100 percentage. Hence, the relative contri
bution (Rci) of meteorological variable i to the drought tendency was 
calculated as follows: 

Rci = Cri∑p
i=1

Cri+Crother
× 100%, (14) 

Fig. 4. Annual variations of the main climatic variables and their nonlinear trends extracted using the CEEMDAN method.  
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3. Results 

3.1. Spatiotemporal characteristics of climatic variables 

The temporal change and nonlinear trend of eight meteorological 
variables during 1961–2016 are shown in Fig. 4. The residual series 
extracted using the CEEMDAN approach excludes the impact of the 
period of fluctuation and thus better expresses the nonlinear trend of 
each variable. It can be seen from Fig. 4 that a nonlinear trend of in
crease is evident for Tave, Tmax, and Tmin throughout the study period 
and before 1990 for P. Conversely, a trend of decrease is shown for Pr, 

Sd, RH, and U2. Based on the MK results (Table 1), the meteorological 
variables of Tave, Tmax, Tmin, Sd, and U2 have a significant trend of 
change on the SNP. The trend slopes of annual Tave, Tmax, and Tmin of 
0.31, 0.15, and 0.47 ℃/10a, respectively, reflect that the increasing 
Tmin contributes most to the increase in average temperature on the 
SNP. Although P shows a trend of increase (rate: 6 mm/10a), the slope 
magnitude is not significant, which is consistent with the results of Faiz 
et al. (2018). The change point of the climatic variables in the SNP re
gion is around 1990; subsequently, the values of annual Tave and Tmin 
are higher than the mean values, while the values of annual Sd, RH, and 
U2 are lower than the mean values. It is worth noting that the climate of 

Table 1 
Results of the trend test on annual climatic variables in relation to the SNP.   

Pr(hpa) Tave(℃) Tmax(℃) Tmin(℃) P(mm) Sd(h) RH(%) U2(m/s) 

β(unit/decade)  0.06  0.31  0.15  0.47  6.05 –23.12 − 0.28 − 0.19 
Z  1.31  4.47  2.06  5.84  0.84 ¡5.19 − 1.89 ¡8.26 

Note: numbers in bold indicate a pass of the test at the 0.05 significance level. 

Fig. 5. Spatial distribution of climatic variable trends during 1961–2016: (a) Pr, (b) Tave, (c) Tmax, (d) Tmin, (e) P, (f) Sd, (g) RH, and (h) U2 (for trends significant 
at the 0.05 significance level, a ring is placed around the solid dot). 
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the SNP region has been highly impacted by the changing environment 
during 1961–2016. 

The spatial distributions of the trends of the climatic variables in the 
SNP region are shown in Fig. 5. It can be seen that the SNP is dominated 
by increasing trends in Tave, Tmax, and Tmin (Fig. 5b–d) and decreasing 

trends in Sd, RH, and U2 (Fig. 5f–h). Although the trend of precipitation 
is not significant, an increasing tendency can be observed at 14 of the 21 
stations (Fig. 5e). The decreasing tendency of precipitation observed at 
the remaining seven stations, located mainly in the southwest of the SNP 
(Fig. 5e), is opposite to the trends seen for Pr and RH (Fig. 5a and 5g). 

Fig. 6. Temporal change of the SPEI for the SNP at (a) spring, (b) summer, (c) autumn, (d) winter, (e) the growing season, and (f) annual timescales.  

Fig. 7. Spatial distribution of the SPEI trend for the SNP at (a) spring, (b) summer, (c) autumn, (d) winter, (e) the growing season, and (f) annual timescales.  
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Overall, 14 (18) stations exhibit an increasing (decreasing) tendency for 
Pr (RH), and the area in which the increasing (decreasing) trend of Pr 
(RH) is significant is primarily in the east (south) of the SNP. Spatially, 
the climatic variables T (Tave, Tmax, Tmin), Sd, and U2 show significant 
trends of change in the SNP region. 

3.2. Spatiotemporal distribution of drought 

3.2.1. Temporal trend 
Average SPEI values on different timescales for the 21 stations on the 

SNP are displayed in Fig. 6. It can be seen that drought and wet periods 
occur alternately throughout 1962–2016. Overall, two principal periods 
of drought (1962–1982 and 1999–2007) and wetness (1983–1998 and 
2010–2016) can be seen in the SNP region on the annual timescale and 
in the growing season. These evident periods with long duration of 
drought or wetness are also represented in summer and autumn; how
ever, the trends of the SPEI in these two seasons are not as obvious 
(Fig. 6b and 6c). The alternating frequency of periods of drought and wet 
is higher in spring and winter, and more wet events are evident in the 
most recent five years, leading to an upward trend of the SPEI during the 
study period (p < 0.05, Fig. 6a and 6d). The frequency of drought on the 
SNP is largely the same as that of wet events, i.e., approximately 30%. 
However, it does show a slightly alleviated trend on the annual time
scale (Fig. 6f), which is mainly influenced by the increasing trends of the 
SPEI in spring and winter, while the changes of the SPEI in summer and 
autumn are mainly responsible for the interannual variability of the 
drought and wet events. 

3.2.2. Spatial pattern 
The magnitude and significance of the SPEI trend during 1962–2016 

at the seasonal, growing season, and annual timescales were detected 
using the MK method and are shown in Fig. 7. The spatial patterns of the 
SPEI trend in the SNP region vary with season. All 21 stations show an 
increasing tendency of the SPEI in spring and winter during the recent 
55 years and 14 and 11 stations, respectively, present a significant trend 
of increase. In summer, 47.6% of the stations (mostly in the south) of the 
SNP region show a nonsignificant tendency of drought over the recent 
55 years. Although 11 of the 21 stations show a nonsignificant trend of 
drying in autumn, the stations are scattered across the SNP and the trend 
is not as strong as in summer. Regionally, the absolute magnitude of the 
trend slope is higher in spring and winter (average: 0.19 and 0.17 /10a, 
respectively) than in summer and autumn (average: − 0.006 and 
− 0.007/10a, respectively). Annually and in the growing season, 18 of 
the 21 stations show an increasing trend of the SPEI, and the trend at the 
Mingshui, Anda, and Sanchahe stations is significant with a slope value 
of > 0.2 /10a. Nonsignificant drying trends are evident at the Tongyu, 
Changling, and Nenjiang stations, which are affected mainly by the 
drought tendency in summer and autumn. In addition, we compared the 
relationship between the modified soil water deficit index calculated in 
our previous study (Yang et al., 2017) and the SPEI in the growing 
season calculated in this study (Appendix Fig. A1). The SPEI shows 
positive correlation with the modified soil water deficit index at the 
Fuyu, Changling, Hailun, and Harbin stations for which the Spearman 
correlation coefficient r values reach 0.66 (p < 0.01), 0.69 (p < 0.01), 
0.39 (p < 0.01), and 0.50 (p < 0.01), respectively, indicating that the 
SPEI could capture the deficit in soil moisture in the SNP region. 

A significant distinct rise in temperature in the SNP region has been 
detected, and although greater evaporation might be expected under 
conditions of increasing temperature, the reverse trend has been 
observed in Northeast China, including the SNP region (Liu, 2004; Ma 
et al., 2017). It can be seen that the evolution of drought in the SNP 
region also depends on other factors, as indicated by the nonsignificant 
increases in the trends of annual precipitation (Table 1), consistent with 
the results of previous studies (Jia et al., 2019; Faiz et al., 2018; Ye et al., 
2019). The variability of PET in Northeast China is higher than that of 
precipitation (Zhao et al., 2007). The fact that the nonsignificant 

increase in precipitation and decrease in evaporative demand (i.e., PET) 
might lead to mitigation of meteorological drought over the SNP (Fig. 7) 
is consistent with the results of Zhai et al. (2010), who indicated that the 
Songhua River Basin showed a marginally significant trend toward 
wetter conditions during 1961–2007. 

3.3. Numerical experiment design 

Although the change of precipitation in the SNP region is not sig
nificant, it is prerequisite for the occurrence of drought by any defini
tion. Therefore, the contributions of T (Tmax, Tmin, and Tave), P, net 
radiation (R), and U2 on the trend of drought were of primary concern in 
this study. By combining the detrended data series and observed data 
series as input for the SPEI calculation, we designed six different SPEI- 
based numerical experiments, as shown in Table 2. 

The efficacy of separating the impacts of the changes of climatic 
variables on drought depends on these quantities being approximately 
independent in their contribution to the full hydroclimatic response 
(SPEIOB-ALL). However, it is worth noting that the SPEI scenarios that 
retain a single observed variable while detrending the remainder actu
ally cause disruption of the complex interactions underlying the mete
orological variables. Nevertheless, these numerical experiments could 
represent an approach for synthetic analysis of one variable at a time. 
We compared SPEIOB_ALL to the sum of SPEIP, SPEIT, SPEIR, and SPEIU 
(expressed as SPEISUM) averaged over the entire study period for each 
station at different timescales. Considering the overlap of the detrended 
climatic variables in the sum of these four drought indices, we sub
tracted three times the base drought index (SPEIDE-ALL) from the sum
med value. The relationship between SPEIOB-ALL and SPEISUM is shown in 
Fig. 8. The ‘SUM’ and ‘OB-ALL’ values for each station track each other 
closely and are scattered evenly around the 1:1 line (the solid black 
line). This close match indicates that our SPEI-based numerical experi
ments are appropriate and acceptable, to a certain extent, for analysis of 
the influence of meteorological variables on drought trend in the SNP 
region. 

The wet (1998) and drought (2001) years in Fig. 6f were selected as 
examples to discuss the differences between SPEIDE-ALL and SPEIOB-ALL. 
As shown in the violin plots (Fig. 9), the SPEI performs well in capturing 
the wet and drought events on the SNP. For example, the average value 
of the annual SPEI (SPEIDE-ALL and SPEIOB-ALL) for the 21 stations in 1998 
is > 1, and wet periods occurred mainly in summer, autumn, and the 
growing season during this year (Fig. 9a), which is consistent with the 
description of flooding in 1998 in the Songhua River Basin (Song et al., 
2015). In 2001, the average value of the annual SPEI is lower than − 1.5, 
and drought events occurred mainly in spring, summer, autumn, and the 
growing season (Fig. 9b). In comparison with the value of SPEIDE-ALL, the 
average values of SPEIOB-ALL are higher in spring and winter (spring and 
the growing season) in 1998 (2001), indicating that climate change 
might have had minimal effect in mitigating drought conditions in the 
SNP region. 

Table 2 
Description of the six different SPEI-based numerical experiments.  

ID Scenarios Temperature 
(℃) 

Precipitation 
(mm) 

Net radiation 
(MJ/(m2⋅d)) 

Wind 
speed(m/s) 

1 SPEIDE- 

ALL 

Detrend Detrend Detrend Detrend 

2 SPEIT Observed Detrend Detrend Detrend 
3 SPEIP Detrend Observed Detrend Detrend 
4 SPEIR Detrend Detrend Observed Detrend 
5 SPEIU Detrend Detrend Detrend Observed 
6 SPEIOB- 

ALL 

Observed Observed Observed Observed  
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3.4. Relative contributions of climatic variables to the current drought 
tendency 

The relative contributions of P, T, R, and U2 to the trend of drought 
on different timescales for the 21 stations on the SNP are shown in 
Fig. 10. If the relative contribution is negative, it means the change of 

this meteorological variable reduces the trend of the SPEI, indicating a 
tendency toward drought, and vice versa. 

The perturbations of the climatic variables exhibit different roles in 
terms of modulating the drought trend in SNP. An increase in T results in 
a negative contribution to the trend of the SPEI. For example, regionally, 
the trend of the annual SPEI decrease by 9–31.8% owing to the obvious 

Fig. 8. Station comparisons between ensemble averaged SPEIOB-ALL and SPEISUM at (a) spring, (b) summer, (c) autumn, (d) winter, (e) the growing season, and (f) 
annual timescales. 

Fig. 9. Differences between SPEIDE-ALL and SPEIOB-ALL in (a) 1998 and (b) 2001.  
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Fig. 10. Relative contributions of the nonlinear change of climatic variables to drought trend at (a) spring, (b) summer, (c) autumn, (d) winter, (e) the growing 
season, and (f) annual timescales. 
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Fig. 11. The PDFs of the sensitivity coefficients of the climatic variables (with and without detrending) affecting drought over the SNP.  
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increase in temperature, and the average contribution of the increase in 
T to the annual SPEI trend in the SNP region is − 27.8% (Fig. 10f). This 
characteristic is evident on other seasonal timescales, especially summer 
(Fig. 10b) and the growing season (Fig. 10e). Although an increase in 
temperature might lead to worse drought, the changes of drought 
characteristics in any particular area are the result of the combined ef
fects of natural climatic variability. Significant decreasing trends of R 
and U2 in the SNP region (Fig. 5) make a positive contribution to the 
SPEI trend. The average trend of the annual SPEI increases by 13.2% and 
44% (Fig. 10f), respectively, owing to changes in R and U2, which means 
that reductions in R and U2 are primary factors forcing the SNP toward a 
slight wetter situation. The effects of these two elements on the trend of 
the SPEI differ seasonally and regionally. The contribution of U2 to the 
alleviation of drought is larger in spring (49.2%, Fig. 10a), autumn 
(48.6%, Fig. 10c), and the growing season (45.6%, Fig. 10e) than in 
summer (32.8%, Fig. 10b) and winter (31.7%, Fig. 10d). Moreover, the 
high values are located in areas around 46◦N (Fig. 10). The average 
contribution of R to the SPEI trend is highest in summer (30.6%, 
Fig. 10b), followed in descending order by that of the growing season 
(18.1%, Fig. 10e), spring (7.2%, Fig. 10a), autumn (5.2%, Fig. 10c), and 
winter (1.8%, Fig. 10d). Spatially, the directions of the change of the 
contributions from T, R, and U2 to the SPEI trend for the 21 stations are 
consistent; however, this is not the case for the contribution from P. As 
the change of precipitation influenced by global warming remains un
certain, this leads to uncertainty regarding its contributions to the trend 
of drought in different regions and on different timescales. Regionally, 
the average trend of the annual SPEI in the SNP region is increased by 
10.1% owing to the change of precipitation (Fig. 10f). This positive 
contribution is also detected in winter and spring, consistent with the 
results of Khan et al. (2016), who indicated that monthly precipitation in 
the Songhua River Basin is increased significantly in winter. However, 
the contribution of P change to the SPEI trend is negative in both 
summer and autumn, with the main contributing stations located in 
southern parts of the SNP, i.e., at latitudes below 46◦N. 

Overall, although increasing T in the SNP region would aggravate the 
drought condition, the decreasing U2 would reduce the evaporative 
demand from the ground surface and mitigate the drying climatic con
ditions over the SNP. Therefore, the contributions of the changes in U2 
and R to the SPEI trend are the opposite to the contribution from T 
(Fig. 10), which is in agreement with the findings of previous study 
(Bertoldi et al., 2007; Zhang et al., 2016). 

4. Discussion 

4.1. Sensitivity of drought to climatic variables 

The sensitivity of the SPEI drought index to the meteorological 
variables was analyzed based on standardized regression coefficients 
calculated using the “sensitivity” package in R. The greater the absolute 
value of the coefficient, the greater the influence of the corresponding 
variable on the change of the SPEI. For each station on the SNP, we 
calculated the sensitivity coefficients of the SPEI to the variables T, P, R, 
and U2, both before and after detrending. The probability density 
functions (PDFs) of these sensitivity coefficients at different timescales 
are shown in Fig. 11. 

It can be seen that both T and P show larger absolute values of the 
sensitivity coefficients in comparison with those of the other climatic 
variables, indicating that for the same degree change, T and P have 
larger effect on drought evolution over the SNP. On average, P has 
positive effect on the SPEI, whereas T, R, and U2 have negative effects on 
the SPEI. However, from the spatial perspective, T, R, and U2 have both 
negative and positive effects on the SPEI (Figs. S1-S6). This suggests that 
under the comprehensive influence of multiple variables, the effect of a 
single variable on drought is uncertain. For instance, P has positive ef
fect on the SPEI in the SNP region in different seasons and on the annual 
timescale, indicating the crucial impact of precipitation on drought. 
Both R and U2 have smaller negative effects on the SPEI during summer, 
the growing season, and on the annual timescale. Therefore, significant 
decreases in Sd and U2 (Table 1) lead to an increase of the SPEI (Fig. 6). 
However, in spring (Fig. 11a and S1), autumn (Fig. 11c and S3), and 
winter (Fig. 11d and S4) positive effects of R and U2 on the SPEI are 
detected at a few stations. For T, most stations show negative effects on 
drought at different timescales, although small positive effects are 
evident at a few stations (Figs. S1-S6). 

By detrending the nonlinear trend of the meteorological variables, 
we found that the shapes of the PDFs of the sensitivity coefficients (red 
lines in Fig. 11) are changed. In comparison with the observed situation 
(blue lines in Fig. 11), the PDFs of the sensitivity coefficients of T, R, and 
U2 are changed toward the right in most seasons, whereas the PDF of the 
sensitivity coefficient of precipitation is moved toward the left. This 
means that the sensitivity coefficients of the absolute values of drought 
to the detrended variables are mostly lower than to the observed vari
ables, indicating that global climate change affects the sensitivity of 
drought to the climatic variables both temporally and spatially. 

Fig. 12. The PDFs of the SPEI for different climatic variables at different gradients at the annual timescale.  
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4.2. Relationship between drought patterns and climatic variables 

Taking the entire dataset together, the distribution of the SPEI is 
theoretically a normal distribution with a mean value of 0 and standard 
deviation of 1, which means that in a randomly changing climate sys
tem, the probability of drought (such as SPEI < 0) is relatively stable. 
However, this stability will be broken if a certain trend exists within the 
system, e.g., global climate change. The PDFs of the SPEI for the 
different variables in three gradients at different timescales are shown in 
Fig. 12 and S7–S11. Taking the annual timescale as an example, it can be 
seen that there is no overall decrease of the SPEI with an increase of the 
gradient △T = 6 ℃ in average annual temperature. When T is increased 
from [T0, T0 + △T) to the range of [T0 + △T, T0 + 2△T), the drought 
index shifts into the negative scope and the shape of the PDF becomes 
much sharper. However, when the temperature is increased from [T0, 
T0 + △T) to [T0 + 2△T, T0 + 3△T), the drought index shifts toward 
the positive direction and the shape of PDF becomes flatter. This is most 
likely explained by interaction among the climatic variables. For 
example, previous research has indicated that water vapor would be 
increased by 6–7% globally if the temperature were to increase by 1 K 
(Held and Soden, 2006; Trenberth et al., 2014), while the rate of in
crease of precipitation would be almost 1–2%/K (Morice et al., 2012; 
O’Gorman et al., 2012). Wu and Chen (2019) also indicated that 
increasing temperature over the Pearl River Basin would not only in
crease the trends of drought duration and severity, but also enhance the 
trends of wetting duration and severity. Precipitation plays a decisive 
role in drought mitigation. It can be seen from Fig. 12b that when annual 
precipitation increases successively with a gradient of △P = 280 mm, 
the PDF of the SPEI gradually moves toward the positive direction. As for 
R and U2, there is consistent movement of the PDF of the SPEI in the 
negative direction with an increase in the gradient of △R = 295 MJ/m2 

and △U2 = 1 m/s, respectively (Fig. 12c and 12d). 
Seasonally, climatic variables differ widely in their range (Table 3) 

and therefore differences in the effects of the climatic variables on the 
PDFs of the SPEI are evident. With an increase of temperature, the SPEI 
generally decreases on seasonal timescales (Figs. S7–S11). An increase of 
spring P has considerable effect on drought relief over the SNP. The 
increase of net radiation at the seasonal scale makes the SPEI more 
concentrated, but the position of the PDF does not move substantially. 
Conversely, an increase in U2 causes the position of the PDF to move in 
the negative direction during each of the four seasons and in the growing 
season. 

Not only is there a gradual increase or decrease of the SPEI value 
with the changes of the climatic variables, but there is also a shift in the 
probability of whether drought conditions occur. It can be inferred that 
the distribution of drought results from dynamic interplay among the 
climatic variables on different timescales. 

4.3. Other factors affecting drought 

Drought is associated directly with water deficit and related indi
rectly to the atmospheric circulation and anthropogenic activities (Lin 
et al., 2018). For instance, Zhang et al. (2018b) indicated that when EI 
Niño strengthened, moisture conditions generally improved over the 
northern SNP, whereas La Niña events decreased the regional water 

availability. Li et al. (2015) highlighted that certain climate patterns 
(including the El Niño–Southern Oscillation, Atlantic Oscillation, 
Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Pacific 
Decadal Oscillation) have strong associations with precipitation obser
vations. These teleconnection factors not only affect meteorological 
drought but they are also significantly associated with socioeconomic 
drought (Guo et al., 2019a). Anthropogenic activities can also have 
major influence on drought evolution. For example, with further in
crease in greenhouse gas emissions, surface net radiation will increase in 
most areas by inhibiting longwave cooling (Cook et al., 2014). Chen 
et al. (2011a) suggested that the effects of urbanization could affect the 
variation of temperature, precipitation, and relative humidity. Changes 
in sunshine duration, atmospheric aerosol concentrations, and land use/ 
land cover can result in decreased surface solar radiation (Qian, 2016; 
Feng et al., 2019), which can lead to reduction of PET. Interaction be
tween climate systems and human activities such as land greening and 
urbanization can contribute to the reduction of surface wind speed 
(Zhao et al., 2016; Zhang et al., 2019c), which can indirectly affect the 
dynamic factors associated with water evaporation. 

4.4. Limitations 

The contribution of each climatic variable to drought evolution was 
separated in this study by setting different numerical experiments using 
detrended variables. Although this is a recognized approach for syn
thetic analysis of one observed variable at a time, detrending does 
interfere with the complex correlation among climatic variables. Gen
eral circulation models can simulate various climatic variables in 
different scenarios under the premise of considering the interaction 
between the land surface, atmosphere, ocean, and other modules. 
Therefore, future research could focus on using simulation data to 
analyze the contributions of different factors to drought evolution on 
larger spatial scale. 

5. Conclusions 

The spatial and temporal characteristics of the trend of drought at 21 
stations distributed across the SNP were analyzed on different timescales 
using site observations acquired during the previous five decades. Re
sults suggest that annual drought over the SNP has presented a trend of 
mitigation with three of the stations showing a significant increasing 
trend of the SPEI at the 0.05 confidence level. All stations had positive 
trends of the SPEI in spring and winter with the trend at 14 and 11 
stations, respectively, significant at the 0.05 confidence level. However, 
the trends of the SPEI were inconsistent spatially over the SNP in sum
mer and autumn. Generally, it is likely that the SNP experienced wetting 
and warming climatic conditions during 1961–2016. 

To investigate the relative contributions of different climatic vari
ables with significant change to the drought mitigation tendency, we 
designed a series of SPEI-based numerical experiments: a baseline case 
without significant climate change, a current case with all observed 
data, and four separate cases that maintained the individual trend in one 
meteorological variable. Temperature over the SNP was found to have 
increased significantly, and the rate of change of increase aggravated the 
drought tendency at all timescales, i.e., the contribution was − 21.2%, 
− 30.6%, − 25.6%, − 26.2%, − 31.7%, and − 27.8% in spring, summer, 
autumn, winter, the growing season, and on the annual timescale, 
respectively. However, with the comprehensive impacts of other cli
matic variables, the drought condition of the SNP was mitigated slightly 
in comparison with the numerical experiment in which all four climatic 
variables (T, P, R, U2) were free of nonlinear trends. Comparatively, the 
contribution of the decreasing trend in U2 to the positive trend of the 
SPEI was larger than that of net radiation, i.e., 7.2%, 30.6%, 5.2%, 1.8%, 
18.1%, and 13.2% for R and 49.2%, 32.8%, 48.6%, 31.7%, 45.6%, and 
44.0% for U2 in spring, summer, autumn, winter, the growing season, 
and on the annual timescale, respectively. The dominant effect of the 

Table 3 
Range of climatic variables over the SNP.  

Timescale Tave(℃) P(mm) R(MJ/m2) U2(m/s) 

Spring 0–16.5 0–276 690–966 0–5.7 
Summer 17–27.5 80–735 877–1300 0–4 
Autumn − 1–15 6–291 278–491 1–4.5 
Winter − 26–1 0–55 5–200 0–5 
Growing season 12–24 105–870 1600–2275 1–5 
Annual − 2–16 120–960 1990–2885 1–4  
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change in precipitation on the SPEI trend varied with season and region. 
In summer and autumn, the trend of precipitation led to a decrease in the 
SPEI trend of 3.3% and 8.3%, respectively, which was concentrated in 
areas of the SNP south of 46◦N. In spring and winter, the SPEI trend at 
almost all stations was increased by 19.5% and 33.9%, respectively, 
indicating that the change of P in winter and spring plays a major role in 
driving the mitigation of annual drought in the SNP region. 
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