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missibility
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• Absolute humidity, a stronger predictor
can explain up to 15% of variance in
transmissibility.
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Background: Influenza epidemics occur duringwinter in temperate zones, but have less regular seasonality in the
subtropics and tropics. Here we quantified the role of environmental drivers of influenza seasonality in temper-
ate and subtropical China.
Methods:Weusedweekly surveillance data on influenza virus activity inmainland China and Hong Kong from 2005
through 2016. We estimated the transmissibility via the instantaneous reproduction number (Rt), a real-time mea-
sure of transmissibility, and examined its relationship with different climactic drivers and allowed for the timing of
school holidays and the decline in susceptibility in the population as an epidemic progressed. We developed a mul-
tivariable regression model for Rt to quantify the contribution of various potential environmental drivers of
transmission.
Findings:We found that absolute humidity is a potential driver of influenza seasonality and had a U-shaped associa-
tion with transmissibility and hence can predict the pattern of influenza virus transmission across different climate
zones. Absolute humidity was able to explain up to 15% of the variance in Rt, and was a stronger predictor of Rt
across the latitudes. Other climatic drivers including mean daily temperature explained up to 13% of variance in Rt
and limited to the locations where the indoor measures of these factors have better indicators of outdoor
measures. The non-climatic driver, holiday-related school closures could explain up to 7% of variance in Rt.
Interpretation: A U-shaped association of absolute humidity with influenza transmissibility was able to predict sea-
sonal patterns of influenza virus epidemics in temperate and subtropical locations.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In temperate regions influenza virus epidemics occur annually in
winter months (Tamerius et al., 2011), while seasonality is more vari-
able in tropical and subtropical locations often with multiple epidemic
peaks were seen each year (Azziz Baumgartner et al., 2012; Tamerius
et al., 2011; Tan et al., 2014; Yang et al., 2008). For example, the influ-
enza epidemics in Hong Kong tend to occur in winter months of
December–March and summer months of May–September (Chong
et al., 2015; Cowling et al., 2006; Lau et al., 2008;Wuet al., 2012). An im-
portant factor affecting seasonal influenza transmission is population
immunity (Earn et al., 2002; Xia et al., 2005), which gradually increases
as epidemic progresses and is one of the main reasons an epidemic
eventually comes to an end (Dowell, 2001; Lipsitch and Viboud, 2009;
Lofgren et al., 2007; Tamerius et al., 2011). Climatic factors are also
thought to play a role in the seasonality of influenza epidemics. Temper-
ature andhumidity have both been shown tohave direct effects on virus
survival (Lowen and Steel, 2014; Lowen et al., 2007; Shaman and Kohn,
2009; Tamerius et al., 2013; te Beest et al., 2013a). In addition, there is
greater indoor crowding in thewinter (Lofgren et al., 2007), and poten-
tial changes in host immunity at different times of the year, able to drive
the influenza seasonality (Dowell, 2001; Lipsitch and Viboud, 2009;
Lofgren et al., 2007; Tamerius et al., 2011).

Studying patterns in influenza activity in different locations provides
an opportunity to examine potential climatic drivers of influenza trans-
mission and seasonality. The time-varying transmissibility of influenza
can be characterized by the instantaneous (or effective) reproduction
number, Rt, defined as the average number of secondary infections
caused by a typical single infectious individual at time t. In this study,
we analyzed surveillance data on influenza virus activity in 8 locations
in mainland China plus Hong Kong during the period from Oct 2005
through Apr 2016, using regression models to quantify the influence
of various factors on time-varying transmissibility measured by Rt. The
objective of our study was to identify the potential climatic drivers of
influenza transmission in these locations, and to quantify their
influence on the influenza seasonality in temperate and subtropical
locations.

2. Materials and methods

2.1. Influenza surveillance data

We collected the weekly proportion of outpatient consultations due
to influenza like illness (ILI) and theweekly proportion of sentinel spec-
imens tested positive for influenza viruses in Hong Kong and mainland
China from 3October 2005 through 3 April 2016. The ILI data in selected
provinces and municipalities in mainland China were retrieved from a
previously published study (Feng et al., 2020) while the data in Hong
Kong were obtained from the Centre for Health Protection of the Hong
Kong Special Administrative Region based on the influenza sentinel sur-
veillance network.

Weobtained a proxymeasures of influenza virus activity in the com-
munity, referred to as ILI+ rates, by multiplying together the ILI rates
with the proportions of influenza-positive specimens (Goldstein et al.,
2011). This time series should be a reasonable linear correlate of the in-
cidence rate of infections in the community, and it was previously
shown that there was a very close correlation between this measure
and laboratory confirmed H1N1pdm09 hospitalizations in Hong Kong
in 2009–10 (Wong et al., 2013). Finally, we multiplied the weekly
ILI+ rates by a constant, representing the inverse of the estimated
coverage of the sentinel sites in these locations, and rounded to the
nearest integer to obtain a time series of weekly ILI+ counts. We
used the constant to scale up the ILI+ counts to values consistent
with the expected incidence rates of infections in the population
(Ali et al., 2018a; Ali et al., 2018b; Ryu et al., 2020; Wong et al.,
2013; Wu et al., 2017).
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We restricted our analysis to 8 Chinese provinces andmunicipalities
plus Hong Kong (Fig. 1). We have selected these locations based on the
geographical diversity and availability of influenza surveillance data
across the study period. Given their geoclimatic characteristics, Beijing,
Tianjin and Gansu were classified as temperate locations at higher lati-
tudes, Shanghai, Zhejiang, and Hubei as temperate locations at medium
latitudes, and Jiangxi, Guangdong and Hong Kong as subtropical loca-
tions at lower latitudes.

We defined influenza epidemics as periods of at least seven or more
consecutive weeks during which an epidemic threshold was exceeded.
The epidemic threshold was determined as the 50th percentile of all
the non-zero weekly ILI+ counts over the study period (Fig. 2) (Ali
et al., 2018a; Yang et al., 2015). We interpolated the cumulative weekly
ILI+ counts data to obtain the daily ILI+ cumulative counts using spline
functions andfinally evaluated the daily ILI+ count data, as themeasure
of transmissibility is defined by the daily number of cases accounting for
themean infectious period (less than a week for influenza) of the infec-
tors (Ali et al., 2018a; Ali et al., 2018b; Ryu et al., 2020; te Beest et al.,
2013b).

2.2. Meteorological data

Daily meteorological drivers including mean air pressure, mean rel-
ative humidity, mean air temperature were retrieved for the period
2005 through 2016 from the China Meteorological Administration and
the Hong Kong Observatory. We derived the daily mean absolute hu-
midity from the mean relative humidity and mean temperature (Wu
et al., 2012), and then obtained theweekly absolute humidity as the ar-
ithmetic mean of the daily absolute humidity in that week. We also re-
trieved mean hour-sunshine, mean wind speed and direction of
maximum wind speed for the locations in mainland China and mean
cloud cover, mean dew point, and mean rainfall for Hong Kong.

2.3. School holiday data

We retrieved the information on holiday-related school closures in
each location studied, including the Chinese New Year holidays, the
winter holidays, the summer holidays and the public holidays (national
and provincial level) throughout our study period. Along with these
regular school holidays we also included the dates of additional school
closures during the 2008 influenza epidemic (Cowling et al., 2008)
and the 2009 influenza pandemic (Wu et al., 2010), in Hong Kong in
our analysis.

2.4. Estimation of the daily instantaneous reproduction number, Rt

Transmissibility can bemeasured by the instantaneous reproduction
number (Rt), defined as the average number of secondary infections
caused by a typical single infectious person at time t. We estimated Rt
from daily ILI+ counts using a simple branching process model (Cori
et al., 2013). We assumed the serial interval for influenza followed a
Gamma distribution with a mean of 2.6 days and a standard deviation
of 1.5 days (Cauchemez et al., 2009).

2.5. Exploratory data analysis with Rt

We assessed the best-fitting functional forms for the association be-
tween Rt and each meteorological driver for each location by fitting
linear, exponential and power forms of univariate regression models
with lags of 0 to 14 days to account for reporting delays (Ali et al.,
2018a; te Beest et al., 2013b). The significant drivers with their best-
fitted functional form were selected based on the Akaike Information
Criterion (AIC) rule for K-L (Kullback-Leibler) best model by evaluating
AIC difference △i = △ AICi = AICi − AICmin, where, i= linear,
exponential and power forms of association and AICmin =
min (AICLinear,AICExponential,AICPower) (Ali et al., 2018a). Further, we used



Fig. 1. The map indicating the locations studied in mainland China and Hong Kong. The colour indicates the latitude: high-latitude (in red), mid-latitude (in blue), and low-latitude (in
black). The latitude of each location was recorded as the latitude of the corresponding provincial capitals. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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combined data of all locations together to establish the generalmodel of
association between Rt and meteorological drivers and predicted the
influenza circulation patterns as either single or double peaks in the
study years in these locations. To assess whether these associations
were due to chance, we performed permutation analysis on these
regression models with 1000 dummy or null scenarios and compared
the results with one true time series.

2.6. Multivariable regression analysis with Rt

We used a multivariable log-linear regression model incorporating
depletion of susceptibles over time and inter-epidemic effects in basic
model first as described in the Appendix. We then fitted improved
models including the significant meteorological drivers. We quantified
the impact of individual drivers by comparing R-square (R2) values for
the basic and improved models. We evaluated R2 values by using the
best lag (i.e. the lag for which the model has the largest R2 value) and
a distributed lag model (DLM, through the dlnm package in R), where
the latter summarizes the overall effect distributed over multiple days
instead of just reporting the results with the single best lag. This distrib-
utedmodeling framework similarly accounts the likelihood of infections
in previous days (at least a mean generation time) to measure of trans-
missibility Rt. We considered data from maximum of 6 weeks (5 to
7 weeks for sensitivity analyses) either sides of the peak in the
multivariable regression models to avoid the effects of the low and
irregular reporting during the very beginning and end of each epidemic.

2.7. Analysis with adjusted Rt

In theory, Rt is driven by depletion of susceptibles and tends to
gradually decrease as an epidemic progress. We evaluated the
adjusted Rt by eliminating the effect of depletion of susceptibles from
Rt. As explained in the Appendix, we first fitted a simple model
including only depletion of susceptibles to the estimated Rt for each
epidemic separately, and evaluated the adjusted Rt as the residual of
the fit. This measure of adjusted Rt is controlled for the effects of
3

depletion of susceptibles and driven by the inter-epidemic effects and
the possible extrinsic drivers. We then performed the above regression
analyses on adjusted Rt.

3. Results

The time series of ILI+ counts for Hong Kong and different locations
in mainland China are shown in Fig. 2 for the period from 3 October
2005 through 3 April 2016. We identified 10 distinct influenza epi-
demics for Beijing, 11 for Tianjin, 10 for Gansu, 13 for Shanghai, 14 for
Zhejiang, 13 for Hubei, 13 for Jiangxi, 10 for Guangdong, 11 for Hong
Kong with different lengths and patterns (single or double peaks),
which covered an average of 78% of the total study period.

We quantified the transmissibility (Rt) for influenza during these
epidemics for each location. The median values of Rt across all
epidemics for these locations ranged between 1.02 (95% CrI: 0.51,
1.56) and 1.07 (95% CrI: 0.60, 1.67), with maximum values ranged
between 2.18 (95% CrI: 1.02, 4.39) and 2.52 (95% CrI: 1.13, 4.79) at the
start of an epidemic and the minimum values ranged between 0.35
(95% CrI: 0.22, 0.59) and 0.43 (95% CrI: 0.29, 0.67) at the end of
epidemics.

We explored the association between influenza transmissibility, as
measured by Rt and each factor with lagged values of 0–14 days for
each location. The estimated AIC differences (△i) indicated that the
exponential and power form of non-linear association better repre-
sented the effect of the meteorological drivers on influenza transmissi-
bility (Table S5). In some locations including Hong Kong, Hubei, and
Zhejiang the absolute humidity indicated exponential formswere better
over power forms. Themean air pressure,mean relative humidity,mean
temperature and mean absolute humidity are found to be significant
drivers across the locations. These significant drivers were included in
further analysis.

The analysis of general model using combined data suggested abso-
lute humidity as a significant driver of influenza transmission. The U-
shaped form of this general model for the locations studied indicates
the influenza transmissibility is higher during periods with low or



Fig. 2.Weekly influenza activity as ILI + counts (black lines) alongwith the predefined epidemics (grey shaded area) in 8 different locations inmainland China plus Hong Kong from Oct
2005 through Apr 2016.
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high ambient absolute humidity, but lower with moderate humidity
(Fig. 3a and b). The permutation analysis on the 1000 null/dummy
time series of absolute humidity was able to explain substantially less
variance in transmissibility compared to the observed true time series
(Fig. 3c). We noticed the variation by latitude in prediction of the trans-
missibility and the pattern of influenza virus circulation (reflecting sin-
gle and multiple peaks) over the periods based on ambient absolute
humidity (Fig. 4).
4

In multivariable regression analysis of Rt stratified by location, the
models could explain 24% - 52% of the observed variation in estimated
reproduction numbers (Rt). A considerable fraction of the observed var-
iance (14%–43%) in Rt was explained by the basic model including
depletion of susceptibles and inter-epidemic effects (Table 1). Inclusion
of the meteorological drivers in the multivariable regression model im-
proved the model fit (R2) marginally, explaining up to 5% -17% of the
variance in Rt across the locations studied (Table 1). Similar results



Fig. 3. (a) The predicted general U-shaped form (black line) with 95% CI (shaded region) of association for absolute humidity on influenza transmissibility; (b) violin plot of combined
absolute humidity across all the 9 locations. (c) Percentage of the variance of the instantaneous reproduction number (Rt) explained by 1000 null/dummy time series (respective
boxplot) and a true time series (bold red dots) of absolute humidity in permutation test. The true time series of ambient absolute humidity is explaining significantly larger variance in
Rt compare to that of by null/dummy time series of absolute humidity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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were noted for the analysis on Rt adjusted for depletion of susceptible
(Table 1, S6 and S7). Compared with the best lag models, the
distributed lag models explained higher variation in transmissibility
by these drivers (Table 1, S6 and S7). In a sensitivity analysis,
inclusion of data from 5 to 7 weeks at either side of the epidemic peak
led to similar findings (Table 1, S6).

4. Discussion

We assessed the influenza transmissibility in 8 geographically di-
verse locations in mainland China along with Hong Kong (Fig. 1). The
inter-location (by latitude) differences in average ambient temperature,
humidity (relative and absolute) and population sizes were clearly no-
ticeable across the last 3 decades (Tables S1–S4). Within each location
the annual averages of thesemeteorological drivers weremuch compa-
rable (Tables S1–S3) but the variations in daily/weekly measures were
evident (Fig. 1). We used the time series of influenza surveillance data
during October 2005 through April 2016, to understand the transmis-
sion dynamics and driving factors of influenza seasonality accounting
for geographical diversity in climate. Influenza often caused regular
winter epidemics in temperate regions such as Europe and North
America (Lau et al., 2008; Tamerius et al., 2013; Tang et al., 2010), but
showed less regular seasonality in tropical and subtropical regions
(Tamerius et al., 2011; Tamerius et al., 2013). Influenza circulated
throughout the year in subtropical locations andwas not limited towin-
ter periods (Fig. 2). Change in depletion of susceptibles is one of the key
drivers affecting the transmissibility of influenza virus during an epi-
demic, while other extrinsic drivers might have further contribution to
changes in transmissibility. Small changes in transmissibility associated
with these seasonal climatic drivers could lead to large oscillations in in-
cidence of influenza (Dushoff et al., 2004).

We analyzed in total 105 epidemics during the study period, The
range of transmissibility (Rt) for these epidemics was found to be
fairly consistent across the locations and very similar to the earlier
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estimates in mainland China, Hong Kong (Cowling et al., 2010; Wu
et al., 2010) and elsewhere (Boelle et al., 2011). Our univariate regres-
sion analysis revealed that ambient absolute humidity had a non-
linear relationship on the transmissibility across the locations studied.
We noticed the lower AIC values for non-linear models of these driving
factors (SI Appendix, Table S5). There was a negative association (the
left-hand side of the U-shaped form of association) between transmissi-
bility and absolute humidity in high-latitude locations (e.g. Beijing,
Tianjin and Gansu), whereas in low-latitude (e.g. Hong Kong,
Guangdong and Jiangxi) and mid-latitude (e.g. Shanghai, Hubei and
Zhenjiang) locationswe found a U-shaped association as the best fitting
models of the absolute humidity on transmissibility. This form of associ-
ation of absolute humidity with transmissibility could predict the influ-
enza transmission in these location by capturing the single winter
season in high-latitude locations and multiple seasons in low-latitude
and mid-latitude locations (Fig. 4).

Ambient temperature and humiditywere reported to have potential
role in modulating the viability and stability of respiratory viruses in-
cluding influenza by affecting the properties of viral surface proteins
and lipid membrane and proportion of droplet nuclei (Marr et al.,
2019; Shaman and Kohn, 2009). In animal transmission studies, at equi-
librium state, the high (>60%) as well as low (<40%) relative humidity
were found to improve the viability of influenza viruses in droplets
compared with intermediate relative humidity (40% to 60%) under
which viruses were more quickly inactivated (Lowen and Palese,
2009; Lowen et al., 2007; Lowen et al., 2008; Moriyama et al., 2020).
Whereas, viral stability found to be a good correlate with low relative
humidity (20% to 50%) during winter and higher relative humidity
(80%) during summer (Harper, 1961; Moriyama et al., 2020). In an an-
alytical chemical study, the low-temperature was found to promote
the ordering of lipids on the viral membrane and contributed to the sta-
bility of the influenza virus particles (Polozov et al., 2008). In a recent
animal study, severalmechanismswere explored to quantify the impact
of low humidity in host immunity and susceptibility. Mucociliary



Fig. 4. Absolute humidity driven prediction of transmissibility of influenza in different locations. (a-c) The violin plots of absolute humidity for respective 9 locations: (a) for three high-
latitude locations (Beijing, Tianjin and Gansu), (b) for three mid-latitude locations (Shanghai, Hubei and, Zhenjiang), and (c) for low-latitude locations (Jiangxi, Guangdong, and Hong
Kong). (d–l) The absolute humidity driven prediction of yearly transmissibility (each year predictions in grey lines and average yearly predictions in bold lines) for the respective
locations; summer seasons are indicated by shaded regions of light violet colour. For high-latitude locations the model could predict the sole winter epidemics, while in mid and low
latitude locations model could mimic both winter and summer epidemics with comparatively prominent transmission during summer in low-latitude locations. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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clearance and airway tissue repair mechanisms could severely impaired
at low humidity, and dry air exposure could reduce global ISG expres-
sions following intranasal influenza virus infection (Kudo et al., 2019).
On the other hand, the studies suggested that the indoor temperature
could affect the adaptive immune responses in host in general (Eng
et al., 2015; Kokolus et al., 2013). A high ambient temperature could
weaken the virus-specific adaptive immunity following influenza virus
infection possibly reflecting the summer epidemics occurred in some
places (Moriyama and Ichinohe, 2019).
6

A study in 1960 reported indoor relative humidity as an important en-
vironmental factor for virus survival in aerosols and could explain the sea-
sonality of influenza virus (Hemmes et al., 1960). A more recent study
explored how relative humidity was more likely than absolute humidity
to modulate influenza virus survival and transmissibility (Marr et al.,
2019). Based on the physical and chemical characteristics of droplets
and survival mechanism of the virus, outdoor absolute humidity was
found to be a comparable proxy for indoor relative humidity in temperate
regions during wintertime heating seasons (Marr et al., 2019). In



Table 1
Percentage of the variance of the instantaneous reproduction number (Rt) explained by the meteorological drivers, from models on pre-defined influenza epidemics with a maximum
duration of 6 weeks (in brackets the range of the estimates based on 5–7 weeks) to both side of peaks for epidemics in respective locations from Oct 2005 through Apr 2016. The
results based on the distributed lag model (DLM) with lags of 0–2 weeks.

Locations Models With unadjusted Rt With adjusted Rt

R2 %ΔR2 df R2 %ΔR2 df

Beijing Basic Modela 0.19 (0.14, 0.19) – 119 (102, 138) 0.06 (0.05, 0.07) – 129 (112, 148)
Abs. humidityb 0.23 (0.16, 0.23) 4 (2, 5) 113 (96, 132) 0.16 (0.13, 0.31) 10 (8, 24) 123 (106, 142)
School holidaysb 0.21 (0.16, 0.17) 2 (1, 2) 113 (96, 132) 0.07 (0.05, 0.07) 1 (0, 1) 123 (106, 142)
All driversc 0.24 (0.22, 0.28) 5 (4, 13) 107 (90, 108) 0.16 (0.15, 0.35) 10 (9, 30) 117 (100, 118)

Tianjin Basic Modela 0.43 (0.33, 0.46) – 114 (99, 130) 0.05 (0.05, 0.06) – 125 (110, 141)
Abs. humidityb 0.50 (0.39, 0.53) 7 (6, 7) 108 (93, 124) 0.09 (0.08, 0.13) 4 (3, 8) 119 (104, 135)
School holidaysb 0.45 (0.35, 0.49) 2 (2,3) 108 (93, 124) 0.11 (0.07, 0.14) 6 (1, 9) 119 (104, 135)
All driversc 0.52 (0.42, 0.56) 9 (9, 10) 102 (87, 118) 0.15 (0.11, 0.21) 10 (6, 15) 113 (98, 129)

Gansu Basic Modela 0.29 (0.25, 0.31) – 107 (89, 122) 0.06 (0.05, 0.07) – 117 (99, 132)
Abs. humidityb 0.35 (0.32, 0.37) 6 (6,7) 101 (83, 116) 0.11 (0.09, 0.11) 5 (4, 5) 111 (93, 126)
School holidaysb 0.36 (0.35, 0.38) 7 (7, 10) 101 (83, 116) 0.16 (0.15, 0.22) 11 (11, 15) 111 (93, 126)
All driversc 0.41 (0.41, 0.45) 12 (12, 15) 95 (77, 110) 0.21 (0.20, 0.26) 16 (15, 19) 105 (87, 120)

Shanghai Basic Modela 0.34 (0.33, 0.34) – 183 (165, 202) 0.02 (0.02, 0.02) – 196 (178, 215)
Abs. humidityb 0.41 (0.41, 0.42) 7 (7, 9) 177 (159, 196) 0.05 (0.05, 0.07) 3 (3, 4) 190 (172, 209)
School holidaysb 0.35 (0.35, 0.36) 1 (1, 3) 177 (159, 196) 0.05 (0.05, 0.08) 3 (3, 5) 190 (172, 209)
All driversc 0.42 (0.42, 0.54) 8 (8, 20) 171 (135, 190) 0.11 (0.10, 0.22) 9 (8, 19) 184 (148, 203)

Zhejiang Basic Modela 0.38 (0.38, 0.41) – 153 (138, 177) 0.08 (0.07, 0.08) – 167 (152, 191)
Abs. humidityb 0.44 (0.44, 0.51) 6 (6, 9) 147 (132, 171) 0.15 (0.13, 0.15) 7 (5, 7) 161 (146, 185)
School holidaysb 0.41 (0.41, 0.45) 3 (2, 4) 147 (132, 171) 0.10 (0.09, 0.10) 1 (0, 1) 161 (146, 185)
All driversc 0.47 (0.44, 0.55) 10 (8, 14) 141 (126, 165) 0.17 (0.14, 0.17) 8 (7, 8) 155 (140, 179)

Hubei Basic Modela 0.31 (0.26, 0.31) – 194 (174, 213) 0.02 (0.02, 0.08) – 207 (152, 226)
Abs. humidityb 0.36 (0.28, 0.36) 5 (2, 5) 188 (168, 207) 0.04 (0.04, 0.15) 2 (2, 7) 201 (146, 220)
School holidaysb 0.34 (0.29, 0.34) 3 (3, 4) 188 (168, 207) 0.05 (0.05, 0.09) 3 (1, 3) 201 (146, 220)
All driversc 0.40 (0.32, 0.40) 9 (6, 10) 182 (162, 201) 0.13 (0.12, 0.14) 10 (10, 11) 195 (175, 214)

Guangdong Basic Modela 0.23 (0.16, 0.23) – 199 (180, 216) 0.05 (0.02, 0.05) – 209 (190, 226)
Abs. humidityb 0.27 (0.20, 0.27) 4 (3, 4) 193 (174, 214) 0.06 (0.04, 0.06) 1 (1, 2) 203 (184, 220)
School holidaysb 0.24 (0.17, 0.24) 1 (0, 1) 193 (174, 214) 0.08 (0.03, 0.08) 3 (0, 3) 203 (184, 220)
All driversc 0.28 (0.21, 0.28) 5 (4, 5) 187 (168, 212) 0.10 (0.05, 0.10) 5 (2, 5) 197 (178, 214)

Jiangxi Basic Modela 0.14 (0.14, 0.15) – 218 (201, 236) 0.06 (0.06, 0.07) – 231 (214, 249)
Abs. humidityb 0.18 (0.18, 0.19) 4 (3, 4) 211 (194, 229) 0.09 (0.08, 0.09) 3 (2, 3) 224 (207, 242)
School holidaysb 0.19 (0.18, 0.20) 5 (4, 5) 212 (194, 229) 0.16 (0.16, 0.18) 10 (10, 11) 225 (208, 243)
All driversc 0.24 (0.21, 0.25) 10 (7, 10) 205 (187, 222) 0.20 (0.19, 0.22) 14 (14, 15) 218 (201, 236)

Hong Kong Basic Modela 0.35 (0.33, 0.36) – 209 (188, 299) 0.02 (0.2, 0.2) – 220 (199, 240)
Abs. humidityb 0.50 (0.48, 0.51) 15 (12, 18) 203 (182, 223) 0.08 (0.08, 0.09) 6 (6, 7) 214 (193, 234)
School holidaysb 0.37 (0.35, 0.38) 2 (2, 3) 203 (182, 223) 0.07 (0.07, 0.08) 5 (5, 6) 214 (193, 234)
All driversc 0.52 (0.49, 0.53) 17 (14, 20) 197 (176, 217) 0.12 (0.12, 0.14) 10 (10, 12) 208 (187, 228)

R2 and df are measures of R-square and degree of freedom from themultivariable regression model respectively. %ΔR2 measured the change in the explained variance (of total variance)
from the model in comparison to the basic model. i.e. %ΔR2 = (Rimproved models

2 − Rbasic model
2 ) × 100.

a Basic Model: factors affecting Rt (or adjusted Rt) include depletion of susceptibles, and/or inter-epidemic factors.
b Improved models include the basic model for Rt plus the respective drivers.
c Improved model includes the drivers: mean absolute humidity and school holiday (statistically significant and free from multicollinearity).
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recent decades, studies suggested that the outdoor absolute humidity as a
potential driver of influenza transmission could modulate influenza virus
survival and hence influenza transmission and seasonality across the lat-
itudes (Deyle et al., 2016; McDevitt et al., 2010; Shaman and Kohn, 2009;
Shaman et al., 2010). Our general model for absolute humidity on trans-
missibility supports previous laboratory experiments on temperate and
global influenza transmission (Dalziel et al., 2018; Shaman and Kohn,
2009; Shaman et al., 2011; Tamerius et al., 2013) where the virus surviv-
ability increased during low (0–12 g/m3 in temperate and tropical cli-
mates) and high levels (18–24 g/m3 in tropical climates) of ambient
absolute humidity (Shaman and Kohn, 2009; te Beest et al., 2013a;
Prussin et al., 2018; Shaman et al., 2011).While most transmissions likely
occur indoors, but indoor and outdoor temperatures correlatewell only at
warmer outdoor temperatures. The outdoor relative humidity is a poor
indicator of indoor relative humidity, whereas indoor absolute humidity
has a strong correlation with outdoor absolute humidity year-round
(Nguyen et al., 2014). Further, outdoor ambient absolute humidity is
likely to be a good correlate with indoor relative humidity that affects
virus survival (Marr et al., 2019). Moreover, the indoor measures of
these drivers are not consistent even in same location and often not
readily available, therefore, we restricted our main analysis with outdoor
absolute humidity.

In the multivariable regression analysis with Rt, we found that a
substantial amount of observed variance in estimated transmissibility
7

(Rt) was explained by the inclusion of external factors including
school holidays and climatic factors (Table 1). School holidays were
also associated with reductions in transmissibility, consistent with a
wealth of literature on the importance of children in influenza
transmission and the impact of school holidays and closures (Ali et al.,
2018b; Cowling et al., 2008; Wu et al., 2010; Cauchemez et al., 2008).
Mechanistically, mean temperature could even potentially explain a
substantial part of the variance in Rt when indoor and outdoor
temperatures are well correlated, which is possibly true for summer in
high-latitude andwinter in lower-latitude locations.While absolute hu-
midity could explain a considerable variance in Rt for any locations in
general, the outdoor measures of absolute humidity were suggested to
be a good correlate of its indoor measures (Nguyen et al., 2014). These
results suggested that low absolute humidity (often determined by
low temperature and low relative humidity) might drive the winter
influenza circulation in temperate as well as sub-tropical locations,
and that high absolute humidity might play an important role in sum-
mer epidemics in subtropical and tropical locations.

A potential limitation of our study is thatwe inferred transmissibility
from aggregated surveillance data, and we were not able to assess the
possible effects of different age groups or more detailed social or demo-
graphic factors in transmission dynamics. Furthermore, we did not have
information on the specific influenza strains that circulated in these lo-
cations in different epidemics, which would have allowed more precise
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analyses particularly of population immunity since that would be
largely strain-specific. Finally, although the nine locations included in
our analysis, our findings represented a wide range of latitude and we
would not expect different observations in other parts of mainland
China, observations from other parts of the world would also be
valuable.

5. Conclusions

In conclusion, by using influenza transmissibility instead of reported
cases or incidence, we identified absolute humidity one of the potential
drivers of influenza seasonality in geographically diverse locations in
mainland China and Hong Kong. Other significant drivers included
mean air temperature, relative humidity, air pressure and school holi-
days. The U-shaped association between absolute humidity and influ-
enza transmissibility could contribute to a general model to predict
the annual (in temperate regions) and bi-annual (in subtropics and tro-
pics) circulation of influenza virus.
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