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ABSTRACT Forecasting has been an essential part of the power and energy industry. Researchers and prac-
titioners have contributed thousands of papers on forecasting electricity demand and prices, and renewable
generation (e.g., wind and solar power). This article offers a brief review of influential energy forecasting
papers; summarizes research trends; discusses importance of reproducible research and points out six valuable
open data sources; makes recommendations about publishing high-quality research papers; and offers an
outlook into the future of energy forecasting.

INDEX TERMS Energy forecasting, load forecasting, electricity price forecasting, wind forecasting, solar
forecasting

I. INTRODUCTION

FORECASTING is an integral part of business decision
processes. The energy industry relies on forecasters to

forecast load, generation, and prices, etc. These forecasts
are being used by all segments of the energy industry, for
planning and operations of both power systems and business
entities.

While energy forecasting could be interpreted as forecast-
ing kWh usage, we adopt a broader definition of energy
forecasting in this article, which is forecasting in energy
industry. Specifically, we focus on subjects around power
systems, including electricity demand and prices, and wind
and solar power generation. Although oil and gas forecasting
is also an important subdomain of energy forecasting, it is out
of the scope of this review.

One way to structure a review of a wide field is to dissect
the review by subdomain, dedicating each section to a subdo-
main of interest [1]. We, however, believe readers of this arti-
cle could have been better served by domain specific reviews,
of which some are highlighted in Section II. Considering
the energy forecasting problem as a whole, in this article,
we examine the common developments and concerns among
the subdomains, together with their connections and joints.
This article aims at offering a holistic view of the entire field

to promote collaborations among different research commu-
nities.

The rest of this article is organized as follows: Section II
presents a bird’s eye view of the literature, including high-
lighted review articles in each subdomain, as well as bib-
liometric analysis; Section III discusses several emerging
problems in the frontiers of energy forecasting research;
Section IV emphasizes the importance of reproducible
research to the advancement of the field, and introduces
six valuable data sources for researchers and practitioners;
Section V makes recommendations about publishing high
quality papers; Section VI concludes the paper with a look
back at a historical forecast and an outlook of future research
directions.

II. A BIRD’S EYE VIEW

Thousands of energy forecasting papers have been published
during the past few decades, including many influential
review articles and original research papers. In this section,
we highlight several worth-reading reviews in each specific
domain for interested readers to continue the exploration.
We also provide a brief bibliometric analysis of the recent
10 years.
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A. SELECTED REVIEWS
Long-term load forecasts have been used for planning pur-
poses for over a century [1]. Spatial load forecasting, which
offers when, where and how much electricity demand would
grow, was heavily used for transmission and distribution
planning in the late 20th century. The tutorial review by
Willis and Northcote-Green covered many spatial load fore-
casting methods at that time, of which some are still being
used in today’s industry [2]. As power companies started
to pursue operational excellence, short-term load forecasting
gradually attracted attention of researchers and practitioners.
The review article by Gross raised many practical issues in
the field in 1980s, of which many are still challenges to
today’s industry [3]. From 1990s to 2000s, load forecasters
tried many forecasting techniques, among which artificial
neural networks (ANN) were quite popular. An exemplary
technique-focused review took a rational look at the hype
of ANN for load forecasting in 1990s, while pointing many
critical issues in theory and practice [4]. In the recent
decade, probabilistic load forecasting becomes a popular
topic. A tutorial review on probabilistic load forecasting
connected the point load forecasting literature developed
earlier to probabilistic load forecasting methods developed
through mid 2010s [5]. One load forecasting problem often
overlooked by the power engineering community is load
forecasting for buildings. As the footprints of smart meters
continue to grow, forecasting the loads at premise level is
becoming a common interest of both building engineers and
power engineers. A review of building load forecasting can
be found in [6].

Since 1980s, due to the deregulation and rise of electric-
ity markets, electricity price forecasting has been attracting
more and more attention from the industry and academia.
Many early electricity price forecasting papers were devoted
to short term forecasting. In an early review, Zareipour [7]
illustrated salient features of short term electricity prices,
and presented a data-driven approach to price modeling and
forecasting. A more recent and comprehensive review of
electricity price forecasting, which is also the highest cited
price forecasting article in recent years, isWeron’s [8]. Recent
advances in probabilistic electricity price forecasting can be
found in [9].

Wind speed is a dominant driving factor of wind power
generation. A review of wind power and wind speed fore-
casting methods across different forecast horizons ranging
from a few seconds to a week ahead can be found in [10].
Another review focused on three decades of short term wind
power forecasting literature through mid 2000s [11]. Among
the four major domains of energy forecasting, wind power
forecasting has been leading the maturity on probabilistic
forecasting methods and applications, largely due to the
interactions between wind forecasters and meteorologists.
A review on probabilistic wind power forecasting can be
found in [12]. The wind forecast uncertainty was also dis-
cussed in [13], as an effort to introduce wind forecasting

to the statistics community. Over a period of more than a
decade, academics and practitioners have seen two parallel
approaches (recently again discussed by [14]) to wind power
forecasting, i.e., physical and statistical. Today, they have
come together and it does not make sense anymore to sep-
arate them, since state-of-the-art approaches to wind power
forecasting have to incorporate both physical and statistical
(possibly machine learning) considerations.

The most recent wave of significant advances in solar
forecasting started in early 2010s. In 2013, the typology of
solar-specific forecasting methods was set forth in the first
major, and now the most cited, review of the domain [15].
In that review, camera-based, satellite-based, and NWP-
based solar forecasting were associated to intra-hour, intra-
day, and day-ahead horizons, respectively. After a booming
5 years, a text-mining based review was conducted in 2018,
in which 1000 references based on the top Google Scholar
search results were analyzed [16]. Hundreds of important
concepts of solar forecasting, obtained from textmining, were
annotated and interpreted by five editors of Solar Energy,
the journal publishing the most solar forecasting papers to
date. As a fast-advancing field, solar forecasting desperately
needs reconciliation and best practice standardization. Hence,
the ROPES guideline, abbreviation for reproducible, oper-
ational, probabilistic and physically-based, ensemble and
skill, was proposed in [17]. These characters jointly mark
most salient features of irradiance to be considered for solar
forecasting. Works about probabilistic solar forecasting are
reviewed in [18], suggesting a shift of focus from point
to probabilistic forecasting. Recently, there are also strong
emphases made on solar forecast verification [19], [20].

Although many review articles have been published in the
energy forecasting literature, there are still some areas that
deserve to be reviewed in detail. Industrial load forecast-
ing is an important part of load forecasting. Although the
literature included many solid studies such as [21]–[23],
we have not yet seen a notable review paper on this topic.
Reviews on camera-based and NWP-based solar forecasting
would be beneficial to the community, particularly because
that topics such as 3D cloud construction and dynamical
weather modeling are essential to solar forecasting but not
verywell understood by solar forecasters. In addition, reviews
of data sources and their use would be helpful for promoting
reproducible research as well.

B. BIBLIOMETRIC ANALYSIS
Fig. 1 shows the growth of energy forecasting literature dur-
ing the past 10 years. Load forecasting papers take about
half of the energy forecasting literature. The increasing trend
can be observed across all four sub-domains. The growth of
renewable forecasting literature has been stronger than load
and price forecasting, which may be largely attributed to the
worldwide renewable integration efforts in the recent decade.

In each subdomain, we have picked the top 10 journals that
publish most forecasting papers of that subdomain over the
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FIGURE 1. Number of publications in load, price, wind and solar
forecasting returned by respective Scopus search.

last 10 years. These journals are considered the major publi-
cation outlets for energy forecasting papers. The list includes
22 journals in total, because some are ranked top 10 in terms
of publication quantity across multiple subdomains. In Fig. 2,
we rank these journals by the ratio of energy forecasting
papers to the total publications of each journal. The counts
for energy forecasting papers published by each journal have
been labeled next to the journal title, so that interested readers
may find out which journals publish the most papers of the
sub-domain of their interest. Some journals, such as Wind
Engineering, Solar Energy, IEEE Transactions on Sustain-
able Energy and Energy Economics, are mostly dedicated to
one or two sub-domains, while several other journals, such
as International Journal of Forecasting, IEEE Transactions on
Power Systems and IEEE Transactions on Smart Grid publish
a wide range of energy forecasting papers. Caution should be
applied when interpreting this figure, as publication quantity
does not imply quality. More discussions about issues with
today’s publication process will be presented in Section V.

III. RESEARCH FRONTIERS
Energy forecasting has evolved way beyond standard imple-
mentations of existing forecastingmethods onto ‘‘new’’ prob-
lems. Hence, for a researcher or practitioner entering the field,
there are many papers and studies to read before one can build
an accurate model or publish own papers. There are many
publications in this area. It is wise to avoid wasting time
on published works that do not offer much value in theory
and/or practice. In what follows, we outline several emerging
research topics. Nonetheless, we clarify that these topics are
by no means to be comprehensive. Some emerging problems
cannot be covered by this review due to page limit. Some
classical problems are certainly important, which should be
better served by more specific review articles.

A. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
The fundamental assumption of forecasting is to assume the
future share similar patterns or distribution to the history
in some way. Discovering the patterns or hidden informa-
tion from historical data is a key to accurate forecasts.
The development of artificial intelligence (AI) and machine
learning (ML) techniques certainly benefits the advancement

of energy forecasting. In fact, AI/ML techniques have
been adopted for energy forecasting for over three
decades [24]–[26].

In recent years, the field of AI/ML is experiencing another
hype largely due to the advancement of computing tech-
nologies. Various advanced AI/ML techniques such as deep
learning [27], [28], reinforcement learning [29], and transfer
learning [30], have been adopted in energy forecasting.

A downside of deep learning is that its training process is
far more complex and time consuming than that of regres-
sion models. It is not only the sheer number of parameters
(weights) to estimate, but also the optimization of the hyper-
parameters (network structure, activation functions, stopping
conditions, regularization, etc.) [31]. The applications of deep
learning techniques rely on the constant increase of both
computing power and collected data.

It should be emphasized that machine learning basedmeth-
ods for load, wind, solar, and price forecasting can benefit
from including the physical characteristics of the processes
involved, both for modelling and variable selection. Utiliz-
ing exogenous data does not mean the simple inclusion of
unprocessed weather variables into machine learning models.
Instead, one should dive deeper and investigate the intrinsic
properties, salient features, and limitations of these data.

B. FORECAST COMBINATION AND ENSEMBLE
FORECASTING
Combining forecasts has been widely recognized as one of
the best practices in forecasting. Benefits of forecast combi-
nation were formally discussed in 1969 [32]. Many empirical
studies were published later to show positive and negative
effects of combining forecasts. Some notable reviews can be
found in [33]–[35].

Success of forecast combination strategies can be eas-
ily found in the energy forecasting literature. For instance,
a homogeneous combination was found to be effective in
point load forecasting [36], where the authors tested 11 com-
bination algorithms on the so-called sister forecasts generated
by a family of regressionmodels. The same regressionmodels
were found to be good input to generate probabilistic load
forecasts via quantile regression averaging [37]. Ensemble
forecasting methods have also been applied to smart meter
data [38] and other subdomains of energy forecasting, such
as price forecasting [39]–[41]. Empirical results show that for
both point and probabilistic forecasts the quality of predic-
tions can be significantly improved if combined, even when
forecasts of the same model are averaged just across a few
short and a few long calibration windows [42], [43].

An alternative approach to ensemble forecasting is via
exploitation of the data space and parameter space to quantify
the uncertainty associated with a forecasting model. Consid-
ering the dynamical ensemble used in weather forecasting,
where the initial analysis is perturbed and evolved separately,
different trajectories of the same future event can be pro-
jected. This is typified by the 51-member ECMWFEnsemble
Prediction System, which is one of (if not) the best numerical
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FIGURE 2. Percentage of energy forecasting publications. Only the top 10 journals with the most forecasting publications in each area
are considered; some are ranked top 10 across multiple subdomains. Numbers of forecasting publications and total publications for
each journal are shown beside journal names.

weather prediction (NWP) models to date. Ensemble wind
speed and irradiance forecasts are particularly important in
wind and solar forecasting, whereas the temperature forecasts
widely benefit load forecasting. The reader is referred to [44]
for an overview on ensemble weather forecasting.

C. HIERARCHICAL FORECASTING
Energy forecasting often encounters time series that have
aggregation constraints due to temporal or geographical
groupings. For instance, sum of the loads at distribution
feeders should equal to the load at the corresponding trans-
mission minus losses, which are typically a small percentage.
In these scenarios, hierarchical forecasting, which reconciles
base forecasts generated individually at different levels of a
hierarchy, becomes important. Hierarchical forecasting has
two distinct advantages over conventional forecasting. Firstly,
the final forecasts in a hierarchy are coherent. In other words,
the sum of lower level forecasts is close to or equals the
corresponding upper level forecast. Secondly, the reconciled
forecasts are often, if not always, more accurate than base
forecasts.

Recent developments of hierarchical forecasting were
mostly contributed by Hyndman’s research group [45]. Over
several publications, computation issues that hinder the
large-scale applications of hierarchical forecasting have been
addressed [46]–[48]. Due to the generality of the frame-
work, hierarchical forecasting has been applied to energy
forecasting, particularly in load and solar forecasting, e.g.,
[49]–[51]. In fact, the load forecasting track of GEFCom2012
was designed to be a hierarchical load forecasting problem,
but none of the contestants took advantage of the hierar-
chy [52]. GEFCom2017 was dedicated to hierarchical prob-
abilistic load forecasting [51], but the use of hierarchy was
rather modest. Among the 12 finalists selected from the qual-
ifying match, only four used the hierarchy, though none of
them ranked Top 6 in the qualifying match. Hierarchical rec-
onciliation applies to both point and probabilistic forecasting.

However, there is not yet any consensus on the definition of
coherence, especially within a probabilistic framework.

D. PROBABILISTIC FORECASTING
Many phenomena and systems in nature can be viewed
as or modeled by stochastic processes. The frequently used
point forecasts, or single-valued forecasts, are simply pre-
senting summary statistics, mostly expected values, of a sub-
ject during different time periods. In weather forecasting,
it has long been known that a forecast is essentially five-
dimensional, spanning the three-dimensional space, time and
probability [53]. To that end, generating probabilistic fore-
casts is never a choice, but a reflection on a forecaster’s
understanding on basic subject matters. The reader is referred
to the seminal review on probabilistic forecasting [54].

Probabilistic forecasts can be issued in forms of proba-
bility distributions, quantiles, or intervals, using parametric,
semiparametric, or nonparametric approaches. The afore-
mentioned ensembles, where each forecaster issue a point or
probabilistic individual prediction, can be also viewed as a
special form of probabilistic forecasts. Regardless of which
form a probabilistic forecast is issued, methods converting
from one form to another are available. Additionally, prob-
abilistic forecasts can be summarized into point forecasts
following the guidelines proposed in [55].

Probably the most important step in the recent history of
energy forecasting is the transition from a deterministic to
a probabilistic view. Wind power forecasting certainly takes
a lead with respect to probabilistic forecasting. This may
largely due to the close collaborations between wind power
forecasters and meteorologists in the early days.

Many researchers have proposed alternative approaches to
probabilistic wind power forecasting, explained how to use
such forecasts as input to decision-making models, as well
as showed the benefits from placing oneself in a probabilistic
framework. Parametric approaches have been proposed, rely-
ing on various types of distributions e.g. truncated Gaussian
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for wind speed [56] and generalized logit-Normal for wind
power [57]. Instead of formulating assumptions about predic-
tive densities, some have proposed nonparametric approaches
most often relying on quantile regression e.g. [58]–[60].
An alternative consists in using meteorological ensemble
forecasts, which can then be calibrated with kernel-based
methods [61]. In a more general framework, the transfor-
mation from meteorological forecast information to power
may be thought of in a Bayesian framework (hence relying
on stochastic power curves) e.g. through conditional kernel
density estimation [62]. All these methods aimed at obtaining
predictive marginal densities, i.e., informing about forecast
uncertainty for each location and lead time individually.
It may also be of relevance to look at those in a multivariate
framework more generally so as to also inform about spatial
and temporal dependencies. The main approach that was
proposed builds on the use of copulas for coupling predic-
tive marginal densities [63]. Alternatively, modern machine
learning approaches can be employed e.g. using generative
adversarial networks [64].

Developing probabilistic load forecasts can be dated back
to 1970s [5]. However, the formal adoption of proper
skill measures for probabilistic load forecasts did not start
until Global Energy Forecasting Competition 2014 (GEF-
Com2014) [52]. From the perspective of system theory,
a point forecasting system can be dissected into three
parts, i.e., input (e.g., features), modeling, and output
(e.g., forecasts). One can adopt these three parts to construct
a probabilistic forecasting process. The three parts have been
formally studied in the recent probabilistic load forecasting
literature, such as scenario generation on the input side [65],
quantile regression neural networks on the modeling side [66]
and variable selection methods [67], and residual simulation
on the output side [68].

The overarching principle of generating good probabilistic
forecasts is to increase sharpness subject to calibration [69].
To that end, various post-processing techniques, such as
ensemble model output statistics [70] or forecast combi-
nation [71], are used to calibrate and sharpen the initial
forecasts. That said, combining probabilistic forecasts is an
underrepresented topic, despite its long history [72]. Methods
for combining predictive distribution, quantiles and inter-
vals also may differ [73]–[75]. Some specific examples can
be found in the area of load forecasting. Researchers have
proposed various forecast combination strategies to generate
and improve probabilistic load forecasts [37], [76], [77]. One
of them, quantile regression averaging, first proposed for
probabilistic price forecasting in [41], is particularly worth
highlighting, because it was also shown to be effective in
probabilistic load forecasting [37], [76].

IV. REPRODUCIBLE RESEARCH
Replicating existing models and methods in the energy fore-
casting literature is not only good for researchers just entering
the field, but also a must to further advance the state of
the art. Unfortunately, most papers can never be replicated,

because the data have never been published, which high-
lights the importance of openly available data from industry.
In this section, we first take a brief look at energy forecasting
competitions, which stimulated many major breakthroughs.
We then introduce six useful data sources for energy fore-
casting research.

A. FORECASTING COMPETITIONS
Forecasting competitions, if set up properly, are a great way
to compare various forecasting models, techniques and meth-
ods, to recognize the effective ones, and to stimulate novel
ideas. Comparing with a typical academic paper where an
expert in one area tries to replicate another area without as
much knowledge, competitions can draw experts in different
areas implementing what they are good at. The first notable
energy forecasting competition in the literature can be traced
back to early 1990s. The competition was focusing on day-
ahead load forecasting, hosted by Puget Sound Power and
Light Company. The Pudget Sound Competition included
ten participants with various models, such as neural network
models, state space models, and multiple regression models.
A multiple regression model was considered the best per-
forming one among 14 competitivemodels [78]. A participant
of this competition later further developed their models into
a commercial solution for load forecasting [79], [80].

In 2001, EUNITE network organized a competition to
forecast daily load for a period of one month. The winning
entry was mainly based on support vector machine (SVM),
which was known as the first successful application of SVM
in load forecasting [24]. The lead author of the paper was also
the author of several SVM libraries including LIBSVM of
MATLAB.

Driven by the idea of promoting reproducible research
and recognizing effective methods, Hong and his collab-
orators organized a series of Global Energy Forecasting
Competitions, a.k.a. GEFCom2012, GEFCom2014 andGEF-
Com2017 [51], [52], [81]. The competitions were financially
sponsored by IEEE Power and Energy Society. The Inter-
national Journal of Forecasting was the publication sponsor
to collect the papers that describe winning methodologies
and to publish the competition data. These competitions
cover a wide range of topics, such as electricity demand and
price forecasting, wind and solar power forecasting, hierar-
chical forecasting, and probabilistic forecasting. With hun-
dreds of contestants from more than 60 countries worldwide,
the Global Energy Forecasting Competitions are considered
the largest energy forecasting competitions and one of the
largest forecasting competitions to date.

Over the past few years, more and more energy companies
started to organize forecasting competitions for various pur-
poses, such as selecting software vendors and recruiting stu-
dent interns. Some of these competitions were set up tomimic
the forecasting process in production environment, while oth-
ers were not. The outcome of these competitions, such as the
data and winning methods, has not been well documented in
the academic literature. We should also recognize that some
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competitions, when not being set up comprehensively, may
not be able to distinguish winners. Some limitations with
forecasting competitions were discussed in [82].

B. OPEN DATA
Seasoned researchers may find many data in the public
domain to support their research projects. Here we highlight
six important data sources for energy forecasting research.

1) DATA PUBLISHED WITH TIES TO RESEARCH PAPERS
Some scholarly journals encourage authors to submit data
and code as an effort to promote reproducible research. Inter-
national Journal of Forecasting published papers introducing
all three GEFComs, which also include the data released to
the contestants as supplementary files [51], [52], [81]. Solar
Energy recently launched a Data Article initiative to publish
papers that introduce datasets [83]. Other than publishing the
code and data with journals, some researchers may upload
their code to public repository, such as GitHub [84]. Some
choose to go a step further to develop packages in free soft-
ware environment, such as the R project [85].

2) ISO/RTO DATA
Independent systems operators (ISOs) and Regional Trans-
mission Operators (RTOs) are another frequently used data
sources, especially for load and price data. The length, vari-
ety, and quality of data published by these ISOs/RTOs vary.
Many ISOs do not publish weather information, which is
an important driver of load, which influences the prices.
ISO New England is one of those organizations that make
their data archive easily accessible. As a result, it is a fre-
quently cited organization in energy forecasting case studies.
The qualifying round of GEFCom2017 also used ISO New
England Data [51]. Electricity markets in Europe are also
frequently studied by the load and price forecasters, thanks
to the data availability [8].

3) SMART METER PROJECTS
Several notable smart meter projects have released valuable
datasets to the scientific community. One of the frequently
used dataset is the Irish data [86]. Pecan Street and Low
Carbon London are two other frequently used data sources in
the scientific literature. A recently published review of smart
meter data analytics has covered these datasets, as well as
several other useful datasets [87], where the reader can find a
more comprehensive list.

4) IN SITU WEATHER DATA
In situmeasurements of weather variables come from ground-
based weather stations, buoys, and radiosondes. Subject to
proper instrument calibration, these measurements are the
most accurate weather data. However, in situ data are rare and
come from autonomous sources. Therefore, when sourcing
these measurements for forecasting purposes, the quality-
control procedures must be placed with high priority. For
example, in solar forecasting, the Baseline Solar Radiation

Network (BSRN) and Surface Radiation Budget Network
(SURFRAD) are twomonitoring networks of highest quality;
both datasets can be accessed using the +SolarData+ pack-
age [88], [89] in R.

5) REMOTE-SENSED DATA
Since ground-based measurements are not available every-
where, gridded weather data obtained by remote sensing
becomes important in weather forecasting. These remote-
sensed data could either come from instruments onboard geo-
stationary weather satellites or those onboard polar orbiters.
Geostationary satellites have a fixed field-of-view, and thus
are able to perform continuous monitoring over various disk
areas that jointly cover all parts of the world from ±65◦ in
latitude. On the other hand, polar orbiters measure weather
variables in swaths along their paths. Remote-sensed data
generally comes at a lower accuracy than ground-based
data, but is advancing fast. Several popular remote-sensing
databases used for solar forecasting are reviewed in [90].

6) NWP AND REANALYSIS DATA
NWP data are generated by national weather centers, and are
available for worldwide locations, of which some are free of
charge. Although these datasets are hosted on different data
servers maintained by different weather agencies, anyone
with basic computer literacy is able to download and use
these data, as long as the exact links are known. A special
case of NWP data is reanalysis, which is essentially a re-run
of a weather model using a consistent assimilation scheme.
The two most recent global reanalyses are MERRA-2 and
ERA5, which both offer thousands of atmospheric variables
on an hourly scale from 1980 to now. Note that even though
NWP data are useful inputs, they are not always readily
available and need some preprocessing and recalibration. For
a review on the NWPmodels that are commonly used in solar
forecasting, the reader is referred to [91]. The details of these
two reanalyses are covered in [92], [93].

In addition to these six important data sources, there are
several websites providing open data for energy forecasting
and promoting the research in this area, such as Open Power
System Data [94] and Open EnergyModelling Initiative [95].

We should also recognize that reproducible research also
requires consistent benchmarking processes, such as bench-
markingmodels, evaluationmethods, and the exact procedure
to take. It may take some efforts from task forces, working
groups, or societies to develop a standard for banchmarking.

V. PUBLISHING QUALITY PAPERS
Sitting on the editorial boards of many elite journals that
publish energy forecasting papers, we, the authors of this
paper, have handled thousands of manuscripts during the past
decade. Most of those manuscripts share the same issues
that prevent them from being published by top journals.
In this section, we will discuss some common issues with
energy forecasting papers in the literature. We will also make
some recommendations about publishing quality papers.
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One mission of this review is to point the readers to quality
sources. To keep the reference list concise and immune from
substandard papers, we do not name individual papers as
counterexamples. We also acknowledge that many high qual-
ity papers are not on our reference list due to page limitations.

A. COMMON ISSUES
First and foremost, a super majority of the energy forecast-
ing models in the literature are evaluated using unique and
limited datasets, such as short time periods, one single loca-
tion, and datasets never used in any other study. This makes
comparisons with models proposed earlier in the literature
problematic, if possible at all. The other extreme holds true
as well. Some datasets have been studied so well that the
researchers may use some of the future information to give
unfair advantage of their proposed methods.

Secondly, the evaluation metrics are often inadequate. For
instance, Mean Aboslute Percentage Error (MAPE) is used
for close to zero load, prices or renewable power generation.
Sometimes authors tend to pick the error measures in favor
of their proposed method but hide the results from other error
measures.When the obtained differences in errors are close to
zero, the statistical significance tests are seldom performed.
Similar issues were already discussed in the context of price
forecasting [8]. Although the average level of price fore-
casting studies has improved since 2014, it is still not to a
satisfactory level.

Thirdly, many papers avoid direct comparisons with clas-
sic, established, and state-of-the-art models. Some even skip
comparisons with naive models. Many papers draw a small
circle in the case study section by only comparing with
the models within the immediate family. Sometimes the
parameters are manipulated, so that the competing models
are being dominated by the proposed ones. A hypothetical
example could be proposing a hybrid model of neural net-
works, wavelet, and particle swarm optimization for wind
power forecasting, while the competing model is a neural
network model with an arbitrary structure and poorly tuned
parameters.

Last but not least, the use of forecasting terminology is
inconsistent from one paper to another, which often leads to
ambiguous description of forecasting models, methodologies
and processes. Sometimes a new term was invented to make
the proposed idea look novel. Such practices typically make
the article hardly noticeable through search engines, unless
the idea was really groundbreaking, which makes the newly
invented term widely recognized.

B. RECOMMENDATIONS
To help create a healthy environment for current and future
researchers to publish quality papers at the right venues,
we would like to make the following five recommendations
tailored for energy forecasting research.

1) LITERATURE REVIEW
The reviewers and editors expect authors to present high
quality references relevant to properly set the stage for their
proposed research. The reference list should prioritize state-
of-the-art methods as well as the classical ones. The coverage
density of the literature may reduce as the area goes further
away from the core proposal. For example, if the proposed
idea is long-term probabilistic load forecasting using one
method, the reference list should prioritize other long-term
probabilistic load forecasting papers and other papers that use
this specific method, followed by long-term load forecasting
and probabilistic load forecasting papers, followed by load
forecasting papers and probabilistic forecasting papers in
other energy forecasting subdomains, followed by general
forecasting papers. After assembling the list of references,
citing references in bulk should be avoided. Instead of cit-
ing more than a handful of references at the end of one
sentence, a better presentation is to discuss each reference
separately or in small groups, which requires the authors to
sight what they cite.

2) FORECASTING TERMINOLOGY
Authors should refrain from introducing jargon into the field.
Most problems and processes can be clearly explained by fol-
lowing existing terminology precisely. We would encourage
energy forecasters to trace back to the forecasting, statistics
and machine learning literature for the original and formal
terminologies, such as out-of-sample tests [96] and cross
validation [97]. An important concept in energy forecasting
is forecast horizon, which refers to the length of time into the
future for which forecasts are to be prepared. Although many
subdomains of energy forecasting use ‘‘short’’, ‘‘long’’, and
their variants to characterize forecast horizons, the definitions
are often ambiguous. Authors are encouraged to use precise
language to describe their forecasting process. For instance,
day-ahead forecasting refers to forecasts issued sometime
today for the 24 hours of the following calendar day, which is
different from 24-hour ahead forecasting. In solar forecasting,
researchers are moving away from using short, medium and
long to describe forecast horizons. Instead, they use intra-
hour, intra-day and day-ahead.

3) COMPARATIVE STUDY
To propose a new idea, one has to compare it with the existing
ones, preferably the state-of-the-art methods or something
well established in the literature. If the proposal is to a new
problem without well-established solutions, comparison to
naive methods is required. When evaluating point or prob-
abilistic forecasts, proper measures of errors or skills ought
to be selected [54], [98]. When different models have almost
identical values in the selected error measures, significance
tests, such as the Diebold-Mariano test, ought to be per-
formed. For a discussion in the price forecasting context,
see [8], [9]. Sometimes a manuscript presents astonishingly
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good results showing dominance of the proposedmethod over
its counterparts, which is, more often than not, too good too be
true. If exaggerated results are obtained, authors are advised
to perform sanity checks and see if future information has
leaked into the process during parameter estimation, model
selection, or tuning of hyper-parameters. The authors are
also encouraged to check whether or not a core step in the
forecasting process is easily replaceable. If so, explore the
variations to offer a complete picture of the proposed method.

4) ENHANCE REPRODUCIBILITY
Most experienced editors and reviewers understand the
importance of reproducible research. Therefore, they may
favor the papers that are easily reproducible. Authors may
enhance the reproducibility of their research by using pub-
lic data, or publishing their data and code. Sometimes,
research sponsors may not allow the authors to publish the
data or code. In those situations, clearly explaining the pro-
posed methodology using formal terminology is a must.

5) FINDING THE RIGHT VENUE
Not every manuscript can eventually appear in the top jour-
nals. To avoid wasting publication time and review resources,
authors are encouraged to look for the right journals to pub-
lish their research. For example, among 22 major publication
outlets for energy forecasting papers in Fig. 1, the ones being
called out in Section II-B would be unlikely to accept papers
rejected by other journals. Instead, they are mostly looking
for research with high archival value, groundbreaking ideas,
and solid technical solutions to novel problems. Some jour-
nals, such as IEEE Transactions, may require five or more
reviewers for each paper. Some journals, such as International
Journal of Forecasting, only requires two reviewers, but their
reviewers usually give comprehensive comments that may
lead to major revisions. If authors are looking for an easy
review process, they may want to seek other venues. Some
journals, such as Solar Energy, strongly favor reproducible
research. Authors who are willing to publish their code and
data may consider such venues.

VI. OUTLOOK
Soon after the completion of GEFCom2014, the competition
organizers joined forces to make a 10-year ahead forecast of
energy forecasting, which was later published in 2016 [52].
In this section, we conclude our review by taking another look
at that historical forecast, followed by a discussion of two
challenging problems that deserve rigorous investigation for
the next decade.

A. A HISTORICAL FORECAST
The forecast made by GEFCom2014 organizers included
12 predictions on a wide range of topics around energy fore-
casting [52]. Looking back at those predictions, five of them
have become true:

1) SOLAR POWER FORECASTING
Solar power forecasting research has seen flourish indeed.
As shown in Fig. 1, the amount of solar forecasting papers
has been increasing rapidly over the past 5 years. The growing
trend is expected to continue.

2) HIGH RESOLUTION DATA
The recent energy forecasting literature has seen an increased
use of high resolution data, temporally, spatially and
conceptually [87].

3) FORECASTING METHODOLOGIES
Several energy forecasting methodologies have been adopted
across different sub-domains. For example, the 24 solar terms
were originally used as input features for load forecasting
in [99]. This idea was then applied for wind forecasting
in [100]. As another example, copulas were first applied in
wind power forecasting [101], and then found its effective-
ness in solar power forecasting [84].

4) ENERGY FORECASTING SUBJECTS
A diversification of energy forecasting subjects was predicted
five years ago. Since then, we have seen forecasting stud-
ies for wave energy forecasting [102], reactive power [23],
demand response capacity forecasting [103], which were
rarely studied before.

5) FORECASTING COMPETITIONS
Many large and small forecasting competitions have been
organized Since GEFCom2014. GEFCom2017 is just an
example [51]. As the benefits of competitions are being
recognized by the community, we expect more and more
competitions to be hosted in the future.

Six other predictions made in [52] are well on track:

6) CONNECTING POINT AND PROBABILISTIC
FORECASTING
An attempt was made in load forecasting to investigate
whether the variables selected to minimize point forecasting
error measures can also be the best model to minimize the
quantile scores [67]. How the forecasting residual is con-
ditional on point forecasts and related factors was studied
in [104], which verified that a better point forecast helps
produce a better probabilistic forecast. More exploration is
needed along this direction, not just for load forecasting, but
also other subdomains of energy forecasting.

7) ENERGY FORECASTING PROBLEMS
When the forecast was made back in 2015, net load forecast-
ing was a particular example raised for the fusion of energy
forecasting problems. At that time, there were few studies
on behind-the-meter solar estimation and net load forecast-
ing. Five years later, several solid studies on this topic have
appeared in the literature [105]–[108]. Load and locational
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marginal price (LMP) are deeply coupled. How to derive
probabilistic LMP forecasts by considering load uncertainties
was studied in [109]. We expect the diversification of energy
forecasting problems would continue to grow in the coming
years.

8) INTERDISCIPLINARY COLLABORATIONS
Collaborations among different subdomains of energy fore-
casting, between the energy forecasting community and other
scientific communities, and between industry and academia,
have been growing over the past few years, and will be
growing in the future.

9) REGULAR CONFERENCES
Although a regular conference in energy forecasting has
not been established yet, the first International Symposium
on Energy Analytics (ISEA) was organized in 2017. Two
years after that in 2019, the International Symposium on
Forecasting for the first time hosted a full track of energy
presentations, covering more than 30 talks in three days.

10) SCHOLARLY JOURNAL
We do not yet have a dedicated publication outlet for energy
forecasting. Nevertheless, most, if not all, major venues listed
in Fig. 2 have appointed at least one editor or associate editor
to handle energy forecasting papers. In 2019, International
Journal of Forecasting, the leading journal in forecasting,
appointed Pierre Pinson, an IEEE Fellow for his contribution
in wind power forecasting, as its Editor-in-Chief.

11) PROFESSIONAL SOCIETY
The IEEE Working Group on Energy Forecasting (WGEF)
took a leading role to move the state of the art forward
in 2010s. In 2019, WGEF extended its scope from fore-
casting to analytics and changed its name into IEEE Work-
ing Group on Energy Forecasting and Analytics (WGEFA).
Also in 2019, the International Institute of Forecasters
launched SWEET, Section for Water, Energy and Environ-
menT. SWEET offers networking and collaboration oppor-
tunities to forecasters from energy and its surrounding areas.
WhileWGEFA continues its activities with a focus on electric
power, SWEET brings researchers and practitioners from a
wider range of communities. Tackling the energy forecasting
problem from different angles, the two organizations are
expected to complement each other and continue growing the
community and advancing the research progress in the future.

One of the 12 predictions in [52] has not seen much devel-
opment yet:

12) PRACTICAL ERROR MEASURES FOR
PROBABILISTIC ENERGY FORECASTING
The development of practical error measures for prob-
abilistic energy forecasting has not seen much progress
yet. In fact, developing measures to properly reflect the
value of energy forecast errors in general is an area worth

looking into. We leave an in-depth discussion of this item
in Section VI-C.

No forecasts are perfect. The hype of AI/ML and its appli-
cations in energy forecasting is a major trend completely
missed by this historic forecast in [52]. In this article, we have
devoted Section III-A to AI/ML.

B. CLOSE-LOOP FORECASTING
In practice, forecasts are being produced, so that deci-
sion makers can take actions to optimize the future out-
comes. For example, a large industrial load might cut back
on its consumption in response to expected high prices.
Similarly, a battery storage facility may decide to recharge
in response to expected low prices due to high wind gener-
ation at night or high solar generation during a sunny day.
Such actions would change load profiles. If the change is
significant, a supposedly accurate load forecast may become
inaccurate comparing with the actually observed load due
to decision makers’ reaction to the original forecast. The
shift in load profiles would also change the underlying price
formation process, thus change the price. Forecasting the
change in the load due to demand response was mentioned
in [51] as a future research direction.

Post-forecast actions made by the users or receivers of
forecasts had not been accounted for when the original load
and price forecasts were released. Therefore, the forecasting
models are blind-sighted. Observed load and prices may end
up very different than anticipated. In other words, typical
forecasting models are ‘open-loop’ whereas the process is
inherently ‘closed-loop’. This issue is arguably affecting
electricity price more than forecasting of load, wind and
solar, because there are too many decision-based factors that
influence the prices. An in-depth discussion of this con-
cept in the context of electricity price forecasting can be
found in [110].

Another auxiliary issue around close-loop forecasting is
the change in historical data. For example, in response to
an anticipated high price during a hot summer day, power
companies may activate their demand response programs to
shed or shift the anticipated annual peak load. If the shifted
load profiles are being used for future modeling activities
without proper treatment, forecasting models would tend to
underestimate how load profiles respond to high tempera-
tures. As a result, the models would be under estimating the
‘‘organic’’ or ‘‘uncontrolled’’ peak load, or peak load without
intervention of demand response programs. The same anal-
ogy is applicable to other subdomains of energy forecasting
as well.

In economics, elasticity is the measurement of the (pro-
portional) change of a variable in response to a change in
another. Considering the growth of price-responsive market
participants resulting from smart grid initiatives around the
world, new models should be designed to account for this
price elasticity.
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FIGURE 3. One month (July 2019) of power generation, demand and prices in Germany. Source: [119].

C. VALUATION OF FORECASTS
The typical error measures that are well-understood by the
energy forecasting community may not necessarily reflect
the economic value of reducing forecast errors. As argued
in [111] for load forecasting, from a short-term unit com-
mitment perspective, a 1% reduction in forecasting error for
a 10,000 MW utility can save up to $1.6 million annually.
The savings at a similar scale were derived in a more recent
study [112] with considerations of several factors, such as the
size of company, areas affected by forecasting models, and so
forth. However, accurate valuation of energy forecasts is quite
difficult, if ever possible, to accomplish. This is because the
energy forecasts are used to influence or guide the decision
making process. How forecasts are being used would affect
the valuation of forecast errors. Depending upon the business
applications, the cost functions may be asymmetric on the
positive and negative errors.

It was demonstrated in [113] that measuring the economic
value of improving electricity price forecasting errors is
rather complex. In other words, a model that yields lower
errors may not always point to a more effective model for
forecast users. It is thus important to tie the evaluation
measures to the users’ characteristics and define alternative
metrics that better capture the strengths and weaknesses of
competing price forecasting models. Attempts at tackling
this issue include proposing simple bidding strategies based
on a comparison of the actual prices and their forecasts
[114], [115] or using measures popular in financial portfolio
analysis, like the Sharpe ratio [116], [117]. A recent study
demonstrated that during volatile market periods, and for
micro-grid energy management, a moving horizon determin-
istic model with point price forecasts led to significantly
lower operation costs, compared to more complex stochastic
and robust models [118]. Definitely, more research has to be
done in this respect. Proper valuation of energy forecasts can
also lift the recognition of forecasters in their organizations
as well as the energy industry.

D. WORKING TOGETHER
Fig. 3 shows the main generation sources (conventional,
wind, solar), system-wide load and wholesale electricity

prices (day-ahead, intraday) in June 2019 in Germany. Note
the spike in ID prices on June 25th (Tuesday) at 20:00
due to relatively high demand and low wind power gen-
eration (apparently unexpected a day earlier – the price
in the DA market was ‘normal’). Also note the nega-
tive prices on June 8th (Saturday) and 30th (Sunday),
when very large wind and solar generation brought the
demand for conventional power to monthly lows [119].
A picture like this perfectly speaks for the necessity of hav-
ing energy forecasters working across subdomains. More
and more influential research will be from interdisciplinary
collaborations.

This article serves as an energy forecasting primer for
current and future researchers and practitioners interested in
energy forecasting. The review does not mean to be exhaus-
tive nor comprehensive. We primarily focus on influential
papers published in the recent 20 years, as well as classical
review articles and original research papers in the late 20th
century. Interested readers may find the list of references a
quality source of papers to read. We believe reproducible
research is what the community need to pursue as a whole,
while interdisciplinary collaborations can lead to ground-
breaking research outcomes.
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