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Experimental quantum communication enhancement by superposing trajectories
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In quantum communication networks, wires represent well-defined trajectories along which quantum systems
are transmitted. In spite of this, trajectories can be used as a quantum control to govern the order of different
noisy communication channels, and such a control has been shown to enable the transmission of information even
when quantum communication protocols through well-defined trajectories fail. This result has motivated further
investigations on the role of the superposition of trajectories in enhancing communication, which revealed that
the use of quantum control of parallel communication channels, or of channels in series with quantum-controlled
operations, can also lead to communication advantages. Building upon these findings, here we experimentally
and numerically compare different ways in which two trajectories through a pair of noisy channels can be
superposed. We observe that, within the framework of quantum interferometry, the use of channels in series
with quantum-controlled operations generally yields the largest advantages. Our results contribute to clarify the
nature of these advantages in experimental quantum-optical scenarios, and showcase the benefit of an extension
of the quantum communication paradigm in which both the information exchanged and the trajectory of the
information carriers are quantum.

DOI: 10.1103/PhysRevResearch.3.013093

I. INTRODUCTION

The ability to establish secure communication linkages
is of paramount importance in any information technology.
Quantum cryptography protocols [1,2] achieve this in a stun-
ning way, enabling a sender and receiver to communicate
securely even in the presence of an eavesdropper with unlim-
ited computational power. The crucial ingredient for this feat
is the availability of reliable transmission lines for quantum
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particles. In this framework, any noisy process affecting the
transmission is attributed to the presence of an eavesdropper,
and when the noise exceeds a given threshold, the security
of the communication is considered compromised. For this
reason, the mitigation of any noise arising from faulty trans-
mission lines is an integral part of the efforts to enable secure
communication.

Within the quantum communication networks paradigm,
quantum communication protocols encode information in
quantum states, yet they treat the propagation of information
carriers as classical [3]. Nevertheless, the information carriers
can propagate along nonclassical trajectories, experiencing
a coherent superposition of alternative quantum evolutions
[4–6]. Taking advantage of this fact, Gisin et al. [7] realized
that quantum superpositions of trajectories can be harnessed
to reduce the noise induced by a pair of noisy communica-
tion channels. Therein, it was shown that when the quantum
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information carriers1 are sent through two noisy channels in
a quantum superposition of trajectories, interference between
the two resulting noisy processes can sometimes lead to partial
cancellation of the noise via postselection.

Recently, interest in this discovery has been revived by
studies emerging from quantum foundations. In particular, it
was shown that the superposition of trajectories can generate
setups where the order of different channels is in a quantum
superposition. These setups produce the same output as a
mathematical map called the “quantum switch” [8], a higher-
order operation which takes two quantum channels as input
and combines them in a quantum-controlled order. The quan-
tum switch is an instance of a causally indefinite process; such
processes are currently the target of wide-ranging research
both for fundamental reasons [9–11] and for their potential
to provide advantages in quantum computation [8,12–17],
quantum communication complexity [18–20], and quantum
metrology [21]. Moreover, the particular class of causally
indefinite processes based on the superposition of alternative
orders can be probed via current experimental technologies,
as has been recently done by encoding information in various
degrees of freedom of single photons [17,22–28].

It was further proposed [29–31] that the quantum switch
can also reduce noise in classical and quantum communica-
tion. These findings triggered a host of subsequent proposals
[32–36], and even a few experiments [27,28], highlighting the
advantage of using quantum superpositions of noisy channels
in alternative orders to reduce transmission noise.

However, alongside the body of work focused on super-
positions of alternative orders, the use of superpositions of
trajectories in quantum communication has also been investi-
gated [37–41]. In this context, theoretical studies have pointed
out that causal indefiniteness is not necessarily required to
reduce the noise in classical and quantum communication
[37,39,41]. In particular, similar or even better advantages
can be achieved by using a quantum control of parallel
noisy channels [37], or by placing channels in series with
quantum-controlled operations [39]. Indeed, in Ref. [39]
it was even shown that the Shor quantum error-correcting
code can be used to find a channel layout in series with
quantum-controlled gates which allows any arbitrary noise to
be completely eliminated. This suggested the need for a thor-
ough information-theoretic understanding of the resources in
play, and a unified description of such protocols. One such
approach is presented in Refs. [38,40]. On the other hand, the
comparison of different protocols can be also viewed as an
experimental task, wherein one wishes to classify and quantify
the experimental resources required for a physical implemen-
tation of the various types of superpositions of trajectories and
their corresponding advantages.2

1We use the notion of ‘particles’ as a synonym for quantum sys-
tems which, naturally, can be delocalized in space and time. These
quantum systems are used as carriers of quantum information, and
in this sense we interchangeably refer to them also as “information
carriers.”

2In this paper, in contrast to Ref. [40], we consider resources as
an experimental concept, corresponding to the physical devices and
their interactions as they occur in the laboratory.
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FIG. 1. Combining two channels in a superposition of trajecto-
ries. A sender and a receiver communicate under the restriction that
the information carrier must cross at least one noisy region. (a) Quan-
tum control of parallel channels. A quantum particle is placed in a
quantum superposition of two trajectories, each branch containing a
single noisy channel. (b) Channels in series with quantum-controlled
operations. Each of the branches of the superposition passes through
the noisy channels in the same order, but different unitary operations
are applied locally in each branch. (c) Quantum control of channel
order. The information carriers are routed through the two channels
in different orders. This setup can achieve a genuinely indefinite
order of the two channels. (d) Classical trajectories. Throughout this
paper, we will compare the three quantum superpositions of channels
above to classical trajectories. In this regard, if one has access to
classical-like trajectories only, one can send the photon through one
or the another noisy regions with probabilities q and 1 − q.

We take the experimental approach here, focusing on
three different types of superpositions of trajectories which
have been identified in the literature, namely, quantum con-
trol of parallel channels [Fig. 1(a)], channels in series

013093-2



EXPERIMENTAL QUANTUM COMMUNICATION … PHYSICAL REVIEW RESEARCH 3, 013093 (2021)

with quantum-controlled operations [Fig. 1(b)], and quantum
control of channel order [Fig. 1(c)]. While previous experi-
mental studies [27,28] focused only on the reduction of noise
with an indefinite causal order, no experimental work had so
far implemented the other proposed schemes, nor had they
compared them with indefinite causal structures to provide an
exhaustive assessment of the resources in play. We find that
the common resource in all the three schemes considered is
the establishment of a coupling between the trajectories of
the information carriers and the degree of freedom on which
the noise acts. On this basis, we propose a fundamentally
different understanding of the resources required for this noise
reduction than that proposed in previous experimental works
in this field [27,28].

We experimentally apply the above three schemes to var-
ious noise models. This enables us to examine the utility
and tradeoffs of these different types of superpositions in the
goal of communicating through a pair of noisy channels. In
particular, in order to perform a comparative analysis of the
performance of the three types of superpositions, we measure
the coherent information (which is a lower bound for the
quantum channel capacity) in the presence of XY, bit-flip,
phase-flip, and BB84 channels. We show that, within the
paradigm of quantum interferometry, the use of channels in
series with quantum-controlled operations generally outper-
forms or equals the other schemes in all the noise models
which we consider. While here we study the three schemes
individually in order to focus on the source of the coupling
between the trajectory and the degree of freedom on which
the noise acts, one could of course also combine the different
types of superpositions (and, for instance, insert quantum-
controlled operations also in the other two schemes), yielding
different, potentially larger, advantages from those presented
here.

The rest of this paper is structured as follows. Section II
introduces the three different architectures for the quantum
superpositions of trajectories through two noisy channels, and
summarizes their performance when applied to a simple noise
model. Section III reviews the key figures of merit that we
use to quantify the performance of our experimental quantum
channels, i.e., the quantum capacity and the coherent informa-
tion. Section IV outlines our experiments, and Sec. V presents
the corresponding results. Finally, Sec. VI concludes.

II. QUANTUM SUPERPOSITIONS OF TRAJECTORIES

For simplicity, we will focus on two communication chan-
nels and two trajectories, as this already captures the key
features of the general idea.

All experiments hereafter discussed were performed using
single photons, where the trajectory is naturally defined by
the photon’s path. Quantum information is initially encoded
in one of the internal degrees of freedom of the particle (we
refer to the Appendix, Sec. 1, for a discussion of the case of
classical information), in our case, in its polarization. Then,
using linear optical elements, it is relatively easy to place
a photon in a superposition of trajectories [22–25]. We will
further consider, as does related work, that the noise acts only
on the internal degree of freedom (DOF).

To introduce the basic idea, we will start by considering
a particular noise model, which was studied for quantum-
controlled orders in [31]. Given some single-qubit input state
ρ encoded in the internal DOF, the noisy process C either
applies a Pauli-X or -Y operation to the internal state with
equal probability:

CEB(ρ) = 1

2
XρX + 1

2
Y ρY. (1)

If the input to this process is a pure state |ψ〉I = α |0〉I + β |1〉I
(where the subscript I denotes the internal DOF), the output is,
in general, a mixed state, with all coherence in the computa-
tional basis extinguished:

CEB(|ψ〉I 〈ψ |I ) =
(|β|2 0

0 |α|2
)

, (2)

and as such, it cannot be used to transmit any quantum in-
formation. One might, of course, still employ it to transmit
classical information in the computational basis. This channel
is an example of a so-called “entanglement-breaking” (EB)
channel, which would destroy any preexisting entanglement
between the transmitted qubit and any other system.

In a standard quantum communication scenario with a sin-
gle trajectory, information, which is taken to be encoded in an
internal DOF of an information carrier, must often propagate
through multiple channels. Depending on the physical imple-
mentation, the channels can be linked together in different
manners. With two channels and classical-like trajectories, the
channels can either be put in series, or in a classical mixture
of the two [depicted in Fig. 1(d)]; more complex combinations
can also be realized, but they all perform strictly worse than
a classical mixture. If two copies of the channel of Eq. (1)
are put in series, the result is a maximally dephasing channel
C(ρ) = 1

2ρ + 1
2 ZρZ , where Z is the Pauli-Z matrix. This also

destroys all coherence in the computational basis, and cannot
transmit any quantum information. Similarly, placing two of
these channels in a classical mixture will not allow the trans-
mission of any quantum information.

In a typical single-trajectory quantum communication sce-
nario, it can be shown that, if each channel is unable to
transmit quantum information (i.e., its quantum capacity, to
be defined later, is zero), then any combinations of the two
channels should also result in a zero capacity channel. This
is known as a bottleneck inequality [42]. In the following
subsections, we will show that this is not the case when the
trajectories are superposed in a quantum fashion. Thus, the
bottleneck inequality does not directly apply to communica-
tion scenarios with quantum trajectories [30,39].

A. Quantum control of parallel channels

The first layout that we consider uses a quantum super-
position of configurations where two independent channels
are placed in parallel, and their use is controlled by a quan-
tum system, as illustrated in Fig. 1(a). This was originally
introduced for error filtration [7], and it was more recently
reviewed in the general framework of communication through
superposed channels in Refs. [37,38]. In this scheme, different
independent noisy channels are placed in each branch of the
superposition. In Ref. [7], it was shown that by performing
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a measurement on the trajectory in a suitable basis, and then
postselecting, one can nondeterministically filter out errors in
the communication channel. We will now consider an initial
pure state encoded in the internal DOF |ψ〉I = α |0〉I + β |1〉I,
independent noisy channels realized by applying a Pauli X and
Y with equal probabilities, as described previously and result-
ing in Eq. (1), and two trajectories in an equal superposition
|+〉T = (|0〉T + |1〉T)/

√
2 (where T refers to the trajectory

DOF). It is then straightforward to calculate the output (the
full calculation is presented in the Appendix, Sec. 2), and
to observe that performing a measurement on the trajectory
DOF in the {|+〉T , |−〉T} basis, and finding |−〉T = (|0〉T −
|1〉T)/

√
2 (which, as shown in the Appendix, Sec. 2, occurs

with probability 1
4 ) leaves the internal DOF in the pure state:

β |0〉I − iα |1〉I , (3)

which can be unitarily rotated back to |ψ〉I. On the other hand,
when the trajectory state is found to be |+〉T (which happens
with probability 3

4 ), the output state is partially mixed:( |β|2 −iα∗β/3
iαβ∗/3 |α|2

)
. (4)

This output state has a reduced purity, but it still maintains
some coherence. Although this is not necessarily the optimal
measurement strategy or the best noise model to showcase
this scheme, it illustrates that a quantum-controlled superpo-
sition of noisy channels allows some coherence to reach the
receiver. Hence, the sender and the receiver can communicate
some quantum information. We will quantify the amount of
quantum information precisely in Sec. IV. Communication
advantages in this case have been attributed to the ability to
quantum coherently control which channel to use [37].

This type of architecture is relatively easy to imagine de-
ploying in practice. Most modern quantum communication
takes place via optical fibers. As is often the case, these fibers
can be noisy, resulting in a reduced ability to transmit informa-
tion. Since a photon can easily be sent through a superposition
of two (or more) fibers, the use of such parallel architectures
could already improve security in existing communication
networks.

B. Channels in series with quantum-controlled operations

A different way to significantly reduce the noise produced
by some channels is to let them be traversed by two trajecto-
ries in a superposition, and by allowing different operations
in each branch of the superposition. In this case, we will
place our two channels in series, resulting in the architecture
presented in Fig. 1(b). In each branch, the channels 1 and 2 are
placed in the same order, and different unitary operations may
be inserted. [Such unitary operations are labeled as U1, U2,
and U3 in Fig. 1(b). In principle, however, more operations
could be inserted along the trajectories.] This scheme was
originally presented in Ref. [39], where it was referred to as a
“superposition of direct pure processes.”

Let us now consider the action of the superposition of
trajectories in series with the noise model of Eq. (1), setting,
following the notation of Fig. 1(b), U1 = Y , U2 = I, U3 = I
(I being the identity operator). We will again consider the
initial state of the system to be |ψ〉I |+〉T. This time, we will

imagine performing a measurement in the computational basis
on the qubit stored in the internal DOF. As we show in the
Appendix, Sec. 2, finding the internal qubit in |0〉I projects
the trajectory state into |ψ〉T, while finding it in |1〉I projects
the trajectory state into X |ψ〉T. Hence, this superposition of
trajectories perfectly filters out the noise arising from the
noisy channels. (Notice that the ability to completely restore
an arbitrary initial state of the information qubit implies that,
were the information carrier initially entangled with an ad-
ditional qubit, due to linearity this entangled state would be
completely restored in turn.)

It is easy to imagine the implementation of this scheme
in a real-world scenario. The two paths (e.g., optical fibers)
are simply sent through a few noisy transmission channels
in series. (For the scheme to work, the action of each noisy
channel must be correlated along the different paths.) Since
the two paths are physically distinct, the different unitary
operations can easily be applied in each branch of the su-
perposition independently. Such operations can be performed
with simple linear optical elements, or even directly using cal-
ibrated optical fibers, which always implement some unitary
polarization rotation. In Ref. [39] it was also pointed out that,
by superposing more than two trajectories, one can perfectly
compensate for any arbitrary noise.

C. Quantum control of channel order

The original source of inspiration for this architecture is
the quantum switch [8], a higher-order operation which takes
quantum gates and applies them in a quantum superposition of
alternative orders. Within quantum interferometry, a quantum-
optical switch exploiting superposition of trajectories in flat
space-time has been proposed [43–45], and experimentally
demonstrated [17,22–28]. For two quantum operations, this
is a quantum process in which a particle is placed in a su-
perposition of two paths, each of which is routed through the
two quantum operations in alternative orders [see Fig. 1(c)].
This scheme features all the necessary requirements for an
advantage in quantum information processing over standard
channels [27,28], and it can be provably characterized as a
causally indefinite process [23–25,46–49].

Applying the quantum switch to two copies of the channel
in Eq. (1), one finds that the output state is [31]

1

2
|ψ〉I 〈ψ |I ⊗ |+〉T 〈+|T + 1

2
Z |ψ〉I 〈ψ |I Z ⊗ |−〉T 〈−|T .

(5)
Analogously to the previous two examples, we will now mea-
sure the trajectory in the {|+〉T , |−〉T} basis. If the outcome is
|+〉T, the state has been transmitted perfectly, whereas if one
finds |−〉T, a simple phase correction is required to exactly
restore the initial state.

The resources required to implement the quantum-optical
switch in the laboratory are relatively minimal; it simply re-
quires linear optical elements to route the photon through the
two noisy channels in a superposition of their orders. How-
ever, in order to be effective, this layout requires the action of
the two noisy channels on the photon to be suitably correlated
both in space and time (as in Fig. 3 of Ref. [50]). Instead, in
standard communication networks [51], the noisy regions are
usually localized in space and fixed in time. Any such network
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would thus require the photon to travel back toward the sender
to enter the second channel, and this scheme requires this
return trip to occur without traversing any further noisy region
(which could happen if the two channels introduce noise in the
direction from the sender to the receiver, but not vice versa).

D. Comparison

Comparison of different schemes in this work. In all of
the three schemes above, a particle is placed in a quan-
tum superposition of two trajectories which are then routed
through various devices and noisy communication channels.
All three methods result in a coupling of the internal state to
the state of the trajectory, and the two trajectories must main-
tain coherence in order to show a communication advantage.
(Practically, this is required since the trajectory is measured in
a superposition basis.)

This coupling to the trajectory DOF is a necessary require-
ment to achieve any advantages. In the parallel and indefinite
order layouts the channels themselves or the routing through
their different orders give rise to the coupling, whereas in
the series scheme this coupling is created by the quantum-
controlled operations. In light of this, it has been proposed
that the quantum-controlled operations used in the superposi-
tions of channels in series [Fig. 1(b)] should be considered as
additional resources (referred to as “encoding,” “decoding,”
and “repeaters” in Refs. [38,40]), as they can couple the in-
ternal DOF to the trajectory independently of the choice of
noisy channels. However, these operations do not require any
additional experimental resources beyond the transmission
lines themselves (for example, polarization rotations can arise
from the mere twisting of optical fibers, and are effectively
unavoidable), which are the same experimental resources used
for the other two schemes.

It was also noted that the number of noisy channels tra-
versed by the particle in each branch of the superposition
differs between the three schemes [37,40,41,50]: the quantum
control of parallel channels contains only one channel in each
interferometer arm, whereas the other two schemes contain
two channels per arm. When the information carrier crosses
several noisy channels in sequence, the overall noise is always
equal to (in the case, e.g., of two EB channels) or greater than
[e.g., in the case of two depolarizing channels of the form
ρ ′ = pρ + (1 − p)I2 ] that introduced by one channel. How-
ever, although the quantum control of channel order needs at
least two channels to create the required coupling between the
trajectory and the internal DOF, it is still able to overcome
the (potentially additional) noise caused by the multiple noisy
channels.

Comparison to previous work. The origin of the commu-
nication enhancement in the three schemes studied here has
been a subject of recent debate in the literature [37–41]. This
debate revolved around the understanding of the role of causal
indefiniteness in the task of noise reduction. In fact, after it
was discovered that such an enhancement could be achieved
by placing the channels in an indefinite causal order, it was
later found that other configurations, which did not have an
indefinite causal order, could achieve the same or even a bet-
ter enhancement. This called into question whether indefinite
causality is necessary to achieve such effects.

In this work, we compare experimentally and numerically
all the proposed setups leading to noise cancellation in quan-
tum communication, and we quantify the achieved advantages
over quantum communication schemes with classical trajecto-
ries. This experimental comparison provides an answer to the
debate on experimental grounds by presenting an experimen-
tally relevant analysis of the resources in play. In particular,
we compare the schemes with respect to their experimen-
tal requirements within an interferometric paradigm, rather
than studying them as higher-order operations from a strictly
theoretical viewpoint [38,40]. To this end, we focus on the
following four points: (i) we illustrate that all three schemes
use the same resource when considering experimental quan-
tum interferometry; (ii) we show that this resource is the
coupling of the degree of freedom carrying the information
to the trajectory degree of freedom; (iii) we experimentally
prove that, for the set of tested noisy channels, the superposi-
tion of channels in series with quantum-controlled operations
features the highest performance; and (iv) we numerically
show that, in the vast majority of cases, this holds for generic
randomly generated channels.

We will now proceed to quantify the amount of quantum
information which can be transmitted using these various
schemes individually for different noise models. Overall, we
find that, for all the types of noise considered, the use of chan-
nels in series with quantum-controlled operations exceeds or
equals the performance of the quantum control of parallel
channels and quantum control of channel order.

III. QUANTIFYING CHANNEL PERFORMANCE

In order to rigorously compare the ability of the different
schemes to transmit quantum information, an experimentally
accessible figure of merit is necessary. The quantum capac-
ity Q(C) of a channel C is the number of qubits that are
transmitted for each use of that channel [52,53]. In general,
this is a rather complex function that can be difficult to even
theoretically assess, making its use as a quantifier somewhat
limited in practice. However, it is lower bounded by [52]

Q(C) � max
ρAB

Ic(C, ρAB), (6)

where Ic is the coherent information [54] of the channel with
respect to ρAB, which is defined as

Ic(C, ρAB) := S(ρ ′
B) − S(ρ ′

AB) , (7)

where ρAB is a bipartite state, ρ ′
AB := (IA ⊗ C)(ρAB) is the out-

put state obtained by applying channel C on system B, ρ ′
B :=

TrA[ρ ′
AB] is its marginal state, and S(ρ) := −Tr[ρ log ρ] is

the von Neumann entropy. Although a comparison of the
coherent information of two channels does not necessarily
translate into a comparison of the quantum capacity of the
channels (except, of course, when the lower bound is maxi-
mal, as in this case it coincides with the quantum capacity),
we will employ it as our quantifier for channel performance
here. In addition to the practical motivation of being a more
readily computable quantifier, this choice is further motivated
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by the fact that the coherent information has an operational
meaning beyond that of the quantum capacity. Namely, it pro-
vides the one-way distillable entanglement when maximized
over local operations performed by the sender, and, if max-
imized over local operations with classical communication
(LOCC) operations, it gives the two-way distillable entan-
glement [55], which is typically considered to be the amount
of “useful entanglement” which can be transmitted using the
channel.

Let us briefly consider a few simple examples, assuming
a two-qubit system, with ρAB set to a maximally entangled
pure state. If the channel is unitary (i.e., noiseless), then the
initially pure state remains pure after the application of the
channel, thus, S(C(ρ ′

AB)) = 0. However, since ρAB is maxi-
mally entangled, tracing out the subsystem A will leave the
subsytem B in a maximally mixed one-qubit state with en-
tropy S(C(ρ ′

B)) = 1. Therefore, the coherent information of
a unitary channel, with respect to a maximally entangled
probe state, is 1. If, on the other hand, the channel induces
decoherence, the entangled probe state will become mixed,
and the second term will increase: S(C(ρ ′

AB)) > 0. Because
the first term cannot be larger than 1, as decoherence is in-
duced the coherent information decreases. Ic(C, ρAB) is often
maximized when ρAB is a maximally entangled state. This was
proven to be the case for the quantum switch and a specific
noisy model in [30]. Furthermore, numerical optimizations
suggest that a maximally entangled Bell state maximizes the
coherent information for the cases we study here. In any case,
the evaluation of Ic for any arbitrary state sets a lower bound
for the quantum capacity of the channel. Throughout the rest
of this paper, when we refer to the coherent information, we
do so with reference to a maximally entangled Bell state.

One could consider estimating Ic(C, ρAB) directly by prob-
ing the channel with an entangled state [56]. In this case,
however, the tradeoff is that this state will be more prone to
errors in the preparation phase (and such errors are to be con-
sidered in addition to all the others already mentioned). Thus,
our experimental approach will be to first perform quantum
process tomography on the superposition of communication
channels. With the resulting estimate of the experimental
channels, we will then be able to compute Ic with ideal maxi-
mally entangled states, and will use this metric to quantify the
performance of the various schemes.

In our experiment, we study single-qubit channels acting
on the polarization DOF, and equal superpositions of trajecto-
ries. Since, as we have seen previously, the coherence between
the two trajectories is crucial, both the internal DOF and
the trajectory must be fully characterized. In general, this re-
quires two-qubit process tomography on the path (trajectory)
qubit and the polarization qubit. To perform this characteri-
zation, we use heralded single photons in order to maintain
the connection to the interpretation of the quantum capac-
ity as the information transmitted per information-carrying
system.

Notice that the sender only ever encodes information in
the polarization DOF, whereas the receiver must measure both
the trajectory and the polarization DOFs. Hence, this is effec-
tively a one- to two-qubit channel. Because of this, performing
full two-qubit process tomography provides more information
than is strictly required.

IV. EXPERIMENT

Implementing noisy channels. In our experiment, we en-
code and transmit information in the internal polarization
DOF. We induce noise on this DOF using liquid-crystal wave
plates (LCWP), which can rapidly implement different po-
larization rotations to effectively decohere the polarization
state in a precise and controllable manner [57]. The LCWP
retardance can be changed between 0 rad and 2π rad in
approximately 100 ms by varying the applied voltage (see
the Appendix, Sec. 3, for more details). Using these fast
LCWPs we can change the operations on the fly to actively
decohere the photon’s polarization, in contrast to previous
experiments wherein decoherence was achieved by averaging
the results during the data analysis [27,28]. Nevertheless, the
two methods yield the same results, so we will make use of
both techniques interchangeably. Physically, the noise models
we study can be understood as randomly applying one of four
operations (I, X , Y , or Z). The probability of each operation
to occur defines the noisy channel.

Specifically, we implement four different noisy channels.
The first is a generalization of the entanglement-breaking
channel CEB(ρ) discussed above. However, in this general
case, the X and Y operations are applied with probabil-
ity 1 − p and p, respectively [one recovers the CEB(ρ) for
p = 1

2 ]:

C p
XY (ρ) = (1 − p)XρX + pY ρY. (8)

We also study the well-known bit-flip (BF) C p
BF(ρ) and phase-

flip (PF) C p
PF(ρ) (or dephasing) channels:

C p
BF(ρ) = (1 − p) ρ + pXρX, (9a)

C p
PF(ρ) = (1 − p) ρ + pZρZ, (9b)

respectively. Finally, we study a depolarizing channel
C p

BB84(ρ), known as the BB84 channel [58]:

C p
BB84(ρ) = (1 − p)2ρ + (1 − p) p XρX

+ (1 − p) p ZρZ + p2 Y ρY. (10)

For the BB84 channel, when the noise probability is p = 0.5
the channel is completely depolarizing, mapping any input to
the maximally mixed state. In the Appendix, Sec. 4, we also
report a numerical estimation of the performance of the three
layouts in the generic case of randomly generated channels.

To realize a single channel we use two LCWPs. The first
LCWP’s optic axis is set to 0◦, and can thus implement either
Z or the identity operation by setting the retardance to π rad
or 0 rad, respectively. The second LCWP’s optic axis is set to
22.5◦ to execute X or the identity operation, again by setting
the retardance to π rad or 0 rad, respectively. When the first
LCWP performs Z and the second X , the net result is Y (up to
a phase). Hence, with these two LCWPs we are able to carry
out all four required unitary operations, and switch between
them in about 100 ms.

In light of this, a straightforward implementation would be
to generate a random number from some defined distribution
before a photon enters the channel, and then to set the oper-
ations accordingly. However, the net result is the same if we
allow several photons to pass through the channel for each
coin flip, provided that we average over a sufficiently large
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FIG. 2. Experimental setup. (a) Quantum control of parallel channels. After their polarization is set via a half wave plate (HWP) and a
quarter wave plate (QWP), single photons are injected into a Mach-Zehnder interferometer. One noisy channel is placed into each arm of
the interferometer, and each channel is realized through two liquid-crystal wave plates (LCWP), the first positioned at 0◦ (to implement I
or Z by changing the retardance), the second at 22.5◦ (I or X ). By means of a piezoelectric trombone delay line, the photon interfering
on the second beam splitter of the interferometer can be projected onto the bases {|+〉T, |−〉T} or {|R〉T, |L〉T} of the trajectory. Finally, the
photons’ polarization is measured through a sequence of QWP, HWP, and a polarizing beam splitter. (b) Channels in series with quantum-
controlled operations. As in the previous scheme, the photons are prepared in polarization via QWP and HWP and injected into a Mach-Zehnder
interferometer. In this case, the two noisy channels are placed in the two superposed branches in series with the same order. Also in this case, the
channels are realized through LCWPs. Furthermore, before each noisy channel, additional unitary operations are realized through sequences of
QWP, HWP, and QWP (before the first channel, the QWP, HWP, and QWP are placed in one branch of the trajectory only, whereas between the
two channels the wave plates are in both branches, since we only implement cases where U2 = U3). The rest of the setup is the same as in the
previous case. (c) Quantum control of channel order. The preparation and measurement of the photons in polarization happens as in the previous
schemes, as well as the realization of the noisy channels, and the projection of the trajectory DOF. In this case, however, the Mach-Zehnder
interferometer is folded into two loops so that the photon can travel through the two channels in the two alternative orders in each arm of the
interferometer. (d) Heralded single-photon source. We generate photon pairs using a type-II spontaneous-parametric downconversion source.
One photon is directly detected with an avalanche photodiode (upper arm), whereas the other is coupled into an optical fiber and sent to one of
the setups (a), (b), or (c). The interferometers in setups (a), (b), and (c) all contain two compensation HWP at the beginning and at the end of
the reflected arm, so as to compensate for the phase shifts due to the reflection from the beam splitter.

number of coin flips. This is advantageous, as it allows us to
increase the single-photon count rate well above the switching
speed of the LCWPs. In our experiment, we employ two dif-
ferent methods for the data acquisition. In the first, we change
the applied operation every second. Since our photon rate
(detected at the output, after the experiment) is of the order
of 3000 Hz, this means that approximately 3000 subsequent
heralded photons experience the same unitary operation (see
the Appendix, Sec. 5, for more details). Our Monte Carlo
simulations show that, with these numbers, 100 s (and 100
different operations) per measurement setting are sufficient
to achieve a process fidelity (i.e., the fidelity to achieve the
desired noisy channel) above 99% (for details, see the Ap-
pendix, Sec. 6). In order to ensure an optimal implementation
while maintaining a reasonable duration of the data-taking
procedure, we used 1000 different internal configurations for
our experiment, resulting in a fidelity of 99.98% per channel.
In the second technique, we simply take data for each input
state and each measurement setting with the LCWPs set to

implement a fixed unitary operation. We then weight the data
from these different configurations according to the probabil-
ity distribution of the desired noise model. (This method was
also demonstrated in [27,28].)

Creating superpositions of trajectories. As shown in Fig. 2,
we experimentally create different superpositions of tra-
jectories by placing single photons in an equal quantum
superposition of paths using a 50/50 beam splitter. The single
photons are generated with a standard type-II downconversion
source described in Fig. 2(d) and in the Appendix, Sec. 7.
These two paths (trajectories) are then routed through a se-
ries of LCWPs, which implement different noisy channels,
in a parallel configuration [Fig. 2(a)], in series [Fig. 2(b)],
or in a quantum superposition of the two alternative orders
[Fig. 2(c)].

All three setups are realized through Mach-Zehnder inter-
ferometers. In the first case [Fig. 2(a)], one channel is placed
in each interferometer arm. In the second case [Fig. 2(b)],
the channels are arranged in series in both arms of the in-
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terferometer, and additional operations are performed before
each channel through wave plates. Finally, the third scheme
[Fig. 2(c)] is accomplished using a folded Mach-Zehnder
interferometer in which the two channels appear in alternat-
ing order in each of the interferometer’s arms. The setup
presented in Fig. 2(c) represents a possible realization of a
quantum-optical switch wherein the system qubit is encoded
in the polarization DOF, and the control qubit in the path DOF.
Other encodings for this type of process have been proposed
[44,59] and experimentally demonstrated [25,26]. Regardless
of the detailed implementation, all proposals to implement
a quantum-optical switch use one DOF to route a photon
through channels in different orders, while the channels act
on some other DOF.

In order to perform quantum process tomography to extract
the coherent information, we must prepare a tomographically
complete set of input states, and measure in a tomograph-
ically complete number of different bases. In brief, we use
wave plates before the first beam splitter to prepare the state
of the polarization qubit in either |0〉I, |+〉I, |R〉I, or |L〉I

[where |R〉I = (|0〉I − i |1〉I )/
√

2, |L〉I = (|0〉I + i |1〉I )/
√

2],
and wave plates and polarizing beam splitters after the sec-
ond beam splitter to measure in all bases (i.e., {|0〉I , |1〉I},
{|+〉I , |−〉I}, and {|R〉I , |L〉I}). In our experiment, we set the
state of the path DOF to |+〉T, |−〉T, |R〉T, or |L〉T by varying
the relative phase of the paths after the first beam splitter using
a pair of mirrors placed on a trombone-delay stage controlled
by a piezoelectric actuator. To prepare the state to |0〉T or
|1〉T, we simply block one or the other path. We measure
the path DOF analogously, by setting the different phases,
or blocking one of the two paths. The full details of our
process tomography protocol are presented in the Appendix,
Sec. 8.

V. RESULTS

XY channel. Following, we present our results for the three
combinations of the noisy channels described in Eqs. (8)–(10).
We will first consider two copies of the XY channel [Eq. (8)].
In Sec. II, we observed that when p = 0.5 both the channels
in series with quantum-controlled operations and the quantum
control of channel order (with U1 = Y , U2 = U3 = I) are
able to transmit quantum information perfectly. In Fig. 3,
we observe that such a perfect “activation” (in our case, the
term refers to a combination of two noisy channels which
enables one to communicate through such a combination with
less noise than either individually) is theoretically possible
for all values of p. In fact, the purple and brown lines show
the coherent information for two XY channels combined in
series and in indefinite order, respectively. For both of these
situations, the theoretical coherent information is equal to 1
for all p, meaning that one qubit per use can be transferred. In
the same plot, our experimental data are presented as squares
(for the quantum control of parallel channels), circles (for the
channels in series with quantum-controlled operations), and
crosses (for the quantum control of channel order) with match-
ing colors. The dominant source of the statistical errors is the
uncertainty in determining the initial states for the process
tomography. (In fact, the input states were prepared and char-
acterized at the output of the source, but they were then sent to

FIG. 3. Experimental XY channel noise data. The theoretical
trends associated with the channels in series with quantum-controlled
operations and the quantum control of channel order show full acti-
vation. The experimental data do not perfectly match the theoretical
trends because, for p = 0.5, the channel produces an equal mixture
of X and Y operations, and such case can be experimentally realized
with a lower fidelity than the one in which only one of the two
operations is performed (i.e., when p = 0 or 1). It follows that, in
the central region, the experimental data are further apart from the
theoretical trend than they are on the upper end. The quantum control
of parallel channels does not allow full activation, and thus it is
positioned below the previous two trends. In this case, the exper-
imental data are closer to the theoretical expectation. The reason
of the higher agreement is that, in the case of the disposition of
noisy channels in parallel, only one channel is present in each branch
of the interferometer. As a consequence, the experimental imper-
fections affecting each branch are smaller than in the dispositions
of channels in series and in indefinite order. Finally, the coherent
information associated to only one XY channel is theoretically lower
than all the other layouts. A detailed analysis of the error estimation
and the systematic error is provided in the Appendix, Sec. 5. The
labels “QC-//-chann.,” “Series QC-op.,” and “QC-order” stand for
“quantum control of parallel channels,” “channels in series with
quantum-controlled operations,” and “quantum control of channel
order,” respectively. The same labels will be used in all plots.

each experiment via 3-m-long optical fibers, which introduced
additional noise.) This uncertainty leads to the error bars on all
the data sets presented in Figs. 3–5 (see the Appendix, Sec. 5,
for more details on error estimation). Nevertheless, all plots
display a good agreement between experiment and theory. As
expected, the experimentally measured coherent information
is slightly lower than that predicted theoretically. This off-
set is mainly due to the following systematic errors: (i) the
imperfect visibility when the two trajectories are recombined
on the second beam splitter, (ii) phase drifts which can occur
during the experimental runs, and (iii) slight calibration errors
in the LCWPs implementing the channels and the wave plates
used for state preparation and measurement. These systematic
effects are not included in the calculation of our experimental
errors. Full details of the measurement procedure, including
photon count rates and measurement times, as well as the sta-
tistical and systematic errors affecting the data are presented
in the Appendix, Sec. 5.
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FIG. 4. Experimental BF- and PF-noise data. The experimental
data of quantum control of parallel channels and the quantum con-
trol of channel order are in good agreement with the theoretical
trends. Conversely, the configuration of the channels in series with
quantum-controlled operations shows a constant offset between the
experimental data and the expected theoretical trend. This discrep-
ancy is due to the fact that, in this case, all the liquid crystals
are arranged in series, with the additional presence of wave plates
realizing a Hadamard gate, and hence this configuration is the one
that exhibits the greatest amount of experimental imperfections along
each path. In spite of this, for most values of p the coherent informa-
tion that can be achieved with the series configuration is still above
all others by several standard deviations.

The orange data set reported in Fig. 3 corresponds to the
coherent information when the two XY channels are used in
a quantum-controlled superposition. In Sec. II, we illustrated
that, when p = 0.5, the output still displays a partial depen-
dence on the input state. However, calculating the coherent
information reveals that this is not sufficient to transmit a

FIG. 5. Experimental BB84-channel noise data. As in the previ-
ous plots, the continuous lines show the expected theoretical trends,
while the squares, circles, and crosses represent the experimental
data corresponding to the quantum control of parallel channels, the
channels in series with quantum-controlled operations, and the quan-
tum control of channel order, respectively. All the experimental data
are in high agreement with the expected theoretical trends.

single qubit per use (i.e., the coherent information is less than
1). Nevertheless, the orange curve indicates that quantum in-
formation can still be transmitted, although not the maximum
rate.

The turquoise curve in Fig. 3 represents the coherent in-
formation of a single trajectory traversing a single copy of
the channel, which is 1 − H (p), where H (p) = −p log(p) −
(1 − p) log(1 − p) is the Shannon entropy. (The shaded area
underneath represents the region within which any activation
by either channel layout is less effective than directly using
one of the noisy channels.) Because in our experiment we
assume that the noise strengths p of the two channels are
always identical, using the channels in a classical mixture, as
depicted in Fig. 1(d), will also result in the capacity of a single
use of the channel. If a single trajectory was sent through
two copies of the channel in a row, the coherent information
would be even lower since the second channel would further
decohere the polarization state. We see in this first case that
for all values of the noise parameter p, all three superposition
methods transmit more quantum information than only using
a single trajectory.

Bit-flip (BF) and phase-flip (PF) channels. Reference [30]
showed that a quantum superposition of the causal order of a
bit-flip and a phase-flip channel can transmit more quantum
information than the amount which can travel through each
channel individually. (Referring to Fig. 1, this corresponds to
replacing channel 1 with the bit-flip channel [Eq. (9a)], and
channel 2 with the phase-flip channel [Eq. (9b)]. Note that,
contrary to the other cases, here we consider two different
types of noisy channels C1, C2, rather than two copies of
the same channel.) In light of this, Ref. [39] pointed out that
this idea can also be applied when the noisy channels are
placed in series, provided that one allows quantum-controlled
operations before and between them, and that this trick allows
one to transmit quantum information perfectly (when U1 = Y ,
U2 = U3 = H , where H is the Hadamard operation).

We experimentally confirm the predictions of Refs. [30,39]
in Fig. 4. There, we see that, regardless of the noise strength,
the channels in series with quantum-controlled operations
can, in theory, perfectly transmit quantum information (i.e.,
the purple line is equal to 1). Our experimental data (purple
circles) confirm this, although they do show a slight offset
due to the systematic errors discussed above. In this case, the
quantum control of channel order (brown curve for theory, and
crosses for experiment) does not work as well. Nonetheless,
we do find that for a range of p it outperforms the single-use
value 1 − H (p). For this choice of noisy channels, the quan-
tum control of parallel channels (orange curve) can transmit
more information than their quantum-controlled order. For a
large range of p, it is larger than the value achievable through
the quantum control of channel order, and the slight theoreti-
cal advantage of this latter over the quantum control of parallel
channels for large enough values of p is not observable in our
experimental data.

For a fair comparison, we mention that changing the
quantum-controlled operations Ui depending on the type of
noise could be regarded as an additional resource. In fact,
setting the optimal quantum-controlled operations requires
one to characterize the noise prior to using the channels. In
the Appendix, Sec. 9, we compare the performance of the
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channels in series with quantum-controlled operations for the
same unitaries that we use for the XY and BB84 channels
(namely, for U1 = Y , U2 = U3 = I). There, we observe that
setting U2 = U3 = I results in a performance that is com-
parable to that of the quantum control of channel order, and
which still outperforms the single-use capacity. In doing so,
the quantum-controlled operations remain fixed in this con-
figuration independently of the type of noise.

BB84 channel. As a final example, we consider two copies
of the depolarizing BB84 channel [Eq. (10)]. These results
are shown in Fig. 5. Also in this case, the channels in series
with quantum-controlled operations (this time with U1 = Y ,
U2 = U3 = I), shown in purple, achieves the largest enhance-
ment. While with only two trajectories it is not possible to
perfectly transmit quantum information through these noisy
channels, Ref. [39] showed that with additional trajectories
any type of noise can be perfectly corrected with the quantum
superposition of channels in series. The quantum control of
channel order in this case outperforms both the single-use co-
herent information [1 − 2H (p)] and the coherent information
of the quantum control of parallel channels.

These three examples show that, depending on the type
of noise, different superpositions of channels can lead to the
ability to transmit different amounts of quantum information.
The physical origin of this ability is an effective coupling
between the trajectory and the internal degree of freedom. In
this paper, this coupling is verified by the observed correla-
tions between the states of the aforementioned two degrees of
freedom. While these correlations were only sketched in the
case of the EB channel in Secs. II A–II C, analogous relations
hold also in the case of the other noisy channels studied in
this section. In all the cases we investigated here (wherein
the schemes are used individually), even in the presence of
experimental imperfections, using the channels in series with
quantum-controlled operations appears to be the best candi-
date to evade the effects of the noise.

VI. DISCUSSION

In this work, we experimentally and numerically explored
how the degradation of quantum information due to its propa-
gation through noisy channels can be mitigated, and in several
cases fully suppressed. This was achieved by sending quan-
tum information carriers through a pair of noisy channels in
various superpositions of trajectories. In particular, we studied
three types of schemes: the quantum control of parallel noisy
channels, channels in series with quantum-controlled opera-
tions, and the quantum control of channel order.

All of these schemes bear much in common with error
filtration [7]. More recently, this has been refined in a number
of theoretical works [29–31,33–41,60], tied into the concept
of indefinite causal orders. While enhanced communication
based on an indefinite causal order has been experimentally
demonstrated [27,28], an experimental study comparing dif-
ferent superpositions of trajectories in presence of various
types of noise has been lacking. Our work is aimed at bridging
this gap, by suggesting common ground based on the experi-
mental resources that each of the analyzed schemes requires.

Our results suggest that, in most quantum-optical com-
munication scenarios, creating a superposition of trajectories

through channels in series with quantum-controlled opera-
tions should lead to the largest noise reduction. One can
easily imagine characterizing the error introduced in various
communication channels, and from there setting the unitary
operations accordingly. Moreover, Ref. [39] illustrated that
these types of schemes can be extended to superpositions of
more than two trajectories to achieve complete error cancella-
tion for any type of noise. We have shown experimentally that
with only two trajectories it is already possible to completely
cancel (after accounting for experimental errors) all the noise
arising from two out of the three types of noisy channels
we considered. Furthermore, the quantum-controlled opera-
tions could also be introduced in the other two schemes and,
potentially, they could match the performance of the layout
with channels in series.

The large experimental communication enhancements pre-
sented here highlight the practical relevance of extending the
quantum communication paradigm to scenarios in which not
only the information carriers, but also the trajectories along
which they propagate are quantum. We expect that the relative
ease of implementation of these schemes will enable them to
be readily put into practice for the noise reduction of real-
world long-distance quantum communication applications.

All data needed to evaluate the conclusions in the paper are
present in the paper and its Appendix. Additional data related
to this paper will be made available from the authors upon
request.
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APPENDIX

1. Communication advantages when transmitting classical
information

This work focuses on the transmission of quantum infor-
mation through channels placed in a quantum superpositions
of trajectories. This is, however, not the only possible choice:
the work which initiated this research direction discussed
communication advantages in transmitting classical informa-
tion through a quantum control of channel order [29]. In the
following, we briefly comment on our choice of figure of
merit, and we explain how the scenarios in Fig. 1 compare
for transmitting classical information.

Classical communication is determined by the amount of
classical correlations which a quantum channel can maintain
between its input and output. Generally, the classical capacity
of a quantum channel is only zero for the class of erasure
channels which replaces any input by a fixed output state.
Sending quantum information, on the other hand, is a more
ambitious task: here, the capability of a channel to preserve
quantum correlations (i.e., entanglement) during the process-
ing quantifies the transmissible quantum information. Indeed,
quantum information was shown to be the most difficult to
communicate [61], and at the same time the most valuable
resource for information-theoretic tasks and computation. For
instance, sending quantum information can ensure secure
communication [1], it can be used to distill secret keys for
cryptography [61], and it is crucial for tasks like distributed
quantum computation [62,63]. Furthermore, trivially, quan-
tum information can also be used to communicate classical
information [64]. Hence, in this work we focus on advantages
for the most difficult type of information transmission.

Comparing the superposition schemes from Fig. 1 in the
case of a classical communication yields an analogous be-
havior to the case of quantum communication. It was already
shown in Appendix G of Ref. [7] that superpositions of
quantum channels [Fig. 1(a)] yield at least the amount of
transmissible classical information of classical trajectories
[Fig. 1(d)]. The same holds true for the advantages through the
quantum control of channel order [Fig. 1(c)] considered in the
initial work [29]. Later, Ref. [37] showed that quantum control
of parallel channels [Fig. 1(a)] can outperform the quantum
control of channel order [Fig. 1(c)] for certain communication
tasks. Numerical simulations support generality of this claim
for classical information by comparing the two scenarios for
random channels [41]. Finally, quantum-controlled sequences
of channels [Fig. 1(b)] were found to allow for the highest
classical communication rates, as it has a larger set of al-
lowed encoding schemes, which allow for phase kickbacks
that cause partial information exchange with the trajectory
degree of freedom [39].

2. Case study: Activation of the EB channels in the three layouts

In this section, we briefly evaluate the output state of the
three superposition techniques for the noisy channel described

by Eq. (1). We carry out our study by interpreting the action of
the two channels as follows. Each channel randomly applies
either X or Y with probability 1

2 . Hence, the “internal con-
figuration” of the superposition can be understood as either (i)
both channels 1 and 2 implement X , (ii) channel 1 implements
X , while channel 2 implements Y , (iii) channel 1 implements
Y , whereas channel 2 implements X , or (iv) both channels
1 and 2 implement Y . The final output state will then be a
mixture of the output states in these four configurations, each
with probability 1

4 .
Throughout this section, we will assume that the input state

is |ψ〉I |+〉T, where |ψ〉 = α |0〉 + β |1〉, and I (T ) labels the
internal (trajectory) DOF.

Quantum control of parallel channels. In this scheme, one
noisy channel is placed in each trajectory. The action of the
two channels in parallel can be interpreted as creating a mix-
ture of the following four unnormalized states at the output:

X |ψ〉I |0〉T + X |ψ〉I |1〉T , (A1a)

X |ψ〉I |0〉T + Y |ψ〉I |1〉T , (A1b)

Y |ψ〉I |0〉T + X |ψ〉I |1〉T , (A1c)

Y |ψ〉I |0〉T + Y |ψ〉I |1〉T , (A1d)

where the four states correspond to internal configurations of
X − X , X − Y , Y − X , and Y − Y , for channel 1 and channel
2, respectively. These states can be rewritten (up to further
normalization) as

X |ψ〉I |+〉T , (A2a)

(X |ψ〉I + Y |ψ〉I ) |+〉T + (X |ψ〉I − Y |ψ〉I ) |−〉T , (A2b)

(X |ψ〉I + Y |ψ〉I ) |+〉T − (X |ψ〉I − Y |ψ〉I ) |−〉T , (A2c)

Y |ψ〉I |+〉T . (A2d)

Now, measuring the trajectory DOF in the {|+〉T , |−〉T}
basis and obtaining |−〉T (which happens with probability 1

4 )
projects the internal DOF into X |ψ〉I − Y |ψ〉I, which can
be rewritten (after renormalization and up to an irrelevant
global phase) as in Eq. (3). This is a pure state, which implies
that some ability to transmit quantum information has been
restored in postselection. If, on the other hand, one obtains the
result |+〉T (with probability 3

4 ), it is straightforward to show
that the internal DOF is projected in the mixed state described
by Eq. (4).

In the recent papers on superpositions of trajectories
[37,38], it was shown that the output of a quantum-controlled
superposition of two channels depends on additional pa-
rameters related to the physical realization of the channels
(“transformation matrices” in [37] and “vacuum amplitudes”
in [38]). In our scheme, these additional parameters reduce to
the relative phase between the vacuum and the single-photon
subspace of the unitary operations [e.g., the Pauli X and
Y from above, with transformation matrix � = (X + Y )/2].
More precisely, the vacuum extension of a qubit unitary
U is U ′ = eiφ |vacuum〉 〈vacuum| + U , where U acts in the
single-photon subspace. In the calculation above, the phase is
implicitly set to zero, which is in agreement with our experi-
ment.

Channels in series with quantum-controlled operations. Let
us now consider the action of the superposition of trajectories
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in series with the quantum-controlled operations [Fig. 1(b)],
with U1 = Y , U2 = I, U3 = I. In this case, the input state
is transformed into (|ψ〉I |0〉T + Y |ψ〉I |1〉T)/

√
2 before inter-

acting with the noisy channels.
Again, we can compute the four effective unnormalized

states which arise from the different internal configurations
of the noisy channels:

XX |ψ〉I |0〉T + XXY |ψ〉I |1〉T , (A3a)

Y X |ψ〉I |0〉T + Y XY |ψ〉I |1〉T , (A3b)

XY |ψ〉I |0〉T + XYY |ψ〉I |1〉T , (A3c)

YY |ψ〉I |0〉T + YYY |ψ〉I |1〉T . (A3d)

The order of the above states refers to internal configura-
tions X − X , X − Y , Y − X , and Y − Y . These states can be
rewritten (up to phases) as

|0〉I |ψ ′〉T + i |1〉I X |ψ ′〉T , (A4a)

|0〉I |ψ ′〉T − i |1〉I X |ψ ′〉T , (A4b)

|0〉I |ψ ′〉T − i |1〉I X |ψ ′〉T , (A4c)

|0〉I |ψ ′〉T + i |1〉I X |ψ ′〉T , (A4d)

where |ψ ′〉 = α |0〉 − iβ |1〉. As a result, we see that measur-
ing the internal DOF in the computational basis {|0〉I , |1〉I}
projects the trajectory into either |ψ ′〉T or X |ψ ′〉T, upon ob-
taining outcomes |0〉I or |1〉I, respectively (each with equal
probabilities). Both of these states can be unitarily corrected,
allowing one to achieve perfect quantum information transfer
through these channels. [Even though here, for simplicity, we
restricted ourselves to the case p = 1

2 , the same reasoning
applies whatever the mixing probability p in the definition of
the channels, Eq. (8).]

Quantum control of channel order. For this scheme, we
make use of the fact that the output of the quantum switch
for unitary operations A and B is

1

2
{A, B} |ψ〉I |+〉T − 1

2
[A, B] |ψ〉I |−〉T , (A5)

where [A, B] is the commutator of A and B, and {A, B} is their
anticommutator. It is then easy to notice that the four output
states (up to phases) are

|ψ〉I |+〉T , (A6a)

Z |ψ〉I |−〉T , (A6b)

Z |ψ〉I |−〉T , (A6c)

|ψ〉I |+〉T . (A6d)

Again, the order of the above states refers to the internal
configurations X − X , X − Y , Y − X , and Y − Y . This leads
to the mixture described by Eq. (5), and it implies that mea-
suring the trajectory in the {|+〉T , |−〉T} basis projects the
internal DOF into either |ψ〉I or Z |ψ〉I. [As above, the same
reasoning also applies whatever the mixing probability p in
Eq. (8).]

FIG. 6. Experimental characterization of a liquid-crystal wave
plate (LCWP) at 0◦. Since the crystal is positioned at 0◦, it will be
able to switch from an identity operation to a Pauli Z . To characterize
the voltage corresponding to a Pauli Z , we send through it photons in
the polarization basis {|±〉 = (|0〉 ± |1〉)/

√
2}, and we measure for

which voltage the population inversion occurs. The estimated errors
are Poissonian.

3. Liquid-crystal characterization

In essence, a liquid-crystal wave plate (LCWP) can be
understood as a standard crystalline retarder whose amount of
retardance can be continuously varied by applying a voltage.
Figure 6 shows the characterization of one of our LCWPs. In
our experiment, we used Meadowlark Liquid Crystal Variable
Retarders. Their beam deviation is estimated to 2 arc min,
their reflectance (per surface) is 0.5%, and their surface qual-
ity is 40-20 scratch and dig.

4. Numerical comparison for random channels

To further compare the three schemes, we present a nu-
merical evaluation of the coherent information which can be
achieved with each channel layout for a large set of randomly
generated channels. The numerical procedure is carried out
as follows. First, we randomly generate a quantum com-
pletely positive and trace-preserving (CPTP) channel using
the QUANTINF MATLAB package available at [65]. (The pack-
age uses the routine outlined in [66].) Then, we estimate
the coherent information when (i) two copies of the same
channel (Fig. 7) or (ii) two different randomly generated
channels (Fig. 8) are inserted in the three types of quantum
superpositions of trajectories. The coherent information of
the resulting superposition is then estimated using a maxi-
mally entangled state |	+〉 as input.3 For the configuration
of quantum control of parallel channels, as shown in [37],
the output state depends not only on the CPTP map, but also
on the specific implementation of the channel. We therefore
discuss three methods to generate different implementations

3As before, the choice of a maximally entangled state lower bounds
the quantum capacity, and numerical simulations suggest that such
states maximize the amount of coherent information of a given chan-
nel.
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(a)

(b)

FIG. 7. Histogram of the coherent information achieved with the
three channel layouts when the two copies of the same randomly gen-
erated channel is used in each of the three layouts. The histograms
report the frequency with which a random channel (y axis, in loga-
rithmic scale) yields a given amount of coherent information (x axis),
normalized to the total number of channels used. (a) Histogram with
103 bins between a coherent information of 0 and 0.85. As can be
seen, the configuration of channels in series with quantum-controlled
operations consistently achieves the highest coherent information on
average. (b) Histogram of the same data with 105 bins displayed for
values of coherent information from 0 to 0.001. By increasing the
resolution for small values of coherent information, it is possible
to observe in greater detail the absence of the peak at zero for the
quantum superposition of channels in series with quantum-controlled
operations. In this region, the performance of the quantum control
of parallel channels and that of quantum control of channel order is
comparable.

for each randomly generated CPTP map, but we present re-
sults only from the one corresponding to the experimental
implementation reported in the main text. For the configura-
tion of channels in series with quantum-controlled operations,
we set U1 = Y and U2 = U3 = I. Further details on our nu-
merical procedure are reported in the Appendix, Subsec. 4
summary of numerics. Histograms of our results with respect
to the coherent information are presented in Figs. 7 and 8, for
2.6 × 106 iterations (Fig. 7) and 3.3 × 106 iterations (Fig. 8).
In essence, this can be interpreted as the probability to obtain
a given value of coherent information with each of the three

FIG. 8. Histogram of the coherent information achieved with
the three channel layouts when two different randomly generated
channels are used. The overall trend here is comparable to that of
two copies of the same random channel (Fig. 7). However, in this
case, the quantum control of the parallel channels performs, on
average, better than the quantum control of channel order. Moreover,
in general, all three layouts tend to perform worse than in the case
of two copies of the same random noisy channel (i.e., the maximum
amount of coherent information which can be achieved through each
layout is generally lower than in the case shown in Fig. 7).

layouts. We observe that, on average, channels in series with
quantum-controlled operations achieve a better performance
than the other two methods, while the quantum control of
parallel channels (quantum control of channel order) exhibits
the lowest performance when operated with two copies of the
same channel (two different randomly generated channels).
We also note that, in many cases, both the quantum control
of parallel channels and the quantum control of channel order
fail to obtain any activation, leading to large peaks at zero in
each of their histograms. Interestingly, this peak is not present
in the case of the layout in series with quantum-controlled
operations. This suggests that an activation (albeit small) of
the noisy channels can always be achieved using this layout
with only two trajectories.

Finally, Fig. 9 shows a histogram, wherein the differ-
ence between the coherent information of the quantum
superposition of channels in series with quantum-controlled
operations and that of the quantum control of parallel chan-
nels (CISeries QC-op. − CIQC-//-chann.) and of quantum control of
channel order (CISeries QC-op. − CIQC-order) is plotted for each
random pair of channels. Generally, the quantum superposi-
tion of channels in series with quantum-controlled operations
can achieve coherent information values higher than two other
layouts. However, the negative values in the histograms show
that this is not always the case. This is in line with what is
illustrated in the Appendix, Sec. 9, where we highlight the
fact that, if the unitaries U1, U2, and U3 were not optimized for
given noisy channels, a higher coherent information might be
obtainable with the other layouts. While Ref. [39] proved that,
by superposing a larger number of trajectories, one can always
find an optimal choice of quantum-controlled unitaries which
can outperform the other two channels’ layouts, we leave it
as an open question whether or not this is also true for the
restricted case of two trajectories only.

013093-13



GIULIA RUBINO et al. PHYSICAL REVIEW RESEARCH 3, 013093 (2021)

(a)

(b)

FIG. 9. Histograms of the difference between coherent informa-
tion achievable with quantum superposition of channels in series
with quantum-controlled operations and the other two layouts in the
case of (a) two independent copies of the same random channel,
and (b) two different randomly generated channels. The histograms
show, for each random channel, the difference between the coherent
information of the quantum superposition of channels in series with
quantum-controlled operations and that of the quantum control of
parallel channels [(CISeries QC-op. ) − (CIQC-//-chann. )] and of quantum
control of channel order [(CISeries QC-op. ) − (CIQC-order )]. While, to a
large extent, the layout using the channels in series with quantum-
controlled operations tends to outperform the other two schemes, the
negative values indicate that this is not always the case.

Summary of numerics

In this section, we provide further details on how we
constructed the output states in the three schemes. We start
by randomly generating two single-qubit channels, using the
Kraus decomposition. Since any qubit channel has a Kraus
decomposition with four operators or less, this results in two
sets of Kraus operators {A0, A1, A2, A3} and {B0, B1, B2, B3}.
We will always use the two-qubit Bell state |	+〉 to probe the
channel and calculate the coherent information. Then, the full
three-qubit state we consider is given by

|ψ in〉T,I,H = |+〉T ⊗ |	+〉I,H , (A7)

where T is the trajectory qubit, I is the system which will
experience the noisy channel (information qubit), and H is
the auxiliary (hypothetical) qubit used to evaluate the coherent

information. We will use A(I)
i = Ai ⊗ I as shorthand, where Ai

acts on the state of the information qubit and I on that of the
auxiliary qubit.

Quantum control of parallel channels. We construct the
output state, following Ref. [37], as

ρout
T,I,H = 1

2

[|0〉 〈0|T ⊗ CA
(
ρ in

I,H

) + |1〉 〈1|T ⊗ CB
(
ρ in

I,H

)]

+ 1

2

[|0〉 〈1|T ⊗ �A ρ in
I,H �

†
B + |1〉 〈0|T ⊗ �B ρ in

I,H �
†
A

]
,

(A8)

where ρ in
I,H = |	+〉 〈	+|I,H. Here, CA and CB are the applica-

tion of either channel

C


(
ρ in

I,H

) =
3∑

i=0


i ρ
in
I,H 


†
i (A9)

with 
i = Ai, Bi, and the transformation matrices �
 are

�
 =
3∑

i=0

〈E
|i〉 
i, (A10)

where {|i〉} are orthogonal states of the environment. The
transformation matrices �
 are related to a specific purifica-
tion of the channels, and they depend on the initial states of
the environment |EA〉 and |EB〉 used in this purification. These
states will be given by the actual physical implementation of
the channel, and they can lead to different activations using
the quantum-controlled channels. Given some Kraus repre-
sentations of the channels, we numerically investigated three
different states of the environment. First, as used in Ref. [37],
we set |EA〉 = |EB〉 = 1

2

∑3
i=0 |i〉. Second, we generate |EA〉

and |EB〉 randomly from the Haar measure for each different
channel. In this case, we do not optimize over |EA〉 and |EB〉,
we simply take one random state for each. Finally, we set the
weights of the environment based on the randomly generated
channel as

|E
〉 =
3∑

i=0

√
w

(
)
i |i〉 , (A11)

where

w
(
)
i = Tr

(



(I)
i ρ in

I,H

(I)
i

†)
, (A12)

which, in our case of a maximally entangled input state, re-

duces to Tr(
(I)
i 


(I)
i

†
)/2.

The appropriate method to generate the states of the envi-
ronment depends on the physical realization of the channels.
Within our framework, the description of quantum control of
parallel channels given in the main text, for the channels we
realized experimentally, coincides with the third option, with

i = wiσi, where σi is a Pauli unitary, and the weights wi are
given by the coefficients in Eqs. (8)–(10). Correspondingly,
we present the results for this case in Figs. 7–9.4 More-
over, on average the final method (i.e., setting the state of

4Although an optimization over all environmental states may
produce higher values of the coherent information, the choice of
environmental states presented in Figs. 7–9 corresponds to the one
which was experimentally realized with our photonic Mach-Zehnder
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the environment based on the Kraus operators) performs the
best among the aforementioned three. This can perhaps be
explained by the fact that, compared to the other ones, this
method generally leads to a larger norm of the transformation
matrices �
, which is crucial for the communication advan-
tages [37,40,50].

Channels in series with quantum-controlled operations. For
the numerical evaluation of this layout, we must also include
in the description the controlled unitaries which are applied
before the noisy channels:

C-U = |0〉 〈0|T ⊗ I + |1〉 〈1|T ⊗ U . (A13)

For all of the numerical results presented here, we set U = Y ,
where Y is the Pauli-Y operator. Then, we construct 16 com-
bined Kraus operators

Ki, j = B(I)
j A(I)

i , (A14)

and when, e.g., the initial trajectory state is |+〉T, we compute
the output state as

ρout
T,I,H = 1

2

∑
k,l

U k |k〉 〈l|T (U †)l ⊗
∑
i, j

Ki, jρ
in
I,HK†

i, j, (A15)

where we used the notation according to which U 0 = I.
Quantum control of channel order. For the switch we will

use a simplification. We know that for a given pair of Kraus
operators, the output state when the trajectory is prepared in
|+〉T and the input is one half of the maximally entangled state
|	+〉I,H is

ρi, j = {
A(I)

i , B(I)
j

}
ρ+

T,I,H

{
A(I)

i , B(I)
j

}†

+ [
A(I)

i , B(I)
j

]
ρ−

T,I,H

[
A(I)

i , B(I)
j

]†
, (A16)

where {A(I)
i , B(I)

j } and [A(I)
i , B(I)

j ] are the anticommutator

and commutator of A(I)
i and B(I)

j , and ρ+
T,I,H = |+〉 〈+|T ⊗

|	+〉 〈	+|I,H and ρ−
T,I,H = |−〉 〈−|T ⊗ |	+〉 〈	+|I,H. Then,

the net output state is simply

ρout
T,I,H =

∑
i, j

ρi, j . (A17)

From these output states we then evaluate the coherent infor-
mation as described in the main text.

5. Data acquisition and error estimation

Below, we briefly outline the details of the data acquisi-
tion and the error estimation in our experiment. As discussed
above, we followed two methods to experimentally construct
of the noisy channels. In the first, we realized the noise

interferometer without further control over the environment or the
noisy channels. To adhere to the spirit of experimentally comparing
schemes pursued in this paper, we thus chose not to optimize ex-
plicitly over all implementations of the randomly chosen channels
(following the approach, e.g., of Ref. [37]).

within each channel by generating random numbers in the
range [0,1]. Based on this number, and on the type of noise
we wanted to realize [Eqs. (8)–(10)], we assigned a unitary
operation from the set {I, X,Y, Z}. In order to ensure a high
fidelity of the noise channel (>99%), we repeated this pro-
cedure 1000 times, measuring each configuration for 1 s, and
integrating the data taking procedure over these 1000 runs. In
the second method, we measured all the possible combina-
tions of unitary operations between the two noisy channels
1 and 2, and we then created the desired noise during our
data analysis, following the procedure proposed in Ref. [27].
The first method was used to create the noisy channels in the
indefinite order channel layout, while the second method was
used for all other layouts. We did not observe any significant
difference in the performance of the two methods (provided
that we applied enough random unitary operations, see the
Appendix, Sec. 6). However, the first method required several
days of measurement, the second less than an hour. Since full
QPT was not required for the indefinite order arrangement, we
only used the first method for these data, and used the second
method for all of the remaining channel configurations.

We collect ≈23 000 entangled photon pairs per second
directly from our source. Of these pairs, we selected only
one separable polarization component (i.e., |H,V 〉), halving
the count rate. Finally, the photons were sent through optical
fibers to the different experiments. Because of experimental
imperfections due to the nonzero reflectivity of the various
optical elements, the nonideal fiber coupling, and the optical
fiber’s losses (the distance to travel in optical fiber between
the source and the various experiments is about 3 m), approx-
imately 3000 photons per second were detected at the end of
the experiment.

Finally, because of the long measurement times (particu-
larly, in the case of the physical implementation of the noise in
the channels), we observed phase drifts in the two arms of the
interferometer. In order to correct these drifts, so as to ensure
that we always prepared and projected the desired path qubit
states, we actively stabilized the interferometer by means of
the delay line controlled by a piezoactuator. We measured and
reset the phase every 20 min (which, according to our tests,
ensured phase drifts below 1%). Given these count rates, it
follows that we measured about 3 × 106 photons for each
internal configuration in case of physical implementation of
the noisy channels, and about 3000 counts for each internal
configuration in case of implementation of the noisy channels
during data analysis.

The aforementioned imperfections in the path qubit had
various consequences in our experiment. First, the phase drift
on this qubit caused an uncertainty on the input state since
the phase of the path qubit can fluctuate over time. Moreover,
if the phase drifts during the experiment, the purity of the
input state can be reduced. In light of this, and of the high
number of accumulated counts, the main statistical error in
our experiment was related to the input state used for quan-
tum process tomography (QPT). Therefore, to calculate all
our experimental error bars, we determined the input state as
follows. We performed quantum tomography of the quantum
state directly on the path and polarization qubits in absence
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of “internal operations” (i.e., setting to identity all the optical
components meant to implement the noisy channels later on).
We then observed the variation of this state as a function of
time, and used this variation to analyze our data for a “worst-
case” state, a “best-case” state, and a “most-likely” state. This
spread in the input states led to the error bars and the data
points presented in all of our experimental data.

The second main cause of experimental errors in the path
qubit arises from the imperfect visibility of the Mach-Zehnder
interferometers used to measure it. This reduced visibility,
≈0.93–0.96 (depending on the amount of optical elements in
each interferometer arm) essentially corresponds to a slight
loss of coherence in the two trajectories and, therefore, to
a decrease in the ability of the trajectories to restore quan-
tum information. This leads to a systematic offset in our
data. Likewise, a slight miscalibration of our wave plates
and liquid-crystal wave plates may have occurred, this would
lead to further systematic errors. These systematic errors have
not been included in our error bar calculation. We note, in
particular, that a considerably reduced visibility of the inter-
ferometer may constitute the greatest experimental challenge
in the application of our techniques to real-world quantum
communication.

6. Fidelity of channel implementation

As described in the main text, we implemented the noisy
channels in two different ways. In this section, we will discuss
the first method, wherein we randomly apply either a Pauli
X , Y , Z or the identity operation for one second of our data
acquisition time. The probability of each operation is given by
the type of noisy channel we wish to implement [i.e., by one of
Eqs. (8)–(10)]. The natural question is how many operations
must we average over to ensure a faithful implementation of
the noisy channels.

To answer this, we used Monte Carlo simulations to study
the average “process fidelity” Fav as a function of the number
of applied operations. We computed the average process fi-
delity (defined in Ref. [67]) by (i) randomly generating 10 000
single-qubit states from the Haar measure, (ii) computing the
ideal output state ρid using Eqs. (8)–(10), (iii) simulating the
output by applying N randomly chosen operations ρsim, and
then (iv) computing the average fidelity between ρid and ρsim

for all N input states. Already for N = 25, the average process
fidelity is larger than 0.99. As an example, a plot of the
average “process infidelity” (1 − Fav) for the BB84 channel
with p = 0.5 is shown in Fig. 10. (For the infidelity, a value
of 0 indicates a perfect implementation.) We chose this as a
representative example since the BB84 channel takes a
slightly longer time to converge than all the others (this is
because the BB84 process randomly applies one of the four
operations, while all the others only choose among two op-
erations). So, the case shown in Fig. 10 represents the worst
case among all the ones studied. Nevertheless, even such a
channel converges to the ideal noisy channel quite rapidly
with N . Finally, since we always implement two channels
simultaneously, we apply 1000 different operations, which is
far beyond this limit.

FIG. 10. Monte Carlo simulation of the BB84 channel with p =
0.5. A plot of the average process infidelity between the ideal process
and the simulated process versus the number of applied operations
used to simulate the noisy channel. The infidelity is defined as 1 −
Fav, where Fav is the fidelity. Hence, smaller infidelities indicate a
higher degree of agreement.

7. Single-photon source

A CW laser centered at 392 nm emits the pump beam
for a source producing single photons through a process of
type-II spontaneous-parametric downconversion. The pump
beam traverses a focusing lens with f = 12.5 cm, and then
reaches, at the proper distance, a 3-mm-thick beta-barium
borate (BBO) crystal. Within the crystal, single photons are
generated at a wavelength centered at 784 nm. To compensate
for the spatial and temporal walkoff of the resulting single-
photon pairs, they are sent each through a BBO crystal of
1.5 mm thickness. They are finally filtered in polarization
through a long-pass filter, and a band-pass filter centered at
785 nm with a full-width at half-maximum of 10 nm. The
photon pairs rate is 23 000/s with a pump power of 85 mW.

8. Quantum process tomography

Our experimental measurements consist, in general, of per-
forming two-qubit quantum process tomography (QPT) on a
path and a polarization qubit. Basically, QPT requires two
steps: (i) preparing the system in a tomographically complete
set of states before the process, and (ii) measuring the system
in a complete basis set after the process. For the polarization
qubit, this is relatively straightforward. In fact, in all of three
superposition methods outlined in Fig. 2, the photons enter
the experiment in a single path. At this point a QWP and a
HWP are inserted, which allow us to prepare any single-qubit
polarization state. After this, the path qubit is prepared by a
50/50 beam splitter in a quantum superposition of two paths.
After the noisy channels, the paths are recombined by another
50/50 beam splitter. On each of the output paths we place a
QWP, a HWP and a polarizing beam splitter to implement the
polarization measurements. Although they are physically dif-
ferent elements, we ensure that the wave plates in each output
arm are always set to the same angle, and hence perform the
same measurement.

013093-16



EXPERIMENTAL QUANTUM COMMUNICATION … PHYSICAL REVIEW RESEARCH 3, 013093 (2021)

Even though, in all of the communication schemes pre-
sented in the main text, the trajectory is simply initialized in
an equal superposition (i.e., the path qubit starts out in |+〉T),
one must prepare this qubit in a complete set of states in
order to perform QPT. In order to change the input state of
the path qubit between |+〉T, |R〉T = (|0〉T − i |1〉T)/

√
2, and

|L〉T = (|0〉T + i |1〉T)/
√

2, we set the relative phase between
the two trajectories after the first beam splitter using a delay
stage mounted on a calibrated piezoactuator. We can also eas-
ily prepare |0〉T and |1〉T by blocking either path. Analogously,
we measure the path qubit in two different ways. To measure
in {|+〉T , |−〉T} or {|R〉T , |L〉T}, we suitably set the relative
phase between the two paths before recombining them at the
second beam splitter. We use the same delay stage to both set
the phase of the path state, and to measure it in {|+〉T , |−〉T},
or {|R〉T , |L〉T}. This can be done by adding the required
phase for state preparation and subtracting the phase for state
measurement. Such a phase is then converted into a path delay
and sent to the piezoactuated delay stage. To measure in the
{|0〉 , |1〉} basis, we block either path before the 50/50 beam
splitter, and we then sum the counts from the two paths after
the beam splitter.

To collect a complete set of data, we prepare the path qubit
in {|0〉T , |+〉T , |R〉T , |L〉T}, and for each of these path states
we prepare the polarization qubit in {|0〉I , |+〉I , |R〉I , |L〉I},
for a total of 16 input states. We then measure each of these 16
two-qubit states by setting 9 different two-qubit basis settings:
{|0, 0〉, |0,+〉, |0, R〉, |+, 0〉, |+,+〉, |+, R〉, |R, 0〉 , |R,+〉 ,

|R, R〉}I,T. However, for each measurement setting we
measure all four outcomes. For example, when the
measurement is set to |0, 0〉I,T, we obtain the projections
onto |0, 0〉I,T, |0, 1〉I,T, |1, 0〉I,T, and |1, 1〉I,T. This yields 36
different measurement results for each of the 16 input states,
providing an overcomplete data set, on which we perform a
least-squares QPT routine.

Equipped with this mathematical description of our experi-
mental channel, we can compute the action of our experiment
on one qubit of a maximally entangled Bell state when the
path qubit is set to |+〉T. From this, we evaluate the coherent
information [Eq. (7)]. Fixing the state of the path qubit in this
manner results in the coherent information of the effective
one- to two-qubit channel.

We carry out this method based on full QPT for the cases
of quantum control of parallel channels and channels in se-
ries with quantum-controlled operations, but for the quantum
control of channel order we can make a simplification to
lower bound the coherent information which saves significant
measurement time. For these data, we only prepare the path
state |+〉T, and then measure it in the {|+〉T , |−〉T} basis, as
described above. With these measurements, we lower bound
the coherent information in our channels as follows. We first
reconstruct two single-qubit χ matrices for the target sys-
tems χ |+〉 and χ |−〉, using single-qubit process tomography
on the polarization qubit. In particular, χ |+〉 is the single-qubit
effective process that the information qubit experiences when
the trajectory measurement result is |+〉T, whereas χ |−〉 is the
effective process when the trajectory measurement outcome
is |−〉T

Next, we compute the action of the one-qubit χ matrix on
a maximally entangled Bell state, to evaluate the two values of
the coherent information I |+〉

c and I |−〉
c in Eq. (7). Afterwards,

we simply calculate their average, with each term weighted
by their respective postselection probabilities p|+〉 and
p|−〉:

ILB
c = p|+〉I |+〉

c + p|−〉I |−〉
c . (A18)

In general, ILB
c sets a lower bound on Ic because of the

data processing inequality for coherent information [54,68].
Furthermore, in absence of additional errors, it can be shown
that ILB

c = Ic in the case of the quantum switch.

9. Fixing the quantum-controlled operations independently
of the noise

In some cases, for instance in a rapidly varying noise en-
vironment, it may be impossible to estimate the type of noise
and adapt the quantum-controlled operations accordingly. In
these situations, one would need to fix such operations inde-
pendently of the noise. For our noise varieties, the operations
U2 and U3 were set to I in the cases of the XY and BB84
channels, and to H for the BF and PF case, whereas U1 = Y
in all three cases. If we were to keep the same quantum-
controlled operations in the BF and PF case as in the XY and
BB84 cases, the efficiency of the scheme would be reduced,
and the channel activation due to the channels in series with
quantum-controlled operations would result comparable to
that of the two other schemes (i.e., the quantum control of
parallel channels, and the quantum control of channel order).
The theoretical trend and the experimental data points corre-
sponding to this case are shown on Fig. 11. Colors and data
point shapes are the same as in Figs. 3–5.

FIG. 11. Experimental BF- and PF-noise data for suboptimal
quantum-controlled operations. The trend of the scheme featuring
the channels in series with quantum-controlled operations (Series
QC-op.) performs worse than the quantum control of channel order
(QC-order) for all p � 0.67, but better than the quantum control
of parallel channels (QC-//-chann.) for p � 0.84. The experimental
data for the suboptimal choice of Series QC-op. is in good agreement
with the expected trend.
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