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Abstract
Metasurfaces based on geometric phase acquired from the conversion of the optical spin states
provide a robust control over the wavefront of light, and have been widely employed for
construction of various types of functional metasurface devices. However, this powerful approach
cannot be readily transferred to the manipulation of acoustic waves because acoustic waves do not
possess the spin degree of freedom. Here, we propose the concept of acoustic geometric-phase
meta-array by leveraging the conversion of orbital angular momentum of acoustic waves, where
well-defined geometric-phases can be attained through versatile topological charge conversion
processes. This work extends the concept of geometric-phase metasurface from optics to acoustics,
and provides a new route for acoustic wave control.

1. Introduction

Geometric-phase metasurfaces (GPMs) have been widely employed as an efficient and robust means to
control the scattering of electromagnetic waves with the controllable geometric phase acquired via a spin
conversion process [1–3]. Due to the simple relationship between the geometric phase and the orientation
of anisotropic nanostructures for generating the spin conversion, GPMs can be used for flexible wavefront
manipulation, such as imaging [4, 5], holography [6, 7], harmonic generations [8, 9], trapping [10, 11],
quantum technology [12, 13], etc. However, this concept cannot be directly extended to acoustics due to the
lack of such spin conversion process in acoustics, even though the concept of acoustic spin has been recently
proposed [14, 15]. Therefore, the common strategies involved in the design of acoustic metasurfaces or
metamaterials mainly focus on acoustic surface impedance engineering and effective acoustic refractive
index modulation, such as Helmholtz resonators [16–20], grooves [21–24], coiling-space structures
[25–29], pentamode metamaterials [30], mass-membrane system [31], just to name a few. Generally, the
functionality of acoustic meta-atoms (e.g. designated phase shift) is fixed once the geometry of the
structures is determined. Hence, acoustic metasurfaces usually require precise spatial arrangement of the
meta-atoms by following a rigorous meta-device design procedure [32]. As a result, recent works
on tunable acoustic meta-atoms suffer from the resonance-based phase delay, which unavoidably couples
with the transmission amplitude and requires delicate control over some critical geometry parameters
[33–35].

In this work, we propose a reconfigurable acoustic meta-array based on acoustic geometric phases which
are obtained through versatile acoustic vortex topological charge (TC) conversion occurring within each
pixel of the meta-array—a cylindrical acoustic waveguide with judiciously engineered interior structures.
Each meta-pixel waveguide, containing a number of acoustic geometric meta-plates (AGM), is designed to
implement sequential manipulations on the incident acoustic wave including generation and conversion of
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Figure 1. Analogy between the (a) optical and (b) acoustic geometric phase obtained through scattering processes in
meta-atoms. LP, QWP and GPM refer to the linear polarizer, quarter wave plate and optical GPM, respectively. AGMs refer to the
acoustic meta-plates designed for TC generation, conversion and detection. (c) The anomalous beam bending (green arrows)
realized with the acoustic geometric-phase meta-array (AGPM). Meta-array pixel consists of the cylindrical waveguides and
several AGMs to support the TC conversion processes. The phase gradient is obtained by spatially rotating the TC converted
AGMs.

vortex beams of various TCs. A geometric phase arises from the conversion between two different orbital
angular momenta, which can be continuously controlled by varying the orientation of the conversion
element, i.e. the AGM for the designated TC conversion process, while the transmitted amplitude almost
remains unchanged. As a proof of principle, flexible acoustic field manipulations including acoustic beam
steering and focusing can be realized with the proposed geometric-phase meta-array. Our design opens a
new avenue for flexible acoustic field generation and the controllable phase manipulation.

2. Principle of acoustic geometric phase

We start by a brief description of the geometric phase with optical metasurfaces. When a circularly
polarized light is incident onto a GPM, the transmitted light carries a geometric phase term of
exp

[
i
(
σin − σout

)
θσ
]
, where σin and σout refer to the spin of input and output circularly polarized light, θσ

is the orientation angle of the nanoantenna, as illustrated by figure 1(a). Therefore, only the cross-polarized
component of the transmitted light, i.e. σout = −σin, carries the geometric phase term of exp

(
2iσinθσ

)
.

Thus, the wavefront of the cross-polarized transmitted beam can be arbitrarily controlled by adjusting the
orientation angles of the nanoantennas across the metasurface. Here, we show that this geometric phase also
accompanies a conversion process between different orbital angular momenta in a cylindrical waveguide,
and therefore the same principle can be applied to acoustics where spin degree of freedom does not exist.
Specifically, when an acoustic meta-plate converts the vortex of an incident acoustic beam from TC lin to TC
lout, the TC-converted acoustic beam could carry an additional phase modulation of exp

[
i
(
lin − lout

)
θl

]
,

where θl is the orientation angle of the acoustic meta-plate responsible for this conversion, as illustrated by
figure 1(b). Figure 1(c) shows the schematic of anomalous beam bending achieved with an acoustic
geometric-phase meta-array, where the spatially rotated AGMs inside the meta-array pixels encode the
desired phase gradient.

In order to understand the mechanism of the presence of the acoustic geometric phase obtained through
TC conversions, we consider a general TC conversion case which involves the orbital angular momentum
transfer from TC lin to TC lout. By defining the complex transmission of an AGM of TC lξ and orientation
angle θl as T̂ (θl), then we have:

|lout〉 = T̂ (θl) |lin〉. (1)

By rotating the incident beam, the transmission beam, and the AGM in the counter-clockwise direction
about the propagation axis by an angle ϕ, the above equation still holds for the transformed waves.
Considering the additional phase acquired by the incident and transmitted beams due to the rotation (see
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supplementary material (https://stacks.iop.org/NJP/23/113026/mmedia) [36]), one can write:

exp
(
−iloutϕ

)
|lout〉 = T̂ (θl + ϕ) exp

(
−ilinϕ

)
|lin〉. (2)

By combing equations (1) and (2), it is straightforward to show T̂ (θl + ϕ) = T̂ (θl) exp
[
i
(
lin − lout

)
ϕ
]
,

and by selecting θl to be zero, we arrive at the following simple expression for the geometric phase as a
function of orientation angle ϕ:

T̂ (ϕ) = T̂ (0) exp
[
i
(
lin − lout

)
ϕ
]
. (3)

Hence, the overall geometric phase carried by the transmitted field is exp
[
i
(
lin − lout

)
ϕ
]
.

Thus, various types of geometric-phase modulations are available via different TC conversion processes.
For example, for an incident beam of TC lin = 1, with an acoustic meta-plate of TC lξ = 1, the transmitted
acoustic wave would have a TC lout = 0 and carry the geometric phase of exp (iθl) when rotating the
acoustic meta-plate by angle of θl. Moreover, by converting an acoustic vortex beam of TC lin = ±1 to the
vortex of TC lout = ∓1 through an acoustic meta-plate of TC lξ = 2, the corresponding geometric-phase
modulation of transmitted acoustic wave is exp (±2iθl). Generally, the acoustic geometric phase exp

(
qiθl

)
,

q = ±1,±2, . . . can be obtained at will by selecting appropriate TC conversion process.

3. Design principle of acoustic geometric-phase meta-array

Ideally, an AGM can be constructed by dividing it into many sections along the azimuthal direction and by
filling different sections with acoustic material of gradually varying refractive indices but with the same
impedance matched to that of air, as shown in figure 2(a). Here, the AGM is placed inside a rigid waveguide
of inner radius R, and it contains lξ repeating units along the azimuthal direction. Each unit consists of M
number of sections to achieve a phase variation of 2π at the operating wavelength λ0. Thus, the refractive
index of the mth section within each repeating unit is given as nm = 1 + (m − 1)λ0/Mh, where h is the
thickness of AGM and m = 1, 2, . . . , M, with the corresponding sector angle of each section being
2π/

(
lξM

)
.

The numerical calculation is conducted with the finite element method, details of the simulation setup
can be found in supplementary material [36]. Figures 2(b) and (c) show the geometric-phase modulation
obtained through the TC conversion processes. Here, the acoustic meta-plate consists of 12 sections, and the
operating wavelength is selected as 10 cm. In the first case shown in figure 2(b), the vortex of TC l = 1 is
firstly generated through |0〉 → |1〉 process via an AGM of TC lξ = −1, and then converted into a plane
acoustic wave via |1〉 → |0〉 process by a second AGM of TC lξ = +1. The orientation of the first AGM is
fixed while that of the second one (θl) is varied to provide a geometric phase of exp (iθl) (figure 2(d)). In
the second example, the geometric phase obtained through the TC conversion process |1〉 → | − 1〉 is
illustrated in figure 2(c). In this configuration, three AGMs are employed, i.e. vortex source generation
(AGM1, lξ = −1, |0〉 → |1〉), TC conversion (AGM2, lξ = 2, |1〉 → | − 1〉) and conversion back into a plane
wave (AGM3, lξ = −1, | − 1〉 → |0〉), see figure 2(c). The geometric phase retrieved from the simulation is
proportional to exp (2iθl) where θl is the orientation of the 2nd AGM, as shown in figure 2(e). Similar to
the spin-dependent optical geometric phase, the acoustic geometric phase also depends on the sign of TC of
the input vortex. For example, when we invert the sign of TC of AGM1 from 1 to−1, the TC conversion
process enabled by AGM2 becomes| − 1〉 → |1〉, and the corresponding geometric phase is exp (−2iθl).
Moreover, the geometric-phase modulation obtained through higher order TC conversions, such as
|2〉 → |−1〉 (∝ exp (3iθl)) and |3〉 → |−1〉 (∝ exp (4iθl)), are shown in supplementary material [36].

To showcase the potential of acoustic geometric phase in wavefront manipulation, we theoretically study
the beam steering and beam focusing by using the ideal geometric-phase meta-arrays described above.
Figure 3(a) shows the full-wave simulation of the beam steering via |1〉 → |0〉 TC conversion process.
Similar to the meta-array pixel given in figure 2(b), two AGMs are utilized here to generate the input vortex
(AGM1, lξ = −1, |0〉 → |1〉) and to encode the geometric phase (AGM2, lξ = +1, |1〉 → |0〉). In our study,
the geometric-phase meta-array consists of 12 pixels, the operating wavelength λ0 is selected as 12 cm, the
pixel size pmeta is 9 cm, which is slightly larger than the outer diameter of waveguide (8 cm). The orientation
angle θl of AGM2 is varied linearly along x direction, with a uniform step of 30◦. The anomalous refracted
angle retrieved from the calculated far-field is −6.3◦ ± 0.1◦, which agrees well with the theoretical value
obtained based on the geometric phase of θl. For the |1〉 → | − 1〉 TC conversion process, the designed
meta-array pixel consists of three AGMs as shown in figure 2(c), i.e. input vortex generation (AGM1,
lξ = −1, |0〉 → |1〉), vortex conversion for geometric-phase modulation (AGM2, lξ = +2, |1〉 → | − 1〉) and
vortex detection for field reconstruction (AGM3, lξ = −1, | − 1〉 → |0〉). The anomalous refracted angle
obtained from the simulation is −12.8◦ ± 0.1◦ (figure 3(b)), which agrees well with the theoretical value
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Figure 2. Geometric-phase modulation defined by TC conversion in acoustic meta-plates. Schematic of (a) ideal acoustic
meta-plate, the radius of waveguide R and solid center Rc is 0.4λ0 and 0.05λ0, the thickness h of AGM is 0.5λ0, the section angle
θ1 and θ2 is 27◦ and 3◦ , respectively. Configuration of the cascaded acoustic meta-plates for geometric phase encoding process (b)
|0〉 → |1〉 → |0〉 and (c) |0〉 → |1〉 → | − 1〉 → |0〉, and the corresponding geometric phase (red solid triangle) and transmitted
amplitude (blue solid circle) obtained via TC conversion processes vs the orientation angle of AGM2 for (d) |1〉 → |0〉 and (e)
|1〉 → | − 1〉.

calculated according to the geometric phase of 2θl. Interestingly, by inverting the TC of AGM1 and AGM3
from lξ = 1 to lξ = −1, the geometric phase inverts its sign. Based on the geometric-phase pixel used in
figure 3(a), we further show beam focusing realized by an acoustic geometric-phase metalens via |1〉 → |0〉
process, as shown by the left panel of figure 3(c). The phase profile for focusing in the x–z plane is

ϕ (x) = −k
(

fz −
√

x2 + f 2
z

)
, where k = 2π/λ0 is the operating wavenumber, the designed focal length fz is

10λ0 and the orientation angle of AGM2 in each pixel follows exactly ϕ (x). The top- and bottom-right
panel of figure 3(c) show the field intensity profile along two perpendicular lines A and B across
the focal point. The simulated focal length is about 1.16 m which is close to the designed value 1.2 m.
Besides the focusing of free-space plane acoustic waves, other beam manipulations can also be readily
achieved.

4. Discussion

Considering the realization of acoustic geometric-phase meta-array in real applications, we utilize realistic
acoustic meta-structures to achieve wave manipulation based on the acoustic geometric phase. Here, the
acoustic meta-atoms designed for different sections are classical Helmholtz resonator-straight pipe hybrid
structures [37], as shown in figure 4(a). By tuning the widths of the open pipe (ua, ub, uc) and the open
neck (va, vb, vc) of the Helmholtz resonators of each layer, a high transmission can be achieved. Figure 4(a)
shows the design of two meta-plates of TC lξ = 1 and lξ = 2, with the detailed geometry parameters of the
constituent units given in supplementary material [36]. Here, AGMs of TC lξ = 1 and lξ = 2 are
numerically investigated, and the optimized working frequency in our design is 2.88 kHz. Figure 4(b) shows
the TC generation, conversion and detection with the above two types of AGMs, where the acoustic vortex
sources are obtained by illuminating plane acoustic waves onto the meta-plate of TC lξ = 1. Figures 4(c)
and (d) show the acoustic geometric phase (red solid triangle) and the corresponding transmitted
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Figure 3. Acoustic wave manipulation based on geometric phase. Beam steering via (a) |1〉 → |0〉 and (b) |1〉 → | − 1〉 TC
conversion process. (c) Focusing of free-space plane acoustic waves with geometric-phase meta-array by utilizing |1〉 → |0〉 TC
conversion process.

amplitude (blue solid circle) for two systems with cascaded AGMs for realizing geometric phase based on
|1〉 → |0〉 and |1〉 → | − 1〉 TC conversion processes, respectively. It is obvious that the geometric-phase
modulation obtained with the realistic acoustic meta-plates agrees well with theoretical predictions.
However, due to the multiple scattering induced by the realistic AGMs, the transmitted field uniformity and
transmission efficiency would be deteriorated when more AGMs are cascaded. In our simulation, the
distance between two meta-plates in |1〉 → |0〉 process shown in figure 4(c) and the interval among three
meta-plates in |1〉 → | − 1〉 process shown in figure 4(d) are optimized as 30 cm and 10 cm, respectively. It
should be noted that the influence of thermal viscosity on the acoustic geometric-phase modulation is
negligible (see supplementary material [36]). In supplementary material [36], we provide the full-wave
simulation of broadband beam bending (from 1.9 kHz to 3.1 kHz) realized by a geometric-phase
meta-array made up of the realistic acoustic meta-plates. It is found that our geometric-phase acoustic
meta-array could operate in a broadband frequency range, benefitting from the dispersionless character of
geometric phase.

In this work, the overall size of our acoustic geometric-phase meta-array mainly depends on the TC
conversion process we utilize for the geometric-phase modulation. For higher order acoustic geometric
phase, acoustic vortex of larger TC value requires bigger waveguide radius due to the consideration of the
cutoff frequency. Therefore, here we only demonstrate the acoustic geometric-phase modulation obtained
via |1〉 → |0〉 and |1〉 → | − 1〉 processes, in which the radius of the waveguide is subwavelength. Another
key factor that influences the thickness of the meta-array is the design strategy of AGM, where the
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Figure 4. Realistic acoustic meta-structures for implementing acoustic geometric phases. (a) Schematic of the designed
meta-plate. The height h and radius R of designed meta-plate are 7.5 cm and 5 cm, respectively. The thickness of the rigid wall d
is 1.5 mm, the period of each structure layer along the radial direction dp is 1.5 cm, the radius Rc of rigid center is 3 mm. A rigid
wall df of thickness 2 mm is added to fit the waveguide. (b) Full-wave simulation of realistic meta-plates for TC generation (left),
detection (middle) and conversion (right). Geometric phase (red solid triangle) and transmission spectrum (blue solid circle)
obtained with TC conversion processes (c) |1〉 → |0〉 and (d) |1〉 → | − 1〉.

AGM of smaller height is desired for the implementation of a more compact acoustic geometric-phase
meta-array.

5. Conclusion

In summary, we have proposed the concept of acoustic geometric phase generated in the process of TC
conversions, which is a generalization of optical geometric phase for spin conversion. Different from the
conventional resonance-type phase modulation, which relies on the geometry and usually tangled with
transmission amplitude, acoustic geometric phase is highly robust, and it enables arbitrary phase
manipulation by simply rotating the meta-plates. Our work transfers the concept of optical geometric phase
to acoustics, and shows its potential in constructing broadband and reconfigurable acoustic meta-devices
for arbitrary field generations and manipulations.
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