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Witnessing latent time correlations with a single quantum particle
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When a noisy communication channel is used multiple times, the errors occurring at different times generally
exhibit correlations. Classically, these correlations do not affect the evolution of individual particles: a single
classical particle can only traverse the channel at a definite moment of time, and its evolution is insensitive to
the correlations between subsequent uses of the channel. In stark contrast, here we show that a single quantum
particle can sense the correlations between multiple uses of a channel at different moments of time. Taking
advantage of this phenomenon, it is possible to enhance the amount of information that the particle can reliably
carry through the channel. In an extreme example, we show that a channel that outputs white noise whenever the
particle is sent at a definite time can exhibit correlations that enable a perfect transmission of classical bits when
the particle is sent at a superposition of two distinct times. In contrast, we show that, in the lack of correlations,
a single particle sent at a superposition of two times undergoes an effective channel with classical capacity of
at most 0.16 bits. When multiple transmission lines are available, time correlations can be used to simulate the
application of quantum channels in a coherent superposition of alternative causal orders, and even to provide
communication advantages that are not accessible through the superposition of causal orders.
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I. INTRODUCTION

Quantum communication enables new possibilities that
were unthinkable in the classical world, notably including
secure key distribution [1,2]. The main hurdle to the im-
plementation of quantum communication, however, is the
fragility of quantum states to noise. To tackle this problem,
quantum error correction schemes encode information into
multiple quantum particles, using redundancy to mitigate the
effects of noise [3–5].

When the same communication channel is used multiple
times, the noisy processes experienced by particles sent at
different times are generally correlated [6–9]. For example,
photons transmitted through an optical fiber are subject to
random changes in their polarization [10], and since such
changes happen on a finite timescale, photons sent at nearby
times experience approximately the same noisy processes. A
similar situation arises in satellite quantum communication,
where the satellite’s motion induces dynamical mismatches of
reference frame with respect to the ground station [11].
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The presence of correlations is both a threat and an oppor-
tunity for communication. On the one hand, it can undermine
the effectiveness of standard error-correcting schemes, which
assume independent errors on the transmitted particles. On
the other hand, tailored codes that exploit the correlations
among different particles can enhance the transmission of
information [6,8,12–26].

Like most error-correcting schemes, the existing codes for
correlated noise use multiple physical particles to encode a
single logical message. Classically, the use of multiple par-
ticles is essential: since a single classical particle can only
traverse a communication channel at a definite moment of
time, correlations between different uses of the channel do
not affect the particle’s evolution. The same conclusion holds
even if the moment of transmission is chosen at random: in
this case, the resulting evolution is simply the average of the
evolutions associated to each individual moment of time, and
the overall evolution is independent of the time correlations.

In stark contrast, here we show that a single quantum par-
ticle can sense the correlations between multiple uses of the
same quantum communication channel. At the fundamental
level, this effect is made possible by the ability of quantum
particles to experience a coherent superposition of multiple
time evolutions [27–34]. In particular, we will consider the
situation in which the particle is in a superposition of traveling
at different moments of time, as illustrated in Fig. 1. Taking
advantage of the time correlations in the noise, we show that
it is possible to enhance the amount of information that a
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FIG. 1. A single quantum particle can travel through a transmis-
sion line at a superposition of two different moments of time t1 (red)
and t2 (blue). Along the way, the particle experiences errors (yellow
region), and the errors occurring at time t1 are generally correlated
with the errors occurring at time t2. By taking advantage of these
correlations, the errors can be mitigated or even completely removed.

single particle can carry from a sender to a receiver, beating
the ultimate limit achievable in the lack of correlations.

We demonstrate this effect with an extreme example, in
which a single quantum particle carries one bit of classical
information through a transmission line that completely erases
information at every definite time step. This phenomenon wit-
nesses the presence of correlations between different uses of
the transmission line: in the lack of correlations, we show that
the number of bits that can be reliably transmitted by sending
a single particle at a superposition of two different times does
not exceed 0.16.

It is worth stressing that the above advantage is not specific
to time correlations, but applies more generally to spatial
correlations, or to other types of correlations: as long as two
different uses of a channel are correlated, one may take ad-
vantage of the correlations by sending a quantum particle in a
superposition of going through one use or the other.

Time-correlated channels are also interesting for founda-
tional reasons. Recently, they have been proposed as a way
to reproduce the use of quantum channels in a superposition
of different causal orders [32,35]. In particular, they have
been used to reproduce the action of the quantum SWITCH

[36,37], a higher-order operation that combines two variable
quantum channels in a superposition of two alternative orders.
In practice, time-correlated channels underlie all the existing
experimental setups inspired by the quantum SWITCH [38–44].

The quantum SWITCH is known to offer a number of advan-
tages in quantum communication [42,45–50]. Here we show
that (1) time correlations are essential in order to reproduce
the advantages of the quantum SWITCH, and (2) the access to
time-correlated channels is an even more powerful resource
than the ability to combine ordinary quantum channels in a
superposition of alternative orders.

To make the above points, we consider the scenario il-
lustrated in Fig. 2, where a single particle is sent on a
superposition of two paths, traversing two independent chan-
nels, each with the property that different uses of the same
channel at different moments of time are correlated, while the
action of the channel at any given time is completely depo-
larizing. When the noise is perfectly correlated, the network
in Fig. 2 reproduces the quantum SWITCH of two completely
depolarizing channels, which is known to achieve a com-
munication capacity of 0.049 [45,50]. In contrast, we show
that in the lack of time correlations the maximum capacity
achieved by sending a particle on a superposition of paths is
at most 0.024 bits. This result proves that, in this scenario,
the physical origin of the communication advantage of the

FIG. 2. A single particle can travel on a superposition of two
different paths (red and blue), which traverse two transmission lines
(top and bottom) at two moments of time t1 and t2. The errors occur-
ring on successive uses of the same transmission line are correlated
(yellow lines), so the particle experiences correlated errors across
the two branches (red and blue) of the superposition. These time
correlations are a resource that can be used to mimic the use of
quantum channels in a superposition of orders, and even to achieve
larger communication advantages.

quantum SWITCH is not merely the superposition of paths, but
rather the interplay between the superposition of paths and the
time correlations in the noise.

Remarkably, we also find that the time correlations that
reproduce the action of the quantum SWITCH are not the
most favorable for the transmission of classical information:
while the quantum SWITCH of two completely depolarizing
channels can at most yield 0.049 bits of classical communica-
tion [45,50], a more sophisticated pattern of time correlations
yields at least 0.31 bits. The gap between these two values fur-
ther highlights the power of time correlations, which are not
only capable of reproducing the benefits of the superposition
of causal orders, but also of surpassing them.

The remainder of the paper is structured as follows. In
Sec. II we describe the formalism of time-correlated channels
and derive the effective evolution experienced by a single
particle upon entering a time-correlated channel at a super-
position of times. In Sec. III, we consider the transmission
of a single particle at a superposition of times, as in Fig. 1,
and we demonstrate that the correlations between different
uses of the channels offer a communication advantage over
all communication scenarios where the channels are uncorre-
lated. In Sec. IV, we consider the network scenario of Fig. 2,
and we show that time correlations are necessary to reproduce
the advantages of the quantum SWITCH, and that certain time
correlations can even offer higher advantages. Finally, we
discuss the effects of noise on the control degree of freedom
in Sec. V and conclude in Sec. VI.

II. TRANSMISSION OF A SINGLE PARTICLE AT A
SUPERPOSITION OF DIFFERENT TIMES

A. Time-correlated channels

A transmission line that can be accessed at k different
times is described by a correlated quantum channel [6–8].
Mathematically, the correlated channel is a linear map trans-
forming density matrices of the composite system S1 ⊗ · · · ⊗
Sk , where S j denotes the system sent at the jth time. Note
that, in general, the k systems sent at k different times can be
initially prepared in an arbitrary entangled state.
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Correlated quantum channels are also known as quantum
memory channels [7,8,20], quantum combs [51,52], or non-
Markovian quantum processes [9,53]. In the following we
will focus on the k = 2 case, corresponding to a transmission
line that can be accessed at two different time steps, hereafter
denoted by t1 and t2. We consider random unitary channels of
the form

R(ρ12) =
∑
m,n

p(m, n) (Um ⊗ Un) ρ12 (Um ⊗ Un)†, (1)

where Um and Un are unitary gates in a given set, and p(m, n)
is a joint probability distribution. Here, the system sent at time
t1 experiences the unitary gate Um, while the system sent at
time t2 experiences the gate Un. The density matrix ρ12 repre-
sents the joint state of the two systems sent at the two times
t1 and t2, that is, ρ12 is a density matrix on the Hilbert space
of the composite system S1 ⊗ S2. The probability distribution
p(m, n) specifies the correlations between the random unitary
evolutions experienced by system S1 and system S2.

Note that, while in this paper we will focus on time cor-
relations, the correlations in Eq. (1) are not specific to time.
The same expression can be used also to describe correlated
channels acting on two spatially separated systems, or on any
other type of independently addressable systems.

Physically, a time-correlated random unitary channel of the
form (1) can arise in a photonic setup where the systems S1

and S2 are modes of the electromagnetic field associated to
two different time bins [54–57]. The noisy channel can corre-
spond, e.g., to the action of an optical fiber, where the random
unitary changes of the photon polarization arise from random
fluctuations in the birefringence. Correlations between the
unitaries at different times can arise when the time difference
t2 − t1 between successive uses of the channels is smaller than
the timescale on which the birefringence fluctuates.

B. Sending a single particle through a time-correlated channel

Consider now the situation where the input of the corre-
lated channel (1) is a single particle, carrying information
in its internal degrees of freedom. Classically, the particle
must be sent either at time t1, or at time t2, or at some
random mixture of t1 and t2. When the particle is sent
at time t1, its evolution is given by the reduced channel
R1(ρ) := ∑

m p1(m)UmρU †
m, where p1(m) := ∑

n p(m, n) is
the marginal probability distribution of the unitaries at time t1.
Similarly, if the particle is sent at time t2, its evolution is given
by the channel R2(ρ) := ∑

m p2(n)UnρU †
n , with p2(n) :=∑

m p(m, n). A random choice of transmission times then
results into a random mixture of the evolutions corresponding
to channels R1 and R2. Crucially, the evolution of the particle
is independent of any correlation that may be present in the
probability distributions p(m, n), that is, of any correlation
between the first and the second use of the transmission line.

In contrast, quantum mechanics allows one to transmit a
single particle in a way that is sensitive to the correlations
between noisy processes at different times. The key idea is
that the time when the particle is transmitted can be indefinite,
as the particle could be sent through the transmission line at
a coherent superposition of times t1 and t2 (see illustration
in Fig. 3). The superposition of transmission times could

FIG. 3. A single particle is sent at a superposition of two times
(red and blue dashed lines), through the same transmission line
(green ovals). The green dotted line represents the correlations
between random unitary processes Um and Un taking place with
probability p(m, n) at the two subsequent uses of the transmission
line, respectively.

be achieved by adding an interferometric setup before the
transmission line, letting the particle travel on a coherent
superposition of two paths, one of which includes a delay [58].
This results in a time-bin qubit, described by a superposition
of amplitudes corresponding to localization at two different
points in time, separated by a time difference much greater
than a photon’s coherence time [59].

Before developing the general theory of single-particle
transmission through time-correlated channels, it is instruc-
tive to look at a concrete example. Consider the case of a
single photon, and denote by H1 and V1 (H2 and V2) the
horizontal and vertical polarization modes in the first (sec-
ond) time bin. Here we take the polarization state to be
the same on both paths, so that the only role of the in-
terferometric setup is to coherently control the moment of
transmission. The result is a linear combination of states
of the form (α|1〉H1|0〉V 1 + β|0〉H1|1〉V 1) ⊗ |0〉H2|0〉V 2 and
states of the form |0〉H1|0〉V 1 ⊗ (α|1〉H2|0〉V 2 + β|0〉H2|1〉V 2).
The composite system of the two modes in the first (second)
time bin can be regarded as system S1 (S2) in Eq. (1). The
states produced by the interferometric setup can then be writ-
ten as a linear combination of states of the form |ψ〉1 ⊗ |vac〉2

and states of the form |vac〉1 ⊗ |ψ〉2, where, for i ∈ {1, 2},
|vac〉i := |0〉Hi|0〉Vi is the vacuum state of the modes in system
Si, and |ψ〉i := α |1〉Hi|0〉Vi + β |0〉Hi |1〉Vi is a single-photon
polarization state. The change in the particle’s state upon the
transmission is then computed by applying the channel (1) to
the appropriate state.

Generalizing the above example, we model the transmis-
sion of a single particle through channel (1) by interpreting
systems S1 and S2 as abstract modes, each of which can con-
tain a variable number of particles equipped with an internal
degree of freedom, such as the photon’s polarization. For i ∈
{1, 2}, the Hilbert space of system Si has two orthogonal sub-
spaces: a one-particle subspace, denoted by A(i), and a vacuum
subspace, denoted by Vac(i). We assume that the dimension of
the one-particle subspace is the same for both S1 and S2, as
in the example of the single-photon polarization. Under this
assumption, we have A(1) � A(2) � M, where M is the internal
degree of freedom of the particle. Also, we assume that each
vacuum subspace is one dimensional, and is spanned by a
vacuum state |vac〉i, i ∈ {1, 2}, as in our motivating example.

A single particle sent at a superposition of two moments
of time will then be described by states of the form α |ψ〉1 ⊗
|vac〉2 + β |vac〉1 ⊗ |ψ〉2, where |ψ〉 ∈ M is the state of the
particle’s internal degree of freedom. For the transmission
of the particle, we will consider channels that conserve the
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number of particles, i.e., that map states of a given sector into
states of the same sector. This is the case, for example, for
linear optical elements, which preserve the photon number.
For the channel (1), preservation of the particle number means
that the operators Um have the form

Um = Vm + eiφm |vac〉〈vac|, (2)

where Vm is a unitary acting in the one-particle sector M, and
φm ∈ [0, 2π ) is a phase. Physically, φm corresponds to the
phase difference between states in the one-particle sector and
the vacuum state.

In the quantum optical example, each unitary Um can be
realized by a Hamiltonian acting on the two polarization
modes associated to system Si, i ∈ {1, 2}. For example, the
unitary Z ⊕ eiφ |vac〉〈vac| can be generated by the Hamil-
tonian H = h̄[(ξ + θ/2)a†

H aH + (ξ − θ/2)a†
V aV ], where aH

(aV ) are the annihilation operators for the appropriate modes
with horizontal (vertical) polarization, in suitable units.

C. Effective evolution with a control system

The representation of a single particle in terms of abstract
modes is equivalent to a representation in terms of a composite
system MC, consisting of a message-carrying system M and
a control system C, which determines the particle’s time of
transmission. The change of representation is described by the
mapping

|ψ〉1 ⊗ |vac〉2 �−→ |ψ〉M ⊗ |0〉C

|vac〉1 ⊗ |ψ〉2 �−→ |ψ〉M ⊗ |1〉C, (3)

where |ψ〉 is an arbitrary state in the one-particle subspace.
If the control is in state |0〉, then the message is sent through
the first application of the channel, with the vacuum in the
second application; vice versa if the control is in state |1〉.
If the control is in a generic state ω, the overall evolution
is described by an effective channel Cω, which transforms a
generic state ρ of the message into the state

Cω(ρ) :=
∑
m,n

p(m, n)Wmn (ρ ⊗ ω)W †
mn, (4)

where Wmn is the unitary Wmn := Vm eiφn ⊗ |0〉〈0| + eiφm Vn ⊗
|1〉〈1|. The derivation of Eq. (4) is provided in Appendix A.

When the probability distribution p(m, n) is symmetric
[that is, when p(m, n) = p(n, m) for every m and n], the
effective channel has the simple expression

Cω(ρ) = C(ρ) + G(ρ)

2
⊗ ω + C(ρ) − G(ρ)

2
⊗ ZωZ, (5)

with

C(ρ) :=
∑
m,n

p(m, n)VmρV †
m (6)

and

G(ρ) :=
∑
m,n

p(m, n) ei (φn−φm )VmρV †
n . (7)

(See Appendix A for the derivation.) Here, the map C is
the quantum channel representing the evolution of the mes-
sage when it is sent at a definite time (either t1 or t2). The

channel C depends only on the marginal probability distri-
bution p1(m) := ∑

n p(m, n), and it is independent of the
correlations. Instead, the map G can generally depend on the
correlations between the evolution of the particle at two mu-
tually exclusive moments of time. We call G the interference
term.

III. CLASSICAL COMMUNICATION THROUGH
CORRELATED WHITE NOISE

A. Correlated white noise

Consider the case where the evolution at any definite time
step is completely depolarizing on the message-carrying sec-
tor M, that is,

C| j〉〈 j|(ρ) = I

d
⊗ | j〉〈 j|, ∀ ρ,∀ j ∈ {0, 1} (8)

where C| j〉〈 j| is the quantum channel obtained by plugging ω =
| j〉〈 j| into Eq. (4). Equation (8) implies that, whenever the
particle is sent at a definite moment of time, the message is
replaced by white noise. Accordingly, the channel C in Eq. (6)
is depolarizing.

When the probability distribution p(m, n) is symmetric,
Eq. (5) becomes

Cω(ρ) = I/d + G(ρ)

2
⊗ ω + I/d − G(ρ)

2
⊗ ZωZ. (9)

In the realization of the random unitary channel, we will take
the unitaries {Vm} to be an orthogonal basis for the space
of d × d matrices. Accordingly, the set {Vm} will contain d2

unitaries, labeled by integers from 0 to d2 − 1. For qubits,
we will take {Vm} to be the four Pauli matrices {I, X,Y, Z},
labeled as V0 = I , V1 = X , V2 = Y , and V3 = Z .

In terms of the probability distribution p(m, n), the con-
dition (8) amounts to requiring that the marginal probability
distributions p1(m) and p2(n) be uniform, that is

p1(m) = p2(n) = 1

d2
, ∀ m, n ∈ {0, ..., d2 − 1}. (10)

The probability distributions p(m, n) satisfying Eq. (10) form
a convex polytope whose extreme points are probability dis-
tributions of the form p(m, n) = δm,σ (n)/d2, where σ is a
permutation of the set {0, . . . , d2 − 1} [60].

For the identity permutation, satisfying σ (m) = m for all
values of m, the probability distribution p(m, n) is symmetric,
and the interference term (7) is the completely depolarizing
channel G(ρ) = I/d ∀ ρ. Hence, the channel Cω in Eq. (9) is
completely depolarizing, and no information can be transmit-
ted through it, no matter what state ω is used. In the following,
we will show that, instead, other types of permutations enable
a perfect transmission of classical information.

B. Perfect communication through correlated completely
depolarizing channels

Here we focus on the case where the message is a qubit
(d = 2). Let σ be a permutation that swaps two pairs of
indices, for example, mapping (0,1,2,3) into (1,0,3,2). In
this case, the probability distribution p(m, n) = δm,σ (n)/4 is
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symmetric, and the interference term is

G(ρ) = ρXei(φ1−φ0 ) + Y ρZei(φ3−φ2 ) + h.c.

4
, (11)

where h.c. denotes the Hermitian conjugate of the preceding
matrices.

Note that G(ρ) depends only on the differences φ1 − φ0

and φ3 − φ2. We now show that, by suitably choosing the
differences φ1 − φ0 and φ3 − φ2, and the state ω, it is possible
to achieve a perfect transmission of classical information.
When φ1−φ0 = 0 and φ3−φ2 = π/2, the interference term
becomes

G(ρ) = {ρ, X } − {ZρZ, X }
4

, (12)

where {A, B} = AB + BA denotes the anticommutator of two
generic operators A and B. In particular, choosing ρ =
|±〉〈±|, with |±〉 := (|0〉 ± |1〉)/

√
2, we obtain

G(|±〉〈±|) = ± I

2
. (13)

Combining this relation with the depolarizing condition
C(|±〉〈±|) = I/2, and inserting these two relations into into
Eq. (5), we obtain

Cω(|±〉〈±|) = I

2
⊗ ω±, (14)

with ω+ := ω and ω− := ZωZ . In other words, the net effect
of the superposition of correlated depolarizing channels is to
transfer information from the message to the output state of
the control.

Putting the control in the state ω = |+〉〈+|, one obtains the
orthogonal output states ω± = |±〉〈±|. Hence, a sender can
encode a bit into the states |±〉, and a receiver will be able
to decode the bit in principle without error, by measuring the
control system in the basis {|+〉, |−〉}.

In summary, there exist time-correlated channels that look
completely depolarizing when the message is sent at any defi-
nite moment of time, and yet allow for a perfect transmission
of classical information by sending messages at a coherent
superposition of different times.

C. Maximum capacity in the lack of correlations

We now show that correlations in the probability distri-
bution p(m, n) are essential in order to achieve the perfect
communication task discussed in the previous subsection.
Specifically, we prove that no perfect communication is pos-
sible in the lack of correlations, that is, when the probability
distribution factorizes as p(m, n) = p1(m) p2(n) = 1/d4 [cf.
Eq. (10)]. For qubit messages (d = 2), we show that, in the
lack of correlations,

(1) the classical capacity of the channel Cω is upper
bounded by 0.5 bits, meaning that it is impossible to transmit
more than 0.5 bits per use of the channel;

(2) the maximum classical capacity of the channel Cω over
arbitrary states ω of the control system and over arbitrary (not
necessarily random-unitary) realizations of the completely de-
polarizing channel is equal to 0.16 bits.

The first result follows from an analytical upper bound on
the classical capacity, while the second result follows from
numerical optimization.

1. Analytical bound on the classical capacity

The derivation of the bound consists of three steps, the
details of which are provided in Appendix B.

The first step is to prove that, in the lack of correlations and
for message dimension d = 2, the channel Cω is entanglement
breaking [61], i.e., it transforms all entangled states into sepa-
rable states. For entanglement-breaking channels, it is known
that the classical capacity coincides with the Holevo capacity
[62]. For a generic quantum channel E , the Holevo capacity
is χ (E ) = max{px,ρx} H[

∑
x px E (ρx )] − ∑

x px E (ρx ), where
the maximum is over all possible ensembles {px, ρx} con-
sisting of a probability distribution {px} and a set of density
matrices {ρx}, and H (ρ) := − Tr[ρ log ρ] is the von Neu-
mann entropy of a generic state ρ, log denoting the logarithm
in base 2.

The second step is to observe that the state of the control
that maximizes the Holevo capacity of the channel Cω is
ω = |+〉〈+|. This result holds for arbitrary message dimen-
sion d � 2, and, in fact, it holds even in the presence of
correlations, as long as the probability distribution p(m, n) is
symmetric.

Finally, the third step is to show that, in the lack of correla-
tions and for arbitrary message dimension d � 2, the Holevo
capacity of the channel C|+〉〈+| is upper bounded by 1/d .

Putting the three steps together, we obtain that, in the lack
of correlations and for qubit messages, the classical capacity
of the channel Cω is upper bounded by 1

2 for every possible
state ω. Hence, the perfect transmission of 1 bit achieved in
Sec. III B is impossible in the lack of correlations.

2. Numerical evaluation of the capacity

The evaluation of the Holevo capacity involves an op-
timization over all possible input ensembles. For quantum
channels with d-dimensional input, the optimization can be
restricted to ensembles with up to d2 linearly independent
pure states [63]. In practice, however, the optimization is often
hard to carry out even in dimension d = 2. To make the
optimization feasible, we first show that in our case the op-
timization can be reduced to an optimization over ensembles
that depend only on three real parameters q, p0, p1 ∈ [0, 1].
The proof of this result is provided in Appendix C.

Building on the above results, we can numerically evaluate
the largest value of the Holevo capacity, and therefore the clas-
sical capacity, for all possible qubit channels (i.e., d = 2) of
the form (4) with p(m, n) = 1

16 . We set the state of the control
to ω = |+〉〈+|, which we know to guarantee the maximum
Holevo information (cf. Lemma 2 in Appendix B).

The resulting value of the Holevo capacity is a function of
the phases {φm}m∈{0,1,2,3} in Eq. (7). One phase, say φ0, can
be set to 0 without loss of generality, as it represents a global
phase. In Fig. 4(a), we provide a 3-dimensional plot showing
the exact values of the Holevo information, and therefore by
the arguments above, the classical capacity, for all possible
values of the phases φ1, φ2, and φ3. The maximum over all
possible choices of phases is 0.16 bits.
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FIG. 4. Performance in the transmission of a single particle
through a correlated depolarizing channel. (a) Classical capacity in
the lack of correlations. Without loss of generality, φ0 = 0. The
maximum capacity is 0.016 bits. (b) Lower bound to the classi-
cal capacity achieved with the correlated probability distribution
p(m, n) = δn,σ (m)/4, where σ is the permutation that exchanges 0
with 1, and 2 with 3. Without loss of generality, we set φ0 = φ2 = 0.
The maximum lower bound is 1 bit.

In Appendix C we also show that 0.16 bits is the maximum
capacity achievable with arbitrary (not necessarily random
unitary) channels that reduce to the depolarizing channel in
the one-particle subspace sector. The value 0.16 was previ-
ously found to be a lower bound to the classical capacity [31],
and our result shows that the lower bound is actually tight:
0.16 is the best classical capacity one can obtain by sending a
single particle through a superposition of paths traversing two
identical, independent channels that are completely depolariz-
ing in the one-particle subspace.

D. Lower bound to the classical capacity
in the presence of correlations

In the correlated case, we do not have a proof that the
classical capacity coincides with the Holevo capacity. On
top of that, the evaluation of the Holevo capacity generally
requires an optimization over all possible ensembles of d2

linearly independent pure states, which is computationally
challenging. Here, we circumvent this problem by computing
a lower bound to the Holevo capacity, obtained by restricting
the optimization to the set of all orthogonal ensembles, that
is, input ensembles consisting of two orthogonal qubit states.
In general, this lower bound may not be tight [64–66], but
it is nevertheless interesting as it quantifies the maximum
performance of a natural set of encoding strategies. Since
the Holevo capacity is always a lower bound to the classical
capacity, the above lower bound is also a lower bound to the
classical capacity.

Here, we evaluate the lower bound for the correlated chan-
nel with p(m, n) = δn,σ (m)/4, where σ is the permutation that
exchanges 0 with 1, and 2 with 3. This particular choice is
interesting because as we have seen in Sec. III B, it can reach
the maximum capacity of 1 bit. We now inspect how the lower
bound depends on the phases.

Since the interference term (11) depends only on the dif-
ferences φ1 − φ0 and φ3 − φ2, we set φ0 = φ2 = 0 and scan
the possible values of φ1 and φ3. For the state of the control
system, we choose again ω = |+〉〈+|, as it maximizes the
Holevo capacity (cf. Lemma 2 in Appendix B). The lower

FIG. 5. A single particle is sent through a superposition of two
paths (orange and blue dashed lines), each traversing two indepen-
dent channels (green and red ovals), each of which exhibits time
correlations between successive uses. The green and red dotted lines
represent the correlations between the two subsequent uses of the
same channel.

bound to the Holevo capacity is shown in Fig. 4(b) for all
values of φ1 and φ3.

IV. COMMUNICATION THROUGH MULTIPLE
TIME-CORRELATED CHANNELS

Time-correlated channels can be used to mimic the use
of ordinary quantum channels in a superposition of different
causal orders [32,35]. In this section we show that time cor-
relations are a necessary resource for reproducing the benefits
of the superposition of orders in quantum communication, and
that, in fact, time correlations are an even more powerful re-
source than the ability to combine channels in a superposition
of orders.

A. A network of time-correlated channels

Suppose that two time-correlated channels RA and RB,
each of the form (1), are arranged as in Fig. 5, and that a single
particle is sent through a superposition of two alternative paths
visiting each of the two channels exactly once. When the con-
trol system is initialized in the state ω, the overall evolution
of the message and the control is described by the effective
channel Eω defined as

Eω(ρ) :=
∑

m,n,k,l

pA(m, n)pB(k, l )Wmnkl (ρ ⊗ ω)W †
mnkl , (15)

with

Wmnkl := V (B)
l V (A)

m ei(φ(B)
k +φ(A)

n ) ⊗ |0〉〈0|
+ V (A)

n V (B)
k ei(φ(A)

m +φ
(B)
l ) ⊗ |1〉〈1|. (16)

Here, pA(m, n), pB(k, l ), {V (A)
m }, {V (B)

l }, {φ(A)
m }, and {φ(B)

l } are
defined as in Eqs. (1) and (2). The derivation of Eq. (15) is
provided in Appendix D.

An interesting special case occurs when the probability
distributions pA(m, n) and pB(k, l ) are perfectly correlated,
that is,

pA(m, n) = p1A(m)δmn, ∀ m, n

pB(k, l ) = p1B(k) δkl , ∀ k, l
(17)

where p1A(m) and p1B(k) are the marginal probability dis-
tributions of pA(m, n) and pB(k, l ), respectively. Under this
condition, the network in Fig. 5 reproduces the action of two
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random unitary channels in a superposition of two alternative
orders [32].

Mathematically, the operation of putting two quantum
channels in a superposition of orders is described by the quan-
tum SWITCH [36,37], a higher-order transformation that takes
as inputs two generic channels A and B (with d-dimensional
input and output systems) and produces as output a new quan-
tum channel S (A,B) with Kraus operators

Smk := AmBk ⊗ |0〉〈0| + BkAm ⊗ |1〉〈1|, (18)

where {Am} ({Bk}) are Kraus operators of A (B), and {|0〉, |1〉}
is a basis for a control qubit that determines the relative order
between A and B. Notably, the overall channel S (A,B) is
independent of the choice of Kraus representations for the
input channels A and B.

When the control qubit is put in a fixed state ω, the quan-
tum SWITCH of channels A and B yields the effective channel

Sω(ρ) :=
∑
m,k

Smk (ρ ⊗ ω)S†
mk, (19)

with Smk as in Eq. (18). In particular, here we are interested in
the case where the channels A and B are random unitary, with
Kraus operators Am := √

p1A(m)V (A)
m and Bk := √

p1B V (B)
k .

With this choice, the channel Sω in Eq. (19) coincides with the
channel Eω in Eq. (15) under the condition that the probability
distributions pA(m, n) and pB(k, l ) are perfectly correlated [cf.
Eq. (17)].

When the channels A and B are completely depolarizing,
Ref. [45] showed that the channel Sω resulting from the quan-
tum SWITCH can transmit 0.049 bits of classical information,
provided that the control is initialized in the state ω = |+〉〈+|.
Later, the value 0.049 was proven to be exactly equal to the
classical capacity [50]. Since the channels Eω and Sω coincide,
we conclude that the time-correlated network in Fig. 5 can
achieve a capacity of 0.049 bits.

In the following, we provide two results:
(1) We show that time correlations are strictly necessary in

order to achieve the quantum SWITCH capacity of 0.049 bits.
Specifically, we show numerically that the maximum classical
capacity in the uncorrelated case is 0.018 bits for random-
unitary realizations of the completely depolarizing channel,
and 0.024 bits for arbitrary realisations. This result shows that,
when the quantum SWITCH is reproduced by the network in
Fig. 5, the origin of the communication enhancement is not
just the interference of paths, but rather the combined effect
of the interference of paths and of the time correlations.

(2) We show that there exist time correlations that achieve
a classical capacity of at least 0.31 bits. This result shows
that the access to time correlations is generally a stronger
resource than the ability to combine ordinary channels in a
superposition of orders.

B. Maximum capacity in the lack of correlations

Here we evaluate the maximum amount of classical in-
formation that can be transmitted through the network in
Fig. 5 when the channels are completely depolarizing and
no correlation is present, that is, when pA(m, n) = pB(k, l ) =
1/16 ∀ m, n, k, l ∈ {0, 1, 2, 3}.

FIG. 6. Performance in the transmission of a single particle
through a network of correlated depolarizing channels, arranged as
in Fig. 5. (a) Classical capacity in the lack of correlations. Without
loss of generality, φ0 = 0. The maximum capacity is 0.018 bits.
(b) Lower bound to the classical capacity achieved with maximal cor-
relations corresponding to the probability distributions pA(m, n) =
pB(m, n) = δn,σ (m)/4, where σ is the permutation that exchanges 0
with 1, and 2 with 3. Without loss of generality, φ0 = φ2 = 0. The
maximum lower bound is 0.31 bits.

The evaluation of the maximum capacity follows the same
steps as in Sec. III C. The main observations are as follows:

(1) In the lack of correlations, the channel Eω in Eq. (15)
is entanglement breaking, and therefore its classical capacity
coincides with the Holevo capacity.

(2) The control state ω that maximizes the Holevo capac-
ity of the channel Eω is ω = |+〉〈+|.

(3) Without loss of generality, the maximization of the
Holevo information can be reduced to ensembles that depend
only on three real parameters q, p0, and p1 in [0,1].

The derivation of these results is provided in Appendix E.
Building on the above observations, we evaluate the ca-

pacity of the channel Eω in Eq. (15) by scanning all possible
values of the phases {φm}3

m=0. The result is the plot shown
in Fig. 6(a). The largest classical capacity over all random
unitary realizations is 0.018 bits, which is strictly smaller than
the value 0.049 bits achieved by the superposition of orders.

Furthermore, we also extend the optimization from random
unitary realizations to arbitrary realizations of the completely
depolarizing channel. For this broader class of realizations, we
numerically obtain that the maximum capacity is 0.024 bits.

Summarizing, the best classical capacity one can obtain by
sending a single particle through the network in Fig. 5, in the
lack of correlations between the two paths, is 0.018 bits, and
the capacity can be increased to 0.024 bits by replacing the
random unitary channels with more general realizations of the
completely depolarizing channel.

Note that both values 0.018 and 0.024 are below the 0.049
bits of classical capacity achieved by the quantum SWITCH.
This result shows that, when the quantum SWITCH is re-
produced by the correlated network in Fig. 5, it offers a
communication advantage over all communication protocols
where a single particle travels in a superposition of two paths
on which it experiences uncorrelated noisy processes. Hence,
we conclude that, in this scenario, the origin of the commu-
nication advantages of the quantum SWITCH is not merely
the superposition of paths, but rather the nontrivial interplay
between the superposition of paths and the time correlations
in the noise.
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Our results also imply a caveat about terminology. The
quantum SWITCH of two channels A and B is sometimes
described informally as a “superposition of channels AB and
BA.” While this expression may be formally correct (at least
according to a broad notion of superposition [32]), it can be
misleading if taken at face value because it does not mention
explicitly the requirement of correlations between the chan-
nels A and B in the two branches of the superposition.

C. Time correlations surpassing the quantum
SWITCH capacity

We now show that the classical capacity of 0.049 bits,
achieved by the quantum SWITCH, can be surpassed using
more general time correlations. We prove this result explicitly,
by exhibiting a pair of time-correlated channels that achieve a
capacity at least 0.31 bits.

Our choice of channels corresponds to pA(m, n) =
pB(m, n) = δn,σ (m)/4, where σ is the permutation that ex-
changes 0 with 1, and 2 with 3. This choice is motivated by
the fact that the permutation σ guarantees the maximum com-
munication capacity in the case where a single time-correlated
channel is used (cf. Sec. III B).

With the above choice, the effective channel describing the
transmission of the message is

Eω(ρ) =
I
2 + K(ρ)

2
⊗ ω +

I
2 − K(ρ)

2
⊗ ZωZ, (20)

with

K(ρ) := 1

8
{[cos 2(φ1 − φ0) + cos 2(φ3 − φ2)]ρ+ 2XρX }.

(21)

The derivation of this formula is provided in Appendix D.
Note that the channel Eω depends only on the phase differ-
ences φ1−φ0 and φ3−φ2, via Eq. (21).

We now provide a lower bound to the classical capacity of
the channel Eω. As we did earlier in the paper, we lower bound
the classical capacity by the Holevo capacity, and, in turn,
we lower bound the Holevo capacity by restricting the max-
imization to orthogonal input ensembles. For the state of the
control qubit, we pick ω = |+〉〈+|, which is the choice that
maximizes the Holevo capacity (cf. Lemma 2 in Appendix B).

The lower bound to the classical capacity is shown in
Fig. 6(b) for all possible values of the phase differences
φ1−φ0 and φ3−φ2. The highest lower bound over all com-
binations of phases {φm}3

m=0 is given by 0.31 bits. This value
is larger than the classical capacity of 0.049 bits achieved
by the quantum SWITCH, corresponding to perfect correla-
tions pA(m, n) = pB(m, n) = δm,n/4. This result implies that
not only can time correlations reproduce the superposition of
causal orders, but they can also surpass its advantages.

V. NOISE ON THE CONTROL DEGREE OF FREEDOM

So far, we have assumed that the message-carrying degree
of freedom of the particle undergoes noise during trans-
mission, while the control degree of freedom is noiseless.
However, in practical scenarios, this will only be an approx-
imation to the actual physics. We now briefly discuss the

FIG. 7. Blue: Maximum classical capacity in the absence of cor-
relations, as a function of the dephasing parameter s. The maximum
is computed over all realizations of the completely depolarizing
channel, and is achieved by the random unitary realization with
the choice of phases {φm} that give the maximum capacity of 0.16
bits when s = 0. Orange: Lower bound to the maximal classical
capacity in the presence of correlations, as a function of the de-
phasing parameter s. The lower bound is computed by considering
the correlated probability distribution p(m, n) = δn,σ (m)/4, where σ

is the permutation that exchanges 0 with 1, and 2 with 3, and
φ0 = φ1 = φ2 = 0, φ3 = π/2.

effect of noise on the control system, focusing in particular
on dephasing noise, of the form

P (ω) = sZωZ + (1 − s)ω, (22)

where s ∈ [0, 1
2 ] is a probability and ω is the initial state of

the control. For a more detailed investigation into the effects
of noise on the control system, we refer the reader to a recent
related work [67].

For simplicity, here we focus on the communication sce-
nario involving a single transmission line, as in Fig. 1. In
this setting, the evolution experienced by a single particle is
described by the channel

C ′
ω := (IM ⊗ P )Cω, (23)

obtained by dephasing the control system at the output of the
channel Cω in Eq. (5). By inserting the expression (5) into
the above equation, it is immediate to see that the effect of
dephasing is to dampen the interference term G in the effective
channel (5): specifically, the interference term changes from G
to (1 − 2s)G.

In the case of completely depolarizing channels on the
message degree of freedom, the presence of a nonzero in-
terference term means that, as long as the dephasing of the
control is not complete (s = 1

2 ), the superposition of evo-
lutions can still allow for a nonzero amount of classical
information to be transmitted, thereby offering an advantage
over the transmission at a definite moment of time.

Figure 7 shows the behavior of the classical capacity as
a function of the dephasing parameter s. The figure shows
that correlations between two uses of the channel offer an
enhancement of the classical capacity. To make this point,
we first evaluate numerically the maximum capacity achiev-
able in the lack of correlations, with arbitrary realizations of
the completely depolarizing channel (blue curve). Notably,
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the capacity for every fixed value of s is achieved by the
same realization of the completely depolarizing channel that
achieves the maximum capacity in the ideal s = 0 case. We
then show that a higher capacity can be achieved with the
correlated channel described in Sec. III B. To this purpose, we
numerically evaluate a lower bound to the Holevo capacity
(and therefore the classical capacity), obtained by restrict-
ing the maximization to orthogonal input ensembles (orange
curve). Note that both the blue and orange curves are above 0
for every nonmaximal amount of dephasing (s = 1

2 ), meaning
that the single-particle transmission at a coherent superposi-
tion of times offers an advantage over the transmission at a
definite time.

VI. CONCLUSIONS

We have shown that a single quantum particle can sense the
correlations between noisy processes at different moments of
time. By sending the particle at a superposition of different
times, one can take advantage of these correlations and boost
the communication rate to values that would be impossible
if the moment of transmission were a classical, well-defined
variable.

An important avenue for future research is the experimen-
tal realization of our protocols, as well as the experimental
exploration of their noise robustness to timing errors and de-
coherence between the two different modes used to create the
superposition. On the theoretical side, it is interesting to ap-
ply our framework for single-particle communication to more
complex scenarios, e.g., involving the transmission of a single
particle at more than two times, or even in continuous time.
It is also interesting to analyze other communication tasks,
such as the two-way communication proposed in Ref. [68].
Moreover, the extension from single-particle communication
to other communication protocols with a finite number of
particles is a natural next step of this research.

At the foundational level, time-correlated channels provide
an insight into the resources used by the existing experiments
on the superposition of causal order. We analyzed a basic
setup that reproduces the overall result of the quantum SWITCH

by sending a single particle in a superposition of paths through
time-correlated channels. In this setup, we showed that time
correlations are a necessary resource to reproduce the com-
munication advantages of the quantum SWITCH. Moreover, we
observed that, with more elaborate patterns of correlations,
one can achieve an even greater enhancement than the one
found for the superposition of orders. This result establishes
time-correlated channels as an appealing resource, which can
be used as a testbed for foundational results on causal order,
and, at the same time, as a building block for new communi-
cation protocols.
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APPENDIX A: TRANSMISSION OF A SINGLE PARTICLE
THROUGH A SUPERPOSITION OF MULTIPLE PORTS

Here we provide a mathematical framework for describ-
ing the transmission of a single particle at a superposition
of different times, and, more generally, for describing the
transmission of the particle on a superposition of different tra-
jectories, each passing through one of the ports of a multiport
quantum device.

1. Multiport quantum devices and their vacuum extensions

A transmission line with a single input port is de-
scribed by a quantum channel, that is, a completely positive
trace-preserving map transforming density matrices on the
particle’s Hilbert space. In the following we will denote by
Chan(S → S′) the set of quantum channels with input system
S and (possibly different) output system S′. When S = S′ we
will use the shorthand Chan(S). The action of a quantum
channel A on a density matrix ρ can be conveniently written
in the Kraus representation A(ρ) = ∑

i AiρA†
i , where {Ai} is

a (nonunique) set of operators, satisfying
∑

i A†
i Ai = I .

A transmission line with k input and output ports is de-
scribed by a k-partite quantum channel B ∈ Chan(S(1) ⊗
· · · ⊗ S(k) → S′(1) ⊗ · · · ⊗ S′(k) ) with k input-output pairs
(S(i), S′(i) )k

i=1.
A transmission line that can be used k times in succession

is described by k-step quantum channel [6] (also known as
a quantum k comb [51,52]). A k-step quantum channel is a
special type of k-partite channel B with the additional prop-
erty that no signal propagates from an input S(i) to any group
of outputs S′( j) with j < i [51]. We will denote the set of
k-step quantum channels as Chan(S(1) → S′(1), . . . , S(k) →
S′(k) ), or simply Chan(S(1), . . . , S(k) ) when the input and out-
put of each pair coincide. For k = 2, an example of two-step
quantum channel is illustrated in Fig. 8.

The possibility that no particle is sent through a port
of a device can be described using the notion of vacuum
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FIG. 8. The left-hand side depicts a two-step correlated quantum
channel B taking two input states on systems S(1) and S(2), in suc-
cession. The right-hand side shows the physical implementation of
the two-step channel via two unitary channels W1 and W2 [51,52]
where the memory between the two uses of the channel is realized
by an environment E , which is inaccessible to the communicating
parties.

extension [32]. Consider first a single-port device, described
by an ordinary quantum channel A ∈ Chan(S). When no
particle is sent through the device, we describe the input as
the vacuum state |vac〉, that is, a state in a vacuum sector
Vac [32,33,69,70], which is orthogonal to the one-particle
sector S. Overall, the device acts on an extended system
S̃ := S ⊕ Vac, which is associated with the Hilbert space
given by HS ⊕ HVac, where HVac is the vacuum Hilbert space,
here assumed to be one dimensional.

Given a quantum channel A, a vacuum extension Ã of
A is any channel which acts as A (respectively, IVac) when
the input is a state in sector S (respectively, Vac). The Kraus
operators of Ã are Ãi = Ai ⊕ αi |vac〉〈vac|, where {Ai}r−1

i=0 is a
Kraus representation of A, and {αi}r−1

i=0 are vacuum amplitudes
satisfying

∑r−1
i=0 |αi|2 = 1.

A given channel has infinitely many possible vacuum ex-
tensions. In an actual communication scenario, the vacuum
extension can be determined by probing the action of the
channel on superpositions of the vacuum and one-particle
states. Physically, the choice of vacuum extension is deter-
mined by the Hamiltonian of the field describing the vacuum
and the one-particle sector.

The notion of vacuum extension can be easily extended to
the case of k-partite channels, which include k-step channels
as a special case. For simplicity, we focus on the k = 2 case,
but the extension to k � 2 is straightforward.

Consider a transmission line described by a bipartite
channel B ∈ Chan(S(1) ⊗ S(2) ). A vacuum extension of the
channel B is another bipartite channel B̃ ∈ Chan(S̃(1) ⊗ S̃(2) ),
acting on the extended systems S̃(1) := S(1) ⊕ Vac(1) and
S̃(2) := S(2) ⊕ Vac(2). In general, the systems S(1), S(2) can
represent the systems accessible at the same location at two
consecutive moments of time, or it can represent the systems
accessible at different locations at the same time (as consid-
ered in Refs. [31,32]) or, more generally, they can represent
any pair of independently addressable systems, representing
the input and output ports of our multiport device.

2. A single particle traveling through multiple ports

In order to be able to send the same quantum particle to
either of the ports of the device, we require the isomorphism
S(1) ∼= S(2) ∼= M, where M is the message-carrying degree
of freedom of the particle. In this case, the tensor prod-
uct S̃(1) ⊗ S̃(2) contains a no-particle sector Vac(1) ⊗ Vac(2),

FIG. 9. (a) Transmission of a single particle through a bipartite
quantum channel B̃ (green). (b) Transmission of a single particle
through a two-step quantum channel B̃ (green). In both cases, the
particle is represented by a composite system M ⊗ C, where M rep-
resents the degrees of freedom used as the message, and C represents
the degrees of freedom used as the control. The isomorphism U
converts the composite system M ⊗ C into the one-particle sector
(S(1) ⊗ Vac) ⊕ (Vac ⊗ S(2) ) of S̃(1) ⊗ S̃(2). The inverse map U† con-
verts the output state back into M ⊗ C. For the applications in this
paper, we take the input of the control system C to be fixed in the
state ω while the message system M is accessible to the sender.

a one-particle sector (S(1) ⊗ Vac(2)) ⊕ (Vac(1) ⊗ S(2) ), and a
two-particle sector S(1) ⊗ S(2). The one-particle sector is iso-
morphic to M ⊗ C, where C is a qubit system, representing
the degree of freedom of the particle that controls its time of
transmission. When the control is in state |0〉, the message
is sent through the first application of the channel and the
vacuum is sent in the second application; vice versa for the
control in state |1〉.

We now define the situation in which a single particle is
sent at a superposition of two different ports. We call the
process experienced by the particle the superposition channel
S (B̃), and define it as the restriction of B̃ to the one-particle
sector, regarded as isomorphic to the composite system “mes-
sage + control.” Explicitly, the action of the superposition
channel is defined as

S (B̃) := U† ◦ B̃ ◦ U , (A1)

where U (·) := U (·)U † is the isomorphism between M ⊗ C
and the one-particle sector (S(1) ⊗ Vac) ⊕ (Vac ⊗ S(2) ), with

U (|ψ〉M ⊗ |0〉C ) := |ψ〉S̃(1) ⊗ |vac〉S̃(2) ,

U (|ψ〉M ⊗ |1〉C ) := |vac〉S̃(1) ⊗ |ψ〉S̃(2) . (A2)

Mathematically, the transformation S : Chan(S̃(1) ⊗ S̃(2) ) →
Chan(M ⊗ C) is a quantum supermap, that is, a transforma-
tion from quantum channels to quantum channels satisfying
appropriate consistency requirements [37,52,71]. An illustra-
tion of the supermap S is provided in Fig. 9(a).

Note that definition (A1) can be applied in particular to
k-step quantum channels, which are a special case of k-partite
channels. The illustration of the supermap S in this special
case is provided in Fig. 9(b).

The same definition can be adopted for the transmission of
a single particle through a k-partite multiport device. In this
case, the device is represented by a k-partite quantum channel
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B ∈ Chan(S(1) ⊗ · · · ⊗ S(k) ), with S(1) ∼= S(2) ∼= · · · ∼= S(k),
and with vacuum extension B̃ ∈ Chan(S̃(1) ⊗ · · · ⊗ S̃(k) ). The
superposition channel is then defined as the restriction of B̃ to
the one-particle sector

k⊕
j=1

Vac(1)⊗· · ·⊗Vac( j−1) ⊗ S( j) ⊗Vac( j+1)⊗· · ·⊗Vac(k)

∼= M ⊗ C, (A3)

where C is now a k-dimensional control system.

3. Derivation of Eq. (4) in the main text

We now specialize to the case of correlated channels of the
random unitary form

R =
∑
m,n

p(m, n)Vm ⊗ Vn ∈ Chan(S(1), S(2) ), (A4)

where Vm(·) := Vm(·)V †
m is a unitary channel, {Vm} is a set of

unitary gates, and p(m, n) is a joint probability distribution.
The vacuum extension of each unitary Vm is taken to be an-
other unitary Um, which we write as

Ṽm := Um = Vm ⊕ eiφm |vac〉〈vac| , (A5)

where the vacuum amplitude is given by a complex phase,
representing the coherent action of each possible noisy pro-
cess on the one-particle and vacuum sectors. This leads to the
vacuum extension

R̃ =
∑
m,n

p(m, n) Ṽm, Ṽn ∈ Chan(S̃(1), S̃(2) ), (A6)

with Ṽm(·) := Ṽm(·)Ṽ †
m , which is equivalent to Eq. (1) in the

main text, with Um = Ṽm.
The use of the channel R, specified by the vacuum exten-

sion R̃, at a superposition of times is given by

S (R̃) =
r−1∑

m,n=0

p(m, n)U†◦(
Ṽm ⊗ Ṽn

)◦ U . (A7)

Explicitly, we have the expression

S (R̃)(ρ ⊗ ω) =
∑
m,n

Cmn (ρ ⊗ ω)C†
mn, (A8)

where ρ (respectively, ω) is an arbitrary state of the message
(respectively, control), and

Cmn :=
√

p(m, n)eiφnVm ⊗ |0〉〈0|
+

√
p(m, n)Vneiφm ⊗ |1〉〈1|, (A9)

eiφm being the vacuum amplitude in Eq. (A5). Equation (A8)
coincides with Eq. (4) in the main text, with C := S (R̃) and
Wmn := Cmn/

√
p(m, n).

4. Derivation of Eqs. (5)–(7) in the main text

It is useful to consider the case where the probability dis-
tribution p(m, n) is symmetric, that is, p(m, n) = p(n, m) for
every m and n. In this case, the superposition channel has the

simple expression

S (R̃) = R1 + G
2

⊗ I + R1 − G
2

⊗ Z, (A10)

where Z is the unitary channel associated to the Pauli matrix
Z , R1 is the reduced channel defined by

R1(ρ) :=
∑

m

p1(m)VmρV †
m , p1(m) :=

∑
n

p(m, n),

(A11)

and G is the linear map defined by

G(ρ) :=
∑
m,n

p(m, n) ei(φn−φm ) VmρV †
n . (A12)

APPENDIX B: ANALYTICAL BOUND ON THE CLASSICAL
CAPACITY IN THE LACK OF CORRELATIONS

This section refers to the scenario where the message
is transmitted at a superposition of two possible times, ex-
periencing independent noisy processes that are completely
depolarizing in the one-particle subspace. This section makes
use of the notation introduced in Appendix A.

1. Proof that the superposition of uncorrelated completely
depolarizing channels is entanglement breaking

Let A(·) = ∑r−1
m=0 Am(·)A†

m ∈ Chan(S) be a generic quan-
tum channel, and let Ã ∈ Chan(S̃) be a vacuum extension of
A. Using Eq. (A1), we obtain

S (Ã ⊗ Ã) = A(ρ) + FρF †

2
⊗ I + A(ρ) − FρF †

2
⊗ Z,

(B1)

where I (respectively, Z) is the identity channel (respectively,
Pauli channel corresponding to the Pauli matrix Z), and

F :=
∑

m

αm Am (B2)

is the vacuum interference operator defined in Ref. [32].
Now, let A be the completely depolarizing channel D :

ρ �→ I/d , with vacuum extension D̃. For a fixed state ω of
the control system, consider the effective channel defined by

S (D̃⊗D̃)(ρ ⊗ ω) = I/d + FρF †

2
⊗ I + I/d − FρF †

2
⊗ Z

=: Cω,F (ρ). (B3)

For d = 2, we have the following result:
Proposition 1. The channel Cω,F in Eq. (B3) is entangle-

ment breaking for d = 2.
The proof uses the following lemma:
Lemma 1. Let D be a completely depolarizing channel

with vacuum extension D̃ and vacuum interference opera-
tor F . Then, the operator norm of F satisfies the inequality
||F ||∞ � 1√

d
.

Proof. Let the Kraus operators and vacuum amplitudes of
D be given by {Ai}, {αi}, respectively. By definition,

||F ||∞ = max
{|v〉:|||v〉||=1}

max
{|w〉:|||w〉||=1}

〈v|F |w〉 (B4)
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and

|〈v|F |w〉| =
∣∣∣∣∣∑

i

αi〈v|Ai|w〉
∣∣∣∣∣

�

√√√√(∑
i

|αi|2
)(∑

j

〈v|Aj |w〉〈w|A†
j |v〉

)

=
√

〈v|D(|w〉〈w|)|v〉. (B5)

If D is the completely depolarizing channel, then
D(|w〉〈w|) = I/d and therefore the bound becomes
|〈v|F |w〉| � √

1/d which implies ||F ||∞ � √
1/d . �

We are now ready to provide the proof of Proposition 1.
Proof of Proposition 1. To prove that a channel is en-

tanglement breaking, it is sufficient show that it transforms
a maximally entangled state into a separable state [61]. Let
|�+〉 = ∑d−1

k=0 |k〉 ⊗ |k〉/√d be the canonical maximally en-
tangled state. When the channel Cω,F is applied, the output
state is

(Cω,F ⊗ I )(|�+〉〈�+|) =
(

I ⊗ I

d2
+ GF

)
⊗ ω

2

+
(

I ⊗ I

d2
− GF

)
⊗ ZωZ

2
, (B6)

with GF := (F ⊗ I )(|�+〉〈�+|)(F ⊗ I )†.
We now show that the operators I⊗I

d2 ± GF are proportional
to states with positive partial transpose. To this purpose, note
that the partial transpose of GF on the second space is

Gτ2
F = (F ⊗ I )

SWAP

d
(F ⊗ I )†. (B7)

Hence, for every unit vector |�〉 we have the bound

〈�|Gτ2
F |�〉 � 〈�|(FF † ⊗ I )|�〉

d
� ‖FF †‖∞

d

= ‖F‖2
∞

d
� 1

d2
, (B8)

where the first inequality follows from Schwarz’ inequality,
and the last inequality follows from Lemma 1.

Using Eq. (B8), we obtain the relation

〈�|
(

I ⊗ I

d2
± GF

)τ2

|�〉 � 1

d2
− 〈�|Gτ2

F |�〉 � 0. (B9)

Since |�〉 is an arbitrary vector, we conclude that the operator
( I⊗I

d2 ± GF )τ2 has positive partial transpose. For d = 2, the
Peres-Horodecki criterion [72,73], guarantees that I⊗I

4 ± GF

is proportional to a separable state. Hence, the whole output
state (B6) is separable. �

2. Optimal control state for maximizing the Holevo capacity

Proposition 1 implies that the classical capacity of the
channel Cω,F is equal to its Holevo capacity (see [62]). Here
we show that the Holevo capacity is maximized by the state
ω = |+〉〈+|. In fact, we prove a more general result:

Lemma 2. Let Cω be an arbitrary channel of the form

Cω(ρ) := L+(ρ) ⊗ ω + L−(ρ) ⊗ ZωZ, (B10)

where L± are arbitrary linear maps. Then, for every density
matrix ω, the Holevo capacity satisfies the bound χ (Cω ) �
χ (C|+〉〈+|).

Proof. The Holevo capacity is known to be monotoni-
cally decreasing under the composition of quantum channels,
namely, χ (E ) � χ (F ◦ E ) for every pair of channels E and F .
For every channel Cω of the form (B10), we have the relation

Cω = (IM ⊗ Pω ) ◦ C|+〉〈+|, (B11)

where Pω is the quantum channel defined by

Pω(γ ) := 〈+|γ |+〉ω + 〈−|γ |−〉 ZωZ (B12)

for an arbitrary state γ . Hence, we have χ (Cω ) = χ [(IM ⊗
Pω ) ◦ C|+〉〈+|] � χ (C|+〉〈+|). �

Lemma 2 holds in particular for
(1) the channel Cω,F defined in Eq. (B3),
(2) the channel Cω defined in Eq. (9) of the main text,
(3) the channel Eω,F defined in Eq. (20) of the main text.

3. Bound on the Holevo capacity

Proposition 2. The Holevo capacity of the channel Cω,F

defined in Eq. (B3) is upper bounded as

χ (Cω,F ) � log(2d )

d
+

1
d + ||F ||2∞

2
log

1
d + ||F ||2∞

2

+
1
d − ||F ||2∞

2
log

1
d − ||F ||2∞

2
, (B13)

where F is the vacuum interference operator defined in
Eq. (B2).

Proof. For a fixed vacuum extension, and therefore for a
fixed vacuum interference operator F , the Holevo capacity of
the channel Cω is upper bounded by the Holevo capacity of the
channel C|+〉〈+|,F (Lemma 2). Hence, it is enough to prove the
bound for the channel C|+〉〈+|.

Note that the output of channel C|+〉〈+|,F has dimension 2d .
For a generic channel E with (2d )-dimensional output, the
Holevo capacity is upper bounded as [74]

χ (E ) � log(2d ) − min
ρ

H[E (ρ)], (B14)

where H (ρ) := − Tr[ρ log ρ] is the von Neumann entropy,
and the minimization can be restricted without loss of gener-
ality to pure states.

We now upper bound the right-hand side of Eq. (B14) for
E = C|+〉〈+|,F . The action of the channel C|+〉〈+|,F on a generic
input state ρ is

C|+〉〈+|,F (ρ) =
I
d +FρF †

2
⊗ |+〉〈+| +

I
d − FρF †

2
⊗ |−〉〈−|,

(B15)

as one can deduce from Eqs. (B3) and (B1).
In the case of a pure state ρ = |ψ〉〈ψ |, we write F |ψ〉 =

k |ϕ〉, where |ϕ〉 is a unit vector and k is a normalization
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constant. With this notation, we obtain

C|+〉〈+|,F (|ψ〉〈ψ |) =
(

1
d + k2

) |ϕ〉〈ϕ| + 1
d P⊥

2
⊗ |+〉〈+|

+
(

1
d − k2

) |ϕ〉〈ϕ| + 1
d P⊥

2
⊗ |−〉〈−|,

(B16)

with P⊥ := I − |ϕ〉〈ϕ|. The von Neumann entropy of this state
is

H[C|+〉〈+|,F (|ψ〉〈ψ |)]

= −
1
d + k2

2
log

1
d + k2

2
− d − 1

2d
log

1

2d

−
1
d − k2

2
log

1
d − k2

2
− d − 1

2d
log

1

2d

= d − 1

d
log(2d ) −

1
d + k2

2
log

1
d + k2

2

−
1
d − k2

2
log

1
d − k2

2
. (B17)

Now, note that one has

k = ‖F |ψ〉‖ � ‖F‖∞ � 1√
d

, (B18)

where the last inequality follows from Lemma 1. The expres-
sion (B17) is monotonically decreasing for k in the interval
[0, 1/

√
d]. Hence, one has the lower bound

H[C|+〉〈+|,F (|ψ〉〈ψ |)] � d − 1

d
log(2d )

−
1
d + ‖F‖2

∞
2

log
1
d + ‖F‖2

∞
2

−
1
d − ‖F‖2

∞
2

log
1
d − ‖F‖2

∞
2

.

(B19)

Inserting this expression into Eq. (B14) with E = C|+〉〈+|,F , we
then obtain Eq. (B13). �

Corollary 1. The Holevo capacity of the channel Cω,F de-
fined in Eq. (B3) is upper bounded as χ (Cω,F ) � 1/d . In
particular, for d = 2, one has the bound χ (Cω,F ) � 0.5.

Proof. Immediate from the fact that the right-hand side of
Eq. (B13) is monotonically decreasing with ‖F‖∞, and that
‖F‖∞ is upper bounded by 1/

√
d (Lemma 1). �

APPENDIX C: MAXIMIZATION OF THE HOLEVO
INFORMATION FOR THE SUPERPOSITION OF
INDEPENDENT DEPOLARIZING CHANNELS

Here we prove a series of results that enable a complete
numerical maximization of the Holevo information of the
channel (B3),

Cω,F : ρ �→ I/d + FρF †

2
⊗ ω + I/d − FρF †

2
⊗ ZωZ,

(C1)

over all input ensembles, over all states of the control system,
and over all vacuum extensions of the completely depolarizing

channel. This Appendix makes use of notation introduced in
the previous Appendices.

Let us start from the maximization over the vacuum ex-
tensions, which are in one-to-one correspondence with the
possible operators F .

Lemma 3. Without loss of generality, the operator F that
maximizes the Holevo information of the channel Cω,F can be
taken to be of the form F = a |0〉〈0| + b|1〉〈1|, with a2 + b2 �
1/d , a, b � 0.

Proof. Using the singular value decomposition, F can be
written as F = UF ′V , where U and V are suitable unitary
matrices, and F ′ is diagonal in the basis {|0〉, |1〉}. Now the
capacity of the channel Cω,F is equal to the capacity of the
channel Cω,F ′ = (U ⊗ IC )† ◦ Cω,F ◦ V†, where U† and V† are
the inverses of the unitary channels associated to the unitary
matrices U and V , respectively, and IC is the identity channel
on the control system. Notice that F ′ is also a vacuum in-
terference operator associated to the completely depolarizing
channel. Hence, the maximization of the Holevo capacity can
be restricted to channels with diagonal vacuum interference
operator.

Next, we note that, for a vacuum extension of the
completely depolarizing channel, the vacuum interference
operator F must satisfy the condition Tr F †F � 1/d [31].
For an operator of the form F = a |0〉〈0| + b |1〉〈1|, this im-
plies the inequality |a|2 + |b|2 � 1/d . Finally, we show that
a, b can restricted to positive numbers. Let W = a′ |0〉〈0| +
b′ |1〉〈1|, where a′ = ā/|a|, b′ = b̄/|b|. Then F ′′ := W F =
FW = |a| |0〉〈0| + |b| |1〉〈1|. The capacity of the channel
Cω,F ′′ = (W ⊗ IC ) ◦ Cω,F (where W is the unitary channel
associated with the unitary W ) is equal to the capacity of
the channel Cω,F . Therefore, a maximization of the Holevo
capacity can be restricted to vacuum interference operators
with positive coefficients in the computational basis. �

Let us consider now the maximization over all possible
ensembles. The key result here is that the maximization can
be reduced to the optimization of d vectors with positive
coefficients in the computational basis.

Lemma 4. When the operator F is diagonal in the compu-
tational basis, the input ensemble that maximizes the Holevo
information after application of the channel Cω,F can be cho-
sen without loss of generality to be of the form{

px

d
, M j |ψx〉〈ψx|M j†

}
x∈{0,...,d−1}, j∈{0,...,d−1}

, (C2)

where (px )x∈{0,...,d−1} is a probability distribution, M is the
unitary operator M := ∑d−1

m=0 ωm |m〉〈m|, ω := e2π i/d , and
|ψx〉 is a unit vector with positive coefficients in the computa-
tional basis {|m〉}d−1

m=0.
Proof. When F is diagonal, the channel Cω,F has the co-

variance property

Cω,F ◦ Uθ = (Uθ ⊗ IC ) ◦ Cω,F ∀ θ, (C3)

where θ = (θ0, θ1, . . . , θd−1) is a vector of d phases, and Uθ

is the unitary channel associated to the unitary matrix Uθ =∑d−1
m=0 eiθm |m〉〈m|. Note that, in particular, we have

Cω,F ◦ M j = (M j ⊗ IC ) ◦ Cω,F , j ∈ {0, . . . , d − 1} (C4)
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where M is the unitary channel associated to the unitary
operator M defined in the statement of the lemma.

For covariant channels, Davies [63] showed that the opti-
mal input ensembles can be chosen without loss of generality
to be covariant. In our case, this means that the optimal en-
semble can be chosen to be of the form

E :=
{ px

d
, M j (ρx )

}
x∈X, j∈{0,...,d−1}

, (C5)

for some finite set X , some probability distribution (px )x∈X ,
and some set of density matrices (ρx )x∈X . In the same paper,
Davies also showed that the ensemble can be chosen without
loss of generality to consist of pure states, possibly at the price
of increasing the size of the set X .

We now show that one can choose |X | � d without loss of
generality. Let E be an optimal covariant ensemble, and let

〈ρ〉 = 1

d

d−1∑
j=0

∑
x∈X

px M j (ρx ) (C6)

be its average state. Fixing X , the set of covariant ensembles
with average state 〈ρ〉 is a convex set. Since the Holevo
information is a convex function of the ensemble [63], the
maximization can be restricted without loss of generality to
the extreme points.

Now, note that the covariant ensembles E are in one-to-one
correspondence with covariant positive-operator-valued mea-
sures (POVMs) (Px, j )x∈{ X }, j∈{0,...,d−1}, via the correspondence

Px, j := M j (ξx )

d
, ξx := 〈ρ〉− 1

2 px ρx 〈ρ〉− 1
2 . (C7)

Since the correspondence is linear, the extreme ensembles are
in one-to-one correspondence with the extreme POVMs. The
latter have been characterized by one of us in Ref. [75], where
it was shown that a necessary condition for extremality is
that the ranks of the operators ξx, denoted by rx, satisfy the
condition ∑

x∈X

r2
x �

∑
μ

m2
μ, (C8)

where the sum on the right-hand side runs over the irreducible
representations (irreps) contained in the decomposition of the
representation {M j}d−1

j=0 , and mμ is the multiplicity of the irrep

μ. Now, the representation {M j}d−1
j=0 has d irreps, each with

unit multiplicity. Hence, the bound becomes∑
x∈X

r2
x � d. (C9)

In particular, this means that the number of nonzero operators
ξx is at most d .

In terms of the ensemble E, this means that the number of
values of x with px = 0 is at most d . Hence, the maximization
of the Holevo information can be restricted without loss of
generality to covariant ensembles with |X | � d .

Recall that the optimal ensemble can be chosen without
loss of generality to consist of pure states. The final step is to
guarantee that these pure states have non-negative coefficients
in the computational basis. For a covariant ensemble E =
{px/d, M j |ψx〉〈ψx|M j†}, let us expand each state as |ψx〉 =∑

m |cm| eiθx,m |m〉, where {θx,m} are suitable phases. Then,

we can define the new states |ψ ′
x〉 := U−θx |ψx〉, with θx :=

(θx,0, . . . , θx,d−1). By construction, these states have positive
coefficients in the computational basis, and the correspond-
ing ensemble E′ := {px/d, M j |ψ ′

x〉〈ψ ′
x|M j†} gives rise to the

same Holevo information as E, when fed into the channel
Cω,F . �

Corollary 2. When the operator F is diagonal in the com-
putational basis, the Holevo capacity of the channel Cω,F is
given by

χ (Cω,F ) = max
{px,|ψx〉}

{
H

[
Cω,F

(∑
x,m

px |〈m|ψx〉|2 |m〉〈m|
)]

−
∑

x

px H[Cω,F (|ψx〉〈ψx|)]
}

, (C10)

where the maximum is over the ensembles of d pure states
with positive coefficients in the computational basis.

Proof. Immediate from the definition of the Holevo infor-
mation for the ensemble obtained by applying channel Cω,F to
the pure state ensemble in Lemma 4, using the relations

H[Cω,F (M j |ψ〉〈ψ |M j †)] = H[Cω,F (|ψ〉〈ψ |)], (C11)

1

d

d−1∑
j=0

M j |ψ〉〈ψ |M j† =
d−1∑
m=0

|〈m|ψ〉|2 |m〉〈m|, (C12)

valid for every vector |ψ〉. �
For qubit messages (d = 2), we finally obtain an upper

bound on the classical capacity:
Theorem 1. For every vacuum extension of the completely

depolarizing channel and for every state of the control qubit,
the classical capacity of the channel resulting from the su-
perposition of two independent depolarizing qubit channels
is upper bounded as

C(Cω,F ) � max
a�0, b�0

a2+b2�1/2

max
0�q,p0,p1�1

H[Cω,F(ρq)]

− qH[Cω,F (|ψ0〉〈ψ0|)]−(1−q)H[Cω,F (|ψ1〉〈ψ1|)],
(C13)

|ψ0〉 = √
p0 |0〉 +

√
1 − p0 |1〉,

|ψ1〉 = √
p1 |1〉 +

√
1 − p1 |1〉,

ρq = [qp0 + (1 − q)p1]|0〉〈0|
+ [q(1 − p0) + (1 − q)(1 − p1)]|1〉〈1|. (C14)

Proof. For d = 2, Proposition 1 guarantees that the chan-
nel Cω,F is entanglement breaking, and therefore its classical
capacity is equal to the Holevo capacity. Lemma 2 guarantees
that the maximum of the Holevo capacity is attained by the
state ω = |+〉〈+|. Then, Lemma 4 guarantees the maximum
of the Holevo capacity of the channel C|+〉〈+|,F can be obtained
with a diagonal operator F = a |0〉〈0| + b |1〉〈1|, a, b � 0.
The Holevo capacity of C|+〉〈+|,F can be computed explicitly
using Corollary 2, with

|ψ0〉 := √
p0 |0〉+

√
1 − p0 |1〉

|ψ1〉 := √
p1|1〉+

√
1 − p1|1〉. (C15)
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FIG. 10. The channel Z (Ã, B̃), obtained by connecting two
vacuum-extended two-step channels Ã (green) and B̃ (red), such that
the output of the first use of each channel is connected to the input of
the second use of the other channel.

Finally, an upper bound is obtained by relaxing the constraint
on a and b to a2 + b2 � 1/d (Lemma 4). �

APPENDIX D: TRANSMISSION OF A SINGLE PARTICLE
THROUGH A NETWORK OF TWO-STEP CHANNELS

In the following we will use the notation introduced in
Appendix A.

1. Derivation of Eq. (15) in the main text

Let A and B be two-step channels, with vacuum extensions
Ã ∈ Chan(Ã(1), Ã(2) ) and B̃ ∈ Chan(B̃(1), B̃(2) ). For simplic-
ity, here we take all the systems Ã(1), Ã(2), B̃(1), B̃(2) to be
isomorphic.

We now connect the two-step channels Ã and B̃ in such
a way that the output of the first use of each channel is fed
into the input of the second use of the other channel, as in
Fig. 10. This particular composition of two two-step channels
is described by a supermap Z that maps pairs of channels in
Chan(Ã(1), Ã(2) ) × Chan(B̃(1), B̃(2) ) into bipartite channels in
Chan(Ã(1) ⊗ B̃(1) → B̃(2) ⊗ Ã(2) ).

We can now consider the scenario in which a single particle
is sent in a superposition of going through the A port and
the B port of the channel Z (R̃A, R̃B). Following Eq. (A1),
the evolution of the particle is described by the superposition
channel

S[Z (Ã, B̃)] := U† ◦ Z (Ã, B̃) ◦ U , (D1)

with U defined as in Eqs. (A1) and (A2). The superposition
channel S[Z (Ã, B̃)] is illustrated in Fig. 11.

Let us apply the above construction to the special case
where the channels Ã and B̃ are of the random unitary

FIG. 11. The superposition channel S[Z (Ã, B̃)] of two two-step
channels A and B, specified by the vacuum extensions Ã (green)
and B̃ (red), where the alternative paths traverse the two correlated
channels in the opposite order. For the applications in this paper, the
input of the control system C is fixed in the state ω, while the message
system M is accessible to the sender.

form

Ã = R̃A :=
∑
m,n

pA(m, n) Ṽ (A)
m ⊗ Ṽ (A)

n ,

B̃ = R̃B :=
∑
k,l

pB(k, l ) Ṽ (B)
k ⊗ Ṽ (B)

l , (D2)

where Ṽ (A)
m and Ṽ (B)

k are the unitary channels corresponding to
the unitary operators

Ṽ (A)
m := V (A)

m ⊕ eiφ(A)
m |vac〉〈vac|,

Ṽ (B)
k := V (B)

k ⊕ eiφ(B)
k |vac〉〈vac|, (D3)

respectively. With this choice, we have

Z (R̃A, R̃B)

=
∑

m,n,k,l

pA(m, n)pB(k, l )
(
Ṽ (B)

l ◦ Ṽ (A)
m

) ⊗ (
Ṽ (A)

n ◦ Ṽ (B)
k

)
(D4)

and

S[Z (R̃A, R̃B)] (·)
=

∑
m,n,k,l

pA(m, n) pB(k, l )Wmnkl (·)W †
mnkl , (D5)

with

Wmnkl := V (B)
l V (A)

m ei(φ(B)
k +φ(A)

n ) ⊗ |0〉〈0|
+ V (A)

n V (B)
k ei(φ(A)

m +φ
(B)
l ) ⊗ |1〉〈1|. (D6)

This proves Eq. (15) in the main text.

2. Derivation of Eqs. (20) and (21) in the main text

For the control (in this case the path of the particle) initial-
ized in the state ω, the superposition channel specified by the
vacuum extension Z (R̃A, R̃B) is given by

S[Z (R̃A, R̃B)](ρ ⊗ ω) =
∑

m,n,k,l

pA(m, n) pB(k, l )Wmnkl (ρ ⊗ ω)W †
mnkl

=
∑

m,n,k,l

{
pA(m, n) pB(k, l )V (B)

l V (A)
m ρV (A)†

m V (B)†
l ⊗ ω00 |0〉〈0|

+pA(m, n) pB(k, l )V (A)
n V (B)

k ρV (B)†
k V (A) †

n ⊗ ω11 |1〉〈1|
+ pA(m, n) pB(k, l )V (B)

l V (A)
m ρV (B) †

k V (A)†
n ei[φ(A)

n +φ
(B)
k −φ(A)

m −φ
(B)
l ] ⊗ ω01 |0〉〈1| + h.c.

}
= RBRA(ρ) ⊗ ω00 |0〉〈0| + RARB(ρ) ⊗ ω11 |1〉〈1| + K(ρ) ⊗ ω01 |0〉〈1| + [K(ρ)]† ⊗ ω10 |1〉〈0|,
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where K is the linear map defined by

K(ρ) :=
∑

m,n,k,l

pA(m, n) pB(k, l ) V (B)
l V (A)

m ρV (B) †
k V (A)†

n ei[φ(A)
n +φ

(B)
k −φ(A)

m −φ
(B)
l ]. (D7)

We now restrict our attention to the case where
(1) the two channelsR̃A and R̃B are identical [this implies

that one can choose without loss of generality pA(m, n) =
pB(m, n) =: p(m, n) for every m and n, V (A)

m = V (B)
m =: Vm,

and φ(A)
m = φ(B)

m =: φm for every m];
(2) the probability distribution p(m, n) is symmetric,

namely, p(m, n) = p(n, m) for every m, n.
Under these conditions, the operator K(ρ) is self-adjoint

for every density matrix ρ, and the effective channel can be
rewritten as

S[Z (R̃A, R̃B)](ρ ⊗ ω) = R2(ρ) + K(ρ)

2
⊗ ω

+ R2(ρ) − K(ρ)

2
⊗ ZωZ, (D8)

with

R(ρ) :=
∑
m,n

p(m, n)VmρV †
m . (D9)

In particular, suppose that the unitaries {Vm}d2−1
m=0 form an

orthogonal basis, and that the probability p(m, n) has the form
p(m, n) = δn,σ (m)/d2, for a permutation σ that makes p(m, n)
symmetric. In this case, Eq. (D8) becomes

S[Z (R̃A, R̃B)](ρ ⊗ ω) = I/d + K(ρ)

2
⊗ ω

+ I/d − K(ρ)

2
⊗ ZωZ, (D10)

with

K(ρ) = 1

d4

∑
m,k

V (B)
σ (k)V

(A)
m ρV (B)†

k V (A)†
σ (m) ei[φ(A)

σ (m)+φ
(B)
k −φ(A)

m −φ
(B)
σ (k)].

(D11)

Setting d = 2 and choosing σ to be the permutation that
exchanges 0 with 1, and 2 with 3, we obtain Eqs. (20) and
(21) of the main text.

APPENDIX E: PROOFS OF THE STATEMENTS
IN SEC. IV B

Here we consider the scenario of Fig. 11, in the special
case where the two-step channels Ã and B̃ are of the product
form Ã = Ã1 ⊗ Ã2 and B̃ = B̃1 ⊗ B̃2, respectively. In this
case, the combination of the channels in the network of Fig. 10
gives the bipartite channel

Z (Ã ⊗ B̃) = B̃2Ã1 ⊗ Ã2B̃1. (E1)

When a single particle is sent into one of the two ports of this
channel, the resulting evolution is described by the superposi-
tion channel

S[Z (Ã ⊗ B̃)] = S (B̃2Ã1 ⊗ Ã2B̃1), (E2)

where S is the supermap defined in Eq. (A1).

We now restrict our attention to the case where the chan-
nels Ã1, Ã2, B̃1, and B̃2 are all equal to each other, and are
all equal to D̃, a vacuum extension of the completely depo-
larizing channel. In this case, the action of the superposition
channel on a generic product state ρ ⊗ ω is

S (D̃2 ⊗ D̃2)(ρ ⊗ ω) (E3)

= I/d + F 2ρF 2 †

2
⊗ ω + I/d − F 2ρF 2†

2
⊗ ZωZ, (E4)

where F is the vacuum interference operator associated to
channel D̃. The above equation follows from Eq. (B3) and
from the observation that the vacuum interference operator of
D̃2 is F 2.

Note that one has the equality

S (D̃2 ⊗ D̃2)(ρ ⊗ ω) ≡ Cω,F 2 (ρ), (E5)

using the notation of Eq. (B3). That is, in the lack of cor-
relations the configuration of channels depicted in Fig. 11
gives rise to the effective channel in Eq. (B1), with F
replaced by F 2. This means that all of the results in Ap-
pendixes B and C apply to this scenario as well, with F
replaced by F 2. In particular, the classical capacity can be
determined numerically using Theorem 1, with the maxi-
mization constraint now being that for the vacuum interfer-
ence operator F 2 = g |0〉〈0| + h |1〉〈1|, g + h � 1/d , where
g, h � 0.

The classical capacity of the channels Cω,F and Cω,F 2 can be
evaluated numerically. For the cases where each completely

FIG. 12. Green: A plot of the classical capacity against ||F ||∞
for the channel Cω,F . Red: A plot of the classical capacity against
||F ||2∞ for the channel Cω,F2 . In both cases F = ∑3

m=0
1
4 e−iφmVm and

is sampled over the phase parameters {φ1, φ2, φ3} with a numerical
precision of π/8 for each parameter. We set φ0 = 0 without loss
of generality, as FρF † is invariant under the phase group U(1).
The classical capacity is here equal to the Holevo capacity (see
Appendix B) and the Holevo capacity was calculated using the meth-
ods outlined in Appendix C.
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depolarizing channel is implemented by a random unitary
channel [cf. Eqs. (4) and (15), respectively, in the main text],
Fig. 12 show a scatter plot with the capacities of both channels

in the same graph against the norm of the corresponding
vacuum interference operator, F or F 2, for same combination
of phases φ1, φ2, φ3 as shown in Figs. 4 and 6.
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[68] F. Del Santo and B. Dakić, Two-Way Communication with a
Single Quantum Particle, Phys. Rev. Lett. 120, 060503 (2018).

[69] J. Åberg, Operations and single-particle interferometry, Phys.
Rev. A 70, 012103 (2004).

[70] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo,
B. P. Lanyon, and J. L. O’Brien, Adding control to arbitrary
unknown quantum operations, Nat. Commun. 2, 413 (2011).

[71] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Transforming
quantum operations: quantum supermaps, Europhys. Lett. 83,
30004 (2008).

[72] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[73] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of
n-particle mixed states: Necessary and sufficient conditions in
terms of linear maps, Phys. Lett. A 283, 1 (2001).

[74] A. S. Holevo, Remarks on the classical capacity of quantum
channel, arXiv:quant-ph/0212025.

[75] G. Chiribella and G. M. D’Ariano, Extremal covariant measure-
ments, J. Math. Phys. 47, 092107 (2006).

043147-18

https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1038/ncomms8913
https://doi.org/10.1126/sciadv.1602589
https://doi.org/10.1103/PhysRevLett.121.090503
https://doi.org/10.1103/PhysRevLett.124.030502
https://doi.org/10.1103/PhysRevResearch.2.033292
https://doi.org/10.1116/5.0010747
https://doi.org/10.1103/PhysRevResearch.3.013093
https://doi.org/10.1103/PhysRevLett.120.120502
http://arxiv.org/abs/arXiv:1809.06655
https://doi.org/10.1088/1367-2630/abe7a0
https://doi.org/10.3390/e21101012
https://doi.org/10.1103/PhysRevA.101.012346
https://doi.org/10.1103/PhysRevLett.127.190502
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1103/PhysRevLett.111.153602
https://doi.org/10.1103/PhysRevA.91.062302
https://doi.org/10.1103/PhysRevLett.113.163602
https://doi.org/10.1038/s41467-019-08951-2
https://doi.org/10.1103/PhysRevA.66.062308
https://doi.org/10.1142/S0129055X03001709
https://doi.org/10.1063/1.1498000
https://doi.org/10.1109/TIT.1978.1055941
https://doi.org/10.1103/PhysRevLett.79.1162
https://doi.org/10.1103/PhysRevLett.88.057901
https://doi.org/10.26421/QIC5.1-2
https://doi.org/10.1103/PhysRevLett.120.060503
https://doi.org/10.1103/PhysRevA.70.012103
https://doi.org/10.1038/ncomms1392
https://doi.org/10.1209/0295-5075/83/30004
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(01)00142-6
http://arxiv.org/abs/arXiv:quant-ph/0212025
https://doi.org/10.1063/1.2349481

