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Abstract
Increases and decreases in the areas of climatic types have become one of the most important
responses to climate warming. However, few attempts have been made to quantify the
complementary relationship between different climate types or to further assess changes in the
spatial morphology. In this study, we used different observed datasets to reveal a dispersion
phenomenon between major global climate types in 1950–2010, which is significantly consistent
with the increasing trend of global temperatures. As the standard deviation of the area of major
climate zones strengthened in 1950–2010, the global climatic landscape underwent notable
changes. Not only did the area change, but the shape of the overall boundary became regular, the
aggregation of climatic patches strengthened, and the climatic diversity declined substantially.
However, changes in the global climatic landscapes are not at equilibrium with those on the
continental scale. Interpreting these climatic morphological indices can deepen our understanding
of the redistribution response mechanisms of species to climate change and help predict how they
will be impacted by long-term future climate change.

1. Introduction

Climate classification is a necessary step towards
understanding the complex spatio-temporal inter-
actions between different climatic variables or phe-
nomenon. As different regions are either becoming
warmer, cooler, drier, or wetter at different rates, a
non-uniform global response to climate change can
be anticipated. Multiple climate measurement meth-
ods are extensively used to categorise geographical
regionswith different hydrological or climatic designs
(Wells et al 2004, Kottek et al 2006, Baker et al 2009,
Meybeck et al 2013, Knoben et al 2018, Papagian-
nopoulou et al 2018). Data regarding the distribu-
tion of most species on Earth are lacking. Therefore,
climate classification metrics are particularly useful
for understanding the impacts of climate change on

biomes (Burrows et al 2011, Sunday et al 2012, Gar-
cia et al 2014).

An extensively used climate classification that
was summarised by Köppen (1931) has been modi-
fied into different versions (Lee 1947, Thornthwaite
1948, 1961, Feddema 2005, Kottek et al 2006, Peel
et al 2007). The Köppen climate classification links
global surface climates and the qualitative charac-
teristics of vegetation. This classification is based on
the annual and monthly mean temperature and pre-
cipitation as an expression of vegetation. The asso-
ciation between climate and vegetation provides an
easy-to-visualise empirical, and intuitive relationship
between the multivariate descriptions of climate and
the natural landscape. Although some complexities
are excluded from the classification process, this clas-
sification is still widely used in the study of climate
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and biomes because of its simplicity and useful fea-
tures.

Previous climate measurement studies have ana-
lysed different climate classifications (Kottek et al
2006, Peel et al 2007, Papagiannopoulou et al 2018),
spatial changes in climate types (Rubel and Kottek
2010, Feng et al 2014, Rohli et al 2015a), and the
speed at which these changes occur (Burrows et al
2011, Mahlstein et al 2013). Furthermore, the avail-
ability of different gridded datasets allows for the
diagnosis or projection of climate change by invest-
igating the moving boundaries of the climate zone
(Meybeck et al 2013, Phillips and Bonfils 2015, Beck
et al 2018, Knoben et al 2018). However, these clima-
tological metrics are not necessarily indicative of all
the features of the climate spatio-temporal dynamics
and their potential implications.

As with land cover classification, different climate
zones have highly heterogeneous surface biophys-
ical characteristics. However, the spatial heterogen-
eity assessment of the climate has not received extens-
ive attention (Meybeck et al 2013). Furthermore, few
attempts have been made to quantify the potential
changes in spatial heterogeneity, through the lens of a
climate zone. Species distributionmodels assume that
the range of a species is fundamentally determined by
climate (Burrows et al 2011, Sunday et al 2012, Garcia
et al 2014). However, the spatial dynamics of climate
heterogeneity can influence the capability of species
to track suitable climatic conditions to maintain their
niches. This results in communities re-arranging and
has potential implications for species interacting and
habitats changing (Sinervo et al 2010, Burrows et al
2011, Garcia et al 2014). The coverage of global cold
climate zones is projected to shrink, while hot climate
zones areas aremore likely to expanddue to temperat-
ure increases. The corresponding dynamics between
increases and decreases are complementary during
the period. Recent studies (Allen et al 2012, Liu and
Allan 2013, Meybeck et al 2013, Mahlstein et al 2013,
Rohli et al 2015a, Beck et al 2018) have shown that
we can hypothesise the complementary relationship
between major climate zone changes and global cli-
mate change. Therefore, this is an important indicator
of climatic spatial morphology dynamics.

Landscapes consist of patches with relatively
stable environmental conditions (Pickett and
Cadenasso 1995). Spatial morphology allows for
numerous landscape indices (Mcgarigal et al 2012)
that can be used to describe the structural (i.e. con-
nectivity) and functional (i.e. diversity) variation
in a climatic landscape. These structural and func-
tional measurements are primarily based on the
assumption that the spatial heterogeneity of cli-
matic patterns can strongly influence the range of
species (Boucher-Lalonde et al 2012, Meybeck et al
2013, Carroll et al 2018). Furthermore, the assumed
importance of these spatial patterns is related to
structural and functional effects (Garcia et al 2014,

Senf and Seidl 2018). Landscapes indicate that the
complementary relationship of major climate zones
provides an opportunity to explore the morpho-
logical characteristics of global climate zones as a
whole.

This study quantifies the complementary rela-
tionship in the major climate zones along with using
landscape indicators to explore long-termmorpholo-
gical changes in climatic landscapes on a global and
continental scale. This was achieved by first evalu-
ating the changes in the different climate zone areas
based on the observed temperature and precipita-
tion between 1950 and 2010. Thereafter, the standard
deviation (SD) index was used to quantify the com-
plementary relationships of major climate zones and
to explain the dispersion variations of the global cli-
matic landscape. An increase in the SD index between
major climate zones is likely to cause significant
responses across an entire landscape. Furthermore,
we detected the changes in the area, shape, aggreg-
ation, and functional groups of climate landscapes.
Finally, we examined the climatic variations on differ-
ent continents to quantify the continental features of
the climatic landscape. The morphological quantific-
ation of the climate types in this study can be used to
improve the estimation of the unique climate change
at a given scale. This can also better our understand-
ing of the impacts of climate change on biomes.

2. Data andmethods

2.1. Climate data
We collected monthly gridded precipitation and tem-
perature datasets at 0.5◦ × 0.5◦ resolution from the
University of East Anglia Climatic Research Unit
(CRU TS V.4.02) (Harris et al 2014) and the Uni-
versity of Delaware Air Temperature & Precipitation
(UD V5.01) (Willmott and Matsuura 2001). CRU TS
V.4.02 provides a gridded time-series dataset based
on observations from more than 4000 sites. The
monthly average surface temperature and precipita-
tion are included, among other variables, which serve
as the basis of the climate classification scheme used
in this work. CRU TS V.4.02 is applicable over land,
excluding Antarctica, and covers the period between
1901 and 2017. UD V5.01 provides high-resolution
gridded monthly station data for temperature and
precipitation for the period of 1900 to 2014, with the
dataset mainly relying on a large number of obser-
vations from the Global Historical Climate Network.
In this study, we concentrate on the period of 1950
to 2010, and focus on global land, excluding Ant-
arctica. As most previous studies (Kottek et al 2006,
Spinoni et al 2015, Santini and Di Paola 2015, Rohli
et al 2015a) concentrated on available datasets with a
horizontal resolution of 0.5◦ to 2.5, the data sets used
here were interpolated to a representative horizontal
resolution of 1◦ following the bilinear method.
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2.2. Köppen-Geiger climate classification
We used the Köppen-Geiger climate classification to
generate the major annual climate types as described
in (Peel et al 2007), which has also been widely used
in different research fields (Greve et al 2014, Feng et al
2014, Almorox et al 2015, Chan and Wu 2015, Beck
et al 2018). Overall, this climate scheme is consist-
ent with the original version summarised by Köppen
in 1936, but has some differences. For example, the
−3 ◦C thresholds of temperate and cold climates are
replaced with a 0 ◦C threshold, and arid climates are
defined based on the occurrence of 70% precipitation
during summer or winter. According to the updated
climate classification scheme (Peel et al 2007), the first
step is to identify arid climates, as any land pixel that
meets the criteria of an arid climatemay alsomeet the
criteria of other climate types. The othermain climate
types are mutually exclusive as they are solely based
on temperature thresholds (Feng et al 2014, Beck
et al 2018). Before applying the climate classification
algorithm, we used a 5-year running mean to reduce
the adverse impacts of short-term climate variability
and increase the robustness of the results (Mahlstein
et al 2013). Shifts in climate zones over a 5-year aver-
age period are more likely to reflect signals caused by
climate change, while interannual comparison would
cause greater internal variability that may be unre-
lated to long-term climatic trends. Furthermore, SD
was calculated based on the annual percentage area
(PA) of each climate type to analyse the dynamics of
the global climatic landscape. To validate the applic-
ability of our results, we compared the maps over the
period of 1976–2000 to the map generated by Kot-
tek et al (2010) downloaded from http://koeppen-gei
ger.vu-wien.acat/shifts.htm. Climates A–E represent
tropical, arid, temperate, cold, and polar climates,
respectively (table S1 (available online at stacks.iop.
org/ERL/15/114037/mmedia)).

2.3. Landscape analysis
The spatial patterns of the Köppen climate zones
were quantitatively assessed using selected landscape
indices tomeasure the characteristics at the landscape
level. Different representations of space have led to
the use of various spatial metrics to describe spatial
structure and patterns. The public software FRAG-
STATS version 4.2 was selected to conduct these spa-
tial analyses (Mcgarigal et al 2012), which is widely
used in many fields. Although FRAGSTATS provides
a large number of spatial metrics, including the area,
shape, aggregation, and diversity groups, many of
them quantify similar or identical aspects of the land-
scape pattern. In most cases, the redundant metrics
will have a high correlation andmay even be perfectly
correlated. In this study, we selected representative
subsets that focus on different aspects at the landscape
level, including the largest patch index (LPI) for
area, landscape shape index (LSI) for shape (Cain
et al 1997), contagion index (CONTAG) (O’Neill et al

1988), and aggregation index (AI) (He et al 2000) for
aggregation, and Shannon’s diversity index (SHDI)
(Shannon 1948) and Simpson’s diversity index (SIDI)
(Simpson 1949) for diversity.

The LPI refers to the percentage of the total cli-
matic landscape consisting of the largest climatic
patch. LPI approaches 100 as the size of the largest
patch in the landscape increases. The LPI for year k
(LPIk) is calculated using the following equation:

LPIk =
Max(aijk)

A
× 100 (1)

whereMax(aijk) denotes the maximum area of patch
j within climate zone i (from 1 to I) in year k, and A
is the total landscape area.

The LSI represents the total length of the edge of
the climatic landscape, provided by the number of cell
surfaces divided by the minimum possible total edge
length. Thus, LSI increases as the landscape shape
becomes more irregular. The LSI for year k (LSIk) is
calculated as follows:

LSIk =
0.25ek√

A
(2)

where ek denotes the total edge length e in year k.
CONTAG is a measurement of the observed con-

tagion over the maximum possible contagion for a
specific number of climatic patch types. It is inversely
related to themarginal density of climatic patches and
has nothing to do with the specific distribution of cli-
mate types, such as coastal, or a type of climate sur-
rounded by other climate types, such as EF and ET cli-
mates. Assuming that a single climatic class occupies a
very large area of the landscape, the contagion is high
when the edge density is very low, and approaches 100
when the patch types are maximally aggregated. For
year k, CONTAGk is calculated as follows:

CONTAGk =

1+
I∑

i=1

I∑
f=1

(Pik)×
gifk/ F∑

f=1

gifk


×

ln(Pik)×
gifk/

F∑
f=1

gifk

/2 ln(I)

× 100

(3)

where variable gifk denotes the number of adjacencies
between the grids of climate zones i and f based on
the double-count method in year k, Ji represents the
total number of patches in climate zone i, and Pik is
the proportion of the landscape occupied by climate
zone i in year k.

The AI increases as the climatic landscape
becomes more aggregated. For year k, AIk is calcu-
lated as follows:

AIk =

[
I∑

i=1

(
giik

max−giik

)
× Pik

]
× 100 (4)
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where giik denotes the number of similar adjacen-
cies between the grids of climate zone i based on
the single-count method in year k, and max-giik is
themaximumnumber of similar adjacencies between
the grids of climate zone i based on the single-count
method in year k. It increases as the number of dif-
ferent patch types increases and the proportional dis-
tribution of area between patch types becomes more
homogenous.

The SHDI increases as the number of different
patch categories increases and the proportional dis-
tribution of area among climatic patch categories
becomes more homogenous. The value of SHDIK for
year k can be determined as follows:

SHDIk =−
I∑

i=1

(Pik × lnPik) (5)

Anothermeasure of diversity, the SIDI, represents
the probability that any two pixels selected at random
would be different patch categories. The SIDI in year
k (SIDIK) is calculated as follows:

SIDIk = 1−
I∑

i=1

Pik
2 (6)

2.4. Statistical analysis
We applied the non-parametric Mann-Kendall stat-
istical test (Mann 1945, Kendall 1975) to assess the
statistical significance of the temporal climatic trend
(Yue et al 2002). The M-K significance test is less
affected by missing values and uneven distribution
than other test methods. Generally, a |Z| value of 1.96
is used to test for a 0.05 significance level. The null
hypothesis is rejected if |Z| > 1.96. Additionally, the
Pearson’s correlation coefficient (r) was used to exam-
ine the statistical relationship between the SD index
and landscape indices.

3. Results

3.1. Landscape changes in the global climate
pattern
figure 1 shows the global distribution of climate types
and the disappearing/emerging climate areas between
1950 and 2010. Although there are some distribu-
tion differences between the two versions due to the
different data sets and thresholds, the results have
a large overlap with the map drawn by (Rubel and
Kottek 2010) (figure S1). The most notable feature
is the expansion of arid B and tropical A climates
in the Northern and Southern Hemispheres, respect-
ively. In contrast, the polar E and temperate C cli-
mates in the Northern and Southern Hemispheres
have shrunk greatly, respectively. As illustrated in fig-
ures 1(c) and (d), the climate zone shifts in the low
and high latitudes exhibit a clear change in the polar
direction, including areas such as Southern Brazil,

Southern Sahara, and the Arctic. These changes may
be attributed to increases in temperature at certain
latitudes (Burrows et al 2011, Sunday et al 2012, Lu
et al 2019). Additionally, the mid- and low-latitude
high-altitude regions may be affected by climate
change faster than their surrounding lowlands (such
as central and southern Africa, the North Amer-
ican Rocky Mountains, South American Andes, and
Tibetan Plateau). The reason for these changes may
be changes in precipitation as mountainous areas are
likely more affected by changes in precipitation than
other regions (Mahlstein et al 2013). As illustrated in
figure 2, the annual spatial pattern of the global cli-
matic landscape was examined using representative
landscape indices in 1950–2010. From a landscape
perspective, the shape and diversity groups are signi-
ficantly decreased, while the aggregation indices are
significantly increased (|Z| > 1.96, MK) excluding the
LPI. Overall, our results indicate that not only has
the area changed, but the structural aggregation and
functional diversity of the global climate landscape
have also changed at the landscape level.

3.2. Intensification in the dispersion of global
climatic landscape
We further calculated the PA and SD of major cli-
matic zones to quantitatively analyse the evolution
of the global landscape from 1950 to 2010 using the
observed CRU datasets. As shown in figure 3(a), the
annual cumulative PAs between the major climate
types have changed relative to the starting values of
1950, while their SD anomalies have exhibited sig-
nificant positive correlations with annual temperat-
ure (figure 3(c)) and precipitation (figure 3(e)); the
increase in SD was more closely related to annual
surface temperature increase (r = 0.793, p < 0.01)
than precipitation (r = 0.577, p < 0.01). The PAs
of the major climate zones (figure 3(a)) behaved as
follows: tropical—0.074% decade−1, arid—0.315%
decade−1, temperate—0.017% decade−1, cold—
0.029% decade−1, and polar climates—0.442%
decade−1. Therefore, the differences in the area
between the major climate types have become greater
and the SD has significantly increased by 0.11%
decade−1. To further verify the relationship between
the annual temperature and precipitation and the SD,
we also calculated the PA and its corresponding SD
trends using the UD datasets (figure 3(b)). The result
revealed that the increase in temperature (r = 0.696,
p < 0.01; figure 3(d)) is closer to the trends in SD,
indicating that temperature plays a more important
role in strengthening the SD anomaly than precipita-
tion (figure 3(f)).

The changes in the global climatic landscape
depend on the complementarity relationship of the
area change of major climate types within the global
climatic landscape. Therefore, the SD index calcu-
lated frommajor climate types can be used to explain

4
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Figure 1. Distribution of the major climate types in (a) 1950 and (b) 2010, and the (c) ‘emerging’ and (d) ‘disappearing’ climate
areas (zones shifting from one climate type to another); A to E represent tropical, arid, temperate, cold, and polar climates,
respectively.

Figure 2. Changes in the climatic landscape indices from 1950 to 2010: (a) LPI, (b) LSI, (c) CONTAG, (d) AI, (e) SHDI, and (f)
SIDI. The red line represents the linear trend of the variable.

the dispersion changes of the global climatic land-
scape. figure 4 reveals a strong correlation between
the SD and landscape indices (all p < 0.01). When
the SD anomaly grew by a rate of between −0.59

and 1.07, the LPI (figure 4(a)) increased from 23.68%
to 24.73%, while the LSI (figure 4(b)) decreased
from 13.12 to 12.72. At the same time, the CONTAG
(figure 4(c)) and AI (figure 4(d)) variables increased

5
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Figure 3. (a), (b) Cumulative changes in area in the Köppen climate classes in 1951–2010 relative to 1950. (c), (d) Anomalous
changes in SD and surface temperature of the CRU and UD data, respectively. (e), (f) Anomalous changes in SD and surface
precipitation of the CRU and UD data, respectively.

Figure 4. Correlation between the SD anomalies and (a) LPI, (b) LSI, (c) CONTAG, (d) AI, (e) SHDI, and (f) SIDI. r is the
correlation coefficient, and p refers to the significance level (t-test).

significantly from 41.17 to 42.3 and 86.92 to 87.55,
respectively, while the SHDI (figure 4(e)) and SIDI

(figure 4(f)) indices decreased from 1.521 to 1.501
and 0.763 to 0.754, respectively. In summary, as the
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SD rose, the area changed, the shape became more
regular, the aggregation increased rapidly, and the cli-
mate diversity tended to decline, further suggesting
that the dynamics of the SD are due to morphological
variations in the global climatic landscape.

3.3. Landscape changes in continental climate
pattern
To identify the regional climatic landscape charac-
teristics, we mapped the continental distributions of
major climatic zones and separately calculated the
landscape indices relating to area (LPI), shape (LSI),
aggregation (CONTAG & AI), and diversity (SHDI
& SIDI; figures S2–13). The LPI (figure 5(a)) for all
continents, excluding Europe, exhibited increasing
trends (−0.78% decade−1). For the LSI (figure 5(b)),
increasing trends were observed in Africa
(0.03 decade−1), Australia (0.2 × 10−2 decade−1),
and Europe (0.2 × 10−2 decade−1), while decreas-
ing trends were observed in Asia, North Amer-
ica, and South America. Regarding aggregation
(figures 5(c) and (d)), the trend of the CONTAG
index increased in Africa, Asia, and South Amer-
ica, but decreased in Australia (−0.2% decade−1),
Europe (−0.5% decade−1), and North America
(−0.13% decade−1), while the trend of the AI
variable rose in Africa, Asia, South America, and
North America and diminished rapidly in Australia
(−0.04 decade−1) and Europe (−0.08 decade−1). The
diversity trends (figures 5(e) and (f)) of SHDI and
SIDI were similar, with decreases in Africa, Asia, Aus-
tralia, and South America, and increases in Europe
(0.01 decade−1) and North America (0.06 decade−1).
Generally, in Europe and Australia, the changes in
the aggregation variables have decreased, while the
diversity is increasing in Europe and North America.
However, in other continents, climatic landscapes are
becoming more aggregated and climate diversity is
decreasing.

4. Discussion

The SD index combines the changes in different cli-
mate zones as a whole, which greatly differs from
other research, and changes in its value will cause a
change in the morphology of major climate zones.
Previous studies mainly concentrated on emerging

and disappearing climates (Williams et al 2007, Bur-
rows et al 2011), spatial changes to climatic types
(Baker et al 2009, Rohli et al 2015a, Rubel et al 2017),
the velocity at which these shifts occur (Mahlstein
et al 2013, Chan and Wu 2015, Lu et al 2019), and
the availability of different versions of world maps
(Kottek et al 2006, Peel et al 2007, Kriticos et al 2012,
Beck et al 2018). These studies are extremely import-
ant for understanding the climate, diagnosing cli-
mate change, and assessing their ecological impacts;
however, the balance or complementary relationship

between climate zones have been ignored. SD is cal-
culated based on the complementary relationship of
major climate zones, which may be a new indicator
for evaluating global climate change. The SD index
will continue to rise as the corresponding relationship
of ‘warm climates become larger and cold climates
become smaller’ continues, particularly under future
warming scenarios (Taylor et al 2012).

Our results show that the aggregation of climatic
patches in the global climate landscape has increased
significantly, while climate diversity has declined.
Given the lack of data on the distribution of spe-
cies on Earth, most assessments of the impact of cli-
mate change on biodiversity have relied on simple
climatic indicators that are often used to quantify
the specific threats or opportunities for biodiversity
(Ohlemüller et al 2008, Loarie et al 2009, Beaumont
et al 2011, Sunday et al 2012, Watson et al 2013). As
shifts in the biogeographic ranges of species have
become one of the most direct biological responses
to climate change (Burrows et al 2011), the morpho-
logical climatic measurements in the global climatic
landscape are useful for understanding or predicting
possible changes in the distribution of species (par-
ticularly poorly described or unknown species). For
example, due to warmer temperatures, the alpine cli-
mates in major mountainous areas or polar climates
will shrink and tropical or arid climates will expand
(Kottek et al 2006, Allen et al 2012, Rohli et al 2015a,
Rubel et al 2017), resulting in the aggregation of dif-
ferent climatic patches and a decrease in regional cli-
mate heterogeneity. Most climate niche models are
based on the key assumption that climate distribu-
tion fundamentally determines the range of species
(Pearson andDawson 2003, Sunday et al 2012, Garcia
et al 2014, Rohli et al 2015b, Beck et al 2018). There-
fore, the aggregation process of climatic patches and
the loss of climate diversity are highly likely to affect
the availability and distribution of climatically suit-
able areas on a regional scale, resulting in changes in
the seasonal activities (Lane et al 2012) of species liv-
ing nearby or phenological shifts (Parmesan and Yohe
2003), such as flowering, migration, or breeding. This
will potentially influence the demography and popu-
lation dynamics of regional species and communit-
ies. Although climate landscape indices can be used
to characterise changes in biodiversity, these changes
are not equivalent to those in actual biomes. Thus,
we must carefully consider and interpret the poten-
tial meaning of metric outputs.

Temporal climatic measurement scales are
important. Changes measured over a long time often
mask some important climatic signals of a finer tem-
poral scale, thereby ignoring the measurement of cli-
mate change-related processes that may aid in under-
standing the contraction or expansion of the range
of species. The Köppen-Geiger classification method
using natural vegetation as a climatic expression aims
to empirically determine the global distributions of

7
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Figure 5. Linear trends of the LPI (a), LSI (b), CONTAG (c), AI (d), SHDI (e), and SIDI (f) of different continents, i.e. AF
(Africa), AS (Asia), AUS (Australia), EU (Europe), NA (North America), and SA (South America). The asterisk denotes a 0.05
significance level (|Z| > 1.96, MK).

biomes. Due to the persistence of vegetation cover
on multi-year scales, the long-term average climate
distribution is more conducive to describing vegeta-
tion characteristics (Kottek et al 2006, Peel et al 2007,
Beck et al 2018). However, the response of the spatial
morphology is easier to observe on a finer temporal
scale (such as interannual) than on amulti-year scale.
The aggregation process and loss of climate diversity
may cause a pronounced range of contraction for
activities of species that depend on different climatic
conditions at different life stages (such as seasonal
migratory species), often mediating variations in
their population demographics across seasons and
lifespans.

Selecting an appropriate research scale depends
on the questions and phenomenon being considered
(Mcgarigal et al 2012), as the statistical relationship
may change as the scale changes. Our statistical dif-
ferences on the global and continental scales indic-
ate that it is extremely important to consider climate
change at different scales (Wu 2004, Chen et al 2017,
Aalto et al 2018, Järvi et al 2019), as it may aid in our
understanding of the climate itself. Similarly, the rel-
atively coarse spatial resolution may limit the effect-
iveness of climatic assessments, which is insufficient
to describe small-scale features, such as alpine tun-
dra or frost climates (Rohli et al 2015b, Beck et al
2018). Rohli et al (2015b) found that the uncertainty
caused by downscaling in some areas where stations
are sparse limits the use of data with a finer resol-
ution, especially in mountainous areas. (Beck et al
2018) systematically evaluated the accuracy and usab-
ility of the three latest versions of the Köppen-Geiger

map, which has a relatively low resolution, and gen-
erated a new one with a resolution of 0.0083◦ that
was is explicitly corrected for topographic effects.
Furthermore, the demand information with a finer
spatial resolution within the corresponding spatial
range in landscape analysis is increasing (Buyan-
tuyev and Wu 2007). From the landscape perspect-
ive, climate assessments at a lower spatial resolu-
tion may reduce regional climate diversity and ignore
microrefugia (Garcia et al 2014), thereby overem-
phasising the risk to the survival of species sur-
vival at present ranges. Such climatic microrefugia
patches with different climate conditions may allow
species to persist and maintain their niche (Sunday
et al 2011) during periods of climate change, partic-
ularly some poorly dispersed species (Williams et al
2007).

As global temperatures are likely to increase by at
least 1.5 ◦C in the near future (Masson-Delmotte et al
2018), it is also necessary to explore the future poten-
tial evolution of the global Köppen-Geiger landscape
under different emission pathways (Taylor et al 2012).
The potential findings could provide more evidence
to better understand future morphological changes
of the climate and the implications for threats to and
opportunities of biomes at different scales.

5. Conclusions

This research presents a quantification of shifts in
the spatio-temporal patterns of major climate zones.
Based on the area change of climate types on a zonal
scale, SD indexwas used to characterize the dispersion
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changes in major climate zones around the world,
having the potential to be used as a new climate
change indicator. Dispersion changes in area usually
cause an overall change in spatial pattern. On this
basis, changes in the morphology of global climatic
landscape were effectively measured using different
observed datasets. Our results indicate that there is
a clear aggregation process of climatic patches, and
a substantial decrease in climate diversity. These cli-
matic morphological measurements are likely use-
ful to interpret the specie’s potential changes in
demographic and mechanisms in response to climate
change, such as seasonal activities or phenological
shifts.
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