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A P P L I E D  E C O L O G Y

Persistent collapse of biomass in Amazonian forest 
edges following deforestation leads to unaccounted 
carbon losses
Celso H. L. Silva Junior1,2*, Luiz E. O. C. Aragão1,2,3, Liana O. Anderson1,4, Marisa G. Fonseca1,2,5, 
Yosio E. Shimabukuro1,2, Christelle Vancutsem6, Frédéric Achard6, René Beuchle6, Izaya Numata7, 
Carlos A. Silva8, Eduardo E. Maeda9, Marcos Longo10, Sassan S. Saatchi10,11

Deforestation is the primary driver of carbon losses in tropical forests, but it does not operate alone. Forest frag-
mentation, a resulting feature of the deforestation process, promotes indirect carbon losses induced by edge 
effect. This process is not implicitly considered by policies for reducing carbon emissions in the tropics. Here, we 
used a remote sensing approach to estimate carbon losses driven by edge effect in Amazonia over the 2001 to 
2015 period. We found that carbon losses associated with edge effect (947 Tg C) corresponded to one-third of 
losses from deforestation (2592 Tg C). Despite a notable negative trend of 7 Tg C year−1 in carbon losses from 
deforestation, the carbon losses from edge effect remained unchanged, with an average of 63 ± 8 Tg C year−1. 
Carbon losses caused by edge effect is thus an additional unquantified flux that can counteract carbon emissions 
avoided by reducing deforestation, compromising the Paris Agreement's bold targets.

INTRODUCTION
Tropical forests play a crucial role in the global carbon cycle, with 
carbon stocks varying between 193 and 229 Pg (1, 2), representing 
about 54% of the global aboveground carbon (AGC) stock (3). The 
area of these forests, however, declined by 10%, from 19.65 million 
km2 in 1990 to 17.70 million km2 in 2015, because of land-use and 
land-cover changes (4). The magnitude of these forest changes affects 
essential ecosystem services, including carbon storage, biodiversity, 
climate regulation, nutrient cycling, and water supply (5, 6).

In Amazonia, the world’s largest continuous tropical forest, de-
forestation has continuously converted old-growth forests into 
agricultural and livestock areas, fragmenting the landscape exten-
sively. Forest fragmentation is associated with the increased number 
of forest patches and augmentation of the extent of forest edges 
perimeter and area (7, 8). These changes in forest cover configura-
tion cause direct carbon losses from edge effect and agricultural fire 
incursion into adjacent stand forests (8–15). The exposure of the 
Earth’s forests to edge effect is widespread (16–18). Globally, about 
70% of forests were within 1 km of forest edges in 2000 (19). How-
ever, only 5.2% of the forests in the Brazilian Amazon were in this 
same edge zone in 2014 (7).

Pioneering investigations from the BDFFP (Biological Dynamics 
of Forest Fragments Project), in the Brazilian Central Amazon, 

found significant carbon losses at forest edges (depth of 100 m) 
induced by microclimatic changes, leading to increased tree mor-
tality rates.(9–11). However, the magnitude of carbon losses at these 
forest edges is still poorly quantified at large scales due to the scar-
city of quantitative datasets for tropical forests. Efforts to accurately 
incorporate this source to regional and global carbon budgets are 
urgently needed for improving the estimations of the contribution 
of land-use and land-cover changes to the atmospheric carbon bur-
den. This quantification is critical for the effectiveness of sustain-
able development policies and must be explicitly included either in 
national greenhouse gas inventories of tropical countries or in 
REDD+ (reducing emissions from deforestation and degradation) 
reports (20). Initial attempts were already made to quantify the 
carbon losses caused by edge effect in Amazonia (21–27); nonethe-
less, these studies were constrained by the availability of synoptic 
data, the accuracy of models, the spatial resolution of the remote 
sensing data used, or the study area extent.

Representing the environmental variability of edge effect and as-
sociated carbon stocks across Amazonia is a challenge due to its 
large area. In this context, remote sensing technologies play an es-
sential role in quantifying both the extent of fragmentation-induced 
forest edges and the negative impact of edge effect on forest carbon 
stocks. The recent availability of 30-m spatial resolution forest 
change datasets (28) based on optical images from the Landsat se-
ries of Earth Observation satellites provides a unique opportunity to 
quantify forest edge extent and age in detail at pan-Amazonia scale. 
This information integrated with airborne LiDAR (light detection 
and ranging) technology collected over Amazonian forests offers a 
powerful combination for estimating forest carbon stocks in these 
areas, based on accurate models of forest structure (Fig. 1) (29, 30).

Therefore, in this study, we aim to provide a unique spatially and 
temporally explicit quantification of carbon losses from forest edges 
and estimate the additional contribution to gross deforestation-induced 
carbon losses. Specifically, we (i) analyzed 16 years (2000–2015) of 
readily available 30-m spatial resolution Landsat-based forest cover 
and change datasets (28) to quantify the dynamics and age distribution 
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of forest edges in Amazonia, (ii) processed an airborne LiDAR data-
set collected across several locations in the studied area to build an 
empirical carbon loss model as a function of forest edge age, and 
last, (iii) modeled the edge-induced carbon loss across the entire 
Amazonia by applying the LiDAR-based carbon loss model across 
all pixels of the forest edge age maps. Our model is grounded on the 
observation (31) and concept (32) that tropical forest edges formed 
by deforestation continuously reduce their carbon stocks with age. 
Thus, we hypothesize that direct carbon losses by deforestation are 
followed by incremental indirect carbon losses induced by the aging 
of forest edges in Amazonia.

RESULTS
Forest edge dynamics and age distribution
The dynamics of forest edges creation and erosion (defined here as 
the complete removal of canopy cover of the forest edge) is ex-
plained directly by the pattern and pace of deforestation. In Fig. 2, 
we present our findings regarding Amazonian forest edges dynam-
ics (Fig. 2, A and B) and their age distribution (Fig. 2, C and D). We 
estimate that 5% of the standing forest cover in 2000 was deforested 
between 2001 and 2015, or a gross forest loss of 273,195 km2, at an 
average of 18,213 ± 4303 km2 year−1 (Fig. 2A). We observed a defor-
estation peak of 26,376 km2 in 2004 and a minimum value in 2013 
(12,578 km2). However, the Mann-Kendall test (MK) showed 
that annual deforestation overall decreased significantly at a rate of 
683 km2 year−1 (MK = −0.49 and P < 0.05) along the 15-year period.

During the interval studied, Brazil was the country with the high-
est deforestation rate (14,835 ± 4706 km2 year−1), contributing with an 
average of 62 ± 10% year−1 of overall deforestation in Amazonia (fig. S1). 
Brazil is also the leader in relative contribution rate (percentage of 
annual deforestation in relation to Amazonia area of each coun-
try), with an average of 0.355 ± 0.109% year−1 (table S1). In contrast, 
French Guiana had the lowest deforestation rate (33 ± 18 km2 year−1), 
contributing with an average of 0.20 ± 0.10% year−1 of overall Amazoni-
an deforestation, with a relative contribution rate average of 0.040 ± 
0.021% year−1 (table S1). However, across all Amazonian countries, 
only Brazil had a significant negative temporal trend in deforesta-
tion, at a rate of 773 km2 year−1 (MK = −0.55 and P < 0.05), while Peru 
had the highest significant temporal trend of increase, at a rate of 
68 km2 year−1 (MK = 0.67 and P < 0.05). Details about annual defor-
estation rates and temporal trends for all countries in the Amazonia 
can be found in fig. S1 and tables S1 and S2.

In 2015, we estimated that forests edges, considering a depth of 
120 m (10, 33), covered an area of 176,555 km2 across the whole 
Amazonia (Fig. 2A). This represents about 65% of the total defor-
ested area between 2001 and 2015 or 3% of the total forest area in 
2015 over the region. On average, 11,770 ± 3546 km2 year−1 of new 

forest edges were created in Amazonia, with a maximum area of 
17,815 km2 in 2012 and a minimum of 6481 km2 in 2011 (Fig. 2A). 
Brazil and Peru had the highest annual edge creation average, con-
tributing with 7600 ± 3427 km2 year−1 and 1510 ± 300 km2 year−1, 
respectively. In addition, we quantified that on average, 7 ± 1, 24 ± 4, 
and 42 ± 3% of the forest edges were eroded by forest-clearing pro-
cess after 1, 5, and 10 to 14 years of their creation, respectively (Fig. 2B).

Similar to the patterns found for deforestation rates in the 
Amazonia, the creation of forest edges decreased significantly at a 
rate of 707 km2 year−1 (MK = 0.74 and P < 0.05) between 2001 and 
2015 (Fig. 2A). Across all Amazonian countries (table S1), Brazil 
and Colombia had a significant decreased trend in edge formation 
(P < 0.05), with rates of 683 and 49 km2 year−1, respectively. Con-
versely, Guyana and Suriname had a significant increased trend 
(P < 0.05), with rates of 5 and 11 km2 year−1, respectively. Details 
about temporal trends of forest edge dynamics for Amazonian 
countries are shown in fig. S2 and table S3.

In 2015, we observed that the oldest edges (between 10 and 
15 years old) were distributed mainly over the Brazilian Arc of 
Deforestation (34), an old Amazonian deforestation frontier located 
in the southeast flank of Amazonia (Fig. 2C). We also observed old 
forest edges in the southern portion of Bolivia and in the north 
of Amazonia, including three countries: Colombia, Venezuela, and 
Guyana. On the other hand, the youngest forest edges (between 
1 and 3 years old) dominated not only the new active deforestation 
frontiers in southern Bolivia, western Peru, and northern Colombia 
but also areas in the central Brazilian Amazon.

On average, forest edges in Amazonia were 7 ± 3 years old in 
2015. The edge age distribution was close to uniform: 23% of the 
forest edges ages were between 1 and 3 years, 21% between 4 and 
6 years, 19% between 7 and 9 years, 20% between 10 and 12 years, 
and 16% between 13 and 15 years. Considering all Amazonian 
countries, the age of forest edges spanned from an average of 
6 ± 3 years in Suriname to 8 ± 3 years in Colombia (Fig. 2D and 
Table 1). The Kruskal-Wallis test (KW) showed a significant dif-
ference (KW = 1179 and P < 0.05) in the age of forest edges among 
the Amazonian countries (Fig. 2D). For instance, we found that 
forest edge age was significantly (P < 0.05) lower in Suriname 
(group e) and higher in Colombia (group a). However, the age of 
forest edges in the pair Brazil and Venezuela (group b) and in the 
group Ecuador, Guyana, and Peru (group d) was statistically indis-
tinguishable from each other. Last, the age of forest edges in French 
Guiana (cd group) was not distinguishable from countries belong-
ing to groups c and d, simultaneously. 

Spatial-temporal variation in AGC losses
By combining the age information from the mapped forest edges with 
the airborne LiDAR data, we established a relationship depicting 

Fig. 1. LiDAR point cloud profile. Point cloud data collected in 2014 in the northeast of the Pará state, Brazil with 420 m of length. The points represent the vegetation 
height, which was normalized by the terrain altimetry. (A) Structure of a nondegraded old-growth forest, where the trees height reaches up to 40 m. (B) Forest edge 
(width of 120 m), where the height of the vegetation reaches up to 25 m. (C) Deforested area with vegetation regrowth (height up to 5 m).
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the loss of aboveground forest carbon as a function of the age of 
forest edges (see Materials and Methods) to investigate the spatial 
and temporal changes of carbon stocks associated with edge effect 
across Amazonia. As shown in Fig. 3 (A and B) between 2001 and 
2015, carbon losses related to edge effect ranged from 0.001 up to 
0.252 Tg C per grid cell (100 km2), while losses from deforestation 
ranged from 0.001 up to 0.799 Tg C per grid cell. More than 60% of 

the grid cells had values of carbon loss varying between 0.001 and 
0.022 Tg C, both for edge effect and deforestation (Fig. 3, C and D). 
Spatially, absolute carbon loss values associated with edge effect and 
deforestation presented similar patterns across Amazonia (Fig. 3, 
A and B), with substantial accumulated losses over the Brazilian Arc 
of Deforestation (34) and the southwest Amazonian flank. The lower 
accumulated losses were spatially distributed over the central and 
the northern part of Amazonia.

Figure 3E shows the relative contribution of edge effect and 
deforestation for the total carbon loss between 2001 and 2015 as a 
percentage of each grid cell. We found that relative contribution of 
edge effect and deforestation for the carbon loss of grid cells were 
heterogeneous across Amazonia during the studied period. While 
carbon losses from edge effect dominated mainly the central Amazonia 
region, carbon loss associated with deforestation were more evident 
along the Brazilian Arc of Deforestation (34) and areas in Peru, Bolivia, 
and southern French Guiana.

Between 2001 and 2015, we estimated a total gross carbon loss 
from edge effect of 947 Tg C (0.95 Pg C), with an average of 63 ± 8 Tg 
C year−1 between 2001 and 2015 in Amazonia. We did not identify 
any temporal trend in the time series (Sen’s slope = −0.22 Tg C year−1, 
MK = −0.01, and P > 0.05). We observed a carbon loss peak of 78 Tg C 
in 2005, while we recorded a minimum loss of 41 Tg C related to 
edge effect in 2001 (Fig. 4A). In contrast, the total gross carbon loss 
from deforestation was 2592 Tg C (2.59 Pg C), with an average of 
173 ± 46 Tg C year−1, and a significant negative temporal trend of 

Fig. 2. Forest edges creation, erosion, and age composition in Amazonia. (A) Temporal forest edges variation in Amazonia, where the black bars are the annual forest 
edges increment rate and the blue line is the total gross forest area increment from 2001. (B) Boxplots of forest edges erosion rates (as a negative percentage) for Amazonia, 
where the bold horizontal lines are the medians, the blue dots are the averages, the shaded area is the frequency distribution function, and n is the number of observa-
tions. (C) Spatial distribution of forest edges age in 2015 in Amazonia; ages were aggregated by the average in a 10 km by 10 km grid cell to improve visualization. (D) Dot 
plots of forest edge age [each dot corresponds to a single grid cell in (C)] in Amazonian countries in 2015, where the vertical bars are the SDs, the black dots are the aver-
ages, the gray dots are the data observations, and n is the number of observations. The letters in bold represent the groups defined by the post hoc test.

Table 1. Average and median of the forest edges ages for the 
Amazonian countries.  

Country
Forest edges ages (years)

Average ± SD Median

Bolivia 7.00 ± 2.35 7.01

Brazil 7.38 ± 2.84 7.54

Colombia 7.67 ± 2.88 7.96

Ecuador 6.58 ± 2.17 6.84

France Guyana 6.57 ± 3.11 6.41

Guyana 6.78 ± 2.91 6.57

Peru 6.48 ± 2.50 6.56

Suriname 5.94 ± 2.93 5.49

Venezuela 7.53 ± 2.94 7.59
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6.90 Tg C year−1 (MK = −0.51 and P < 0.05) between 2001 and 2015. 
Unlike the observed pattern of carbon loss from forest edges, the 
peak of deforestation-related carbon loss occurred in 2004 (261 Tg C), 
and the minimum was recorded in 2013 (114 Tg C) (Fig. 4B). Across 
all Amazonian countries, Brazil had the most substantial contribu-
tion for the Amazonia-wide carbon loss from both forest edges 
and deforestation, representing an average of 67 ± 6% year−1 and 
79 ± 7% year−1, respectively (Fig. 4, A and B). At the same time, 
Suriname’s forest edges and deforestation had the lowest contribu-
tion, with an average of 1.03 ± 0.57% year−1 and 0.48 ± 0.35% year−1, 
respectively (Fig. 4, A and B).

Overall, our findings show that the deforestation process leads to 
a collateral carbon loss of 37% related to the dynamics of forest edges 
in the Amazonia. Most notably, unlike the carbon loss from defor-
estation, which declined significantly during the analyzed period, 
the additional carbon loss associated with the edge effect remained 
unchanged over time. Note that the difference between carbon losses 
from deforestation and edge effect decreased over time. In 2001, de-
forestation promoted a loss of 122 Tg C greater than that observed 
for the edges; however, in 2015, this difference decreased to 66 Tg C 
(fig. S3A). During the studied period, hence, the carbon loss from 
forest edges that contributed to 25% of the loss from deforestation 
in 2001 increased to 48% in 2015 (fig. S3B). In 2013, carbon loss 
induced by edge effect was more than half (54%) of the direct defor-
estation loss (fig. S3B).

The analysis of temporal trend and average of carbon losses 
associated with edge effect and deforestation across all Amazonian 

countries (Table 2) showed that Ecuador, Guyana, Peru, and Suriname 
had a significant (P < 0.05) positive trend in carbon losses, both by edge 
effect and deforestation, varying between 0.01 and 0.41 Tg C year−1 
for edge effect and between 0.01 and 0.65 Tg C year−1 for deforesta-
tion. Only Brazil had a significant (P < 0.05) negative temporal trend 
of deforestation-associated carbon loss, although loss from edges 
remained unchanged (P > 0.05) over time. In contrast, Venezuela 
had a significant (P < 0.05) positive trend in carbon loss from defor-
estation, but losses from edge effect remained unchanged (P > 0.05) 
over time. 

DISCUSSION
Trends in deforestation across Amazonian countries
From our approach, we observed a significant decline in forest 
clearing processes between 2001 and 2015 in Amazonia. This de-
cline followed the reduction in the deforestation rates observed in 
Brazil. The reduction in deforestation rates observed here for the 
Brazilian portion of Amazonia corroborates the progressive decline 
reported by the official deforestation system operating in Brazil 
(fig. S1) (35). This reduction was a result of the strengthening of 
policies for prevention and control of deforestation in the region 
called Brazilian Legal Amazon, consolidated since the creation of the 
PPCDAm (Plano de Ação para Prevenção e Controle do Desmatamento 
na Amazônia Legal; Action Plan for Prevention and Control of 
Deforestation in the Legal Amazon) in 2004 (36). During the first 
three phases of the PPCDAm (2004–2015), policies were created 
and actions implemented, including the creation and consolidation 
of near–real time systems for monitoring deforestation based on re-
mote sensing, the intensification of law enforcement, the restriction 
of credit for illegal loggers, the creation and consolidation of con-
servation units and indigenous lands, and advances in land policy, 
such as the Rural Environmental Registry (Cadastro Ambiental 
Rural) (37). However, from 2013 to 2019, an upward trend was ob-
served in the official deforestation rates (35), marked by an impres-
sive rate of 10,129 km2 in 2019, an increase of 34% compared to 
2018 (7536 km2), the highest rate since 2008 (12,911 km2). This 
upward trend was induced by environmental setbacks such as con-
troversial changes in the Brazilian Forest Code in 2012 (38), the recent 
weakening of deforestation enforcement, the dismantling of climate 
change policies (including the interruption of the PPCDAm from 2019), 
and the possibility of regularization of public lands illegally grabbed 
(Bill n° 2633/2020, former Provisional Measure n° 910/2019) (39, 40).

Although the PPCDAm was a key step for the reduction of the 
deforestation in the Brazilian Amazon, other external factors such 
as the soy and beef moratoria (41) also played a critical role. Com-
panies associated with the agribusiness agreed upon an embargo on 
soy and beef produced in illegal deforested areas. All these policies 
and actions inhibited illegal deforestation activities in the Brazilian 
Amazon, resulting in the significant decline of deforestation rates in 
Brazil after 2004. This pattern drove the overall trend of deforesta-
tion reduction across Amazonia.

Countries such as Ecuador, Guyana, Peru, and Suriname had, 
however, a significant increase in deforestation rates between 2001 
and 2015. In Ecuador, the deforested areas were associated with 
increased commodity prices between 2005 and 2014, intensifying 
mineral and hydrocarbon extraction, agriculture production, 
logging, and palm cultivation (42, 43). In Guyana (43, 44), Suriname 
(43, 45), and Peru (43, 46), on the other hand, the increase in 

Fig. 3. Spatial variability of carbon losses in Amazonia. Spatial variability of 
carbon losses between 2001 and 2015 from (A) edge effect and (B) deforestation. 
Histograms of frequency distribution of carbon losses related to (C) the edge effect 
presented in (A) and (D) the deforestation presented in (B). (E) Percent contribution 
of edge effect and deforestation to the total carbon loss of each pixel in Amazonia. 
Carbon losses were aggregated by the sum in a 10 km by 10 km grid cell to improve 
visualization in (A) and (B).
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deforestation rates was mainly induced by activities related to illegal 
gold mining at different scales. Last, countries such as Bolivia, 
Colombia, French Guiana, and Venezuela had constant deforesta-
tion rates (no significant trends) between 2001 and 2015. These 
deforested areas were the result of agricultural, livestock, and min-
ing activities (43, 44, 47, 48), which potentiate the collateral impacts 
of edge effect on forest degradation and biodiversity loss (49).

The collapse of AGC stocks in forest edges
Consistent with the decline in deforestation, we identified a signifi-
cant decrease in the annual forest edge formation in Amazonia. The 
dynamics of forest edge formation result from the spatial and tem-
poral patterns of deforestation, which defines the spatial arrangements 
and the geometries of the forest fragments (50, 51). Landscapes arising 
from the deforestation process associated with the establishment of 
rural settlements (fish bone pattern) have up to five times more forest 
edge areas per deforested land than landscapes dominated by large 

(regular shape) farms (51). The average rate of erosion of 11.47% 
within 3 years after forest edges creation and its subsequent increase 
to 42.80% after 12 years, found in our study, are lower than those 
found in previous studies at the local scale in Amazonia (22, 50). The 
lower rates found here are likely to be a result of two nonexclusive 
processes, including a significant decrease in deforestation rates and 
the creation of more regular shape deforested polygons.

The drivers and historical trends of deforestation and forest edge 
creation are country specific (50). Bolivia, Colombia, Venezuela, Peru, 
and Suriname presented a large proportion of forest edges areas with 
1 to 6 years old, which is explained by the intensification of defor-
estation in these countries in recent years (52). The other Amazonian 
countries, as Brazil, have older forest edges areas, due to an older 
and more consolidate deforestation frontier, which stabilized by the 
end of the study period (52).

Our findings indicated that aboveground forest carbon progres-
sively decreased in Amazonian forest edges as a function of their 

Fig. 4. Temporal variability of carbon losses in Amazonia. (A) Temporal carbon loss variability by fragmentation. (B) Temporal carbon loss variability by deforestation. 
The bottom panels show the contribution as a percentage of each country to the annual carbon loss by edge effect (C) and deforestation (D).

Table 2. Temporal trend and average carbon losses induced by edge effect and deforestation for all Amazonian countries. Where S is the Man-Kendell 
statistics. The S statistic with an asterisk (*) means a significant temporal trend at 95% of significance level (P ≤ 0.05). 

Country
Edge effect Deforestation

S Sen’s slope  
(Tg C year−1)

Average ± SD  
(Tg C year−1) S Sen’s slope  

(Tg C year−1)
Average ± SD  
(Tg C year−1)

Bolivia 0.37 0.14 5 ± 1.41 −0.03 −0.02 10 ± 3.60

Brazil −0.31 −0.58 42 ± 7.67 −0.61* −8.41 139 ± 47.68

Colombia −0.11 −0.03 4 ± 0.47 −0.15 −0.02 8 ± 1.97

Ecuador 0.71* 0.06 1 ± 0.34 0.51* 0.08 1 ± 0.53

France Guiana 0.35 0.01 0 ± 0.06 0.15 0.01 0 ± 0.20

Guyana 0.71* 0.04 1 ± 0.23 0.41* 0.04 1 ± 0.28

Peru 0.73* 0.41 8 ± 1.97 0.63* 0.65 11 ± 4.25

Suriname 0.83* 0.07 1 ± 0.36 0.75* 0.07 1 ± 0.49

Venezuela 0.45* 0.02 1 ± 0.17 0.09 0.01 2 ± 0.52
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ages (fig. S13). This pattern is corroborated by similar results found 
in Sabah, Malaysian Borneo (31). The losses observed in our study 
are greater in the first 5 years after the edge creation, which are 
consistent with field observations in controlled experiments in the 
Brazilian Central Amazon (fig. S4A) (10, 27). Following forest edge 
formation, mortality rates increase significantly (fig. S5C), in par-
ticular among larger trees, which store most of the forest’s carbon 
(53, 54). In addition, microclimatic changes tend to increase wind 
turbulence and fire promoting an exacerbation of disturbance rates 
in the forest edges (55–59). Together, these effects cause a steep 
initial reduction in carbon stocks following the edge formation. 
Subsequently, with the aging of the edges, turnover rates (60), num-
ber of woody lianas (10), and pioneer species increase, as a result of 
the successional process (33). Following this process, the plant com-
munity established in the forest edge tends to be better adapted to 
the new microclimatic conditions, sealing the edges (fig. S5D) and 
reducing the susceptibility to further microclimatic changes (56, 61–63). 
Although growth of new trees increases over time, turnover rates 
also increase (64), as a consequence of increasing mortality, so our 
age-carbon loss function (fig. S13) capture the tendency of forest 
edges to reach an alternative postfragmentation equilibrium state. 
This alternative state, which stabilizes between 6 and 15 years after 
the edge creation, is characterized by forests with lower above
ground biomass (AGB) than adjacent core areas. Field observations 
in controlled experiments in the Central Brazilian Amazon demon-
strated a significant reduction in canopy height, basal area, and 
AGB of up to 10 years after edge formation (27). The relation-
ship between distance to edge and AGB was, however, no longer 
significant after 22 years of edge formation (27). Differently from 
Almeida et al. (27), in our analyses, the AGB values are likely to 
remain below prefragmentation levels after 15 years, because most 
of the Amazonian forest edges are constantly exposed to the incidence 
of fire, which in the Brazilian Amazon can lead to a reduction in 
forest AGB of 24.8 ± 6.9% after 31 years (fig. S6) (64). We expect 
the recovery of Amazonian forest edges in few areas where second-
ary forests are growing adjacent to these edges; however, these areas 
are likely to be minor as secondary forests in the Brazilian Amazon 
are limited to 34% (in 2018) of the total deforested area (1988–2018 
period) (35, 65).

The estimated AGC losses in our study are considerably higher 
(24.93 ± 4.53% of difference) than those found by Laurance et al. 
(10) in the local scale BDFFP long-term experiment (fig. S4B). 
These differences are expected as our Amazonia-wide analysis 
captures variations in factors influencing the stability of AGC in 
forest edges not contemplated by controlled local-scale experi-
ments such as: (i) multiple configurations of size, shape and types 
of land use, and land cover surrounding the forest edges (66) 
and mainly, (ii) the impact of fires on forest edges (54, 64). In 
Amazonia, fire typically occurs in forest edges (8, 13, 15, 67–69) 
by escaping from deforested areas, pastures, and agricultural fields 
and leaking into surrounding forests (70, 71). Moreover, fire in 
forest edges often damages the remaining trees, increasing their 
vulnerability to strong wind events, enhancing tree mortality rates 
(72). Last, during the 21st century, Amazonia has been exposed to 
an increased frequency of extreme droughts (73, 74), which may 
induce the reduction in forest carbon stocks, either by the direct 
effect of drought on tree mortality (75) or by the collateral effect of 
increased fire incidence at the forest edges during these extreme 
events (76–78).

Implications for carbon emissions reduction policies
Here, we showed at Amazonian scale that forest carbon loss in-
duced by edge effect was one-third of the carbon loss caused by de-
forestation during the 2001 to 2015 period. Furthermore, our 
trend analysis showed that although deforestation-related carbon 
loss decreased significantly between 2001 and 2015, edge effect–
related carbon loss remained unchanged. Knowing that part of 
the carbon losses in the forest edges is emitted to the atmosphere 
following the decomposition process, our findings show that 
deforestation-induced edge effect can indirectly increase emissions 
from deforestation alone by 37%, with implications for policies 
aiming to reduce in carbon emissions by avoiding deforestation.

To show the impact of neglecting carbon losses from edge effect 
on the calculation of gross deforestation emissions (fig. S7), we 
compared (Wilcoxon's test) carbon losses from each process before 
(between 2001 and 2004) and after (between 2005 and 2015) the 
implementation of the PPCDAm (36). The PPCDAm was the 
central policy responsible for the decline in deforestation rates in 
the Brazilian Amazon (35, 36). We found that annual carbon loss 
associated with deforestation alone decreases significantly (41%; 
W = 40 and P = 0.02) from 187 ± 21 Tg year−1 in the pre-PPCDAm 
period to 111 ± 39 Tg year−1 in the post-PPCDAm period. The 
annual carbon loss associated with edge effect, conversely, in the 
pre-PPCDAm phase (43 ± 6 Tg year−1) was not statistically different 
(W = 25 and P = 0.75) from the value calculated for the post-
PPCDAm period (40 ± 7 Tg year−1).

Our analysis points to two critical issues: first, because the 
carbon loss induced by edge effect is persistent over time, even with 
deforestation slowing down, extra emissions from the newly formed 
edges reduce the effectiveness of actions for reducing carbon emis-
sions by avoiding deforestation, such as the REDD+ policy. The 
inclusion of the edge effect process into systems for monitoring, 
reporting, and verifying emissions is, hence, crucial. Second, we 
show that reducing deforestation carbon loss does not change edge-
induced carbon loss, indicating the need of new mechanisms to 
avoid or to compensate the potential carbon emissions associated 
with edge effect. These could be related to landscape planning, which 
is necessary to be implemented not only in Amazonian countries 
but also in other tropical countries such as Africa and Asia. Besides, 
the recent deforestation upward trend in the Brazilian Amazon has 
a negative implication, the increase in carbon losses from defor-
estation, directly, and edge effect induced by the creation of new 
forest edges.

Decreasing uncertainties in emissions estimates from land-use 
and land-cover change can support the establishment of more effec-
tive national actions, helping Amazonian countries to accomplish 
with emission reductions targets proposed at international climate 
agreements, such as the Paris Agreement. The Paris Agreement aims 
to establish volunteer emission reduction actions and targets by the 
signatory countries to be reached by 2025, to strengthen the global 
response to the threat of climate change (79). For combating the 
effects of climate change, it is critical to maintain the global average 
temperature rise below 2°C from preindustrial levels and efforts to 
limit the temperature increase to 1.5°C (80). To achieve this goal, 
there is a pressing need for a 45 and 100% reduction in greenhouse 
gas emissions by 2030 and 2055, respectively (81). Our results indi-
cate that there is a significant missing source to be considered in 
the Amazonian carbon budget. Including carbon losses related to edge 
effect in regional and global carbon budgets is, hence, crucial for 
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accurately estimate the land-use and land-cover change contribution 
to the atmospheric carbon burden. In conclusion, carbon losses 
associated with the edge effect in Amazonia are an additional un-
quantified carbon flux that can counteract carbon emissions avoided 
by reducing deforestation, compromising the Paris Agreement's 
bold targets.

MATERIALS AND METHODS
Our materials and methods are included in the following five steps: 
(i) forest cover mapping, (ii) identification of forest edges and 
quantification of age structure, (iii) carbon stock mapping from 
LiDAR data, (iv) carbon stock loss model by edge effect and de-
forestation, (v) statistical analysis, and (vi) sources of uncertainty. 
Detailed information about each of these steps is provided in the 
Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/40/eaaz8360/DC1
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