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Inferring the transmission potential of an infectious disease during low-inci-
dence periods following epidemic waves is crucial for preparedness. In such
periods, scarce data may hinder existing inference methods, blurring early-
warning signals essential for discriminating between the likelihoods of
resurgence versus elimination. Advanced insight into whether elevating
caseloads (requiring swift community-wide interventions) or local elimin-
ation (allowing controls to be relaxed or refocussed on case-importation)
might occur can separate decisive from ineffective policy. By generalizing
and fusing recent approaches, we propose a novel early-warning framework
that maximizes the information extracted from low-incidence data to
robustly infer the chances of sustained local transmission or elimination in
real time, at any scale of investigation (assuming sufficiently good surveil-
lance). Applying this framework, we decipher hidden disease-transmission
signals in prolonged low-incidence COVID-19 data from New Zealand,
Hong Kong and Victoria, Australia. We uncover how timely interventions
associate with averting resurgent waves, support official elimination declara-
tions and evidence the effectiveness of the rapid, adaptive COVID-19
responses employed in these regions.
1. Introduction
The timeliness of the application and relaxation of non-pharmaceutical inter-
ventions (NPIs) (e.g. border closures, quarantines or social distancing
mandates) has been a polarizing and pressing topic of global debate throughout
the COVID-19 pandemic. Deciding on how best to balance the risk of resurging
infections (second or later waves) against the costs (economic and otherwise) of
sustaining NPIs and related restrictions is non-trivial and still lacks clear con-
sensus. Among the most widely used early-warning analytics informing NPI
policy is the effective reproduction number (R) [1,2], popularly displayed on
numerous COVID-19-related websites and dashboards [3–5]. While, in theory,
an escalation from R < 1 (the epidemic is waning) to R > 1 (it is growing) fore-
warns of resurgence, robustly and reliably identifying this transition when
case-incidence is small is fundamentally difficult, in practice [6–8].

Low-incidence periods contain necessarily scarce data, which can often
hinder standard R-inference approaches, limiting their reliability or forcing
them to rely excessively on prior assumptions [1,6,9,10]. However, trustworthy
disease-transmission estimates during those periods, which are characteristic of
the lull between potential epidemic waves for example, are crucial for inform-
ing decision-making, providing early indicators for discriminating between the
starkly different possibilities of elimination (i.e. no future local cases [2,11])
and resurgence. Inferring transmission dynamics at low incidence has been
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highlighted as a key challenge to designing safe protocols for
NPI relaxation across the pandemic [10].

These problems are only exacerbated by the important and
distinct roles of local and imported cases, both in controlling the
chances of elimination or resurgence, and in defining effective
NPI policy [2]. At low incidence, it is essential to distinguish
between (i) true second waves of community transmission,
which may necessitate broad-spectrum NPIs e.g. local lock-
downs, and (ii) multiple, stuttering epidemic chains seeded
by repeated importations, which require targetedNPIs, e.g. iso-
lation of travellers. Failing to properly account for local-import
dynamics can inflate R-estimates, confounding (i) with (ii) and
potentially misleading policymakers [12].

Moreover, estimating the likelihood of elimination and
hence the endpoint of a local epidemic is non-trivial. While
the World Health Organization (WHO) recommends waiting
fixed, disease-specific times (e.g. 28 days for COVID-19), from
the last observed case, before declaring an outbreak over [11],
this approach is insensitive to variations among incidence
curves of the same disease [13] and neglects local-import case
distinctions [14]. Recent methods, which better incorporate epi-
demic data to derive tailored and contextualized measures of
elimination, however, are still intrinsically hindered by the
poor reliability of R-estimates at the epidemic tail [14]. Conse-
quently, more robust, data-driven outbreak analytics are
needed to bolster the evidence base for NPI policy and
decision-making during critical low-incidence periods [10].

Here, we present a novel early-warning framework for
robustly assessing R and the likelihood of elimination, which
circumvents the above problems, highlights the diverse roles
of imported and local cases and underscores how well-timed,
adaptive NPI application and relaxation can avert resurgence
and promote local elimination. Our framework introduces
two analytics: the smoothed local R and Z numbers, which
measure community transmission and the confidence in local
elimination, respectively, at any time and scale of interest.
Our R improves on widely used approaches such as EpiEstim
[6] and the Wallinga-Teunis method [9] by generalizing new
methodology [15] that solves what is termed the smoothing pro-
blem in engineering [16], to include the local-import model
previously used to investigate (i)–(ii) for zoonoses [17].

Smoothing solutions formally maximize the signal
extracted from noisy datasets [16,18]. Our R-estimates exploit
both forward- and backward-looking information from a
given incidence curve (see §4). Standard approaches use
only forward- [9] or backward-looking [6] information,
which limits their ability to decipher crucial trends hidden
in the data. As a result, our R-estimates (equation (4.1)) can
be significantly more robust in low-incidence periods
(see §2) and accordingly better at providing reliable,
advanced warnings of resurgence. Our Z number extends
recent methods for forecasting epidemic lifetimes [14] to
exploit these smoothed local R-numbers and to improve the
quantification of uncertainty in their estimates (equation
(4.2)). The result is a meaningful measure of our confidence
at any time-point that there will be no future local cases,
i.e. that the epidemic is eliminated or will fade out.

Our R-Z framework can therefore expose transmission
signals buried in scarce data to provide early risk-
assessments of resurgence or confirmations of elimination.
As it only requires local and imported case classifications,
this framework can be applied at any scale (e.g. country-
wide or sub-regionally) in real-time or retrospectively. We
showcase its power by evaluating the alignment of NPI
policy and key COVID-19 transmission dynamics in New
Zealand, Hong Kong and Victoria state, Australia. While
the demographics, epidemic curves and policies in these
case-studies differ, all feature prolonged durations of low-
incidence and appreciable case-importations that have sty-
mied previous attempts at extracting insight into the
interplay among NPIs and transmission potential [1,3–5].
Our analysis strengthens the evidence base for the effective-
ness and timeliness of the strategies each location employed.
2. Results
We examine three case-studies involving local COVID-19
dynamics for New Zealand, Hong Kong and Victoria state,
Australia. Our main results are in figures 1–3. While the Z
metrics are always computed sequentially in real time, the
R-estimates shown below are retrospective as we process
the entire incidence curve over our study period. This
means that they present the most informative view of trans-
mission possible (see §4). We provide corresponding real-
time R-estimates in the electronic supplementary material
(figures A, D and G), which only process portions of the inci-
dence curve up to key intervention time-points. These
analyses largely correspond with figures 1–3 (usually agree-
ing within 3 days of additional data) and underscore the
benefit of our framework for deciphering key early-warning
signals of transmission dynamics.

2.1. Elimination and import-driven resurgent waves in
New Zealand

New Zealand recorded local transmission of the SARS-CoV-2
virus in mid-March of 2020 and, within two weeks, initiated
border closures (19 March) and devised a four-level alert
system for NPI deployment, with the aim of elimination
[21]. Elevated caseloads quickly culminated in national lock-
down (level 4) on March 26, which involved stay-at-home
orders and wide venue closure.

As the epidemic waned, NPIs were relaxed by May 14
(level 2), although social distancing remained enforced. Sub-
sequently, no cases were observed for a prolonged period
leading to a declaration of elimination on June 9 (level 1)
[21]. However, local cases were detected again in early
August and NPIs (e.g. contact bubbles and work at home
orders) were swiftly enacted by August 12 to avoid resur-
gence (levels 2–3). De-escalation (level 1) followed on
October 7; the last date we analyse. Figure 1a summarizes
this case timeline with data from [19].

Applying our R-Z approach, we demonstrate how NPI
decision-times align with community transmission in
figure 1b. Initially, there was notable uncertainty around R,
suggesting either supercritical or subcritical transmission
could occur. The early response of New Zealand likely sup-
pressed the first possibility, confidently forcing R under 1,
post-lockdown. Swift action here was potentially critical as
delayed responses in other countries have been correlated
with larger epidemic sizes. An R < 1 was sustained for a
significant period after most NPIs were relaxed. Naïve R-esti-
mates, which ignore local-import case divisions, would
falsely predict R > 1 across much of this period (see electronic
supplementary material). This naïve R, which is often



100

50

0

border
closure

nationwide
lockdown

major NPI relaxation
but social distancing

elimination
declared alert

level

closure, bubbles
and work-from-home

local
imported

OctSepAugJulyJuneMayAprMar

ca
se

 in
ci

de
nc

e

OctSepAugJulyJuneMayAprMar

time (days)

June 10
100

80

60

40

20

0

%
 c

on
fi

de
nc

e 
in

 lo
ca

l e
lim

in
at

io
n 

(Z
)

Z = 99% confidence

R = 1 threshold

2.5

2.0

1.5

1.0

0.5

0

sm
oo

th
ed

 lo
ca

l r
ep

ro
du

ct
io

n 
no

. (
R

)

4 2

1

3

(b)

(a)

Figure 1. Local transmission dynamics of COVID-19 in New Zealand; (a) plots local (red) and imported (grey, stacked) cases by date reported, sourced from [19].
Vertical lines pinpoint key policy change-times and alert levels (blue numbers) in response to these caseloads; (b) presents smoothed local R number estimates (red
with 95% confidence bands) and Z numbers (blue), which measure % elimination potential.
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presented in COVID-19 analyses and dashboards [1,3], could
misinform policymakers.

Post-relaxation, the Z number, which characterizes risks to
elimination from both imported and local cases, increased,
suggesting the first wave could be declared over with 99% cer-
tainty by June 10. This corroborates the official declaration on
June 9 [21]. Subsequently, recurrent introductions seeded new
outbreaks, which led to the R-estimate climbing confidently
above 1 just before the resurgence action-point. This steep rise
in R (and fall of Z) highlights that not only was a second wave
likely but also that its transmission potential was larger than
the first. The timely, unequivocal response of New Zealand in
August likelyavertedamoreexplosivesecondepidemic, correlat-
ing with suppressed community transmission. The observed
sharpdecline inRand its remainingbelow1evidence the efficacy
of this policy and support the belief that New Zealand regained
control of COVID-19 in early October 2020.

2.2. Partial elimination and multiple waves in Hong
Kong, China

Upon learning of the SARS-CoV-2 outbreak in Wuhan, Hong
Kong acted quickly, mobilizing intensive surveillance schemes
and declaring a state of emergency on January 25, 2020 in
response to initial cases [22]. This involved closing amusement
parks and suspending school reopening, which together with
further NPIs enacted throughout February, likely suppressed
wave 1. However, wave 2 began in March with many
imported cases from North America and Europe, prompting
strict border closures on March 25 and bans on major public
gatherings on March 29. Following these and other measures
(e.g. venue closures) across April, incidence reduced. Conse-
quently, NPIs were relaxed gradually from May 5 to 27.
While imported cases continued to be recorded, 21 days
passed with no local cases observed, ending on July 5 [23].

Wave 3 soon surfaced with multiple, local infection clusters
in early July sharply increasing incidence. Consequently, mask
mandates and social distancing controls were introduced on
July 13 with additional measures enforced by July 19. Further
tightening of these measures later in July eventually mitigated
the wave, allowing NPI relaxations in September. Incidence
was sustained at a low level for two months before another
resurgence occurred as wave 4 on 24 November (with
NPIs re-applied), the last date we analyse. Figure 2a plots
this timeline, with data from [5]. Although Hong Kong’s
response is less discretized than New Zealand’s, our R-Z
framework still reveals sharp correlations between NPIs and
salient transmission dynamics, as illustrated in figure 2b.

Initially, we infer a largely supercritical R that appears to fall
swiftly in response to emergency NPIs that were engaged with-
out delay. This potentially minimized the size of wave 1 (subject
to diagnostic testing rates). Subcritical transmission followed
across wave 2, making the strategic border closures apt and
effective and suggesting that this wave was not allowed to
become a genuine resurgence. Intriguingly, soon after this Z
starts to increase, achieving 55% in earlyMay. Genetic data indi-
cate that betweenwaves 2 and 3, therewas the eliminationof one
circulating strain of SARS-CoV-2 [personal communication, B
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Cowling]. The peaking of our Z number might reflect this, with
co-circulating lineages preventing complete viral elimination
(though more detailed study is required to test this hypothesis).
The weak transmission we infer in May–June 2020 supports the
NPI relaxation that occurred. Interestingly, we find no evidence
of increasing elimination potential in July.

This belies what might be naively expected, given that zero
local cases were recorded for 21 consecutive days, which is 7
days below the WHO elimination criterion. However, on that
21st day, we infer Z ≈ 0%, emphasizing the utility of end-of-
epidemic metrics that consider the local-import transmission
context [14]. After this decrease inZ, our framework confidently
signals supercritical community transmission, which likely cre-
ated a large wave 3. The steep rise in R-estimates is already
underway by that 21st 0-case day, showing how maximally
informed outbreak analytics can help decipher transmission sig-
nals, which are unclear from case-data. We infer change-points
in R that correlate with the timing of key NPIs and find that
those measures eventually constrict COVID-19 spread (R < 1
in August). As wave 3 wanes, we obtain evidence supporting
the NPI release from September (R declines) but then flag
another confident rise in transmission in late November. This
coincides well with the wave 4 declaration.

2.3. Resurgence and eventual elimination in Victoria
state, Australia

Australia reported its first cases of community transmissionon2
March 2020. Victoria state, wheremany caseswere beginning to
concentrate, declared a state of emergency on March 16, which
included stay at home orders and many activity restrictions.
Further, all Australian borders were closed on March 20. This
likely reduced both community spread and capped the influ-
ence of imported cases in April, minimizing the initial wave.
As cases declined, NPIs were adaptively relaxed and re-intro-
duced across May and June. While a large case-cluster was
discovered across 2–14 May, linked to a meat packing plant
and contributing the majority of infections in that time-period,
swift contact-tracing and quarantines contained its impact
[24].However, the relaxationof householdmixingNPIs resulted
in large household gatherings that led to a rise in local cases.
Victoria respondedwith postcode-based lockdowns by 30 June.

However, thiswas not sufficient and local cases burgeoned.
NPIs were ramped up throughout July but the second
wave grew exponentially. A four-stage restriction policy with
a target of zero community transmission was enacted and
reinforced, building to a major lockdown (stage 4) on 2
August [24]. A state of disaster was also declared. Restrictions
included confinement at home, curfews and closures. Slowly
this large wave subsided and over 100 days after, NPIs began
being relaxed from 18 October (stage 3). Staged re-opening
continued until 22 November (stage 1), when most restrictions
were removed. By 27 November, the last time-point we
consider, Victoria state had recorded 28 days of 0-cases and
declared the elimination of SARS-CoV-2. This timeline
and the epidemic curve are given in figure 3a, with data
from [20]. We now investigate the transmission dynamics
underlying this data using our R-Z framework.

Our main results are displayed in figure 3b. We find a
slow start to the initial wave in Victoria with the confidence
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region of R only partially above 1, Z at moderate levels and
most cases being imported. However, Z = 0% quickly occurs
and R begins to increase. The speedy declaration of emer-
gency and travel bans precede a clear downward trend in
our R-estimates associated with suppression of this wave.
This could have been especially effective since the majority
of cases then were imported. Following this, local R remains
subcritical, corroborating Victoria’s adaptive NPI relaxation.
We observe a large swing in our R-estimates that roughly
aligns with the meat-packing plant cluster. The rapid peak
and fall in R likely reflect the contact-tracing employed on
this single cluster, which forms most cases in this period.
Consequently, no true resurgence occurs, until a month
later when our R-estimates rapidly elevate.

This provides warning of the explosive second wave. The
much larger local R observed here suggests this period was
the most critical for COVID-19 transmission in Victoria. Stea-
dily harsher NPIs (stages 2 to 4) are supported and
correspond to R falling below 1. This fall is slower than its
initial rise, expressing how larger-sized epidemics can be dif-
ficult to control and evidencing the need for sustained
lockdown. Fluctuations about this R trend in July–August
reflect weekend biases in reporting (likely exacerbated by
large case counts) and disappear if the incidence is first trea-
ted with a 7-day moving average filter (see electronic
supplementary material, figure J). Transmission remains sub-
critical for most of September and October. The stifled
community spread corroborates the staged reopening strat-
egy. As cases continually fall, local Z increases, also
supporting NPI release. We obtain Z approximately equal
to 99% by 23 November 2020, which favours NPI relaxation
(stage 1), bolsters evidence for the success of Victoria’s elim-
ination-based strategy and suggests that we have almost
100% confidence in the official end-of-epidemic declaration.
3. Discussion
Understanding the transmission forces underpinning epi-
demic elimination and resurgence is critical to the efficient
design and timely implementation of NPIs. Appropriate
responses to import-driven versus locally sustained out-
breaks can differ markedly and materially given the
constraints on resources. While naïve R-estimates and cross-
country comparisons have been popularized across the
COVID-19 pandemic, we argue that locally relevant strategies
tuned to the specific dynamics of an area are imperative. Our
proposed early-warning R-Z framework can support this aim,
especially in the crucial data-limited lull between potential
epidemic waves, where it substantially improves our ability
to reliably denoise transmission change-point signals and
decipher indicators of upcoming epidemic dynamics [15].

We attained this improvement by harnessing method-
ology from signal processing and control engineering [16].
Common R-estimators only exploit some of the information
encoded within incidence data. Our Markovian smoothed R
applies forward–backward algorithms aimed at maximum
information extraction (see §4). This can double statistical effi-
ciency in some instances [18]. Combining this methodology
with local-import models [12], we derived a local R-estimator



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210569

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ar
ch

 2
02

2 
that is more robust at small incidence and identifies change-
points naturally. Reliable change-point detection can be
problematic for existing estimators [8], while limited robust-
ness hinders the inference of elimination likelihoods [14].
Our R (equation (4.1)) allowed us to devise Z (equation
(4.2)), a new real-time metric for ascertaining the confidence
in elimination, which helps to overcome this issue.

We showcased our R-Z framework on important and
diverse COVID-19 case-studies (see §2). New Zealand, Hong
Kong and Victoria state have presented difficulties to standard
analyses due to prolonged low-incidence durations and large
imported case numbers [1,3–5]. Although the categorization
and types of NPIs used differ, our analyses present evidence
for the effectiveness and timeliness of the strategies employed
in all three regions of study (table 1). We inferred sharp corre-
lations between downward transitions in R and the timing of
keyNPIs, withmajorR reductions seen after twoweeks of sus-
tained NPI usage. We estimated that the swiftness of NPI
enforcements in several instances, such as New Zealand’s
second wave and Hong Kong’s first wave, may have averted
more explosive resurgence, as illustrated by clear R turning
points. We also found that NPIs were often sustained until
local transmission was suppressed, supporting the choice of
their relaxation or release.

However, while effective, the responses of our study
regions were not all perfect. We observed right skew in the
dynamics of R—its growth was generally faster than its
decay—accentuating the need for rapid NPI application.
Hong Kong’s third wave and Victoria’s second wave both
had notable periods over which R climbed steadily above
1. Imposing NPIs 1–2 weeks earlier might have appreciably
reduced the epidemic burden in these cases. Stricter handling
of imported cases may also be important going forward, as
several subsequent waves were kickstarted by repeated intro-
ductions. Hong Kong’s second wave and Victoria’s first
wave, which featured early travel bans and closures that sup-
pressed the influence of many imported cases, might serve as
a good template for handling such scenarios.

NewZealand and Victoria state both initiated and success-
fully implemented elimination-based strategies. We inferred Z
approximately equal to 99% confidence in the end-of-epidemic
declarations made by both regions, rigorously backing those
decisions. We estimated that Hong Kong attained Z approxi-
mately equal to 50–55% in synchrony with the believed
extinction of one circulating SARS-CoV-2 strain. Co-circulating
lineages may have prevented the achievement of elimination.
We observed Z approximately equal to 0% despite sustained
R < 1 in many periods, highlighting the insufficiency of R for
assessing elimination. Maintaining NPIs until Z crosses some
threshold could be one data-informed way of deciding when
to safely relax measures. Overall, we conclude that all regions
responded decisively and adaptively to fluctuating local trans-
mission. This conclusion is not well-supported by more naïve
R-estimates that neglect local-importmodels or non-smoothed
ones that fail touse all the information in the incidencedata (see
electronic supplementary material for these analyses).

While our results provide rigorous underpinning and
insight into COVID-19 dynamics in New Zealand, Hong
Kong and Victoria, there are limitations. We do not explicitly
compensate for reporting delays or under-reporting. However,
these issues are likelyminimized by the high fidelity of surveil-
lance, contact-tracing and testing in our case-studies. Hong
Kong had rapid screening systems in place due to past
experiences with SARS in 2003 [22], while aggressive testing
strategies in New Zealand and Australia have garnered
praise [24]. Delays from symptom-onset to case notification
in New Zealand are just 1.7 days, for example [21]. Moreover,
we obtained accurate one-step-ahead predictive fits (see §4
and electronic supplementarymaterial), indicatingmodel ade-
quacy [8].We also do not factor in time-varying serial intervals
[25] or asymptomatic spread. However, limited data on these
preclude improvement of our estimates.

If, for some location of interest, surveillance biases are
known to be significant and relevant data are available (e.g.
on reporting and serial interval fluctuations), then we rec-
ommend first compensating for these biases to derive the
best possible incidence curve, and then applying our frame-
work. This can be achieved by pre-processing the reported
incidence to minimize the influence of these biases. For
example, weekend surveillance effects can be corrected with
weekly case averaging (see electronic supplementary
material, figure J) and estimates of time-varying reporting
fractions, if available, can be used to up-sample known
cases to gauge true incidence [26]. Additional noise sources
may be modelled by generalizing our Poisson observation
model (see §4) to include further dispersion (e.g. negative
binomial descriptions). Auxiliary data sources, such as geno-
mic sequences, can also be used to derive independent
incidence curve proxies [27], which may be input into our
R-Z method to improve the reliability of inferred trends.

Delays or latencies in data collection can be resolved via
deconvolution algorithms or simple mean shifting provided
information on those delays are available [28], while up-to-
date serial intervals derived from contact-tracing or other sur-
veillance data can be incorporated directly within our R-Z
methodology. Under-ascertainment, asymptomatic spread
and problems stemming from approximating the generation
time by the serial interval (see §4) are more difficult to correct,
but solutions are actively being researched [29]. Note that
early-warning signals are fundamentally not possible if out-
break monitoring is poor (e.g. if there are large latencies to
case notification). We envision our framework as supple-
menting the outbreak analytics toolkits of regions with
dedicated surveillance programmes.

Our R-Z framework is available in the EpiFilter package at
https://github.com/kpzoo/EpiFilter, as a major extension.
Although we analysed countries and regions, we expect our
methodology to beparticularly useful at finer scales,where inci-
dence counts are necessarily smaller by division. There, reliable
signalling of transmission change-points might support more
targeted and less disruptive NPIs (e.g. postcode-lockdowns
versus nationwide ones). Ourmethod only requires clear classi-
fication of local and imported cases to remain valid and is
reproducible and easy to runwithminimal computational over-
head. Early and robust warnings of resurgence or elimination
can distinguish timely from tardy interventions. Local and con-
textualizedmetrics, suchasR-Z,will hopefully help separate the
signal from the noise, when it comes to effective NPIs.
4. Methods
The renewal transmission model is a popular and flexible means
of modelling the spread of an infectious disease [30]. It describes
how the number of new cases, i.e. the incidence, at time s,
denoted Is, depends on the effective reproduction number at

https://github.com/kpzoo/EpiFilter
https://github.com/kpzoo/EpiFilter


Table 1. Alignment of NPIs with inferred R-Z metrics. We summarize how the timing of key NPI applications and relaxations as well as official declarations of
elimination correlate with salient transmission dynamics, as estimated under our R-Z framework for COVID-19 in New Zealand, Hong Kong, China and Victoria
state, Australia, across 2020 (figures 1–3).

New Zealand policy actions and details early-warning R-Z evidence

19–26 Mar Border closures, nationwide lockdown and

alert level 4.

R = 1.32 (0.94, 1.78) at action-point. Falls to 1.18 (0.97, 1.41) after 1 week

and then 0.68 (0.56, 0.82) at 2 weeks.

14 May–9 Jun Relaxation of some controls, de-escalation to

alert level 2.

At beginning and end of period R = 0.38 (0.17, 0.70) and 0.25 (0.06, 0.64). In

period it is comfortably below 1.

9 Jun End-of-epidemic declaration (WHO criteria –

28 days of no cases), alert level 1.

Z = 98.7% at declaration. From Jun 5–15 it rises from 96.1% to 99.8%. A

declaration within this time is at least 95% certain. Rapid fall to Z = 26.7%

on Jun 16.

12 Aug Work at home, closures and bubbles. Alert

levels 2–3.

At action-point R = 1.80 (1.36, 2.31). Falls to 1.15 (0.88, 1.47) 1 week later

and 0.75 (0.54, 1.00) after 2 weeks.

Hong Kong policy actions and details early-warning R-Z evidence

25 Jan Wave 1, state of emergency declared, NPIs

enforced e.g. schools kept closed.

R = 1.38 (0.80, 2.14) at action-point. Falls to 1.17 (0.80, 1.63) after 1 week

and then 0.75 (0.49, 1.07) at 2 weeks.

25–29 Mar Wave 2, border closures and bans on public

gatherings.

R = 0.41 (0.31, 0.54) on Mar 25. Reduces to 0.12 (0.07, 0.20) and then 0.06

(0.02, 0.13) at 1 and 2 weeks after Mar 29.

4 May, 5 Jul Extinction of a SARS-CoV-2 lineage (in May),

21 days of no local cases (ends Jul 5).

Z = 54.9% on May 4 and on average 47.2% across Apr 29–May 6. Partial

possibility of elimination in this period. Z = 0.02% on Jul 5 – effectively no

chance of elimination.

5–27 May NPIs gradually relaxed. Lull between

potential waves.

At beginning and end of period R = 0.20 (0.07, 0.45) and 0.29 (0.12, 0.54). In

period it is comfortably below 1.

13–19 Jul Wave 3, work-from-home orders, venue

closures and social distancing measures.

R = 1.76 (1.53, 2.00) at first action-point. Falls to 1.15 (1.02, 1.30) and 0.62

(0.52, 0.72) 1 and 2 weeks after Jul 19.

1 Sept–1 Nov Gradual relaxation of NPIs. At beginning and end of period R = 0.50 (0.37, 0.67) and 0.30 (0.18, 0.48)

and never above 1 throughout.

23 Nov Wave 4, NPIs re-imposed. Last point

analysed.

R = 1.27 (0.99, 1.59) at action-point. Early-warning of wave of local

transmission.

Victoria state policy actions and details early-warning R-Z evidence

16–20 Mar Stay-at-home orders, state of emergency

declared. Added national travel bans.

R rises from 0.76 (0.50, 1.08) to 0.82 (0.61, 1.06) across period. After 1–2

weeks it is 0.59 (0.48, 0.74) and 0.48 (0.39, 0.60).

2–14 May Large cluster of cases from meat packing

plant. Contact-tracing and isolation

applied.

At beginning of period R = 1.22 (0.93, 1.57). It falls to 0.68 (0.50, 0.90) by the

end. NPIs seem effective.

30 June Adaptive lockdowns, stage 2 and 3

restrictions engaged.

R = 2.24 (1.96, 2.53) at point applied. Falls to 2.12 (1.91, 2.35) and 1.67 (1.52,

1.83) after 1–2 weeks. Further NPIs needed.

2 Aug Complete lockdown, stage 4 restrictions.

State of disaster officially declared.

R = 1.35 (1.26, 1.45) at action-point. Might be larger due to noise in cases

here. Falls to 0.81 (0.74, 0.88) and 0.71 (0.64, 0.78) at 1 and 2 weeks after

imposition.

18 Oct-22 Nov Gradual NPI release, from stages 3 to 1. At beginning and end of period R = 0.44 (0.28, 0.63) and 0.33 (0.07, 0.97). In

period it remains safely below 1.

27 Nov End-of-epidemic declaration (WHO criteria –

28 days of no cases), alert level 1.

Z = 99.7% at declaration. From Nov 17–27 it rises from 95.0% to 99.1%. A

declaration within this period is at least 95% certain.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210569

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ar
ch

 2
02

2 
that time, Rs, and the past incidence, which is summarized by the
total infectiousness, Λs, as follows:

PðIsj Rs, Is�1
1 Þ ; Pois(RsLs), Ls ¼

Xs�1

u¼1

wuIs�u :
Here Pois indicates Poisson, ≡ denotes equality in distri-
bution and wu is the probability that it takes u days between
the time of infection of a primary and secondary case. We con-
sider incidence curves observed over times 1≤ s≤ t, with Iba as
the portion or sequence {Ia, Ia+1,…, Ib}.
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The wu for all u defines the generation time distribution of the
infectious disease of interest. We make the standard assumption
that this distribution is known and well approximated by the
serial interval distribution [6]. For the SARS-CoV-2 virus, we
use Gam(2.37, 2.74) [31], which is a gamma distribution with a
mean of 6.5 days. However, we find our key results are relatively
robust to other estimated SARS-CoV-2 serial interval distributions
[32]. While we do not account for possible changes to the serial
interval distribution (e.g. contractions due to NPIs [25]) or for tem-
poral variations in case ascertainment [14], this model remains
valid if those changes are known and included [6].

Since daily time-varying reproduction numbers are likely to
be autocorrelated [33], we generalize the renewal model to
include a minimal, Markov random-walk assumption. This
results in the dynamical state model linking Rs to Rs–1 below,
with Norm representing normally distributed noise.

Rs ¼ Rs�1 þ h
ffiffiffiffiffiffiffiffiffiffi
Rs�1

p� �
es�1, P(es�1) ; Norm(0, 1):

Here η is a state noise parameter, which is easy to tune and
set to 0.1 in all analyses [15]. We validate this choice using cumu-
lative one-step-ahead log-predictive fits, which show that, at this
η, we predictively and sequentially reproduce the observed inci-
dence in each case study with minimal generalization error (see
electronic supplementary material, figures B, E and H). More
details on this information-theoretic model adequacy test,
known as the accumulated predictive error metric, are provided
in [8,34]. Our state noise also models some heterogeneous trans-
mission (because it a priori provides a doubly stochastic Poisson
description of incidence), which is a salient characteristic of
many infectious diseases, including COVID-19 [33,35].

Our description offers two main advantages. First, we do not
need to specify predetermined change-points or averaging win-
dows as in many popular approaches (e.g. EpiEstim [6,36]).
Inference of R is known to be highly sensitive to window-size
and change-times choices [7,8]. Second, because we only make
minimal state assumptions, our estimates are less controlled by
prior model assumptions [37]. Using these equations as is, how-
ever, only yields naïve R-estimates, as no distinction has yet been
made between local and imported cases.

To incorporate case introductions, we apply a key decompo-
sition from [12]. If Ls is the number of local cases at s and Ms

counts the imported ones, then Is = Ls +Ms. Both types of cases
drive future local infections and so the transmission model is
extended as follows [17]:

PðLsj Rs, Is�1
1 Þ ; Pois(RsLs), Ls ¼

Xs�1

u¼1

wuðLs�u þMs�uÞ:

The Markov random-walk state model is unchanged but now
describes the evolution of local reproduction numbers. We next
outline how to obtain R-estimates from the above transmission
and state models that improve the robustness and reliability of
inference when incidence is small.

We can construct three possible posterior distributions to
describe how information from an observed incidence time-
series is recruited to form estimates of Rs. These are known as
the filtering (ps), predictive (rs) and smoothing (qs) posterior dis-
tributions, and are defined below.

ps ¼ PðRsj Ls1, Ms
1Þ, rs ¼ PðRsj Lts, Mt

sÞ, qs ¼ PðRsj Lt1, Mt
1Þ:

These distributions are fundamental to any real-time or retro-
spective estimation problem and have been studied deeply in
control systems engineering and signal processing [16,38].

Standard inference methods either approximate ps (e.g.
EpiEstim) or rs (e.g. the Wallinga-Teunis method [9]), which
respectively incorporate past (backward) or ‘future’ (forward)
incidence information. In both instances, estimates suffer from
edge-effects [6] and are more vulnerable to low-incidence periods
because they cannot exploit all the available information [15,18].
This can be a significant limitation, especially in the important
lull between potential epidemic waves, where data are scarce,
but reliable estimates are vital for preparedness. A key contri-
bution of this study is the computing of qs to derive smoothed,
local R-estimates that formally use all incidence information up
to s [16], under our generalized local-import model.

We achieve this by adapting recursive forward–backward
Bayesian algorithms from [15]. First, we iteratively calculate ps
(the forward pass) as follows.

ps / PðLsjRs, Ls�1
1 , Ms�1

1 Þcs,

cs ¼
ð
PðRsj Rs�1, Ls�1

1 , Ms�1
1 Þps�1 dRs�1:

We apply a uniform prior distribution for p1. The ps distri-
butions are fed-back successively to then obtain qs (the
backward pass) resulting in equation (4.1), with qt ¼ pt.

qs ¼ ps

ð
PðRsþ1j Rs, Ls1, M

s
1Þqsþ1c

�1
sþ1 dRsþ1: ð4:1Þ

By constructing qs, we maximize the information that is inte-
grated into our local transmission estimates and minimize undue
dependence on prior model choices and assumptions [8,37].

This upgrades overall performance, when compared to some
common R-estimation methods, and significantly bolsters esti-
mate robustness when incidence (or related) data are limited.
These improvements follow because qs � / rspsP(Rs)

�1 [15],
meaning that it explicitly integrates information from both ps
and rs. Further details on these recursive algorithms are provided
in [16,38], where it is also noted that this formulation results in R-
estimates that minimize mean squared estimation errors (relative
to their ‘true’ values). These estimates can be updated in real time
as more data accumulate (time t increases).

Our novel local R-estimates are functions of qs (for example,
our mean estimate is

Ð
qsRs dRs) that can decipher important

early-warning signals of upcoming resurgence (see §2 and elec-
tronic supplementary material) often buried in low-incidence
data. However, this is not sufficient to assess the chance of
local elimination. We therefore introduce the local, smoothed Z
number, a new measure of the statistical lifetime of the epidemic,
obtained by generalizing the recent theory from [14] to incorpor-
ate the qs distribution from the local-import transmission model.

We define our % confidence in an epidemic being elimi-
nated (i.e. propagating no future local cases) at time s as
Zs ¼ 100 P

P1
u¼sþ1 Lu ¼ 0 j Ls1, Ms

1

� �
, with 100 – Zs as the survival

likelihood of at least one future case given available data. We can
solve for Zs by appending a pseudo stream of 0-incidence values
I1sþ1 ¼ L1sþ1 ¼ 0 and deriving posterior distributions over R1

sþ1
assuming these 0-data. Expanding Zs sequentially we get the
product below [14].

Zs ¼ 100
Y1

u¼sþ1

PðLu ¼ 0 j Ls1, Ms
1, I

u
sþ1 ¼ 0Þ:

Using the above local-import renewal model, each term can
be obtained as a function of Ru. Next, we marginalize over our
R-distributions of interest, assuming the pseudo-data to obtain
equation (4.2), which together with equation (4.1) forms our R-
Z framework.

Zs ¼ 100 exp �
X1
u¼sþ1

ð
LuRuqs dRu

 !
: ð4:2Þ

This qs is obtained from the same smoothing algorithms
above but under the assumption that there are no future local
cases. It is accordingly always recomputed in real time for
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every s. We can also substitute qs with either ps or rs to obtain
related elimination metrics.

Our Z number quantifies the confidence that a local epidemic
is over, given past incidence and in the presence of imported
cases. This measure is more adaptive and telling than current
WHO guidelines, which propose end-of-epidemic declarations
based on fixed waiting times that relate to twice the incubation
period of the infectious disease [11,14]. It also appreciably
improves on previous metrics proposed in [14], which were lim-
ited by the destabilization of R at low incidence and unable to
incorporate the uncertainty in local transmissibility.

Thus, our R-Z framework makes minimal assumptions and
can be applied in real-time to infer the upcoming risk of local
transmission or the emerging likelihood of elimination. It can
also be used retrospectively to discriminate among hypotheses
surrounding the effectiveness and timeliness of implemented
NPIs. Importantly, it remains valid at many scales of interest,
e.g. countries or sub-regions of a state, provided local and
imported case-data are delineated. In this development we
have assumed the availability of high-quality incidence data. If
significant reporting delays and biases exist, these should be
first compensated for (see §3 for details) before applying our
framework.

We showcase the power of this framework (both in real time
and retrospectively) on three COVID-19 case studies in §2 and
electronic supplementary material. These examples all feature
periods of prolonged and low incidence that have destabilized
or caused difficulties for some standard inference methods
[1,3–5]. Hopefully, our framework, by minimizing the noise
and maximizing the informativeness of estimates, will help to
better target and time NPI application and relaxation for a
given region of interest. It is available as part of the EpiFilter
package at: https://github.com/kpzoo/EpiFilter.
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