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We study edge states in AB-stacked bilayer graphene (BLG) ribbon where the Chern number of the corre-
sponding two-dimensional bulk Hamiltonian is zero. The existence and topological features of edge states when
two layers ended with the same or different edge terminations (zigzag, bearded, armchair) are discussed. The
edge states (nondispersive bands near the Fermi level) are states localized at the edge of graphene nanoribbon
that only exists in a certain range of momentum k,. Their existence near the Fermi level are protected by the
chiral symmetry with topology well described by the coupled Su-Schrieffer-Heeger (SSH) chains model, i.e.,
the SSH ladder, based on the bulk-edge correspondence of one-dimensional systems. These zero-energy edge
states can exist in the whole k, region when two layers have zigzag and bearded edges, respectively. A winding
number calculation shows a topological phase transition between two distinct nontrivial topological phases when
crossing the Dirac points. Interestingly, we find the stacking configuration of the BLG ribbon is important since
it can lead to unexpected edge states without protection from the chiral symmetry both near the Fermi level in
armchair-armchair case and in the gap within bulk bands that are away from Fermi level in the general case. The
influence of interlayer next-nearest-neighbor interactions and interlayer bias are also discussed to fit the realistic

graphene materials, which suggest the robust topological features of edge states in BLG systems.

DOLI: 10.1103/PhysRevB.104.245419

I. INTRODUCTION

One of the most attractive phenomena in condensed-matter
physics is the existence and behavior of edge states, whose
wave function is localized at the system’s edge, of two-
dimensional (2D) systems. These states are different from the
bulk states in properties and play important roles in transport,
e.g., quantum Hall effect (QHE) and the quantum spin Hall
effect (QSHE) [1-4]. On the other hand, the existence and
properties of zero-energy edge states near the Fermi level (flat
bands) are usually connected with the nontrivial topological
phases of the bulk system by the bulk-edge correspondence
[5-9], which can be distinguished by the specific symmetry
of the system and topological invariants such as the winding
number [8-11].

After the progress in a decade, graphene, or the nanotube
and nanoribbon, has become one of the most active two-
dimensional nanomaterials in condensed-matter physics due
to its excellent electrical and mechanical properties [12-20].
The free standing monolayer graphene (MLG) is a zero-
gap semiconductor where the conduction and valance band
touch each other at the Dirac points [19-26]. It has a trivial
bulk topology as two inequivalent valleys provide opposite
topological charges, leading to a zero Chern number [27].
However, edge states still exist in such graphene systems as
nondispersive bands (flat bands) at the Fermi level [19,20,28—
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32], which are observed by supposing a semi-infinite sys-
tem, with quantized wave vectors k, in the infinite direction
[11,28,30,31,33]. The existence of these nondispersive edge
states and related topology in the MLG can be further de-
scribed by the bulk-edge correspondence between winding
number or Zak phase of one-dimensional (1D) SSH chain
systems and the existence of a localized state at the chain’s
edge [11,28,31,34,35], as shown in Fig. 1.

On the other hand, due to the equivalence between the
graphene system and the honeycomb bosonic lattice system,
i.e., the 2D magnon system which generally results from the
collinear Ferromagnet after a Holstein-Primakoff transforma-
tion [36-38], edge states similar to those observed in MLG
can also be found in both the related honeycomb bosonic
lattices [39,40] and even nonhoneycomb bosonic lattices [41].
There are also both experimental and theoretical study on
other types of edges states in photonic honeycomb lattice
using different models [42,43].

In this article, we focus on the existence and topology
of edge states in AB-stacked bilayer graphene (BLG) ribbon
[44,45] by connecting them with k,-parametrized SSH ladder.
Earlier works are mainly concentrated on the existence of
edge states of BLG under specific edge conditions [46,47]
and related equivalent bilayer magnon systems [48,49], or
the behavior of edge states when various symmetry-breaking
terms are added [50,51]. Here the AB-stacked BLG ribbon we
discuss involves three conventional edges (zigzag, bearded,
and armchair, as shown in Fig. 1), whose bulk 2D system al-
ways has zero Chern number. Interlayer next-nearest-neighbor
(NNN) interactions and interlayer bias are considered in terms
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FIG. 1. The schematic illustration of nanoribbons with different
edges and related effective SSH chain parametrized by k. The primi-
tive vectors are d; and d,. The unit with translational symmetry in the
tight-binding Hamiltonians is emphasized by the black box in each
structures, respectively. The number pairs (1,1), (1,2), (2,1) in each
figure indicate the increasing direction of m and n.

of their influence on the topology of the SSH ladder. A de-
tailed topological classification based on discrete symmetry
[10] and topological invariants calculation for effective 1D
bulk Hamiltonian of SSH ladder H (k,, k) parametrized by k,
of AB-stacked BLG ribbon with various types of edge are
performed, as shown in Table I. It shows the zero-energy edge
states can only exist when chiral symmetry is preserved for
H(ky, k) and can appear in the whole k, region when two
layers of BLG ribbon have zigzag and bearded edges, respec-
tively. On the other hand, a straightforward calculation shows
that unexpected edge states can exist in the gap within bulk
bands that are away from the Fermi level. These edge states
are unprotected by the chiral symmetry and are dependent on
the specific edge configurations of BLG ribbon. Interlayer bias
is included in our discussion because it explicitly breaks the
chiral symmetry responsible for the existence of zero-energy
edge states. However, edge states still exist after this chiral
symmetry breaking as nonzero energy states.

The rest of paper is organized as follows: We first give a
brief review of the existence of edge states and the topology
of MLG ribbons in Sec. II as a basis for our discussion of
AB-stacked BLG ribbon. In Sec. III, we turn to the behavior
and topology of edge states in AB-stacked BLG ribbons and
their correspondence with the SSH ladder H (ky, k). Then we
discuss the geometrical origin of the edge states appearing in
the gap within bulk bands that are away from the Fermi level
in Sec. I'V. Finally, we present our conclusions in Sec. V as a
summary.

II. EDGE STATES IN THE MONOLAYER
GRAPHENE RIBBON

To discuss the existence and topological features of edge
states in AB-stacked BLG ribbon, we first give a brief review
of the edge states in a MLG ribbon. In general, the MLG
tight-binding Hamiltonian with nearest-neighbor (NN) hop-
ping energy ¢ and on-site potential U; can be written as [19]

H=—t Zc:fcj + ZUichi, (1)
(i, )) i

where ZU! j sums over only NN pairs. The lattice primi-
tive vectors are 71 and 72, which are shown in Fig. 1.
As examples and without loss of generality, we mainly con-
sider nanoribbons with three different types of edges: zigzag,
bearded, and armchair in the y direction and enforce the peri-
odic boundary condition (PBC) along this direction to see the
edge states, as shown in Figs. 1(a)—(c), respectively.

A. Monolayer graphene with bearded (zigzag) edges

The tight-binding Hamiltonian of MLG with a bearded
edge in the y direction, as shown in Fig. 1(a), can be expressed

TABLE I. Topological classification for different effective 1D bulk Hamiltonians H (k,, k) of a SSH chain or ladder. The related winding
number W and number of zero-energy edge states Nggs are also shown. The topological classification is based on the presence or absence
(0) of time-reversal (T), particle-hole (C), and chiral () symmetries [10], where all three symmetry operators are unitary, i.e., 0T0 =1,
0 =T,C,S. They satisfy T*H*(ky, kT = H(k,, —k), C*H*(ky, k)C = —H (ky, —k), STH(ky, k)S = —H (ky, k), respectively. & in T and C

comes from 7*T = £1 and C*C = £1. Iy is N x N identity matriX. oo, represent Pauli matrices. A hyphen

@

means that there is no

well-defined winding number since the chiral symmetry is broken [10]. Notice that, when an operator is written in direct product form, it can
be understood as acting on different degrees of freedom (DOF). For example, S = I, ® o, for Hyeypeas Where I, acts on layer DOF and o, acts

on sublattice DOF.

Effective 1D bulk Hamiltonian T C S Class w Ngs
Hyearsig (ky, k) [Eq. (6)] L(+) o.(+) o. BDI 1,0 (Fig. 2) 2 (Fig. 2)
Hom (ky, k) [Eq. (10)] 0 0 0. ®0, ATTT 0 (Fig. 2) 0 (Fig. 2)
H oy, k), U = 0 [Eq. (14)] 0 0 L®o, o, ATTT 0 0 (Fig. 4)
HL (s, k), U % 0 [Eq. (14)] 0 0 0 A - 0 (Fig. 4)
HZ, (ky, k), U = 0 [Eq. (14)] 0 0 L®o, ®o, ATTT 0 0 (Fig. 5)
HZ oo (ky, k), U # 0 [Eq. (14)] 0 0 0 A - 4 (Fig. 5)
Ho 0 oo (s §), U = 0 [Eq. (16)] Li(+) L ®o.(+) L®o, BDI 2,0 (Fig. 7) 4 (Fig. 7)
Hoo %) igenie (s §), U # 0 [Eq. (16)] L(+) 0 0 AT - 4 (Fig. 7)
HZY) (ky, k), U = 0 [Eq. (19)] L(+) 0. ® 0.(+) 0. ®o0, BDI —1,1 (Fig. 7) 2 (Fig. 7)
Hh{;,;Z(ky, k), U # 0 [Eq. (9)] L(+) 0 0 AT - 2 (Fig. 7)
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FIG. 2. The band structure of MLG ribbon and related winding number W (k, ) for effective k,-parametrized SSH chain. (a) for MLG with
bearded edges, (b) for MLG with zigzag edges, and (c) for MLG with armchair edges. Here the nearest-neighbor interaction is chosen as
t = 3.16 eV according to Ref. [52]. The red solid lines represent the edge states.

as

M N
Hpyea = —t Z { Z[a;rn,nbm,n + b};,n(am,rﬁl + am+1,n+1)]
m=1 n=1

— by N1+ 1) +H.c.}, )

where a,., (ajn,n) annihilates (creates) an electron on site
(m, n) on sublattice A (an equivalent definition is used for
sublattice B). The system is assumed infinite along the m
direction and finite along the n direction. The minus term in
the curly brackets gives the open boundary condition (OBC)
in the finite direction. The Fourier transformation along the
infinite direction is

1 )
ﬁn,n == elkymfkv,n,’ f =a, b3

 2m(m—M/2)

ky i

., m=0,1,2,....M—1, (3

and leads to

N—-1
Z [a]ty’nbky,n + 1+ e )b]ty’nakv,l‘l+l]

n=1

Hbea(ky) = _t{

+%W%W+H&} 4)

which is equivalent to an effective SSH chain parametrized by
ky as below. Notice that we have made a redefinition of basis
by a phase such that the hopping becomes real and it is easier
to make an association with the original SSH chain model. Not
doing such a redefinition would leave the coupling complex,

but all results in this paper are not affected:

N—1
Hyea(ky) ~ Y " (vajb, + wh}a,1) + vayby + He.,
n=1
ky
w = —2t cos 5 v = —t. (®)]

The bulk Hamiltonian of this equivalent chain is
Hbea(ky’ k) = nThb(kya k)ﬁ, n= (akv bk)Ta

0 v+ we‘iki|’ ©)

hy(ky, k) = |:v 1 wet 0

which belongs to the nontrivial topological class BDZ (see
Table I for details).

We plot the band structure of bearded-edge graphene
nanoribbon and winding number for the bulk Hamiltonian
Hyea(ky, k) (6) as a function of parameter k, in Fig. 2(a),
respectively. The winding number we used in this paper is
defined as [10]

W:—LJRMHGQW&L (7
47T BZ

with
Qk) =1Iy —2P(k), Pk)= Z |1t ) (tter |- (®

a<0

a < 0 refers to the occupied bands [eigenstates of H (ky, k)
below the Fermi level]. 0~ ' (k) = Q(k), as Q* = Iy. Winding
number describes the topological properties near the zero en-
ergy (Fermi level) of 1D bulk Hamiltonians H (k,, k) with the
chiral symmetry operator S [10]. Here we would like to stress
again that one should not confuse k, with k, since k, appearing
in the bulk Hamiltonian H (ky, k) is a parameter of the system
and k is the wave vector of the effective SSH chain when
its length is taken to be infinite. The integration appearing
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in the definition of W is over k, with W being a function
of ky. A concrete example with some details omitted here is
given in the Appendix to make clearer the origin of k, and k.
The zero-energy edge states (flat bands) exist in the restricted
region k, € [—, —%7[] U [%n, 7] and correspond to W = 1,
which agrees with previous literature [27,31]. The effective
1D Hamiltonian Hs(k,) for MLG with a zigzag edge can
be obtained by switching w and v, a, and b, in Hpe,(ky) as
the zigzag edge is related with the bearded edge through an
exchange of basis and coupling [see Figs. 1(a) and 1(b)]. In
terms of their corresponding SSH chain, zigzag nanoribbons
and bearded nanoribbons differ from each other by a switch
between intercell coupling and intracell coupling of the chain.
It can be observed from Figs. 2(a) and 2(b) that zero-energy
edge states (flat bands) of H,s(k,) and nonzero winding num-
ber of H,ig(ky, k) appear in regions of k, complementary to the
one with bearded edges.

B. Monolayer graphene with armchair edges

The tight-binding Hamiltonian of a MLG ribbon with an
armchair edge is different from the previous case, which is

N [ M2
Hym = —t Z [Z(a;m’anm,n + b;m’na2m,n+l

n=1 L m=1

i i
+ azm_l’nb2m71,n + bzm_l,,H_lamel,n)

M
+ sz}
m=1

M/2
+ Y t(bh, y@m + bh,_y j@mo1n) + Hee., (9)

m=1

where M/2 € N. Unit with translational symmetry of
this ribbon in Fig. 1(c) is constructed as (m,n) >~
(bam—1.n> Q2m—1.n> Q2m.n> bam.n). The effective Hamiltonian
parametrized by k, for this ribbon is no longer a single SSH
chain but two coupled uniform chains, as shown in Fig. 1(c).
The coupled chains have the bulk Hamiltonian:

T
Hum(ky, k) = n'hy(ky, kOn,  n = (b, ap. ap, b7)

Wk Dik,)

it =1 560y |

—ik

o=, L
Dik,) = [(1) e_o,-k)}, (10)

where the superscript 1/2 distinguishes even and odd since
there are two sets of A and B in each unit of armchair MLG
shown in Fig. 1(c):

U2 UJ2

O A3, B1(B;, A1)
® A;(B1)

O Bz(42)

O
—U/2

-U/2

FIG. 3. The atomic structure of AB-stacked BLG in side view.

M/2 N

1 o
il = N Jin ZX:: “kn =k s i s

j=1

E

N

1 —ikn —ikyj
i = fWZX:: e gD

f = a, b as shown in Fig. 1. Notice again that k is the wave
vector of the coupled chains while k, is a parameter of its cou-
pling. This bulk Hamiltonian of the coupled chains belongs to
the nontrivial topological class AZZ7 (see Table I for details).
Here we would like to point out that, although it belongs to the
nontrivial topological class, the winding number is zero in the
whole region of k, and there are no edge states, as shown in
Fig. 2(c), which means this is a trivial case.

III. EDGE STATES NEAR THE ZERO ENERGY (FERMI
LEVEL) IN THE AB-STACKED BILAYER GRAPHENE

Based on the three different graphene nanoribbons dis-
cussed in the last section, there are four types of AB-stacked
BLG ribbons, i.e., arm-arm (both layers are armchair edges),
zig-zig/bea-bea (both layers are zigzag or bearded edges), and
bea-zig (one layer is bearded edges and the other is zigzag
edges), as listed in Table 1. They can be summarized by the
tight-binding Hamiltonian [19,45,53]

H = Z edge + Hine + Honssite» (] 2)

where [ = 1,2 are labels of the bottom and top layers, re-
spectively. Hy,site refers to the on-site energy of carbon atoms
such as interlayer bias U as shown in Fig. 3. It includes con-
tributions from both layers. H;,; describes the van der Waals
interaction between two layers [19,45,53]. The meanings of
various interlayer couplings y; with i = 1, 3, 4 are indicated
in Fig. 3. Here, we take r =3.16 eV, y; =0.381 eV as
typical experimental values for AB-stacked BLGs [52], and
y4 = 0 throughout this work since it is pretty small compared
with others in realistic systems [19,52,53]. We choose y3 =
0.38 eV & y; when considering nonzero y3, which is close to
most of the experimental observations [19,52,53].

A. AB-stacked bilayer graphene with armchair-armchair edges

Next we discuss these four types of AB-stacked BLG struc-
tures in detail. To form an AB-stacked BLG ribbon, armchair

245419-4
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FIG. 4. (left panel) The atomic structure of an armchair-armchair AB-stacked BLG ribbon in top view, corresponding to the 1D effective

Hamiltonian H
interlayer bias U and NNN interaction y3.

MLG can only be stacked with the other armchair MLG, but
not with zigzag/bearded MLG (see Fig. 1). Thus, we first
consider the Hamiltonian

Harm—arm = Z Hzfrm + Hint + HOII-Sit61 (13)
1

where both layers have armchair edge. We further consider
two different edge configurations as shown in the left panel

am-arm (Ky» k) [EQ. (14)]. The edge configuration is emphasized by the red box. (right panel) Related band structure with different

of Figs. 4 and 5, corresponding to different H;,,. The band
structure of HaTrfn{a)Im(ky) parametrized by k, is shown in the
right panel of Figs. 4 and 5 respectively, where the label
1 (") represents the different edge configuration of the two
settings. It denotes the direction to translate the top layer if
we effectively consider that the AB-stacked nanoribbon is
formed from the relative translation between two layers of
AA-stacked nanoribbon. Similar calculation to that of last

Uu=0

V3

U=1eV

AN

0.04
0.03
5 0.02

0.01

Y3 =V

7
) A
0

O B,

® 4

FIG. 5. (right panel) The atomic structure of an armchair-armchair AB-stacked BLG ribbon in top view, corresponding to the 1D effective

Hamiltonian H%

 arm Ky, k) [Eq. (14)]. The edge configuration is emphasized by the red box, which is different from the one in Fig. 4. (left

panel) Related band structure with different interlayer bias U and NNN interaction y3. The red solid lines are the edge states. There are four of
them. The wave function distribution in real space of a typical edge state in the red dashed box is shown on the right side. The vertical axis is
the wave function’s amplitude, and the horizontal axis is the site index, which increases along the finite direction of the ribbon.
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FIG. 6. The atomic structure of (a), (b) bearded-bearded and (c), (d) bearded-zigzag AB-stacked BLG ribbon in top view. The specific
edge configuration is emphasized by the red box. The related k,-parametrized SSH ladders are shown at the bottom, where panels (a) and
(b) corresponds to H&(/)(ky, k) [Eq. (16)] and panels (c) and (d) corresponds to H/(/)(ky, k) [Eq. (19)], respectively. w = —2¢ cos(k,/2) and

ber-ber
v = —t are the same as used in Fig. 1.

section shows that the related k,-parametrized bulk Hamilto-
nian is

HW)

arm-arm

(ky, k) = '] (ky b, 1= (&,86),

1 1 2 32
& = (bl,k’ Ay k> A ks bl,k)’

1) hy (ky, k) —H (k. k)
hag (ke K) = 1) ¥ 2
—[Hy Ky, )] By (e, K)
DU .
hg(ky,k>=( ) I+ ho(ky, k), fi =14 €%,
0 0 n 0
0 _ | v 0 0 »
Hno 0=yt 0 0y
0 oy 0 0
0 0 0
ik —iky
v _|net O 0 yafie™™
Bk B =105 0 0 v |0 Y
| 0 0 ye* 0

which belongs to the nontrivial topological class AZZ7Z when
there is no interlayer bias. When U # 0, it belongs to the
trivial topological class A (Table I).

For the BLG ribbon with the edge configuration shown
in Fig. 4, there is no edge state even if nonzero U and y3
are considered. For the other edge configuration as shown in
Fig. 5, the edge states which are gapped and flat appear when
nonzero interlayer bias is added. Here we would like to point
out that these edge states are not topological for three reasons:
(i) They cannot be described by the bulk-edge correspondence
we used before since their energy is not at the Fermi level.
(i1) They are not robust since they disappear when including
y3, the quantity that preserves the original chiral symmetry
of the system, and do not influence the existence of edge
states in the case of bilayer bearded-bearded (zigzag-zigzag)
ribbon (discussed below). (iii) Most importantly, they are not
formed between two Dirac points with different topological
charges [27,30,31,54] in the band structure. But this fact is
still interesting since it indicates that the existence of edge
states can be determined by interlayer bias.

ber-zig

B. AB-stacked bilayer graphene with bearded-bearded
(zigzag-zigzag) edges
The Hamiltonian for which both layers have a bearded edge
is analogous to the one with a zigzag edge. We take the one
with the bearded edge as an example, whose Hamiltonian can
be expressed as

Hbea—bea = Z Hblea + Hint + Hon—site-
1

(15)

There are two different edge configurations, corresponding to
different forms of Hj,. Here these two types of Hamiltonians
are denoted H,. .. (k,) and Hb{a_bea(ky). The corresponding
lattice structures are shown in Figs. 6(a) and 6(b), respec-
tively. Meanwhile, H, ., (k) and Hzi“/g_zig(ky) are obtained by
the substitutions w «<— v, a;, <— b;, in Figs. 6(a) and
6(b). The bulk Hamiltonian of the k,-parametrized SSH ladder

H o (ky) and HY,

abea (ky) can be expressed as

H<—(/)(ky’ k)= nThgb—(/)(ky’ on,

bea-bea

T
n = (ai b1, arr, bax) .

—) _ hi (ky, k) H Y (ky, k)
gy s ) =) i )
[Him (kyv k)] hb(k)“ k)
(16)
with

(-1

By (ky, k) = hy(ky, k) + UL, 1=1,2, (17)

- 0 V1
Hip (ky, ) = = |:)/3€ik (2cos k—z’ +e*) 0 :|

ky —ik
v __| o y3(2cos 3 + e7*)
Hmt (ky’ k) |:V1 eik 0 ‘

which belongs to nontrivial class BDZ only when U = 0,
otherwise it belongs to trivial class AZ (Table I).

Unlike the armchair-armchair-edge case, the different
geometry (distinguished by arrows) of bearded-bearded
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05 1 15 2
ky/m

FIG. 7. (left panel) Band structure with different interlayer bias U and NNN interaction y; corresponding to the atomic structure shown
in Fig. 6(a). (right panel) Band structure with different interlayer bias U and NNN interaction y; corresponding to atomic structure shown in
Fig. 6(d). The red solid lines show the edge states. Related winding number W (k,) is shown in the middle for U = 0O cases in both panels,
where the chiral symmetry is preserved. The red dashed circle marks the energy band area within bulk bands where the unexpected edge states

may appear, which is discussed in detail in Fig. 9.

(zigzag-zigzag) edges of BLGs do not influence the band
structure and edge states near the zero-energy (Fermi level).
So we only show the band structure of bearded-bearded
nanoribbon corresponding to Hy_ .. (k,) in the left panel of
Fig. 7 for simplicity. The nontrivial and trivial topological
classification straightly determines the existence of zero-
energy edge states since U breaks the chiral symmetry. The
zero-energy edge states appear as flat fourfold degenerate
bands when U = 0, belonging to nontrivial topological class.
The related winding number calculation tells that they cor-
respond to a winding number W = 2 when they are flat and
W = 0 when they enter the bulk bands. Flat bands from each
layer are separated by a gap when U # 0, as shown in Fig. 7.
Bulk Hamiltonian of the SSH ladder Hyea.pea(ky, K)(U # 0)
belongs to topological trivial class (Table I). Here the edge
states for U # 0 are still topological since they connect two
topologically different Dirac points [54].

C. AB-stacked bilayer graphene with bearded-zigzag edges

Armchair MLG ribbon can only be stacked with armchair
MLG ribbon to form an AB-stacked BLG ribbon. In contrast,
zigzag MLG ribbon can be stacked with bearded MLG ribbon
to form an AB-stacked BLG ribbon, which is described by the
Hamiltonian

1 2
Hbea—zig(zig—bea) = Hbea(zig) + Hzig(bea) + I'Iim + Hon-site’ (18)

Here we choose Hyea.zig as an example. The situation is the
same as what we found in above section, where different edge

configurations lead to similar band structures and related edge
states near the zero energy. Hamiltonians of different edge
configurations can be denoted as Hbia_zig(ky) or Hb/;a_zig(ky) as
shown in Figs. 6(c) and 6(d), respectively. The bulk Hamil-
tonian of the SSH ladder H,;ga_zig(ky) or Hbfa_zig(ky) can be
expressed as

H Gl by = " hig ' ey, b,

bea-zig

T
n = (aik, bix, bri,arx)",

(V)
ht‘,/(/)(ky k) — [ hé(ky’ k) i H1‘n/t 4 (ky)i| (]9)
’ (B (k)] h2(ky, k)

with

U
R (ky, k) = hy(ky, k) — 312’

U
h2(ky, k) = hy(ky, k) + b
k

ik y
0 () — — | v3(2eFeos 3 +1) 0
1nt( }) [ 0 )/lelk ’

~ _ |n 0
Hig () = [0 y3(200s]% —l—e”‘)i|' (20)

When U = 0, Hbi a-zig (ky) belongs to the nontrivial class BDZL.
Otherwise, it belongs to the trivial class AZ (Table I). The
band structure of nanoribbon corresponding to Hb{pzig(ky)

is plotted in right panel of Fig. 7. The twofold degenerate
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U =0.001eV

® a, O b, w——2tcos<2>v——

‘z=2

=1

'5_ 0.4
0.2

0.6
T4
0.2

bottom layer right edge

bottom layer left edge

top layer right edge

top layer left edge

w=-1

20 40 60 80 0 20 40 60 80
na na

20 40 60 80 0 20 40 60 80
ny g

FIG. 8. (left panel) Band structure with interlayer bias U ~ 0 and zero NNN interaction y3. Corresponding SSH ladder parametrized by k,
is shown at the bottom. The reason for using U = 0 is explained in the text. (right panel) The distribution of the wave function |¢;) on different
edges and different layers as a function of k, and the distribution of the wave function |¢;) in real space for two typical k, values with two
different winding numbers. n,_; » is a site index on the respective layer, which increases along the finite direction of the ribbon. A transition
between bottom-left and top-right is observed when crossing the Dirac point.

zero-energy edge state (flat band) can exist in the whole k,
region when U = 0. It corresponds to a topological phase
transition between two nontrivial topological phases charac-
terized by W = —1 and W = 1 when crossing the Dirac point,
as shown in the left panel in Fig. 7. When U # 0, although
the chiral symmetry is broken (i.e., no well-defined winding
number), the topological edge state still exists in the whole k,
region with different energies when crossing the Dirac point.
Notice that, when U ## 0, the bands are no longer twofold
degenerate, as explained later.

This topological phase transition is not a numerical artifact.
In contrast, it is protected by interlayer coupling. Winding
number describes the mapping of Brillouin zone (k) to U (n)
group, whose fundamental group is Z [55]. In the BLG ribbon
case, it is U(2). This mapping is orientation sensitive. For
example, in calculating the winding number of BLG bea-bea
ribbon, as presented in Fig. 7. The nonzero winding number of
it can be turned into —2 instead of 2 by reversing the direction
of k. In the BLG bea-zig case, as in the right panels of Fig. 7,
it is the bearded layer or zigzag layer that is responsible for
the 1 or —1 part of winding number. If we can choose the
orientation of k independently for each layer, we can make
the winding number always 1, i.e., no phase transition is
present. This simple conjecture can be verified by setting
y3 =y = 0, i.e., two decoupled ribbons. In that case, one
can indeed find a chiral operator S such that the calculated
winding number is always 1 (or always —1). For example, it
can be done by using S = diag(1l, —1, 1, —1) for the Hamil-
tonian in Eq. (19) with y3 = y; = 0. It is permissible for an
uncoupled system to have different orientation of Brillouin
zone for each subsystem. However, the presence of interlayer
coupling, which is present in the real BLG ribbon system,
prohibits us from choosing the orientation of k independently
for each layer. We are forced to choose the same orientation

of k for two layers of ribbon. Otherwise, we are not able
to write Hi, in Bloch form. More specifically, this means
that S = diag(1l, —1, 1, —1) is no longer a chiral symmetry
operator for Eq. (19) with nonzero interlayer coupling. In this
sense, the observed topological phase transition is protected
by interlayer coupling.

The change in winding number can be seen from the be-
havior of the wave function of edge states. For the region
W = 1(|v| < |w|), one of the degenerate edge states can be
approximately expressed as

1 N vA\N-J
|¢1>~ﬁ;(—w) bi,10),
1 — (w/w)*N w?
1 — (U/'LU)2 w2 UZ’ (21)

for y3 = U = 0, which is equivalent to one of the edge states
of MLG ribbon with bearded edges (bottom layer), as shown
in Fig. 8 , where the label [ = 1 (2) in alT, i (b; j) represents the
bottom (top) layer. The other edge state 1s

N -
o)~ = > [(-2) a0
(Y o)
L— /w2 (%)zi .2(%)”*2
2

T = /w)? p
w N 2 V\22
~ (M) AT

j=1

~

(22)
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Since y; < t (one order smaller in our choice of parameters),
|¢2) mainly distributes on the [ = 1 layer. When entering
the W = —1(Jv| > |w]|) region, |¢;) and |g,) continuously

change to
o)~ [( 2) 10
+ (1)) (%)’ b},10)]
_ N i
Ql:1 (ch2+<%) ( )%2
~ Y1\? J 2 J
T2 (7) ;J ( ) ’ (23)
and

(24)

This indicates that when the winding number changes, the
distribution of edge states in real space will switch both edge
and layer, as shown in Fig. 8.

We would like to stress that when U is exactly zero, one
can argue that |¢;) and |¢;) are exponentially degenerate. The
degeneracy originates from the edge degree of freedom. Thus,
any linear combination of them are still edge states, with |¢;)
and |@p,) being only one possible choice. Then it does not
make sense to discuss the behavior of |¢;) in real space when
crossing the Dirac point, e.g., from bottom-left to top-right, as
a linear combination would mix the left edge and right edge.
The naturalness of choosing |¢;) and |¢;) is seen as follows:
when a small positive bias U, e.g., 0.001 eV, is included as
perturbation Hy,,, the cross term (@ |Hper|¢2) = 0. According
to the first-order degenerate perturbation theory [56], |¢;) and
|@2) are the good states to use in perturbation. The energy of
the state in Eq. (22) would increase relatively to the energy of
the state in Eq. (21) because the former has a minor compo-
nent on the / = 2 layer. Similarly, the energy of the state in
Eq. (24) would increase relatively to the energy of the state in
Eq. (23) because the latter has minor component on the / = 1
layer. Thus, |¢;)/|@2) would continuously evolve into Eq. (23)
or Eq. (24). Figure 8 is plotted with U = 0.001 eV and y3 = 0.
The behavior of states is numerically smooth, indicating that
the degeneracy is effectively lifted with a small bias.

IV. EDGE STATES APPEARING IN THE GAP AWAY
FROM THE ZERO ENERGY (FERMI LEVEL)

In the above sections, we have considered two edge config-
urations of BLG bea-zig ribbon and two edge configurations
of BLG bea-bea ribbon, denoted via different arrows. It was
shown that, for example, two edge configurations of BLG
bea-bea ribbon have the same topology. It turns out that the
difference between these two edge configurations appears in
the form of nontopological edge states, as discussed below.

Besides the topological edge states we discussed in the
last section, which exist as gapless or gapped flat bands near
the zero energy (Fermi level), some unexpected edge states
are found in the gap within bulk bands that are away from
the zero energy (Fermi level) in the AB-stacked BLGs with
a bearded-bearded (zigzag-zigzag) edge or a bearded-zigzag
edge, as shown in Fig. 9. The existence and number of these
edge states are determined by the specific edge configurations
of AB-stacked BLGs. These unexpected edge states appear in
the region near k, = 7 in all situations, which reminds us that
their appearance may be relevant to the effective Hamiltonians
H(ky, = ) for different types of edge configurations.

Therefore, we show the lattice structure of the effective
Hamiltonians H(k, = m) for different types of edge con-
figurations in Fig. 10, where some couplings vanish since
cos(m/2) =0. H..(k, =m) with y3 =0 describes the
simply repeated decoupled four-site structures

- i i i
h4 = WegC C2 + VegChC3 + WeyC1Ca
)j-H

2
+H.c.+ZH—U

S (G ) G0, (25)
j=1

as shown in Fig. 10(a). Each four-site structure would provide
four energy levels

1
E= iz\/zyf U2+ 42 £ 2,

e = \JAU2 1 42yR + v, (26)

and each of these four energy levels are highly degenerate
since there are many identical four-site structures. When we
consider the region close to k, = m, each of the four highly
degenerate levels would split into many bulk states according
to first-order degenerate perturbation theory. So there are no
edge states under this scenario in the neighborhood of k, = 7
in the bulk gap.

If y3 =y, as discussed before, the energy bands of
Hy i ea(ky = ) is dominated by not only a simply repeated
decoupled four-site structure but also a newly formed SSH
chain:

N
hssu = Z weqaibn + veqb;anﬂ + H.c.

n=1

N -1 n+lU
+Z%(
n=1

as shown in Fig. 10(a). Because ¢ > y; in our choice of
parameters [52], which is general in most cases [19,53], this
equivalent SSH chain leads to no edge states. This is in accord
with the results shown in both Figs. 7 and 9(a)

ala, + biby). 27

However, the situation is different for Hbea bea(ky). When
y3 = 0, two isolated two-site structures,

hy = fey 4+ He £ 2l 1 28

2 = WeqgCC2 + H.c. E(Clcl + CZC2), ( )

appear in addition to repeated decoupled four-site structures,
as shown in Fig. 10(b). These isolated two-site structures
provide the eigenstates with energy £U/2 ¢, as shown in
Fig. 9(b). When we consider the region close to k, = 7, since
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A

FIG. 9. The band structures in the region marked in Fig. 7, coming from different edge configurations of AB-stacked BLG ribbon with
different interlayer bias U and NNN interaction y;3. Only the bands with E < 0 are shown for simplicity since £ < 0 and E > 0 bands are
symmetric. Panels (a)—(d) correspond to the atomic structures shown in Figs. 6(a)-6(d), respectively. The red solid lines show the unexpected
edge states appearing in the gap within the bulk bands that are away from zero energy.

the energy of the two-site structure is different from (well ~ ing with states from those four-site structures. Since these
separated) that of the bulk four-site structure, their eigenstates two two-sites only exist at the edge, the mixing result would

would predominantly mix among themselves instead of mix- remain edge states. If y3 & y, two equivalent SSH chains
(@) o Qn O byp -~ V3 (b) ‘—}'1 ] () -~ N I -7 @ " —y3
/2 UjJ2 u/2 U/2 u/2 Uj2
- .-V—I o----I ‘/’""I 1=2 oya E---o\_\ I----o 1=2 '/ i"v"@ u/2 UAZ__V . PR
2 P -1 N " ; _ -
o o S S 1 141 -
=1 ®----O ----0 ----0 1=1 ®&---- *---- ®----0 P . I o I_ o 1=1
—U/2 -U/2 15 -U/2 -U/2 15 —U/2 -U/2 —U/2 -U/2 l;
o1 ¢ %0 o ___o Repeated d-site &0 ----0 hggy L Rt o----e—o----e—0 hif
oo—0-0 oo by o---—o----o—@----0 hssy ol ~——o----0—0---0 hil
Weq =V =—t,Vpq = =1~ —¥3(y3 # 0) ® One isolated 1-site
u/2 U2 u/2 Uj/2 u/2 Uj/2 u/2 UjJ2
o &3 *---- ®----0 [=2 &30 ----0 ----0 [=2 o -0 ----0 1=2 .- ®---- ®|=2
" I I I—h I I / _hI I I
T =1 &---0 ----0 ----0 I=1 &---- [ EE *---0 .- - *----0 I=1 ----0 ---0 ----0 =1
Uz U2 s RN —us2 -Uj2 |= —u/2 ~Uj2 |=
®----6——=o----® Repeated 4-site @ ----6——o----® Repeated 4-site ®----6——@----8 Repeated 4-site ®----6——0----8 Repeated 4-site
*----0 @ ----® Two isolated 2-site o ----0 @ ----® Two isolated 2-site *----—o ® One isolated 1-site
*----—o ® One isolated 1-site and 3-site

and 3-site

FIG. 10. Effective SSH ladder parametrized by k, when k, ~ 7 for different AB-stacked BLG ribbons shown in Figs. 6. Panels (a)—
(d) correspond to H (k) plotted in in Figs. 6(a)-6(d), respectively. The equivalent lattice structures are shown in blue in each figure, the
hopping between sites are given in panel (a).
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exist as shown in Fig. 10(b). Each of these chains is the same
as the structure of hgsy, leading to no edge states both near
the zero energy (Fig. 7) and in the gap within bulk bands
[Fig. 9(b)].

The condition is more complicated when we discuss
the AB-stacked BLGs with a bearded-zigzag edge. For
Hber sig(ky = ) with y3 = 0, the same two isolated two-site
structures at the end of the chain and repeated decoupled
four-site structures appear as in previous cases Besides, there
are also an isolated one-site h; = (U /2)c ¢ and a three-site
structure at two ends of the chain:

hy = weqcIcz + veqcIQ + H.c.
Uu . N ]
— E(Cicl + cécz — c3r03), 29)

as shown in Fig. 10(c). The two edge states near zero energy
are from h; and one of eigenstates of h3 with close-to-zero
energy. The three edge states appearing in the gap within
bulk bands shown in Fig. 9(c) are naturally described by
one eigenstate of 43 with £ < 0 and two eigenstates of two
h(U = 0) with energy —¢. Again, in the neighborhood of
k, = m, states from one-, two-, and three-site will mix among
themselves instead of mixing with the bulk four-site states due
to energy difference. Thus, these states would remain edge
states in this neighborhood. When y3 & y;, two SSH chain
structures appear with an odd number of sites, each of them
provides one edge state near zero energy [57]. All other states
of odd-site SSH chains are bulk states. Thus, there are no edge
states in the gap within bulk bands, as shown in Fig. 9(c).

At last we discuss Hber z1g(ky =m). y3 =0 leads to the
repeated decoupled four-site structures, one isolated one-site
structure, and one three-site structure, as shown in Fig. 10(d).
The edge state shown in Fig. 9(d) comes from one eigenstate
of h; with E < 0. The two near-zero edge states are eigenstate
of h; and one of eigenstates of h3. If y3 = y;, two SSH chains
structures appear with odd number of sites. Together they
provide two zero-energy edge states, and no edge states in the
gap within bulk bands, as shown in Fig. 9(d).

As a conclusion, number of edge states away from Fermi-
energy is determined by the number of isolated structures
when k, = 7, which is in turn dependent upon the edge con-
ﬁguratlon of AB-stacked BLGs.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we discussed the existence and topology of
edge states in AB-stacked BLG ribbon with various edge con-
figurations. We illustrated the correspondence between BLG
ribbons and SSH ladders. A detailed topological classification
based on a discrete symmetry and topological invariants cal-
culation for an effective 1D bulk Hamiltonian of a SSH ladder
H (ky, k) parametrized by k, of AB-stacked BLG ribbon was
constructed, showing the bulk-edge correspondence between
zero-energy edge states of the ribbon and winding number of
H(ky, k).

In addition, we found the existence of bias-induced edge
states in the armchair-armchair BLG ribbon. This is not topo-
logically protected, as discussed in the text. However, this is
still an interesting result because it implies that edge states can

be produced via a mechanism that does not have anything to
do with the edge of systems [58]. We also found a topological
phase transition between two topologically nontrivial phases
in zigzag-bearded BLG ribbon, corresponding to a twofold
degenerate zero-energy edge state existing in the whole k,
region. We demonstrated that, when a edge state crosses the
phase transition point, it will switch both layer and edge.

Moreover, we pointed out that some nontopological edge
states without the protection of the chiral symmetry can be
found in the gap within bulk bands that are away from the
zero-energy (Fermi level). The existence and number of these
states are sensitive to the edge configurations of BLG ribbons
even if their bulk topologies are the same, which can be simply
explained by effective Hamiltonians H (k, = ) for different
situations. Although we focus only on the honeycomb lattice
in this paper, it should be obvious that our study can be
generalized to lattices of different shapes, such as Kagome
[59-61] and triangular [62] lattices, and of higher dimensions,
such as the description of edge states and surface states in
three-dimensional topological insulators [63,64]. All of these
provide potential directions for further study.
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APPENDIX: THE DIFFERENCE BETWEEN WAVE
VECTOR NUMBER k;, AND k

The following example is provided to make the discussion
in Sec. II of the main text more concrete. Consider the ribbon
depicted in Fig. 1(a); the Hamiltonian is given by Eq. (2) of
the text:

Hbea = _tZ { Z mn mn +bmn(am n+1 +am+1 n+l)]

n=1

—bj;,,N(am,l + amt11) + Hc} (A1)

For this specific ribbon, N = 5. The value of M is unimpor-
tant since the ribbon is infinite (periodic) along that direction.
It is a common practlce to assume that there is a perlodlclty in
the operator, i.e., q; ) a,(i)M 4w and b( .) = bl+M j+n- Notice
that, under this COHdlthIl, the Hamlltonlan given by Eq. (2)
is invariant when adding 1 to all the first subscripts of all
operators. But it is not invariant when adding 1 to the second
subscript of all operators. This difference is due to the term
bjn’ ~(@n1 + amy1,1), so we say that this term gives the open
boundary condition.

By basic solid-state physics, we are allowed to make a
Fourier transformation along the invariant direction, which is
the direction of the first subscript. The Fourier transformation
is given by Eq. (3) of the main text, while the resulting Bloch
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Finite ten-site dimer chain
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Bloch wave vector k

FIG. 11. A schematic illustration of a ten-site SSH chain as well
as its bulk. The letters below the circles correspond to operators.

form Hamiltonian is given by Eq. (4). Consider now doing the
following redefinition of operators, which is always allowed
since it does no affect the band structure:

il il

ikyn/2
Uon = Y0 ,

(A2)

b; L= b]i neikyn/Z‘

After this redefinition, the Hamiltonian in Eq. (4) will be
transformed into the form of Eq. (5), which is the following,
where a,, (b,) are shorthand for ay, (b,.n):

4

Hica(ky) = Y _(vaib, + whjayy1) + vayby + He.  (A3)
n=1

From this point on, we will leave MLG ribbon, and instead

consider a ten-site SSH chain as illustrated in Fig. 11. Its

intercell coupling w and intracell coupling v are defined as

follows:
ky
V= —t = —2tcos 5 ) (A4)

Readers should refrain from associating &, appearing above
with the one obtained in the Fourier transformation of MLG
ribbon, but instead should think it just as a parameter on which
v and w depend. The Hamiltonian of the ten-site SSH chain is

4
Hgimer = Y _(vajb, + whiay41) + vaiby + He.  (AS)

n=1

Hgimer 1s formally equivalent to Hpea(ky), i.€., Hiimer =
Hyea (ky). However, it is more obvious that this is an additional
trick we can play with this ten-site SSH chain. We can make
this chain infinite and obtain a Hamiltonian H_,;, that can be
put in Bloch form, with the corresponding Bloch wave vector
k, as used in the main text:

Hinﬁnitecha.in = Z H(k)
keFBZ
Hk) = (v + we’ik)a};bk + H.c.
_ 0 v+ we
= (v w0 ) (A6)

This H (k) is dependent on k, through v and w. This H (k)
is referred to as hy(ky, k) in Eq. (6) of the text, with which
we can calculate the winding number W for different &, using
Egs. (7) and (8) of the text. For this specific example, the chiral

operator S is
I 0
s=(p %)

This procedure can be easily generalized to the bilayer case as
we use in later sections.
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