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An important tool for understanding the effects of interactions in harmonically trapped atomic gases is the
examination of their collective modes. One such mode is the breathing or monopole mode, which is special as
it is constrained to occur at twice the harmonic trapping frequency when the interactions are scale invariant.
When the interactions are not scale invariant, the frequency of the breathing mode will deviate from twice the
trap frequency. The deviation itself depends on the thermodynamic contacts, which describe how the energy
changes with the interactions. In this work I examine how the thermodynamic contacts and the breathing-mode
frequency of a spin-polarized one-dimensional (1D) p-wave Fermi gas depend on the 1D scattering volume �

and the effective range r in the high-temperature limit. Such dynamics can be studied in experiments and provide
a tool for understanding how the dynamics depends on interactions with a finite effective range.
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I. INTRODUCTION

One fundamental type of dynamics in a many-body system
is the collective mode. Most often collective modes are de-
scribed using linearized hydrodynamic equations, while their
finite lifetime arises from higher-order effects [1,2]. Although
they are not exact excitations as they possess a finite lifetime,
collective modes provide insights into how the dynamics of
the system depends on the interactions. An excellent platform
for studying this physics is an atomic gas system. The ex-
perimental control over atomic gases [3] allows one to study
thoroughly the collective mode physics for different particle
statistics, dimensions, interactions, and even different phases
[4–14].

A particular atomic gas system of recent interest is a
spin-polarized Fermi gas confined to one spatial dimension
[15–27]. Since the gas is spin polarized, the s- or even-wave
interactions are suppressed and the leading interactions are p
or odd wave in character. From the effective-range expansion,
one expects that this gas is universal and can be described
by a zero-range theory [15]. In other words, the physics can
be described by a single low-energy scattering volume �,
while the contribution to the energetics and dynamics from the
effective range r should be small and perturbative. This is in
contradistinction to a three-dimensional (3D) p-wave Fermi
gas where the effective range, although small, is pivotal for
understanding both the energetics and dynamics [28–32].

For a harmonically trapped 1D spin-polarized p-wave
Fermi gas, the most basic collective mode is the breathing
mode. The breathing mode is unique in that it can be shown to
occur at exactly twice the harmonic trap frequency and to be
undamped when the interactions are scale invariant [33,34],
that is, when the Hamiltonian H and the generator of scale
transformations D satisfy [D, H] = 2iH . For a zero-range 1D

spin-polarized p-wave Fermi gas, scale invariance arises when
the gas is at resonance, that is, when the 1D scattering volume
is divergent, or when the gas is noninteracting, � = 0.

When one explicitly breaks the scale invariance either by
a finite � or by the presence of an effective range r, the
frequency of the breathing mode will deviate from its scale-
invariant value. As discussed for s-wave interactions [8,14,35]
and for p-wave interactions in two dimensions [11,36], the
shift in the breathing-mode frequency in fact depends on
the thermodynamic contacts, which characterize the change
in the energy of the system with respect to the low-energy
scattering parameters � and r.

In this article I evaluate both the thermodynamic contacts
and the shift in the breathing-mode frequency for a p-wave
Fermi gas confined in one dimension. In the high-temperature
limit, one can obtain analytical results to leading order in the
virial expansion, which is to leading order in nλth, where n is
the density and λth =

√
2π h̄2/mkBT is the thermal de Broglie

wavelength for a gas of atoms with mass m and temperature
T . At this level one can show that there is a simple rela-
tionship between the scattering volume and effective range
contacts. Since there are two scattering parameters in our
theory, the shift in the breathing-mode frequency depends
on both the scattering length and effective range contacts C�

and Cr , respectively. I then apply these results to experimen-
tally applicable situations, in the hopes of future experimental
studies.

The remainder of this article is organized as follows.
Section II provides the basics of the 1D p-wave Fermi gas
using a two-channel model. Section III evaluates the ther-
modynamic contacts using the virial expansion. Section IV
then proceeds with a calculation of the frequency shift of the
breathing mode within the virial expansion. The experimen-

2469-9926/2021/104(6)/063314(9) 063314-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.063314&domain=pdf&date_stamp=2021-12-20
https://doi.org/10.1103/PhysRevA.104.063314


JEFF MAKI PHYSICAL REVIEW A 104, 063314 (2021)

(a)

(b)

FIG. 1. Feynman diagrams for (a) the dressed molecular prop-
agator and (b) the T matrix. The single lines are the free fermion
propagators. The double dashed (full) lines correspond to the bare
(dressed) molecular propagator. (a) and (b) apply in both the presence
of the vacuum and the many-body background.

tal applicability of these results is then discussed in Sec. V.
Finally, I conclude in Sec. VI.

II. TWO-CHANNEL MODEL

In this work I use a two-channel model for the 1D p-wave
Fermi gas. The Hamiltonian is given by

H =
∑

k

ξkψ
†(k)ψ (k)

+
∑

Q

(
1

2
Q2 + ν0 − 2μ

)
φ†(Q)φ(Q)

+
∑
Q,k

gk

2
√

L

[
φ(Q)ψ†

(
Q

2
+ k

)
ψ†

(
Q

2
− k

)
+ H.c.

]
.

(1)

In Eq. (1), ψ (k) [ψ†(k)] is the fermionic annihilation (cre-
ation) operator, φ (φ†) is the annihilation (creation) operator
for the closed-channel molecules, ξk = k2/2 − μ is the single-
particle dispersion, μ is the chemical potential, ν0 is the bare
detuning of the molecular channel, and g is the atom-molecule
coupling. I also define L as the length of the system, and both
h̄ and the bare atomic mass m have been set to unity for the
time being. The factor of 1

2 in the interaction is to account for
the fact that spin-polarized fermions are indistinguishable.

Technically this theory has an ultraviolet (UV) divergence.
As is customary, one can remove this divergence by exam-
ining the two-body scattering properties in the vacuum. The
two-body scattering can be calculated according to Fig. 1.
Consider two spin-polarized fermions with momenta Q/2 ± k
and total energy Q0 = Q2/4 + k2. As shown in Appendix A,
the T matrix depends on the dressed molecular propagator
D(Q, Q0) via

〈
Q

2
± k|T |Q

2
± l

〉
= klg2D(Q0 − Q2/4),

[g2D(Q0 − Q2/4)]−1 =
[

−ν0

g2
+ 1

2L

∑
k

+Q0 − Q2/4

g2

−
√

−Q0 + Q2/4 − iδ

4

]
. (2)

Given the T matrix, one can show that the scattered relative
wave function has the form

ψ (x) = eikx + fk
x

|x|eik|x|,

fk = −ik
g2D(k2)

4
, (3)

where Q0 − Q2/4 = k2 and fk is the scattering amplitude. The
scattering amplitude can then be expanded in terms of k2,
according to the effective range expansion

fk = ik

[
−1

�
+ rk2 − ik + O(k4)

]−1

. (4)

This expansion is valid for low energies and in particular for
energies k2 � r−2.

From Eq. (2) one can then identify the scattering volume �

and the effective range r,

1

4�
= −ν0

g2
+ 1

2L

∑
|k|<


,
r

4
= − 1

g2
, (5)

where 
 is the UV cutoff. Here it is important to note that r
is strictly negative in this two-channel model and both � and r
have units of length.

III. THERMODYNAMIC CONTACTS IN
THE HIGH-TEMPERATURE LIMIT

As discussed previously [8,11,14,35,36], the shift in the
breathing-mode frequency depends on the thermodynamic
contacts. The thermodynamic contacts are related to the
change in the energy with respect to the low-energy scattering
parameters � and r:

〈C�〉 =
〈
− ∂H

∂�−1

〉

=
∫ ∞

−∞
dx

g2

4
〈φ†(x)φ(x)〉,

〈Cr〉 =
〈
−∂H

∂r

〉

= −
∫ ∞

−∞
dx

g2

4
〈φ†(x, t )

(
i∂t + ∂2

x

4
+ 2μ

)
φ(x, t )〉. (6)

The full derivation of the microscopic expressions for the
contacts is presented in Appendix B. Equations (6) are also
consistent with previous definitions of the contacts [15] and
give consistent results for the momentum distribution and
radio-frequency spectroscopy [15,17].

Equations (6) can be evaluated using finite-temperature
field theory [37]. Since the contact operators are bilinear in
the molecular degrees of freedom, they will be functions of
the dressed molecular propagator, calculated in the presence
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of the many-body background:

〈C�〉
L

=
∫ ∞

−∞

dQ

2π

∫ ∞

−∞

dz

π
nB(z)Im

[
g2D(Q, z − iδ)

4

]
,

〈Cr〉
L

= −
∫ ∞

−∞

dQ

2π

∫ ∞

−∞

dz

π
nB(z)

(
z − Q2

4
+ 2μ

)

× Im

[
g2D(Q, z − iδ)

4

]
. (7)

In Eqs. (7), nB(z) [nF (z)] is the Bose-Einstein (Fermi-Dirac)
distribution at β = 1/kBT and the molecular propagator has
been evaluated in the presence of the many-body background(

g2D(Q, z − iδ)

4

)−1

= 1

�
−

(
z − Q2

4
+ 2μ

)
r

−
∫ ∞

−∞

dk

π
k2

[
1 − nF (ξQ/2−k ) − nF (ξQ/2+k )

k2 − (
z − Q2

4 + 2μ
) + iδ

− 1

k2

]
,

(8)

which follows from Fig. 1.
In the high-temperature limit the chemical potential is large

and negative and thus the fugacity eβμ is very small: eβμ � 1.
The expansion of Eqs. (7) and (8) in terms of the fugacity is
known as the virial expansion. As the contacts are related to
the change in energy with respect to the scattering parameters,
the contacts are proportional to e2βμ at leading order in the
virial expansion. Performing the virial expansion to this order,
one obtains the following expressions for the contacts:

〈C�〉
L

= e2βμ

√
πβ

∫ ∞

0

dz

π
e−βz

√
z(

1
�

− zr
)2 + z

,

〈Cr〉
L

= − e2βμ

√
πβ

∫ ∞

0

dz

π
e−βzz

√
z(

1
�

− zr
)2 + z

. (9)

Equations (9) only account for the scattering-state contri-
bution to the contacts and ignores the bound-state contribution
which only exists for � > 0. As discussed in Appendix C,
the bound-state contribution is only relevant near resonance,
where the bound-state energy is small but finite. Near reso-
nance, the wave functions of the closed-channel molecules
have substantial overlap with that of the scattering states.
Therefore, one expects a finite number of closed-channel
molecules and a finite contribution to the contacts from the
bound state. In the opposite limit of weak interactions, the
two-body bound state is quite deep. If one is concerned with
the upper-branch physics, the relaxation rate for pairs of in-
dividual atoms to form closed-channel molecules is quite low
[3]. The number of closed-channel molecules is then small
and the bound-state contribution to the contacts is negligible.
For the simplicity of the presentation, I have relegated the
molecular contribution to the contacts to Appendix C.

Equations (9) also suggest a relationship between the two
contacts:[

e−2βμ
√

πβ
〈Cr〉

L

]
= ∂

∂β

[
e−2βμ

√
πβ

〈C�〉
L

]
. (10)

This relationship is valid only in the high-temperature limit as
it neglects the many-body effects from higher orders in the
virial expansion. Nevertheless, Eq. (10) provides a method
for evaluating the effective range contact for a thermal gas.
Similarly, one can use Eq. (10) to quantify the significance
of many-body effects by comparing the results of Eq. (10) to
experimental measurements.

For arbitrary � and r, Eqs. (9) do not have a closed solution
and have to be determined numerically. However, there are
a number of limits which allow for analytical results. First
consider the gas near resonance and with an effective range
that is small compared to the thermal de Broglie wavelength:
r/λth � 1. After restoring h̄ and the atomic mass m, one
obtains

〈C�〉
L

∣∣∣∣
near res

≈ 2
h̄2n2

m

[
1 − 1√

2

λth

|�| + 2
r

�
+ O

(
λ2

th

�2

)]
,

〈Cr〉
L

∣∣∣∣
near res

≈ −n2

β

[
1 + 2

r

�
+ O

(
λ2

th

�2

)]
, (11)

where again λth =
√

2π h̄2/mkBT is the thermal de Broglie
wavelength. I have also replaced the fugacity with the density
n via nλth = eβμ, which is valid to leading order in the virial
expansion.

Similarly, in the weakly interacting limit the contacts are
given by

〈C�〉
L

∣∣∣∣
weak int

≈ 2π
h̄2n2

m

�2

λ2
th

[
1 + 6π

�r

λ2
th

+ O

(
�2

λ2
th

)]
,

〈Cr〉
L

∣∣∣∣
weak int

≈ −3π
n2

β

�2

λ2
th

[
1 + 10π

�r

λ2
th

+ O

(
�2

λ2
th

)]
. (12)

Equations (12) are also consistent with Bethe ansatz calcula-
tions of the contacts in the high-temperature limit [18].

A final important limit is to consider exactly at resonance,
when �−1 = 0. In this case the scale invariance is solely bro-
ken by the effective range. In this limit the contacts are given
by

〈C�〉
L

∣∣∣∣
res

≈ 2
h̄2n2

m

[
1 − π

r2

λ2
th

+ O

(
r4

λ4
th

)]
,

〈Cr〉
L

∣∣∣∣
res

≈ −n2

β

[
1 − 3π

r2

λ2
th

+ O

(
r4

λ4
th

)]
. (13)

Equations (11)–(13) constitute one of the main results of this
paper. They characterize the dependence of the thermody-
namic contacts on the scattering parameters r and �.

IV. SHIFT IN THE FREQUENCY
OF THE BREATHING MODE

With the contacts in hand, it is now possible to examine the
shift in the breathing-mode frequency. Therefore, consider the
spin-polarized 1D Fermi gas in the presence of a harmonic
potential with frequency ω. For this discussion I integrate
out the molecular degrees of freedom and focus only on the
fermions. The total Hamiltonian is then equivalent to a one-
channel model of interacting spin-polarized fermions inside a
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harmonic trap:

Htrap = H + ω2
∫ ∞

−∞
dx

x2

2
ψ†(x)ψ (x). (14)

In writing Eq. (14) it is important to note that the scattering
properties of the one-channel Hamiltonian H are still de-
scribed by the T matrix shown in Eq. (8).

The breathing mode for this system is an oscillatory motion
associated with the moment of inertia:

〈x2〉(t ) =
∫

dx x2n(x, t ). (15)

In order to evaluate the dynamics of the moment of inertia,
consider the commutators

[H,C] = −iD, [C, D] = 2iC, [H, D] = −i�, (16)

where C, D, and � are the generator of conformal transforma-
tions, the generator of scale transformations, and the trace of
the stress energy tensor, respectively.1 They are defined as

C =
∫ ∞

−∞
dx

x2

2
ψ†(x)ψ (x),

D = −i
∫ ∞

−∞
dx ψ†(x)

(
x∂x + 1

2

)
ψ (x),

� = 2H + 1

�
C� − rCr . (17)

From Eq. (16) and the Heisenberg equation of motion, one
can obtain the following dynamic equation for the moment of
inertia:

∂2

∂t2
〈x2〉(t ) + 4ω2〈x2〉(t ) = 4〈H + ω2C〉(0)

+ 2

�
〈C�〉(t ) − 2r〈Cr〉(t ). (18)

If one neglects the contacts, Eq. (18) has the analytical solu-
tion

〈x2〉(t ) = 〈x2〉(0)

[ 〈H + ω2C〉(0)

ω2〈x2〉(0)

+
(

1 − 〈H + ω2C〉(0)

ω2〈x2〉(0)

)
cos(2ωt )

]
. (19)

Thus, in the absence of the contact terms, the breathing mode
oscillates indefinitely at a frequency ωB = 2ω. This was first
pointed out in Ref. [33] and is a consequence of the nonrel-
ativistic conformal symmetry [33–35,38,39]. Physically, this
situation occurs when the Hamiltonian is scale invariant, i.e.,
when �−1 = 0 and r = 0, or when � = 0.

The difficulty in evaluating Eq. (18) in general is in deter-
mining the time dependence of the thermodynamic contacts.
To this end it is important to note that the breathing-mode

1The average of the trace of the stress-energy tensor is related to
the pressure P via 〈�〉 = PL for one-dimensional systems, where
L is the length of the system. Equation (17) then follows from the
results of Appendix B.

motion is dilatory in nature and can be described with a time-
dependent density of the form

n(x, t ) = 1

λ(t )
n

(
x

λ(t )

)
. (20)

Such a scaling ansatz presupposes the density profile does not
depend on the scattering parameters � and r. In other words,
Eq. (20) assumes that the gas follows a Boltzmann distribution
for a noninteracting gas, which is valid to lowest order in
the virial expansion where nλth = eβμ. Since the shift in the
breathing-mode frequency is solely due to the contacts, which
are already second order in the virial expansion, it is sufficient
to assume that the dynamics of the system are also dilatory in
nature.

From Eq. (20), the dynamics of the moment of inertia are
also equivalent to a time-dependent rescaling

〈x2〉(t ) = λ2(t )〈x2〉(0). (21)

Furthermore, due to number conservation, one can show that
the scaling dynamics of the density (20) is equivalent to a
time-dependent temperature and chemical potential β(t ) =
βλ2(t ) and μ(t ) = μ/λ2(t ), respectively. This allows one to
explicitly evaluate the time dependence of the contacts by sim-
ply replacing β and μ in Eqs. (9) with their time-dependent
counterparts. The result can be written in the form

〈C�〉(t ) = 1

λ(t )
〈C�〉

(
λ(t )

�
,

r

λ(t )

)
,

〈Cr〉(t ) = 1

λ3(t )
〈Cr〉

(
λ(t )

�
,

r

λ(t )

)
. (22)

This conclusion ought to be contrasted with the arguments
presented in Ref. [39]. In Ref. [39], the dilatory motion of
the contacts [Eqs. (22)] follows from an expansion of the
contacts around a scale-invariant point and is only valid to
leading order in the breaking of scale invariance. In this work
the dilatory motion of the contacts follows from the trivial
dynamics of the density, which is valid to leading order in the
virial expansion. Thus, in this work the scaling ansatz is valid
for arbitrary interaction strengths provided nλth � 1.

Substituting Eqs. (21) and (22) into Eq. (18), one obtains a
second-order differential equation for λ(t ),

∂2

∂t2
λ2(t ) + 4ω2λ2(t )

= 4ω2 + 2

�

1

〈x2〉(0)

1

λ(t )
〈C�〉

(
λ(t )

�
,

r

λ(t )

)

− 2r
1

〈x2〉(0)

1

λ3(t )
〈Cr〉

(
λ(t )

�
,

r

λ(t )

)
, (23)

where I have used 〈H + ω2C〉(0) = ω2〈x2〉(0). The breathing-
mode frequency can be easily obtained by considering a small
change in λ2(t ):

λ2(t ) = 1 + δλ2(t ). (24)

Substituting Eq. (24) into Eq. (23) and expanding to lowest
order in δλ2(t ) gives

0 = ∂2

∂t2
δλ2(t ) + ω2

Bδλ2(t ), (25)
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which states that δλ2(t ) oscillates at a frequency ωB. The
breathing-mode frequency ωB satisfies the relation

ω2
B − 4ω2

ω2
= 1

�

[
1 − 1

�

∂

∂�−1
+ r

∂

∂r

] 〈C�〉(0)

ω2〈x2〉(0)

− r

[
3 − 1

�

∂

∂�−1
+ r

∂

∂r

] 〈Cr〉(0)

ω2〈x2〉(0)
. (26)

Equation (26) is the second main result of this work. It
relates the shift of the breathing-mode frequency to the ther-
modynamic contacts. It is straightforward to see that in the
case of resonance and zero effective range, i.e., when �−1 = 0
and r = 0, and in the noninteracting limit, i.e., when � = 0,
ωB = 2ω, which is consistent with nonrelativistic conformal
symmetry.

In order to evaluate Eq. (26), I employ a local-density
approximation (LDA) in the high-temperature limit. The de-
tails of the LDA are shown in Appendix D. Combining
the LDA with the high-temperature expansion of the con-
tacts [Eqs. (9)], one obtains the formula for the shift of the
breathing-mode frequency

ω2
B − 4ω2

ω2
= N

h̄ω

kBT

[
1

�̃

(
1 − 1

�̃

∂

∂�̃−1
+ r̃

∂

∂ r̃

)

×
∫ ∞

0

dz

π
e−z

√
z(

1
�̃

− zr̃
)2 + z

+ r̃

(
3 − 1

�̃

∂

∂�̃−1
+ r̃

∂

∂ r̃

)

×
∫ ∞

0

dz

π
e−z z3/2(

1
�̃

− zr̃
)2 + z

]
, (27)

where �̃ = �/
√

2πλth, r̃ = √
2πr/λth, and Nh̄ω/kBT � 1.

Equation (27) has to be evaluated numerically, but one can
obtain analytical expressions for the shift of the breathing-
mode frequency near the resonantly interacting limit

ω2
B − 4ω2

ω2

∣∣∣∣
near res

≈ h̄ωN

kBT

[
1

�̃
√

π

(
1 + 2r̃

�̃

)
+ 3r̃

2
√

π

]
(28)

and for weak interactions

ω2
B − 4ω2

ω2

∣∣∣∣
weak int

≈ h̄ωN

kBT

3�̃

2
√

π

(
1 + 15

2
r̃�̃

)
. (29)

For a more complete picture, consider Fig. 2. In this figure
the shift in the breathing-mode frequency is presented as a
function of �̃−1 for various values of the effective range r̃. One
prominent feature of Fig. 2 is that the shift in the breathing
mode becomes more negative as the effective range becomes
larger. Conversely, the contribution due to the scattering vol-
ume �̃ depends on the sign of �̃. This can be qualitatively
understood by examining Eq. (18) and the pressure P. As
shown in Appendix B, the pressure is given by

PL = 〈�〉 = 2〈H〉 + 1

�
〈C�〉 − r〈Cr〉. (30)

Since the scattering volume contact is positive semidefinite
while the effective range contact is negative semidefinite, the
shift in the pressure from its scale-invariant value due to the
scattering volume is positive (negative) for positive (negative)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

�̃−1

−0.8

−0.6

−0.4

−0.2

0.0

0.2

ω
2 B
−4

ω
2

ω
2

h̄
ω

k
B
T

N

r̃ = 0
r̃ = −0.1
r̃ = −0.3
r̃ = −0.5

−10 0 10

−0.6

−0.4

−0.2

0.0

FIG. 2. Shift in the breathing-mode frequency (27) for a spin-
polarized 1D p-wave Fermi gas as a function of the dimensionless
scattering volume �̃ = �/

√
2πλth, where λth is the thermal de Broglie

wavelength, and for various values of the dimensionless effective
range r̃ = √

2πr/λth. The lines from top to bottom correspond to
decreasing values of r̃. This figure disregards the molecular contri-
bution. The inset shows the shift in the breathing-mode frequency
for r̃ = 0.3 (green solid line) and the asymptotic expansions from
Eqs. (28) and (29) (black dashed lines).

�, which is a signature of repulsive (attractive) interactions. On
the other hand, the contribution due to a finite effective range
r is always negative and hence attractive in nature. This shift
in the pressure is directly related to the shift in the breathing-
mode frequency via Eq. (26) and explains the general features
of Fig. 2.

One can also see that the shift in the breathing-mode
frequency is finite at resonance due to the presence of
the effective range. Away from resonance, the shift in the
breathing-mode frequency is more substantial for �̃ < 0, as
some cancellation occurs for �̃ > 0. In the weakly interacting
limit, the contribution from the effective range becomes mi-
nuscule in comparison to the leading contribution governed
by �̃, which reinforces the idea that the effective range merely
gives a perturbative correction.

V. DISCUSSION

The results obtained thus far are for strictly
one-dimensional systems. Realistically, however, the
one-dimensional physics described above is a low-energy
approximation for a three-dimensional spin-polarized Fermi
gas placed in a cylindrical trapping potential with tight radial
confinement. The low-energy scattering volume � and the
effective range r in the ground state of the radial confinement
are related to their 3D counterparts v and R, respectively, via
[16,27,40]

1

�
= a2

⊥
6

(
1

v
+ 2

Ra2
⊥

)
− 2

a⊥
ζ

(
−1

2

)
,

r = −
[

a2
⊥

6R
+ a⊥

4
ζ

(
1

2

)]
, (31)
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FIG. 3. Shift in the breathing-mode frequency at various tem-
peratures across the confinement-induced resonance (31) for 40K.
Here λth is the thermal de Broglie wavelength, the axial trapping
frequency is ω = 2π × 200 Hz, the transverse harmonic length is
a⊥ ≈ 25 nm, N = 10, and I have used the parametrization of the
p-wave Feshbach resonance at 198.3 G [31]. (In experiments the 3D
p-wave Feshbach resonance is anisotropic. However, for simplicity I
treat it as isotropic.)

where a⊥ = √
2h̄/mω⊥ is the harmonic oscillator length for

the radial confinement of frequency ω⊥ and ζ (s) is the zeta
function.

Since the 3D scattering volume can be tuned via a p-wave
Feshbach resonance [31], the confinement strength can tune
both � and r, a phenomenon called the confinement-induced
resonance [41,42]. Across the confinement-induced resonance
� can be tuned continuously from positive to negative infin-
ity via the confinement induced resonance. The 1D effective
range is more or less constant, but its value can be enhanced
when a⊥ is larger than the 3D effective range R. Hence the
energy dependence of the 1D scattering can be enhanced by
the confinement. For example, the effective range for spin-
polarized 40K is [31] R ≈ 3.8 nm. For a radial confinement
of ω⊥ ≈ 2π × 400 kHz, or equivalently a⊥ ≈ 25 nm, the 1D
effective range is r ≈ −18 nm, which is larger than the 3D
effective range by almost a factor of 5. In fact, this effect
becomes stronger for weaker radial confinement. Although
the 1D effective range is an irrelevant quantity to the ener-
getics and dynamics in the renormalization-group sense [43],
the effective range may be important to the dynamics due to
its enhancement from the radial confinement. The importance
of the effective range then depends not only on the typical
energy scale in the problem, according to the effective range
expansion (4), but also on this enhancement from the radial
confinement.

To further examine the experimental applicability of these
results, the shift in the breathing-mode frequency for a 1D
spin-polarized Fermi gas confined in an axial harmonic po-
tential with frequency ω ≈ 2π × 200 Hz is presented in
Fig. 3. For a radial confinement with frequency ω⊥ ≈ 2π ×
400 kHz, the quasi-1D regime is defined via h̄ω⊥ 	 kBT ,
while the high-temperature limit is given by T 	 Nh̄ω (see
Appendix D). For the parameters under consideration this
leads to 40 μK > T > 50 nK, where I have used N ≈ 10.

The results in Fig. 3 are for temperatures 5 μK > T >

0.4 μK, which are within the quasi-1D regime and high-
temperature limits. At resonance, the shift in the contact is
small and only a few percent. However, slightly away from
resonance and for � < 0, the shift can be about 3–5 %, depend-
ing on the temperature. The asymmetry in Fig. 3 also implies
that the effective range is important in describing the shift in
the breathing-mode frequency.

VI. CONCLUSION

The main results of this work are the evaluation of the
thermodynamic contacts and the shift of the breathing-mode
frequencies in the high-temperature limit [see Eqs. (11)–(13)
and (27)–(29)]. These results are valid to lowest nontrivial
order in the virial expansion, i.e., to second order in (nλth)2.

Although the above results extend to arbitrary interactions
strengths, it is important to note that there are two caveats.
First, at this order in the virial expansion the breathing mode
does possess a finite lifetime when the scattering volume is
finite. The finite lifetime of the breathing mode can be shown
to be related to the finite bulk viscosity ζ and scales as ζ−1

[39]. In the high-temperature limit, the bulk viscosity will
also occur at O(nλth)2 [32,44–46]. Moreover, since the bulk
viscosity must be positive, as it is related to entropy produc-
tion, the bulk viscosity ought to be proportional to �2 and r2

for a weakly interacting gas and a resonantly interacting gas,
respectively. Practically, one expects that the breathing-mode
picture breaks down around �̃ ≈ 1. A more in-depth study of
the bulk viscosity is beyond the scope of this work.

Second, at the next order in the virial expansion, three-
body interactions become important. These interactions are
irrelevant in the renormalization-group sense [17,24]. The
three-body interaction will introduce a new contact which de-
scribes how the energy changes with respect to the three-body
interaction strength. This will necessarily add a correction to
the above results, but is beyond the present study.

One interesting part of this study is that the effective range
for a 1D spin-polarized Fermi gas can be enhanced by the
presence of radial confinement [see Eq. (31)]. This is due
to the competition between the validity of the low-energy
three-dimensional scattering, set by R, and the validity of
the quasi-1D regime, set by a⊥. This increase of the effec-
tive range can lead to deviations from the zero-range limit
at smaller energy scales. This is evident in Fig. 3. There
the contribution to the shift in the breathing-mode frequency
due to the effective range is important for � < 0. A similar
phenomenon has also been emphasized for the case of quasi-
two-dimensional Fermi superfluids in Ref. [47].

This situation ought to be contrasted to the spin- 1
2 s-

wave Fermi gas in three dimensions. This system has the
same renormalization-group structure as the spin-polarized
1D Fermi gas with p-wave interactions [43]. In both cases,
the effective range is an irrelevant quantity and leads to per-
turbative effects, a conclusion consistent with effective field
theory [28,29]. As the effective range is irrelevant, the 3D
s-wave Fermi gas has a well-defined zero-range limit, where
the physics are universally described by the s-wave scattering
length. In this case, the effective range can often be ignored
as it is generally quite small. For the spin-polarized 1D Fermi
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gas, although a well-defined zero-range limit exists, the effec-
tive range can be important due to its enhancement from the
transverse confinement, as evidenced by Figs. 2 and 3.
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APPENDIX A: DERIVATION OF
THE TWO-BODY T MATRIX

Here I evaluate the two-body T matrix in the presence of
the vacuum. The two-body T matrix for identical fermions
depends on the dressed propagator for the closed-channel
molecular state. The equations for the dressed molecular prop-
agator are

D−1(Q, Q0) = D−1
0 (Q, Q0) − �(Q, Q0),

D−1
0 (Q, Q0) = Q0 − 1

4 Q2 − ν0 + iδ. (A1)

Pictorially, these equations are shown in Fig. 1. In Eqs. (A1)
�(Q, Q0) is the fermion-fermion bubble which is given by

�(Q, Q0) = −g2

2

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk0

2π i
k2

×
[

1
Q0
2 + k0 − 1

2

(Q
2 + k

)2 + iδ

× 1
Q0
2 − k0 − 1

2

(Q
2 − k

)2 + iδ

]

= g2

2

∫ ∞

−∞

dk

2π

k2

Q0 − 1
4 Q2 − k2 + iδ

. (A2)

In defining Eqs. (A1) and (A2) I have ignored the many-body
background by setting the chemical potential to zero.

One can see from Eq. (A2) that the integrand is divergent
at large momenta. To this end, add an ultraviolet cutoff scale

 to regularize the integrals. A direct evaluation of Eq. (A2)
then gives

�(Q, Q0) = − g2

2π

 + g2

4

√
−Q0 + Q2

4
− iδ

= − g2

2L

∑
|k|<


+g2

4

√
−Q0 + Q2

4
− iδ. (A3)

The resulting dressed molecular propagator is then given by

D−1(Q0, Q) = −ν0 + g2

2L

∑
k

+Q0 − 1

4
Q2

− g2

4

√
−Q0 + Q2

4
− iδ, (A4)

where I have written 
/π = L−1 ∑
|k|<
. Equation (A4) is

equivalent to Eq. (2).

APPENDIX B: DERIVATION OF THE CONTACTS

In this Appendix I show how to obtain the microscopic
definitions of the contact operators and how they relate to the
pressure. First note that the pressure can be written as

P = 1

β3/2
G

(
βμ, β1/2 1

�
, β−1/2r

)
, (B1)

where β = 1/T is the temperature, μ the chemical potential,
� the scattering volume, r the effective range, and G a dimen-
sionless function. In writing Eq. (B1) I have used the fact both
� and r have dimensions of length. More formally, the pressure
is defined in terms of the partition function Z via

P = 1

βL
ln(Z ) = 1

βL
ln(Tr[e−β(H−μN )]). (B2)

From Eqs. (B1) and (B2) and by considering the derivative
of P with respect to β, one can show that the pressure must
satisfy

PL = 2〈H〉 + 1

�
〈C�〉 − r〈Cr〉, (B3)

where 〈·〉 denotes a thermal average. In Eq. (B3) the thermal
averages of the scattering volume contact C� and the effective
range contact Cr are defined via

〈C�〉 =
〈
− ∂H

∂�−1

〉
,

〈Cr〉 =
〈
−∂H

∂r

〉
. (B4)

To progress further it is important to note that the scattering
quantities � and r are functions of the bare quantities ν0 and
g in the Hamiltonian [see Eq. (5)]. Evaluating Eqs. (B4), one
can find the following microscopic definitions for the contact
operators:

C� =
∫ ∞

−∞
dx

g2

4
φ†(x)φ(x),

Cr = −
∫ ∞

−∞
dx

g2

4
φ†(x, t )

(
i∂t + ∂2

x

4
+ 2μ

)
φ(x, t ). (B5)

In order to obtain Eqs. (B5), I have used the Heisen-
berg equation of motion for the molecular field, ∂tφ(x, t ) =
i[H, φ(x, t )], to integrate out the fermionic degrees of freedom
in the definition of Cr .

APPENDIX C: IMAGINARY PART OF THE T MATRIX

In this Appendix I calculate the imaginary part of the T
matrix to leading order in the virial expansion. There are
two contributions: The first is due to the positive-frequency
scattering states and the second is due to the bound state.
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To begin, the molecular propagator to leading order in the virial expansion is given by(
g2D(Q, z − iδ)

4

)−1

= 1

�
−

(
z − Q2

4
+ 2μ

)
r +

∫ ∞

−∞

dk

π
k2

[
1

k2 − z + Q2

4 − 2μ + iδ
− 1

k2

]

= 1

�
−

(
z − Q2

4
+ 2μ

)
r −

√
−z + Q2

4
− 2μ + iδ, (C1)

which is simply the molecular propagator in the presence
of the vacuum. From Eq. (C1) one can absorb the Q and
μ dependence by shifting variables to z′ = z − Q2/4 + 2μ.
Hence I will ignore the dependence of the T matrix on Q
and μ. For positive frequencies z > 0, one can show that the
imaginary part of the T matrix is

Im

[
g2D(0, z − iδ)

4

]
=

√
z(

1
�

− zr
)2 + z

. (C2)

At negative frequencies z < 0, the imaginary part of the T
matrix comes from the two-body bound state. The two-body
bound state for this system is given by the pole of the T
matrix, or equivalently the pole of Eq. (C1). This occurs when(

g2D(0,−zB)

4

)−1

= 0 = 1

�
+ zBr − √

zB. (C3)

As one can see from Eq. (C3), the low-energy bound state
exists for � > 0. For a small effective range r2zB � 1, one
obtains

zB = 1

�2

(
1 + 2

r

�

)
, (C4)

which is perturbative in the effective range r. This is evidence
for the statement that the effective range is an irrelevant quan-
tity in understanding the energetics and dynamics.

In principle, Eq. (C3) also has a pole that is approximately
given by zB ≈ 1/r2. This term must be discarded as it is
beyond the low-energy approximation, which requires zB �
r−2.

To evaluate the imaginary part of the T matrix for negative
frequencies, expand the denominator of the T matrix around
−zB:[

g2D(0, z − iδ)

4

]−1

≈
(

1

2
√

zB
− r

)
(z + zB) − iδ. (C5)

The imaginary part of the T matrix at negative frequencies is
then

Im

[
g2D(Q, z − iδ)

4

]
=

(
1

2
√

zB
− r

)−1

πδ(z + zB)θ (�).

(C6)
In terms of the contacts, the bound-state contributions to

Eqs. (7) are equal to

〈C�〉
L

∣∣∣∣
mol

= e2βμ

√
πβ

eβzB
2
√

zB

1 − 2
√

zBr
θ (�),

〈Cr〉
L

∣∣∣∣
mol

= e2βμ

√
πβ

eβzB zB
2
√

zB

1 − 2
√

zBr
θ (�). (C7)

From Eqs. (C7) one can see that the molecular contribution
vanishes at resonance, while it appears to become quite large
in the weakly interacting limit. Near resonance and for � > 0,
the bound-state energy is small but finite. In this limit the
contribution due to the closed-channel molecules is important.
Near resonance there can be a large population of molecules
since the wave functions of the closed-channel molecules have
substantial overlap with the scattering states. In the weakly
interacting limit, however, the bound state is exceptionally
deep. For a thermal gas in the upper branch [3], the relax-
ation of scattering atoms into the closed-channel molecules
is exceptionally slow. For this reason it is safe to neglect the
molecular contribution to the contacts.

APPENDIX D: LOCAL-DENSITY APPROXIMATION
AT HIGH TEMPERATURES

In this Appendix I discuss how to evaluate the contacts for
a trapped 1D Fermi gas in the local-density approximation
at high temperatures. At high temperatures, the Fermi-Dirac
distribution can be replaced by a Boltzmann distribution

f (k, x) = exp

[
−β

(
k2

2
+ 1

2
ω2x2 − μ

)]
, (D1)

where I have set h̄ and m to be unity for the time being and μ

is the chemical potential at the center of the trap. The density
is then given by

n(x) =
∫ ∞

−∞

dk

2π
f (k, x) = 1√

2πβ
exp

[
−β

(
1

2
ω2x2 − μ

)]
.

(D2)

Normalizing with respect to the total number of particles, N
gives the condition for the chemical potential

N = eβμ

βω
, (D3)

or equivalently the density is given by

n(r) = β h̄ωN

λth
e−βmω2x2/2, (D4)

where I have restored the factors of h̄ and m. Note here that
the virial expansion is equivalent to the statement Nβ h̄ω � 1.
From Eq. (D4) the initial moment of inertia can then be
calculated:

〈x2〉(0) =
∫ ∞

−∞
dx x2n(x) = N

mβω2
. (D5)
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