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We develop a nonequilibrium increment method to compute the Rényi entanglement entropy and
investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantumMonte Carlo
simulations. To benchmark the method, we first show that, at a conformally invariant critical point of O(3)
transition, the entanglement entropy exhibits universal scaling behavior of area law with logarithmic corner
corrections, and the obtained correction exponent represents the current central charge of the critical theory.
Then we move on to the deconfined quantum critical point, where we still observe similar scaling behavior,
but with a very different exponent. Namely, the corner correction exponent is found to be negative. Such a
negative exponent is in sharp contrast with the positivity condition of the Rényi entanglement entropy,
which holds for unitary conformal field theories (CFTs). Our results unambiguously reveal fundamental
differences between DQC and quantum critical points described by unitary CFTs.
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Introduction.—Quantum many-body entanglement has
become a fundamental organizing principle for the study of
quantum matter. Scaling behavior of entanglement entropy
(EE) provides deep insights into the structure of quantum
many-body states and gives universal invariants that can be
used to characterize distinct phases and phase transitions.
For these reasons, EE has been of interest to many, ranging
from the field theoretical to numerical and experimental
communities of quantum many-body systems [1–20]. For
ð2þ 1ÞD quantum critical points, the EE obeys the “area
law,” i.e., linearly proportional to the perimeter of the
entangling region. However, the subleading term turns out
to be more interesting [1–5,20–24]: it is either a universal
constant when the entangling region has a smooth boun-
dary or a logarithmic term with a universal coefficient when
the boundary contains sharp corners. The corner correction
has been shown to be deeply related to intrinsic data of the
underlying conformal field theory (CFT). For example, the
universal coefficient for the von Neumann EE in the smooth
limit is essentially given by the stress tensor central charge
of the CFT. On the other hand, the scaling form of EE has
also been investigated in numerical simulations of micro-
scopic lattice models. In particular, the corner corrections
were also identified in quantum Monte Carlo (QMC)
simulations of quantum critical points (QCPs) for conven-
tional symmetry-breaking transitions [14,15,17–19,25], the
results of which are largely consistent with field-theoretical
predictions.
For QCPs beyond the paradigm of Landau-Ginzburg-

Wilson, the scaling forms of EE are not well understood.

Among these, the quantum entanglement of the deconfined
quantum criticality (DQC) [26–31]—a continuous quan-
tum phase transition between two seemingly unrelated
symmetry-breaking states—has not been explored much.
Theoretically, since the proposed low-energy theory of
DQC is a strongly coupled gauge theory [11,27,32,33], no
controlled analytical treatment is available. While conven-
tional OðnÞ CFTs are also interacting, they turn out to be
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FIG. 1. The two lattice models: (a) the J-Q3 model, which hosts
DQC [52], (b) the square lattice J1-J2 antiferromagnetic colum-
nar dimer model, which exhibits ð2þ 1Þd O(3) QCP as J2=J1 is
tuned [54].
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“close” to the free Gaussian theory; e.g., the corner
correction is well estimated by the value of the free theory.
For DQC, a basic question such as whether the generic
scaling form from CFT still holds is not known. In this
Letter, we will address this question using large-scale,
unbiased QMC simulations.
Because EE is a nonlocal quantity, its numerical compu-

tation, even just the secondRényi EE, is a challenging task in
QMC simulations of interacting lattice models. Although
several numerical algorithms have been developed for this
purpose [6,12,13,16], they are still numerically very costly
due to the necessity of enlarging the configurational space to
replicas and exchanging them during the sampling proc-
esses. Further improving the efficiency and stability of the
numerical estimator, especially for large system sizes and
lattice models with multispin interactions or fermions
[34,35], is still highly desirable.
These are the difficulties we set out to overcome in

this Letter. Building on the recent nonequilibrium meas-
urement of the Rényi entropy [36], which has shown its
unprecedented efficiency on the measurement of Rényi
entanglement entropy of the two-dimensional Heisenberg
model than the previous attempts [37–41], we develop a
new nonequilibrium increment method that can make the
best usage of the divide-and-conquer procedure of the
nonequilibrium process and the modern massive parallel
computing technique to improve the speed of the simu-
lation and the data quality of the entanglement measure-
ment [42].
To test the performance of our method, we first show that

at the ð2þ 1ÞD O(3) transition in a square lattice J1-J2
columnar dimer model, the EE indeed exhibits universal
scaling behavior of area law plus logarithmic corner
corrections, and the obtained correction exponent is closer
to the prediction of Gaussian theory [43] consistent with
previous numerical results [14,17,18]. Then we move on to
the DQC and find that, although the EE still obeys a similar
scaling behavior, the universal coefficient of the corner
correction term is negative. Such a result is in sharp
contradiction with the positivity conditions for the
Rényi EE that hold for unitary conformal field theories
[10,44,45]—and pointing toward alternative scenarios of
DQC such as nonunitary CFT with complex fixed points
annihilation [45–47], multicriticality [33,48], or precursors
to a weakly first-order transition [30,49–51].
Model.—Our main goal is to investigate the second

Rényi EE at the deconfined QCP (DQCP) of the J-Q3

model [26–28], as illustrated in Fig. 1(a). The Hamiltonian
reads

HJ−Q3
¼ −J

X

hiji
Pi;j −Q

X

hijklmni
PijPklPmn; ð1Þ

where Pij ¼ 1
4
− Si · Sj is the two-spin singlet projector.

The quantum critical point separating the antiferromagnetic

Néel and valence bond solid (VBS) states is at ½Q=ðJ þ
QÞ�c ¼ 0.59864ð4Þ [45,52,53].
We also investigate the square lattice columnar dimer

model, shown in Fig. 1(b). The Hamiltonian is given by

HJ1−J2 ¼ J1
X

hiji
Si · Sj þ J2

X

hiji0
Si · Sj; ð2Þ

where hiji denotes the thin J1 bond, hiji0 denotes the thick
J2 bond, and the QCP ðJ2=J1Þc ¼ 1.90951ð1Þ [54] is
known to fall within the ð2þ 1ÞD O(3) universality class.
As explained in the Supplemental Material [55], because of
the translation symmetry breaking due to the strong J2 and
weak J1 bonds in Eq. (2), the entangling region A must be
chosen so that its boundary avoids strong dimer bonds to
correctly extract the scaling behavior of EE from finite-
size data.
At a conformally invariant QCP, the nth Rényi EE of an

entangling region A of linear size l is expected to take the
following form:

SðnÞA ðlÞ ¼ anl − sn ln lþ bn: ð3Þ

Here sn is a universal constant of the underlying CFT,
which only depends on open angles of the sharp corners of
A: sn ¼

P
j snðαjÞ, where αj is the open angle [1,2,19].

Analytical results about the universal function snðαÞ are
only available in the extreme cases α → 0 and α → π. In
addition, one can prove that, generally, in a unitary CFT
snðαÞ must be non-negative and is a concave function
of α [3,10]. Numerically, the corner correction has
been systematically investigated in ð2þ 1ÞD OðnÞ models

]14,15,17–19,25 ]. Our goal is to extract s for the second
Rényi entropy at DQC for α ¼ π=2, since we will only
consider rectangle regions.
Nonequilibrium increment method for entanglement

entropy.—Precise determination of the value of corner
corrections, especially at QCPs, is by no means an easy
task. Below, we first introduce an improved estimator based
on the nonequilibrium increment method, which can
substantially increase the precision and efficiency of the
computation of Rényi EE in QMC simulations [42].

The nth Rényi EE SðnÞA ¼ ln½TrðρnAÞ�=ð1 − nÞ at finite
temperature can be reexpressed by the ratio of two partition

functions SðnÞA ¼ ½1=ð1 − nÞ� ln ðZðnÞ
A =ZðnÞ

∅ Þ, stemming
from its trace structure in the path integral [1]. Here A is
the entangled region. In the configuration space of QMC

simulation [56,57], as shown in Fig. 2, Zð2Þ
A is a partition

function of two replicas with entangling region A glued

together and its complement Ā independent. Zð2Þ
∅ can be

viewed as a special case of Zð2Þ
A , where A is an empty set.

To evaluate Sð2ÞA on lattice models, various QMC
estimators have been introduced [6,12,13,16,36]. While
nearly all the algorithms suffer from computational
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complexity—simulating replicas of the space-time con-
figuration and connecting them with different boundary
conditions—rendering poor quality data at low temper-
atures and large system sizes, the recent nonequilibrium
measurement of the Rényi entanglement entropy [36]
stands out for its reliability.
However, this method still has limitations (detailed

analysis will be presented elsewhere [42]). For large
systems, if the quench is not slow enough, then not all
sites in A will join in the glued geometry at the end of the
quench, leading to failure of the measurement. Although
increasing the quench time can safely resolve this problem,
it is often costly, as the simulation time significantly
increases with the quench time. Such limitations heavily
affect the computation of EE on larger systems, especially
the more complicated models beyond nearest-neighbor
Heisenberg.
Here we put forward an improved version of the non-

equilibrium measurement—the nonequilibrium increment
method—which can reduce the limitation of the non-
equilibrium measurement on large systems. A schematic
flow of the method is shown in Fig. 2(c). It can be seen that
our method divides a nonequilibrium process into many
smaller paralleled processes, and these smaller processes
can be computed independently and thus are ideal for
highly parallel simulations. In this way, the nonequilibrium
increment method decreases the simulation time, as well as
improves the data quality. We give a brief outline of our
method below and will explain it in detail elsewhere [42].

In the nonequilibrium method [36], one introduces a
functionZðnÞ

A ðλÞ, which is the sumof a collection of partition

functions ZðnÞ
B weighted by gAðλ; NBÞ ¼ λNBð1 − λÞNA−NB,

where B is a subset of the entangled region A,NA is the total
number of sites inA, andNB is the total number of sites inB;
the Rényi EE can be expressed as an integral over λ ∈ ½0; 1�,
ZðnÞ

A ðλÞ ¼ P
B⊆A gAðλ; NBÞZðnÞ

B , where ZðnÞ
A ð1Þ ¼ ZðnÞ

A and

ZðnÞ
A ð0Þ ¼ ZðnÞ

∅ . Thus, the entropy can be rewritten as

SðnÞA ¼ ½1=ð1 − nÞ� R 1
0 dλ½∂ lnZðnÞ

A ðλÞ=∂λ�. Reference [36]

puts forward a nonequilibrium work defined as WðnÞ
A ¼

−ð1=βÞ R tf
ti dt

dλ
dt ½∂ ln gA(λðtÞ; NBðtÞ)=∂λ� with λðtiÞ ¼ 0

and λðtfÞ ¼ 1. According to the Jarzynski equality [58], it
can be proven that the entropy can be estimated by the work

SðnÞA ¼ 1

1 − n
lnðhe−βWðnÞ

A iÞ; ð4Þ

even when the nonequilibrium process is at finite rate. Our
optimized method divides the integrating region [0, 1] into
many small regions, e.g., ½0;Δ�;…; ½kΔ; ðkþ 1ÞΔ�;…;
½1 − Δ; 1�, as shown in Fig. 2(c); then the nonequilibrium
process can be seen as the sum of many small and
independent nonequilibrium processes that can be simulated
simultaneously. In this way, by means of massive parallel
computing, we can greatly improve the data quality and
reduce the simulation time.
We start from the following formula: ½ZðnÞ

A ð1Þ=ZðnÞ
A ð0Þ� ¼

Q
K
k¼1½ZðnÞ

A ðkΔÞ=ZðnÞ
A ½ðk − 1ÞΔ��, where K is an integer and

Δ ¼ ð1=KÞ, and rewrite the Rényi entanglement entropy as

SðnÞA ¼ ½1=ð1−nÞ�Pk¼0;1;…;K−1
R ðkþ1ÞΔ
kΔ dλ½∂ lnZðnÞ

A ðλÞ=∂λ�.
The argument for calculating the integral holds regardless of
the lower and upper limits of the integral. As a result, we can
apply the same argument on each individual integral and
correspondingly get

SðnÞA ¼ 1

1 − n

X

k¼0;1;…;K−1
lnðhe−βWðnÞ

k;AiÞ; ð5Þ

whereWðnÞ
k;A is the work for the small piece between λðtiÞ ¼

kΔ and λðtfÞ ¼ ðkþ 1ÞΔ in the nonequilibrium process.
The detailed implementation protocol of our method is
presented in the Supplemental Material [55]. We find such
divide-and-conquer protocol gives very robust results of the
Rényi EE. And since now the nonequilibrium process is
carried out in parallel in hundreds or thousands of short
processes, the speedup with the same factor and the increase
of the data quality are self-evident.
Results.—With the nonequilibrium increment method at

hand, we apply it to measure the second Rényi EE for the
HJ1−J2 andHJ−Q3

models and reveal the scaling behavior of

Sð2ÞA ðLÞ at their corresponding QCPs.

β

2β

L A

λ
0 1

+ + + + + +
Δ 2Δ0  Δ (k+1)ΔkΔ (K-2)Δ (K-1)Δ (K-1)Δ 1

CPU-1 CPU-(k+1)CPU-2 CPU-(K-1) CPU-K

(a) (b)

(c)

A

FIG. 2. The schematic diagram of the QMC configurations and
the nonequilibrium increment method. (a) The QMC configura-

tion of Zð2Þ
∅ . The configuration is two independent replicas with

periodical boundary conditions. (b) The QMC configuration of

Zð2Þ
A . The configuration is two replicas with the sites in the

entangling region A glued together and sites in Ā with periodical
boundary conditions. (c) The nonequilibrium increment process.
We divide a nonequilibrium process that is characterized by λ
evolving from λ ¼ 0 to λ ¼ 1 into K pieces. Each piece is
independent of another and evolves from λ ¼ kΔ to λ ¼ ðkþ
1ÞΔ with k ¼ 0; 1;…; K − 1 and Δ ¼ 1=K. The final entangle-
ment entropy is the summation of K such independent non-
equilibrium pieces.
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The main results are shown in Fig. 3. Since the columnar
dimers in HJ1−J2 break the lattice translation symmetry, we
test three different types of the entangling region A, denoted
as odd, even A, and even B. Each type of region gives a
different value of the area-law coefficient since they cut
different kinds of bonds, which also strongly affects the
estimate of the subleading corner correction. We find the
even-B regions, whose boundaries do not cut any dimer and
thus have the smallest area-law coefficient, yield the most
robust finite-size scaling behavior. We therefore adopt such
a geometry for both HJ1−J2 and HJ−Q3

presented here.
Detailed discussions of the three different boundaries and

their finite-size scaling behavior of Sð2ÞA ðLÞ are presented in
the Supplemental Material [55].
The main panel of Fig. 3(a) shows finite-size dependence

of the Sð2ÞA ðLÞ for theHJ1−J2 at its QCP. After fitting the data
with Eq. (3), we obtain the coefficients a, s, and b. We find
s ¼ 0.081ð4Þ, very close to the prediction of Gaussian
theory. In the inset, we plot the EE after extracting the area-

law contribution, i.e., Sð2ÞA − aL versus lnðLÞ. The linear
dependence is quite clear with a negative slope, i.e., s > 0.
We now turn to the DQC of HJ−Q3

. Here the model is
manifestly translation invariant, so naively no special
choice for the geometry of the entangling region is
necessary. However, even at the DQC, the VBS domains
still exist in a finite-size system and can still cause
uncertainty in the EE. To reduce such finite-size error,
we employ a small pinning field to lock the VBS order to a
fixed configuration, which allows us to work consistently
with the even-B regions [45,59]. The field is applied on the
J2 term such that J2 ¼ J þ ðδ=LÞ; i.e., when extrapolating
to the thermodynamic limit, the simulated Hamiltonian
goes back to the original HJ−Q3

. We find the value of

δ ¼ 0.05 gives the well-converged results of Sð2ÞA ðLÞ and
also note that, even without the pinning field δ ¼ 0, the
same qualitative conclusion, as in Fig. 3(b), still holds (see
the Supplemental Material [55] for details where such
universal behavior of the negative log correction is per-
sistently present from δ ∈ ½0; 0.15�, representing the robust-
ness of our observation).
The fit of data in main panel of Fig. 3(b) according to

Eq. (3) gives rise to s ¼ −0.49ð1Þ. After extracting the area-
law contribution, as shown in the inset of Sð2ÞA − aL versus
lnðLÞ, a straight line with positive slope, i.e., s < 0, appears.
Such large, negative value of s [one magnitude larger than
that in the OðnÞ transition, the same large s < 0 also holds
even when δ ¼ 0], is in sharp contrast to the expected corner
corrections of the QCPs with CFT. It is from here that our
results unambiguously reveal fundamental differences
between DQC and QCPs described by unitary CFTs.
Discussion.—Our findings of the large and negative s in

the second Rényi EE raise a number of intriguing questions
about the theory of DQC. Since a negative s is not allowed
in a unitary CFT, our observation appears to rule out such a
description. This is consistent with a recent conformal
bootstrap study, which finds tension between bounds
following from unitary conformal invariance with the
numerically computed critical exponents [32,60,61]. It is
natural to connect these observations to the proposal that
the observed regime of the DQC is controlled by a
nonunitary fixed point very close to the physical parameter
space [32,46,47,62], which implies approximate conformal
invariance within a large length scale. However, it is not
clear whether such a scenario can naturally explain a
relatively large and negative s. Since the complex fixed
point has to be very close to the physical parameter space,

FIG. 3. Sð2ÞA ðLÞ with even-B boundary of entangling region for (a) the L × L square lattice HJ1−J2 model at 3D O(3) QCP and (b) the

HJ−Q3
model at DQCP with pinning field δ ¼ 0.05. The fitting result for HJ1−J2 is S

ð2Þ
A ðLÞ ¼ 0.168ð1ÞL − 0.081ð4Þ lnðLÞ − 0.124ð7Þ.

The fitting result forHJ−Q3
is Sð2ÞA ðLÞ ¼ 0.224ð1ÞLþ 0.49ð1Þ lnðLÞ − 0.58ð2Þ. Insets show the Sð2ÞA − aL versus lnðLÞ such that the sign

of the log corrections manifest. It is clear that the DQC log correction acquires an opposite sign compared with the OðnÞ ones. This is in
contrast to the positivity requirement of EE for unitary CFTs.
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one expects that the “nonunitarity,” which manifests in,
e.g., imaginary part of scaling dimensions, should be quite
small. This is indeed the case in known examples of weakly
first-order transition controlled by a complex CFT (note the
suggestion that DQC is the precursor to a weakly first-order
transition [30,49–51]), such as the Q ¼ 5 Potts model in
ð1þ 1ÞD where the central charge, which is the coefficient
of the log term in EE, appears to be a real positive number
in numerical calculations [63]. Our results, however,
suggest that the violation of unitarity is not just a small
complex correction.
On the other hand, it is known that critical exponents of

DQC exhibit unusual drift behavior with system size [60].
It is possible that similar drift also occurs for s, and, if this is
the case, the formula (3) needs to be corrected. In fact, a
generic feature of theories controlled by complex CFTs is
that various universal quantities, such as scaling dimen-
sions, exhibit drifting (or walking RG in technical terms)
[64,65]. It is therefore important to more systematically
understand the finite-size correction to s for complex CFTs,
which we leave for future work. Other possible origins of
the drift and how they affect the corner correction should
also be investigated. For example, theoretically there exists
a dangerously irrelevant operator at the critical point
associated with the breaking of the emergent symmetry
by lattice effect, which may introduce a new length scale in
the problem. More recently, there is new evidence that
shows the DQC is a multicritical point [48]; it will also be
interesting to investigate the scaling of Rényi EE in such
modified models to verify the theoretical [33] and numeri-
cal predictions [48] therein.
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