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Helical symmetry breaking and quantum anomaly in massive Dirac fermions
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Helical symmetry of massive Dirac fermions is broken explicitly in the presence of electric and magnetic
fields. Here we present two equations for the divergence of helical and axial vector currents following the
Jackiw-Johnson approach to the anomaly of the neutral axial vector current. We discover the contribution from
the helical symmetry breaking is attributed to the occupancy of the two states at the top of the valence band and
the bottom of the conduction band. The explicit symmetry breaking fully cancels the anomalous correction
from quantum fluctuation in the band gap. The chiral anomaly can be derived from the helical symmetry
breaking. It provides an alternative route to understanding the chiral anomaly from the point of view of the
helical symmetry breaking. The pertinent physical consequences in condensed matter are the helical magnetic
effect, which means a charge current circulating at the direction of the magnetic field, and the mass dependent
positive longitudinal magnetoconductivity as a transport signature. The discovery not only reflects anomalous
magnetotransport properties of massive Dirac materials, but also reveals the close relation between the helical
symmetry breaking and the physics of chiral anomaly in quantum field theory and high energy physics.
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Introduction. The chiral anomaly of massless Dirac
fermions is a purely quantum mechanical effect, and is an
extraordinarily rich subject in quantum field theory and ele-
mentary particle physics [1–5]. It is regarded as a consequence
of spontaneous symmetry breaking induced by the quantum
fluctuation in the presence of electric and magnetic field.
However, the helicity represents the projection of the particle
spin at the direction of motion and is also conserved for Dirac
fermions. The helical symmetry is broken explicitly in an
electric field. In the massless case the helicity and chirality
become identical for the positive energy and differ by an op-
posite sign for the negative energy [6,7]. This raises a question
of whether or not the chiral anomaly is closely related to
the explicit symmetry breaking of helicity. In recent years,
the discovery of Weyl semimetals revived research interests
on chiral anomaly for massless Dirac fermions in condensed
matter physics [8–14]. A negative longitudinal magnetore-
sistance was regarded as a significant signature to support
the existence of chiral anomaly in gapless Weyl semimetals
and Dirac semimetals [15–22]. However, as more and more
topological materials with finite band gap [23–27] also exhibit
negative magnetoresistance, the mechanism of chiral anomaly
is obviously challenged as the chiral symmetry has already
been broken explicitly by a finite mass. Very recently, Andreev
and Spivak proposed that the helicity imbalance of massive
Dirac fermions may also produce negative magnetoresistance
[28]. Because of the close relation between the helical and
chiral symmetry, it deserves an investigation on the helical
symmetry breaking of massive Dirac fermions and its trans-
port signature in the presence of electric and magnetic fields.
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Furthermore, it may reveal the deep relevance of the helicity
symmetry breaking and the physics of chiral anomaly.

In this Letter, following the Jackiw-Johnson approach to
the anomaly of the neutral axial vector current [29] we derive
the equations for the divergence of the helical current and
axial vector current for massive Dirac fermions in the pres-
ence of electric and magnetic fields. We find the discontinuity
of helicity at the momentum qz = 0 at the zeroth Landau
levels leads to the helical symmetry breaking in the pres-
ence of the electric field. The anomalous correction from the
quantum fluctuation is exactly canceled by the explicit sym-
metry breaking in the band gap. The mass term strongly
revises the coefficient in the equation for the axial vector
current, but keeps the coefficient as constant in the equation
of the helical current. The two equations become equivalent in
the higher energy and massless case. The identical form of the
equations for the helicity and chirality provides deep insight
into the role of helical symmetry breaking in the physics
of chiral anomaly. Physically, the helical symmetry breaking
leads to a charge current circulating along the direction of the
magnetic field, termed the helical magnetic effect. The effect
gives rise to the mass-dependent negative magnetoresistance
in massive Dirac materials.

Helicity in a magnetic field. We start with the massive Dirac
fermions in a finite magnetic field B along the z direction,

H0 = γ 0(γ iv�i + mv2), (1)

where γ 0 = τ1σ0 and γ i = −iτ2σi, with τ and σ being Pauli
matrices of orbital and spin degree of freedom. m is the
Dirac mass and v is the effective velocity. � = h̄q + eA is
the kinematical momentum with the vector potential A =
(−By, 0, 0). Without loss of generality, we assume eB > 0.
Since the presence of the vector potential A does not break
the translation symmetry along the x and z direction, qx and
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FIG. 1. Energy dispersion spectrum of the Landau levels with he-
licity distribution (blue line for right-handed and red for left-handed
helicity). The two black dots indicate the discontinuity of helicity in
the Landau levels of n = 0.

qz are still good quantum numbers. The operator � · � =
τ0σ · � defines the projection of the particle spin at the
direction of motion. By taking advantage of the ladder oper-
ators a = (�x − i�y)/

√
2eBh̄ and a† = (�x + i�y)/

√
2eBh̄

[30], we can obtain the eigenvalues and eigenstates for the
operator [31],

σ · �|n, qx, qz, χn〉 = χn

√
h̄2q2

z + nh̄2�2/v2|n, qx, qz, χn〉,
(2)

where n = 0, 1, 2, . . . are the indices of the Landau levels and
� ≡ √

2v	−1
B is the cyclotron frequency with the magnetic

length 	B = √
h̄/eB. χn stands for the helicity of massive

Dirac fermions: χn = ±1 for n > 0 and χ0 = −sgn(qz ) for
n = 0. The sign change of χ0 around qz = 0 is a peculiar
feature of the Landau level of n = 0 (see the black dots in
Fig. 1). In the basis of helicity eigenstates, the helicity opera-
tor is expressed as

ĥ =
∑

n,qx,qz,χn

χnτ0|n, qx, qz, χn〉〈n, qx, qz, χn|. (3)

The helicity operator commutes with the Hamiltonian,
[ĥ, H0] = 0; thus the helical symmetry survives in a fi-
nite magnetic field. In the helicity basis, the Hamiltonian
is reduced to an effective one-dimensional system H0 =
χn

√
v2h̄2q2

z + nh̄2�2τ3 + mv2τ1. Thus the energy eigenval-
ues are εnζχn = ζ

√
v2h̄2q2

z + m2v4 + nh̄2�2 , where ζ = +1
for the conduction band and −1 for the valence band. The
corresponding eigenstate for each Landau level is [31]

|n, ζ , χn; qx, qz〉 =
(

cos φnζχn

2

ζ sin φnζχn

2

)
⊗ |n, qx, qz, χn〉, (4)

where cos φnζχn = χn

√
nh̄2�2 + v2h̄2q2

z /εnζχn . These
eigenstates are orthogonal to each other as 〈n′, ζ ′, χ ′

n; q′
x,

q′
z|n, ζ , χn; qx, qz〉 = δnn′δζζ ′δχnχ ′

n
δ(q′

x − qx )δ(q′
z − qz ). All

the Landau levels with different qx are degenerated with
the degeneracy nL = eB/2π h̄ per unit area in the x-y plane.
Besides each Landau level has additional double degeneracy
for helicity when n > 0.

Continuity equation for helicity. The presence of an elec-
tric field breaks the helical symmetry for the massive Dirac
fermions. Consider the electric potential V (r) = eE · r for
a uniform electric field E. Since the helicity operator is a
function of momentum, which does not commute the posi-
tion operator r, [ĥ, V̂ ] �= 0. To establish the equation of the
divergence of helical currents, we follow the Jackiw-Johnson
approach to the anomaly of the neutral axial vector current
[4,29], and define the gauge-invariant helical currents

ĵ i
h(z) = lim

εα→0
ψ̄

(
rα + εα

2

)
γ ivĥψ

(
rα − εα

2

)
e−iφ(t,ε0 ), (5)

with φ(t, ε0) = ∫ t+ε0/2
t−ε0/2 V (rα )dt/h̄. ψ and ψ̄ = ψ†γ 0 are the

Dirac spinors. The local density and current are obtained
by taking ε to be small. ρ̂h = limε→0 j0

h (z, ε) and ĵ i
h =

limε→0 ji
h(z, ε). Utilizing the time-dependent Dirac equation,

the divergence of helical currents is given by

∂tρh + ∂i ji
h = − e2

2π2h̄2 E · B − i

h̄

〈
ψ̄γ 0[ĥ, V̂ ]ψ

〉
, (6)

where ρh and ji
h are the expectation values of helical density

and current density at zero temperature. The first term in the
right-hand side of Eq. (6) is given by the anomalous correction
from the quantum fluctuation

Ŝ(z) = ih̄−1 lim
εα→0

[ ĵ0
h (z, ε)ε3 − ĵ3

h (z, ε)ε0]∂zV (r) (7)

for small, but nonzero ε0 and ε3. The divergence of the helical
density as 1/ε3 is caused by the infinity of the Fermi sea in
the valence bands, which was first encountered in the anomaly
of neutral axial vector current [29]. Besides, the second term
in the right-hand side of Eq. (6) comes from the explicit
helical symmetry breaking. In the basis of the eigenenergy, we
find [31]

[ĥ, V̂ ]0 = i2eEz

∑
qx,qz

δ(qz )|0, ζ , χ0; qx, qz〉〈0, ζ , χ0; qx, qz|
(8)

for the Landau levels of n = 0. It is noted that the delta
function originates from the discontinuity of helicity around
qz = 0, i.e., ∂qz sgn(qz ) = 2δ(qz ) (see Fig. 1). The chemi-
cal potential determines the occupancy of the two states
|n = 0, ζ = ±, χ0; qx, qz〉 at qz = 0: each state may con-
tribute one e2

2π2 h̄2 E · B. Combining with the term of anomalous
correction, we obtain the equation for the divergence of
the helical density ρh and current jh in a more compact
form as

∂tρh + ∇ · jh = Ch
e2

2π2h̄2 E · B. (9)

Here Ch = sgn(μ) when the chemical potential is in the con-
duction or valence band and Ch = 0 at the half filling. Thus
the explicit symmetry breaking term and the anomalous cor-
rection are exactly canceled in the right-hand side of Eq. (6)
within the gap. The sign change in the conduction and valence
bands is caused by the opposite velocities of fermions with
identical helicity at the direction of the magnetic field. For the
higher Landau levels of n > 0, the diagonal elements of [ĥ, ẑ]n

always vanish and the off-diagonal elements may contribute to
higher order corrections from the electric field (see details in
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Ref. [31]). Thus Eq. (9) holds for a finite magnetic field and a
weak electric field. It is one of the key results of this Letter.

Chiral anomaly of the massless fermions. The helical
symmetry breaking may provide an alternative approach to
derive the chiral anomaly for massless Dirac fermions. In the
basis of the eigenenergy levels, the chirality operator γ 5 =
iγ 0γ 1γ 2γ 3 becomes

γ 5 =
∑

n,ζ ,χn,qx,qz

ζχn|n, ζ , χn; qx, qz〉〈n, ζ , χn; qx, qz|. (10)

For m = 0, γ5 commutes with the Hamiltonian and
is conserved. In the conduction band of ζ = +1,
γ 5P+ = ĥP+, but in the valence band of ζ = −1,
γ 5P− = − ˆhP−, where the band projection operator
Pζ = ∑

n,qx,qz,χn
|n, ζ , χn; qx, qz〉〈n, ζ , χn; qx, qz|. Thus the

helicity and chirality become identical in the conduction band
and opposite in the valence band. Substituting the relation
into Eq. (9), one can obtain the continuity equation for chiral
anomaly,

∂tρ5 + ∇ · j5 = sgn(|μ|) e2

2π2h̄2 E · B, (11)

where ρ5 and j5 are the chirality density and the corresponding
axial vector current, respectively. This provides an alternative
approach to derive the chiral anomaly from the point of view
of the helical symmetry breaking. Unlike the helicity, the chi-
rality operator is independent of momentum and the presence
of an electric field does not break the chiral symmetry.

Pseudoscalar density and continuity equation of
chirality for massive Dirac fermions. In the presence of a
finite mass m, γ 5 does not commute with the finite mass term,
ψ†[γ 5, H0]ψ = −2imv2nP with the pseudoscalar density
nP = −ψ̄ iγ 5ψ [34,35]. After including the contribution from
the quantum fluctuation, the divergence of the axial vector
currents is given by [29,34]

∂tρ5 + ∇ · j5 = e2

2π2h̄2 E · B − 2

h̄
mv2〈nP〉. (12)

In the absence of an electric field, all diagonal elements of
np vanish in the helicity basis and the off-diagonal elements
connect the conduction and valence bands with the same
Landau index. The expectation value of pseudoscalar density
〈nP〉 is equal to zero for a free gas of Dirac fermions. In the
presence of electric field, the electric potential may couple the
two states of the same momentum and Landau index. Due
to the double degeneracy of the states of the Landau levels
of n > 0, it is found that only the nondegenerated Landau
levels of n = 0 contribute to the nonzero value of 〈nP〉. The
perturbation approach up to the linear electric field E gives

〈nP〉 = (1 − C5)
e2

4π2h̄mv2
E · B. (13)

The coefficient C5 =
√

1 − m2v4

μ2 for |μ| � mv2 and C5 = 0
otherwise [36]. Then, the equation for the axial vector currents
becomes [31]

∂tρ5 + ∇ · j5 = C5
e2

2π2h̄2 E · B. (14)

Ch
C5

C
h/
5

µ/mv2
20-2 44-

1.0

0.5

0.0

-0.5

-1.0

FIG. 2. Comparison of the coefficients Ch/5 in the equations for
the divergence of the helical current and axial vector currents in
Eqs. (9) and (14).

Again the symmetry breaking term caused by the mass cancels
the anomalous correction e2

2π2 h̄2 E · B from quantum fluctuation
out when the valence band is fully filled. Clearly, the chirality
is not a good quantum number for a nonzero mass. We cannot
define a chirality-dependent potential via the energy levels of
free fermions as we do for the helicity, but the chirality density
are still closely related to the helicity density. Consider a tiny
helical potential μh near the chemical potential μ. It is found
that ρ5 =

√
1 − m2v4

μ2 ρh. This demonstrates that the two quan-
tities tend to be equal when μ is much larger than the band
gap 2mv2 or the mass approaches zero. When μ is located
near the band bottom, the chirality density approaches zero.
Thus the equations for helical current and axial current density
are consistent with each other. A straightforward comparison
of the coefficients on the right-hand side in Eqs. (9) and (14)
is presented in Fig. 2. It illustrates clearly the difference and
connection between the two equations for a different chemical
potential.

Helical magnetic effect. For a nearly free gas of mas-
sive Dirac fermions, the helicity density is equal to zero. If
the helicity balance is broken, the chemical potentials for
fermions of different helicity deviate from the equilibrium
value μ: one increases and another decreases, i.e., μ± =
μ ± μh/2. If there is no other interaction, the helicity is still
conserved. The helicity-dependent current for χ = ±1 can
be calculated independently. The electric current density is
given by the difference of the helical currents for two distinct
helicities [31],

j = e2

4π2h̄2 (|μ+| − |μ−|)B. (15)

This means that, if two chemical potentials are not equal, a
charge current circulates at the direction of the magnetic field.
The field dependent current was named the helical magnetic
effect [37,38]. The effect is equivalent to the chiral magnetic
effect when the mass m approaches zero as the helicity and
chirality become identical [28,39–41].

One remarkable transport consequence of the helical
magnetic effect is the magnetoconductivity in Dirac/Weyl
semimetals. In the presence of impurity scattering, the in-
terhelicity scattering process can maintain a nonzero helical
charge imbalance near the Fermi energy μ in the background
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of the electromagnetic field. The scattering potentials are
functions of position and do not commute with the helicity
operator. Thus we assume the scattering potentials Vs are
not so strong such that the averaged value of [ĥ,Vs] is still
negligible. With a characteristic relaxation time τh between
different helical electrons, one can introduce a relaxation term
in the continuity equation, ∂tρh = sgn(μ) e2

2π2 h̄2 E · B − ρh

τh
. For

the equilibrium state ∂tρh = 0, the solution for ρh is found
as ρh = sgn(μ) e2

2π2 h̄2 E · Bτh [42]. When |μh| � |μ|, the cor-
responding helical chemical potential can be found as μh ≈
2ρh

g(μ) , where g(μ) is the total density of states at the Fermi
energy. Then, the helical magnetic effect leads to a nonzero
field-dependent current density as

jHME =
( e

π h̄

)4 τh

4g(μ)
E · BB. (16)

Accordingly, the helicity-induced magnetoconductivity is
given by σ h

i j = e4

4π4 h̄4g(μ)
τhBiBj . The interhelicity scattering

time τh is determined by the impurity scattering potentials.
This equation is valid from the weak magnetic field to the
quantum limit regime. In the weak magnetic field, the den-
sity of state at the Fermi energy is g(μ) = μqF

π2v2 h̄2 , with qF =√
μ2 − m2v4/vh̄. The matrix element of magnetoconductiv-

ity tensor due to the helical magnetic effect reads σ h
i j =

e2

4π2 h̄
e2v3

μvh̄qF
τhBiBj . The longitudinal magnetoconductivity is

consistent with the result for massive and massless cases
[12,17,28], while the transverse magnetoresistance gives rise
to the planar Hall effect [43]. In the Born approximation,
the interhelicity scattering time is found to reach a maximal
value at m = 0, and decays with the increase of the mass,
which results in a mass-dependent magnetoconductance in
Dirac materials [31]. In the quantum limit regime, the density
of state at Fermi energy μ is found as g(μ) = μ

2π2	2
Bv2 h̄2qF

, and

the corresponding longitudinal magnetoconductivity becomes
σ h

zz = e3v

2π2 h̄2
vh̄qF

μ
τhB, which is a linear function of the magnetic

field once τh is a constant in the massless limit. For a moder-
ately strong magnetic field, the density of states will oscillate
with the magnetic field, and there are quantum oscillations in
the magnetoconductivity.

Discussion and conclusion. The full cancellation of the ex-
plicit symmetry breaking and the anomalous correction in the
band gap reflects the quantum anomaly in the massive Dirac
fermions. The anomalous correction arises by introducing the
gauge invariant currents in Eq. (5), and is an electromagnetic

response from the infinite Dirac sea. Here it is worth pointing
out that the approach is different from the method based on the
variation of charge density of particles in the zeroth Landau
levels [15,28], in which all other negative energy levels are
neglected and is actually irrelevant to physics of the quantum
anomaly. This point can be further clarified in the following
example. Consider the nonrelativistic Pauli Hamiltonian for
a free electron gas in a magnetic field, HP = (σ · �)2/2m =
�2/2m + eh̄

2m Bσz. The helicity is conserved: [σ · �, HP] = 0.
The helical symmetry breaking in an electric field leads to
an identical continuity equation for the divergence of helical
density and current as in Eq. (9) for μ > 0 [31], which is
consistent with the picture of the Landau levels. However, it is
unrelated to the physics of quantum anomaly since there are
no infinite negative energy states at all. The helical symme-
try breaking in this system may also give rise to a negative
longitudinal magnetoresistance. Of course it should be noted
that the effect disappears if the Zeeman field is absent, i.e., in
H = �2/2m.

In summary, we derived the two equations for the diver-
gence of helical current and axial vector current in electric and
magnetic fields. We discovered the discontinuity of helicity
at the zeroth Landau levels leads to the helical symmetry
breaking in the presence of the electric field. The occupancy
of the states at the top of the valence band and the bottom of
the conduction band contributes one in the unit of e2

2π2 h̄2 E · B
in the equation of the divergence of the helical currents. The
anomalous corrections from the quantum fluctuation for both
helicity and chirality are canceled exactly by the explicit sym-
metry breaking to guarantee the conservation laws when the
chemical potential is located within the energy gap. In the
case of higher energy or tiny mass |μ|  mv2, the equations
for helicity and chirality become equivalent (only differing
by a sign for positive and negative energy). This provides
an alternative route to understanding the chiral anomaly from
the point of view of the helical symmetry breaking. The two
equations may shed some insights into the physics of the
chiral anomaly in the quantum field theory, as well as peculiar
transport behaviors in condensed matter. For instance, as a
peculiar feature of massive Dirac fermions in a magnetic field,
the helical magnetic effect can give rise to a mass-dependent
positive magnetoconductance.
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