
Patient pIgR-enriched extracellular vesicles drive cancer
stemness, tumorigenesis and metastasis in

hepatocellular carcinoma

Graphical abstract

Anti-pIgR antibodyHepatocellular
carcinoma (HCC)

Liver

EV-pIgR P PDK1

Akt1

GSK3β

P

P
β-catenin

Cyto D
Self-renewal

Tumorigenesis

Metastasis

Highlights

� Elevated pIgR levels are found in circulating extracellular vesicles
from patients with liver cancer.

� EV-pIgR promotes cancer stemness and cancerous phenotypes in
recipient liver cancer cells.

� EV-pIgR promotes liver cancer cell aggressiveness by activating the
PDK1/Akt/GSK3b/b-catenin signaling axis.

� Combined treatment using sorafenib and anti-pIgR antibody atten-
uates growth of patient-derived xenografts in mice.
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underlying mechanism by which
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is crucial to improving the diag-
nosis and treatment of patients.
Herein, we demonstrated that
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cles released by tumors promote
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Background & Aims: Extracellular vesicles (EVs) play a pivotal catenin signaling axis. Furthermore, an anti-pIgR neutralizing

role in connecting tumor cells with their local and distant mi-
croenvironments. Herein, we aimed to understand the role (on a
molecular basis) patient-derived EVs play in modulating cancer
stemness and tumorigenesis in the context of hepatocellular
carcinoma (HCC).
Methods: EVs from patient sera were isolated, quantified and
characterized. The EVs were vigorously tested, both in vitro and
in vivo, through various functional assays. Proteomic analysis was
performed to identify the functional components of EVs. The
presence and level of polymeric immunoglobulin receptor (pIgR)
in circulating EVs and tumor and non-tumorous tissues of pa-
tients with HCC were determined by ELISA, immunoblotting,
immunohistochemistry and quantitative PCR. The functional role
and underlying mechanism of EVs with enhanced pIgR expres-
sion were elucidated. Blockade of EV-pIgR with neutralizing
antibody was performed in nude mice implanted with patient-
derived tumor xenografts (PDTXs).
Results: Circulating EVs frompatientswith late-stage HCC (L-HCC)
had significantly elevated pIgR expression compared to the EVs
released by control individuals. The augmenting effect of L–HCC–
EVs on cancer stemness and tumorigenesis was hindered by an
anti-pIgR antibody. EVs enriched with pIgR consistently promoted
cancer stemness and cancerous phenotypes in recipient cells.
Mechanistically, EV-pIgR-induced cancer aggressiveness was
abrogated by Akt and b-catenin inhibitors, confirming that the role
of EV-pIgR depends on the activation of the PDK1/Akt/GSK3b/b-
communication;
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antibody attenuated tumor growth inmice implanted with PDTXs.
Conclusions: This study illustrates a previously unknown role of
EV-pIgR in regulating cancer stemness and aggressiveness: EV-
pIgR activates PDK1/Akt/GSK3b/b-catenin signaling cascades.
The blockade of the intercellular communication mediated by
EV-pIgR in the tumor microenvironment may provide a new
therapeutic strategy for patients with cancer.
Lay summary: The World Health Organization estimates that
more than 1 million patients will die from liver cancer, mostly
hepatocellular carcinoma (HCC), in 2030. Understanding the
underlying mechanism by which HCC acquires aggressive attri-
butes is crucial to improving the diagnosis and treatment of
patients. Herein, we demonstrated that nanometer-sized extra-
cellular vesicles released by tumors promote cancer stemness
and tumorigenesis. Within these oncogenic vesicles, we identi-
fied a key component that functions as a potent modulator of
cancer aggressiveness. By inhibiting this functional component
of EVs using a neutralizing antibody, tumor growth was pro-
foundly attenuated in mice. This hints at a potentially effective
therapeutic alternative for patients with cancer.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of Euro-
pean Association for the Study of the Liver. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction
Hepatocellular carcinoma (HCC) accounts for the majority of
primary liver cancers and is currently the fourth leading cause of
cancer-related death worldwide.1 HCC is often diagnosed at an
advanced stage, thus precluding curative surgical resection.
Therapeutic options for advanced HCC are limited in availability
and efficacy. Therefore, understanding how HCC acquires
aggressive traits is important to revamp the current state of early
diagnosis and treatment.
022 vol. 76 j 883–895
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Fig. 1. Circulating EVs from patients with HCC promote HCC cell aggressiveness. (A) Migration and invasion assays of HCC cells pretreated with the indicated
EVs. (B) Colony formation assay of EV-treated cells. (C) Schematic diagram of the EV education model. (D) Bioluminescence imaging of animals at the end of the
experiment (n = 5). (E) Ex vivo bioluminescence imaging of liver and lung tissues. (F) Schematic diagram of the experimental metastasis assay. (G) Biolumi-
nescence imaging of excised lungs (left). The intensity of signals in the lung were plotted (middle). Image of lungs after fixation (right). Tumor nodules are
indicated by arrows. (H) H&E staining of lung tissues. Scale bar, 200 lm. (I) Analysis of lung vessel leakiness. Arrowhead indicates areas with diffused dextran.
Scale bar: 20 lm. Data are presented as the mean ± SEM. Student’s t test was used for 2 groups. *p <0.05; **p <0.01; ***p <0.001; n.s., not significant. Cirrhosis-EV,
EV from patients with HBV-related cirrhosis; E–HCC–EV, EV from patients with early HCC; EVs, extracellular vesicles; HCC, hepatocellular carcinoma; L–HCC–EVs,
EVs from patients with late HCC; Normal-EV, EVs from healthy individuals.
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Fig. 2. Circulating EVs from patients with late-stage HCC enhance the cancer stemness properties of HCC cells. (A) Hepatosphere formation and serial
passage of HCC cells pretreated with the indicated EVs before plating. Representative photographs of spheroids formed after incubation. The histogram indicates
the number of spheres formed per 1,000 cells. P1 and P2 represent passage 1 and 2, respectively. (B) Flow cytometry analysis of CD90 and CD133 expression in
HCC cells treated with PBS or EVs. (C) Apoptosis assay in which EVs and sorafenib-treated cells were stained with PI and annexin V-FITC. Flow cytometry was
conducted to determine the percentage of apoptotic cells. (D) Image of tumors formed by 1,000 and 5,000 PLC/PRF/5 cells treated with or without EVs before
subcutaneous injection into NOD/SCID mice (n = 8). (E) Tumor-free survival curves of mice injected with 5,000 cells in the primary (left) and secondary (right)
implantation are shown. Data are presented as the mean ± SEM. Student’s t test was used for 2 groups, and a log-rank (Mantel-Cox) test was used for survival
curves. *p <0.05; **p <0.01; ***p <0.001; n.s., not significant. EVs, extracellular vesicles; HCC, hepatocellular carcinoma; L–HCC–EVs, EVs from patients with late
HCC; Normal-EV, EVs from healthy individuals; PI, propidium iodide.
Growing evidence has revealed that intercellular communi-
cation is mediated not only by direct cellular contact and soluble
factors, but also by extracellular vesicles (EVs). EVs are
membrane-derived nanometer-sized vesicles that function by
transferring donor cell-derived bioactive molecules, including
lipids, nucleic acids and proteins, into recipient cells. The tumor
microenvironment is a heterogeneous and composite milieu that
supports cancer cell growth, survival and metastasis. Evidently,
Journal of Hepatology 2
cancer cell-derived EVs are critical messengers that connect tu-
mor cells with their local and distant microenvironments,
orchestrating multiple systemic pathophysiological processes to
facilitate cancer progression.

Despite the multifarious effect of EVs in cancer development,
the role of EVs associated with cancer stem cells (CSCs) remains
uncertain, and the function of EVs in hepatic CSCs is scarcely
reported. In a chemically induced HCC rat model, EVs derived
022 vol. 76 j 883–895 885
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Fig. 3. pIgR-enriched circulating EVs are found in patients with HCC. (A) Proteins modulated by >2-fold in L–HCC–EVs when compared to Normal-EVs
analyzed from proteomic profiling are listed. (B) Immunoblot showing pIgR expression in the indicated EVs, with GAPDH as the loading standard. (C) ELISA
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mRNA expression between T and NT liver tissues (n = 50). A fold difference >2 was considered to indicate upregulation or downregulation. (L) Representative
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from hepatic CSCs augmented tumor growth and metastasis.2 In
addition, EVs derived from CD90+ liver cancer cells modulated
endothelial cells to facilitate angiogenesis in HCC.3 The signifi-
cant impact of CSCs and EVs in HCC underscores the need for a
better understanding of the link between EVs and liver CSCs.

Polymeric immunoglobulin receptor (pIgR) is widely
expressed in mucosal epithelial cells and regulates transcytosis
of dimeric IgA and pentameric IgM, which are the first-line an-
tibodies against initial infection. Expression of pIgR is upregu-
lated by proinflammatory cytokines upon viral or bacterial
infection, thus bridging innate and adaptive immunity.4

Emerging findings have revealed the aberrant expression of
pIgR in cancerous tissues. However, the clinical relevance and
functions of pIgR in tumor cells remain uncertain. Intriguingly,
studies have yet to report on the functional role of pIgR when
expressed by tumor-derived EVs. For the first time, we identified
pIgR as a key molecule that confers oncogenic effects on circu-
lating EVs from patients with HCC. Herein, we uncover the role of
pIgR-enriched EVs in enhancing cancer stemness and aggres-
siveness, and provide insight into the clinical relevance of pIgR as
a promising biomarker and therapeutic target in HCC.

Materials and methods
Human samples
Serum samples were randomly collected from healthy donors
with non-liver disease backgrounds (as controls), individuals
with chronic HBV infection and individuals with liver disease
(cirrhosis, early HCC and late HCC) who had not received any
treatment. Information on serum donors is listed in Table S1. The
collection of serum samples was executed at Queen Mary Hos-
pital, Hong Kong and Zhujiang Hospital, Guangzhou, China with
informed consent from all donors. Procedure approval was ob-
tained from the Institutional Review Board of The University of
Hong Kong/Hospital Authority Hong KongWest Cluster (HKU/HA
HKW IRB) and Zhujiang Hospital of Southern Medical University.
All experiments involving human samples were handled in
accordance with relevant ethical regulations.

Statistical analysis
The readings of all assays were calculated as the mean ± SEM.
Student’s t test, ANOVA and log-rank (Mantel-Cox) tests per-
formed using Prism software (version 8.0.1, GraphPad) were used
for statistical analysis. A p value of less than 0.05 was considered
statistically significant.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
HCC patient-derived EVs promote aggressive phenotypes in
HCC cells
EVs derived from HCC cell lines have been shown to play pivotal
roles in enhancing HCC aggressiveness5,6; however, the physio-
logical relevance of their functional effect in patients remains
ambiguous. Circulating EVs were collected from healthy
images of pIgR expression with intensity scores (0-3). Scale bar, 100 lm. (M) T
expression (right) were plotted (n = 143). (N) Representative cases with pIgR overe
depicted in the pie chart. Data are presented as the mean ± SEM. Student’s t tes
Cirrhosis-EV, EV from patients with HBV-related cirrhosis; E–HCC–EV, EV from
noma; L–HCC–EVs, EVs from patients with late HCC; Normal-EV, EVs from healt
T, tumor.
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individuals (Normal-EVs), and from patients with chronic HBV
infection, HBV-related cirrhosis, early HCC (E–HCC–EVs) or late
HCC (L–HCC–EVs) for functional analyses. Based on the Minimal
Information for Studies of Extracellular Vesicles (MISEV) guide-
lines,7 the isolated EVs were validated by their expression of
small EV markers, size and morphology (Fig. S1A-S1C). Notably,
the greatest amount of EVs was obtained from late-stage patients
compared to other serum donors (Fig. S1D).

EVs from patients with HCC but not Normal-EVs increased the
growth and motility of Huh7 and PLC/PRF/5 cells (Fig. S2A-S2D).
Compared to Normal-, Cirrhosis- and E–HCC–EVs, L–HCC–EVs
exhibited the highest potency in promoting cell migration,
invasiveness and colony formation (Fig. 1A-B) and in enhancing
tumor development (Fig. S2E). In an orthotopic liver implanta-
tion model, repeated injection of L–HCC–EVs into mice resulted
in enhanced liver tumor formation and distant lung metastasis
(Fig. 1C-E). A consistent effect of L–HCC–EVs in promoting
metastasis was observed in an experimental metastasis assay
involving coinjection of EVs and murine p53-/-;Myc-transduced
hepatoblasts (Fig. 1F-H). L–HCC–EVs were shown to reduce
expression of the tight junction protein VE-cadherin in human
umbilical vein endothelial cells (Fig. S3) and enhance endothelial
permeability in mice (Fig. 1I). These findings suggest that the
promotion of metastasis could be ascribed to leakiness in the
pulmonary vasculature induced by L–HCC–EVs, thus facilitating
extravasation and colonization of tumor cells in the lungs.

HCC patient-derived EVs promote cancer stemness in
HCC cells
In addition to modulating the cancer phenotypes of tumor cells,
L–HCC–EVs increased the cancer stemness properties of HCC
cells. HCC cells treated with L–HCC–EVs but not Normal-EVs
showed a marked increase in the ability to form tumorspheres
in a spheroid formation assay (Fig. 2A) and enhanced expression
of the CSC markers CD90 and CD133 (Fig. 2B). L–HCC–EVs also
increased the expression of CD24, CD47 and EpCAM in Huh7 cells
but not in PLC/PRF/5 cells (Fig. S4). In addition, L–HCC–EVs
reduced the sensitivity of cells to sorafenib (Fig. 2C). Limiting
dilution analysis performed in NOD/SCID mice showed that HCC
cells treated with L–HCC–EVs displayed a significant enhance-
ment in tumorigenicity, with an increased tumor incidence,
shorter tumor latency and increased estimated tumor-initiating
cell frequency compared to cells treated with PBS or Normal-
EVs (Table S2). The self-renewal ability of L–HCC–EV-treated
cells was further expedited as revealed by serial transplantation
of primary xenografts into secondary mouse recipients (Fig. 2D).
L–HCC–EV-treated cells showed significantly worse tumor-free
survival than cells treated with PBS or Normal-EVs after both
primary and secondary implantation (Fig. 2E).

pIgR is upregulated in circulating EVs of patients with HCC
To ascertain differences in biological activities between EVs of
healthy controls and those of patients, their proteomic profiles
were compared. Among candidates that were modulated by at
he number of cases with each intensity score (left) and the H-scores of pIgR
xpression. Scale bar, 100 lm. Alteration of pIgR expression in paired samples are
t for 2 groups was used. *p <0.05; **p <0.01; ***p <0.001; n.s., not significant.
patients with early HCC; EVs, extracellular vesicles; HCC, hepatocellular carci-
hy individuals; NT, non-tumorous; pIgR, polymeric immunoglobulin receptor;
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least 2-fold in L–HCC–EVs compared to Normal-EVs, pIgR –

which has been implicated in HCC8,9 – was chosen for further
investigation (Fig. 3A). Upregulation of pIgR in E–HCC– and L–
HCC–EVs was corroborated by immunoblotting (Fig. 3B). A sig-
nificant increase in pIgR was consistently detected in a cohort of
patients’ circulating EVs (Fig. 3C). The level of EV-pIgR was
reduced in 72% (18/25) of patients after surgery (Fig. 3D).
Immunogold labeling revealed the presence of pIgR on the sur-
face of CD63+ circulating EVs (Fig. 3E). A higher level of pIgR was
detected in EVs from metastatic HCC cells than in EVs from
normal liver and non-metastatic cells (Fig. 3F). Similar pIgR
expression profiles were also observed at both the transcript
(Fig. 3G) and protein (Fig. 3H) level in HCC cell lines. In mice
implanted with tumor seeds derived from metastatic
MHCC97L cells, the level of circulating EV-pIgR progressively
increased during tumor development (Fig. 3I). These data indi-
cate that tumors were likely the major source of EV-pIgR and
that its level could be an indicator of tumor development. Similar
to EV-pIgR, overall pIgR mRNA expression was significantly
upregulated in tumorous tissues compared to non-tumorous
tissues (Fig. 3J). Notably, the pIgR transcript was upregulated in
56% (28/50) of patients with HCC (Fig. 3K). In a tissue microarray
comprising 143 paired HCC samples, strong (score 3) and mod-
erate (score 2) positive staining of pIgR was detected in 91.6%
(131/143) of tumorous tissues, whereas 62.9% (90/143) of non-
tumorous tissues showed weak positive (score 1) or negative
staining (score 0) (Fig. 3L-M). The H-score revealed a signifi-
cantly higher immunoreactivity of pIgR in tumorous tissue
(Fig. 3M). Frequent overexpression of pIgR was found in 77.6%
(111/143) of cases (Fig. 3N).
pIgR is functionally responsible for the tumor-promoting
effect of HCC patient-derived EVs
Due to the presence of pIgR on the surface of EVs (Fig. 3E), we
examined whether neutralizing antibody against pIgR was able
to block the tumor-promoting effect of L–HCC–EVs. Indeed,
cotreatment with anti-pIgR antibody blocked the effect of L–
HCC–EVs on colony formation, migration and invasion of PLC/
PRF/5 cells (Fig. 4A,B). Furthermore, the metastasis of murine
p53-/-;Myc-transduced hepatoblasts induced by L–HCC–EVs was
significantly hindered by coinjection with anti-pIgR antibody in
the experimental metastasis assay (Fig. 4C-F). Anti-pIgR antibody
also abrogated L–HCC–EVs’ ability to promote the in vitro self-
renewal and the percentage of CD90-and CD133-expressing
888 Journal of Hepatology 2
PLC/PRF/5 cells (Fig. 4G,H), as well as to reduce the sensitivity
of HCC cells to sorafenib (Fig. 4I). The augmenting activity of L–
HCC–EVs was also observed in Huh7 cells and was neutralized by
anti-pIgR antibody (Fig. S5). These findings suggest that circu-
lating EVs from patients with HCC augment the cancer stemness
properties of cells through the functions of pIgR.

To identity the functional role of pIgR in EVs, pIgR was stably
expressed in Huh7 cells using CRISPR synergistic activation medi-
ators (SAM-pIgR) and an EV-targeting expression vector (XP-pIgR)
(Fig. S6A-S6B). EVs collected from the conditionedmediumof SAM-
pIgR and XP-pIgR cells showed upregulated pIgR compared to EVs
collected from the respective control SAM-CTL and XP-CTL cells.
The purityand integrityof the isolatedEVswere validated (Fig. S6A,
S6C,D). As revealed by various in vitro functional assays, SAM-pIgR-
EVs and XP-pIgR-EVs enhanced the cancer properties of PLC/PRF/5
and Huh7 cells (Fig. 5A-C; Fig. S7A-S7C). This augmenting effect of
SAM-pIgR-EVs and XP-pIgR-EVs in promoting Huh7 cell migration
and invasion was abolished by the addition of anti-pIgR antibody
(Fig. S7D-S7E). XP-pIgR-EVs were capable of promoting the
metastasis ofmurine p53-/-;Myc-transducedhepatoblasts (Fig. 5D-
F). Furthermore, XP-pIgR-EVs promoted in vitro self-renewal,
increased the CD90-and CD133-expressing PLC/PRF/5 population
(Fig. 5G-H) and suppressed the sensitivity of HCC cells to sorafenib
(Fig. 5I). Serial transplantation assays showed that PLC/PRF/5 cells
treated with XP-pIgR-EVs displayed a significant enhancement in
tumorigenicity, with an increased tumor incidence, shorter tumor
latency and increased estimated tumor-initiating cell frequency,
compared to cells treated with PBS or XP-CTL-EVs (Table S3). The
self-renewal ability of XP-pIgR-EV-treated cells was further
increased in secondary implants compared to primary xenografts
(Fig. 5J). XP-pIgR-EV-treated cells showed worse tumor-free sur-
vival than cells treated with PBS or XP-CTL-EVs (Fig. 5K). Taken
together, thesefindings demonstrate that the functional capacity of
EV-pIgR was consistent with the clinical results showing an upre-
gulation of EV-pIgR in patients with HCC. Importantly, these data
suggest a previously undiscovered role of EV-enriched pIgR in
promoting HCC aggressiveness, which prompted us to investigate
the underlying molecular basis of this observation.
EV-pIgR activates b-catenin signaling through PDK1/Akt/
GSK3b signaling
The expression of genes that are involved in cancer stemness and
drug resistance regulation was analyzed in PLC/PRF/5 and Huh7
cells treated with Normal-EVs and L–HCC–EVs (Fig. 6A). L–HCC–
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EVs exerted the highest potency in activating b-catenin expres-
sion, highlighting its potential in prompting malignant behav-
iors. The TOP/FOP reporter system demonstrated the activation
of b-catenin activity by L–HCC–EVs (Fig. 6B). These observations
Journal of Hepatology 2
were further confirmed by immunofluorescence microscopy
which revealed a notable increase in nuclear translocation of b-
catenin in HCC cells following treatment with EVs with enhanced
pIgR expression (Fig. 6C,D; Fig. S8A,B). Notably, the nuclear
022 vol. 76 j 883–895 889
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translocation of b-catenin activated by L–HCC–EVs was sup-
pressed by treatment with an endocytosis inhibitor, cytochalasin
D, indicating that EVs were taken up by cells via endocytosis.

Phosphorylation of PDK1 leads to activation of Akt, which
subsequently phosphorylates GSK3b, leading to stabilization and
nuclear translocation of b-catenin. b-catenin signaling has been
reported to regulate tumorigenesis, cancer stemness and che-
moresistance.10 XP-pIgR-EVs increased PDK1, Akt and GSK3b
phosphorylation (Fig. 6E; Fig. S8C), and this activation was
blocked by cytochalasin D, suggesting that cellular uptake of EVs
Journal of Hepatology 2
was required. In PLC/PRF/5 cells, the phosphorylation of Akt and
GSK3b induced by XP-pIgR-EV was diminished by the Akt in-
hibitor IV and the b-catenin inhibitor PRI-724 (Fig. 7A). Func-
tionally, treatment with these inhibitors abrogated the
promoting effect of XP-pIgR-EVs on HCC cell growth and motility
(Fig. 7B-D). Moreover, the effect of XP-pIgR-EVs on enhancing
the in vitro self-renewal ability of PLC/PRF/5 cells, the percentage
of CD90+ and CD133+ cells (Fig. 7E-F) and the sensitivity of cells
to sorafenib (Fig. 7G) was diminished by cotreatment with the
inhibitors. These findings demonstrate that pIgR-enriched EVs
022 vol. 76 j 883–895 891
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promote cancer and cancer stemness properties through the
PDK1/Akt/GSK3b/b-catenin axis.
Targeting EV-pIgR with a pIgR neutralizing antibody is a
potential therapeutic option for HCC
The therapeutic effect of the anti-pIgR antibody and sorafenib
was tested in mice implanted with PDTXs that expressed pIgR
(Fig. 8A). Administration of anti-pIgR antibody or sorafenib
suppressed tumor growth compared to vehicle treatment
892 Journal of Hepatology 2
(Fig. 8B). Remarkably, cotreatment with sorafenib and anti-pIgR
antibody exerted the most potent inhibitory effect on tumor
formation. We did not observe signs of distress or significant
changes in the body weights of mice in any treatment group
(Fig. 8C). The weight and dimensions of dissected tumors were
significantly reduced in mice subjected to combined treatment
with sorafenib and anti-pIgR antibody (Fig. 8D). Immunohisto-
chemistry analysis revealed no change in cellular pIgR expres-
sion in tumors from different treatment groups, suggesting that
022 vol. 76 j 883–895
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the pIgR neutralizing antibody acts by targeting EV-pIgR but not
endogenous pIgR (data not shown).

Discussion
Dysregulation of pIgR was initially reported 45 years ago in
malignantly transformed epithelial cells.11–13 Since then, studies
have reported contrasting expression of pIgR in different human
carcinomas,14–23 and its role in prognostication of carcinomas
remains inconclusive. pIgR was previously implicated in metas-
tasis by a study demonstrating its positive expression in hepatic
metastatic tissues of colon carcinoma.24 pIgR has been reported
to be mostly expressed in cholangiocytes, contributing to an
increased secretory pIgR level in the serum.25–27 Immunohisto-
chemistry of pIgR revealed low to medium staining in hepato-
cytes but no staining in cholangiocytes based on data retrieved
from the Human Protein Atlas. Comparison of tissue expression
levels in cholangiocarcinoma (CCA) and HCC in the Cancer
Genome Atlas and the Genotype-Tissue Expression databases
revealed pIgR expression in both carcinoma types, although
there was no significant difference between tumorous and non-
tumorous tissue. In line with the reported overexpression of pIgR
in HCC,8,9,28 we observed increased transcript and protein levels
of pIgR in tumorous tissue compared with their counterparts, as
well as in metastatic HCC cells compared with non-metastatic
HCC cells and immortalized liver cells. Our findings suggest
Journal of Hepatology 2
that pIgR is highly expressed in hepatocarcinoma cells and plays
important oncogenic functions in HCC. More than 30 years ago,
the detection of high levels of secretory components, which
result from proteolytic cleavage of pIgR, in the sera of patients
with HCC was reported.27 High levels of secretory pIgR have also
been detected in the sera of patients with bladder carcinoma,
lung carcinoma and colonic carcinoma with liver metastasis.29–31

Previously, the existence of pIgR within EVs has been reported in
both CCA and HCC.32 In the present study, our data underscore
the importance of EV-pIgR in hepatocarcinogenesis and the po-
tential of EV-pIgR as a diagnostic and prognostic marker in HCC.

Although alterations in pIgR expression have been detected in
different cancer types, the understanding of the mechanism
leading to dysregulation of pIgR is limited. In HBV-related HCC,
pIgR interacts with and activates the Smad2/3 complex leading
to epithelial-mesenchymal transition (EMT), providing a missing
link between chronic inflammation and HCC metastasis.8 Of
note, it is possible that HBV-related chronic inflammation might
contribute to changes in the microenvironment, which result in
increased pIgR expression and promote HCC metastasis. Addi-
tionally, a previous study suggested EV-pIgR is a non-specific
biomarker related to inflammation in CCA and HCC.32 However,
we did not observe an increased level of EV-pIgR in either pa-
tients with HBV or cirrhosis. Thus, the involvement of EV-pIgR in
persistent inflammation and viral hepatitis requires further in-
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depth investigation. The functional link between pIgR and EMT is
also substantiated by its inverse correlation with E-cadherin
expression in pancreatic cancer.33 In addition, pIgR activates the
Rac1/CDC42-MEK/ERK cascade to promote HCC tumor growth.9

Another study revealed that bufalin inhibits HCC cell growth
and motility by suppressing APOBEC3 and pIgR.34 pIgR has been
shown to exert oncogenic functions by activating ribosomal
proteins in HCC.28 However, these studies were either conducted
in a physiologically irrelevant canine kidney cell line MDCK or in
SMMC7721, BEL7404 and SKHEP1 cells which have been re-
ported to be either HeLa cell contaminated or of endothelial
origin.35 Therefore, it is not surprising that neither endogenous
pIgR nor EV-pIgR activated Smad2/3 signaling and induced EMT
in HCC cells (data not shown).8 Here, the EV-pIgR-induced PDK1/
Akt/GSK3b/b-catenin axis was observed in different HCC cell
lines, regardless of their b-catenin mutation or activation sta-
tus.36 This mechanistic finding demonstrates how an immuno-
globulin can be associated with tumorigenesis induced by EVs.

Intriguingly, during our establishment of stable clones with
enhanced pIgR expression, we noticed the discrete molecular
size of endogenous pIgR and EV-pIgR. Treatment of cells with the
N-glycosylation inhibitor tunicamycin blocks the glycosylation of
pIgR, revealing 2 distinct sizes of �110 kDa and �83 kDa.17,37

Functionally, the glycosylation of pIgR aids in transcytosis and
mediates the attachment of bacteria.37,38 To date, the functional
implications of non-glycosylated pIgR remain elusive. Our find-
ings suggest that pIgR residing within EVs is in a non-
glycosylated form. Importantly, our observation reveals an un-
reported oncogenic function of non-glycosylated EV-pIgR.
However, the detailed regulatory mechanism of deglycosylation
of pIgR during its packaging into EVs remains unanswered and
requires further investigation.

Sorafenib is the first-line systemic therapy for patients with
inoperable advanced HCC; unfortunately, the effect of sorafenib
is modest, and most patients are highly resistant to sorafenib.39

Other multikinase inhibitors, such as lenvatinib, regorafenib
and carbozantinib, are not superior to sorafenib in terms of
survival. In 2020, bevacizumab (anti-VEGF antibody) plus ate-
zolizumab (anti-PD-L1 antibody) treatment was approved as a
first-line treatment for unresectable HCC.40 The combination
strategy, which has a substantially better outcome than sorafenib
alone, acentuates the advantages of combination treatment over
monotherapy. Herein, our findings suggest that blockade of EV-
pIgR with neutralizing antibodies either alone or in combina-
tion with sorafenib or other therapeutic agents may serve as a
therapeutic option beyond the current limited treatments
for HCC.

In conclusion, our study provides compelling evidence
implicating patient-derived EVs with enhanced pIgR expression
as key mediators of HCC cancer stemness and tumorigenesis. We
also demonstrate that EV-pIgR exerts oncogenic functions via
activation of b-catenin and that blockade of EV-pIgR with a
neutralizing antibody is a potential treatment alternative.
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