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Abstract

Detecting coherent phonons pose different challenges compared to coherent photons due to the much
stronger interaction between phonons and matter. This is especially true for high frequency heat
carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with
the environment, and are thus generally assumed to be incoherent. Two photon interference
techniques, especially coherent population trapping (CPT) and electromagnetically induced
transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we
propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike
prior works which have treated phonon coupling as damping, we account for coherent phonon
coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption
spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon
coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal
has application in sensing heat carrying coherent phonons effects and understanding coherent
bosonic multi-pathway interference effects in three coupled oscillator systems.

Phonons are packets of vibrational energy that shares many similarities with its bosonic cousin photons.
Advances in nanofabrication has enabled many parallels between the development of photon and phonon
control. Parallel developments in passive control techniques include photonic [ 1] versus phonoic crystals [2],
optical [3] versus acoustic metamaterials [4] etc. Development in active manipulation of electromagnetic waves
through light—matter interaction have led to creation of nanoscale optical emitters [5] and gates [6] and similar
progress have been made in controlling phonons using their interaction with matter especially in the realms of
optomechanics [7] and phononic devices 8, 9]. Phonons span a vast frequency range and while techniques to
control and sense lower frequency coherent phonons have been well-developed [10-19], heat carrying coherent
terahertz acoustic phonons have been harder to measure directly due to the small wavelength and numerous
scattering mechanism at these small wavelengths [20].

In the past, THz crystal phonons have been generated and detected in low temperature experiments with
defect doped crystals [21-24], with experimental evidence of coherent phonon generation [25-27]. At the same
time, interpretation of non-equilibrium phonon transport, with the advancement of nanoscale electrical heating
and ultrafast optical pump-probe techniques, have allowed us to infer phonon coherence from broadband
thermal conductivity measurements [28—32]. There have been also interest of using defect-based techniques as a
thermal probe using perturbation to energy levels due to changes in temperature [33]. Furthermore, surface
deflection techniques with ultrafast optics have also been used to generate phonons close to THz frequencies in
materials [34-37]. Defect-based techniques are attractive compared to both thermal conductivity measurement
and deflection techniques due to its ability to directly access atomic length scales where THz phonon wavelength
resides. Also, the energy levels in the excited state [21, 38, 39] and ground state [25, 40] electron manifold of these
defects can match the phonon energy precisely, resulting in a narrow band phonon detector.

In light of the success of defect-based optical absorption techniques in coupling directly to high frequency
phonons, we propose the use of two photon interference to measure the coherence properties of these phonons.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic of two photon interference in a defect-based crystalline system. The emitter has a A type energy level system.
Levels 1) and |3) are part of the ground state manifold and the excited state |2) have a frequency difference of w, and wj, respectively.
The optical fields driving the [2) — |1) transition and that driving |3) — |2) transition have frequency €2, and ;, with detunings é,
and ¢, respectively. The phonon field create vibrations to the defect emitters and results in a resonant coupling between the ground
states |3) and [1). (b) Populations in states |1) (blue lines) and |3) (green lines) as a function of the detuning 6,. The dashed line
represents the case with no phonon damping. The solid line represents the case with phonon damping I}, = 0.1Tj. The optical
coupling strength for both [2) — |1) and |3) — |2) transitionare G = 0.2I, where I, = I}, = Ij for the optical damping.
(c) Population in level 2 with and without damping represented by solid and dashed line (equation (90)) respectively. There is a sharp
dip to zero population at §, = 0 which is due to two-photon interference. (d) Population versus detuning 8, in excited state |2) for
different phonon coupling strength Wand no phonon damping.

Two photon interference techniques, with the most famous being coherent population trapping (CPT) [41] and
electromagnetically induced transparency (EIT) [42], have been widely adopted in spectroscopy and metrology
in atomic [43, 44] and defect-based systems [45—49]. However, CPT and EIT usually excludes the possibility of a
ground state coupling [50] or merely treating the ground state coupling as thermal bath [48].

In this paper, we propose the possibility of using the presence of coherent coupling of two ground states in a
A system by THz acoustic phonons of the host material as a coherent phonon sensor. We show two
experimentally observable effects, namely an asymmetric excited state population line shape in CPT and an
anomalous dispersion profiles in EIT measurements, which only occurs in the presence of coherent phonon
coupling to a lattice phonon mode. Our proposal has the potential for direct implementation in defect-based
phonon detection experiments mentioned earlier [21, 38, 39] and extends traditional two couple oscillator
models in two photon interference to a three-coupled-oscillator models [51, 52]. Our result will also be
applicable for three-way coupled system such as microwave driven quantum-beat lasers [53, 54], designed opto/
electro-mechanical schemes [55, 56] or phonon-based quantum memories [ 14, 57, 58].

In the schematic of our proposal in figure 1(a), a two-photon interference is created in a localized region of a
medium that carries an emitter with electronic energy level resembling a typical A system used in CPT or EIT.
The optical fields driving the |2) — |1)and |3) — |2) transitions have detuning 8, and &, with respect to the
electronic energy levels of the emitters. The total Hamiltonian of the system can be written as

H = Hx + Hp + Hy, (1a)
Hy|m) = E,|m), (1b)
Hp = ﬁz w/\CIC)\ + ﬁz wkb,jbk, (1¢)
) k
H = ﬁZ(g;\anc,\ + gb’\o'Bq + cc) + Yy (Gosi (b + b;j) + c.c.), (1)
A k

where H, represent the electronic part satisfies the eigenvalue equation (1b) of electronic eigenstate |m). Hp
represent the field part (equation (1¢)) is the usual expression that now comprises the sum of the photon modes
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indexed as A with raising and lowering operators c{, ¢, and the phonon modes indexed as k with raising and
lowering operators b;/, by. The interaction Hamiltonian in equation (1) has two parts, the first part being the
original two photon interference Hamiltonian which realizes effects of CPT and EIT, and the other portion
responsible for phonon interaction. The coupling coefficient g HA and gb’\ stand for interaction of the photon
dipole interaction for the [2) — |1)and |2) — |3) transition respectively in figure 1(a) respectively and the
coupling coefficient (, stands for electron phonon interaction. The magnitude of the coupling constants are

given by
A= —jeéy - d 27w, )
gu A a Eoﬁ\/l >
A N 27rw,\
= —ie€)\ - d > 3
& A b /i

— Wi
= —iZ [————. 4
% \ 20V, vi e @

In equations (2) and (3), €), is the unit polarization vector of the Amode, d, = (2|r|1) and d, = (2|r|3) are
the dipole moments with (3|r|1) = 0. V;stands for the quantization volume for photons. However, we allow for
electron phonon coupling between |1) and |3) and the coupling coefficient is defined by equation (4) where Zis
the deformation potential, pis the density v, is the group velocity of mode k, V,, stands for the quantization
volume for phonons [59, 60] .

Using the equation of motion for a single time operator given by O(t) = (iz)~'[O, H],and using the
Hamiltonian in equations (1a)—(1d), we find the atom-field system evolves according to the following equations

ol = —i;g;\*C;(flz + oy ;g:cx\ — i; C;‘:(bk + b}j)UIS + i; Cros1(by + b;j-), (5a)
033 = —i;gg*C;Uaz + o3 ;gfq — io3; Ek; Ce (b + b;j) + i; <7:(bk + b;j)Uls, (5b)
051 = 10510, — i;ga’\*ci(ffzz — o) + i;gﬁ*&%l - izk: C;f(bk + b;j)Uzs) (5¢)
o3 = —ion{l, — oy %:gjq — (033 — 022) ;gfq + izk: Cr (b + b)on, (5d)
031 = 10312 — §p) + i%:gj*doaz + 10y E}\:glj\o\ - i; Cf(bk + b)) (o33 — o), (5e)
6 = —iwya — igMon — igMos, (5f)

b = —iwkby — i¢os1 — iCGors, (5¢)

where o;; = [i) (jl|. Using the full quantum electrodynamics treatment similar to the method by Whitney and
Stroud [50] (Supplementary material for this article is available online stacks.iop.org/NJP/20/023008 /
mmedia), the atomic operator equations of motion becomes

o1 = 2L,00 + ioyn Y g (0)e i — iy gl (0)elNay, + 2Lp0ms + io31 Y GBr(H) — iy (fB(t)ans,
A A k k

(6a)

o33 = 2[00 + ious ZgbACA(O)efmt - iZgﬁ*cAT(O)eWJsz — 2L,03 — io31 Y G Be() + 1) (:Bk(t)gm
A A k k (6b)
o1 = (Qs — I, = [)oa — i;gaA*cJ(O)ei”*t(@z — o) + i;gﬁ*CK(O)ei’“’*’Un — i; C;ckBk(f)Uzs, (6¢)

on = (=i — T, = T, — Tp)oy — i(o — 0)Y_ g o (0)e N —ioy Y gla(0)e ™ + 1> (Bi(t)onas
A A k

(6d)

O'é] = (IAQ — Pp)0'31 — iZg;\*c;(O)eiw*’oﬂ + PabUZZ —+ i0'21 Zg?c)\(O)e*i“’*t

A A
—iy. C:Bk(t)(aaa — o) — F;UIS) (6€)
k
where spontaneous decay rates for the [2) — |1),|2) — |3)and|3) — |1) transition are defined as

L = Ylg Prs(wy — Q0), Ty = 3,18 Pro(wy — Q),and T, = S IGPT (6w — AQ) — §(wi + AQ))
respectively. A cross term in the spontaneous decay I}, = w3, g’\"‘ghA (O (wy — ) + 6(wy — Q) will vanish if

a
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we assume orthogonality of d,, and dy, [};;. A complex phonon damping term 1";, =3¢ fzw (O (wr — AQ) —
0 (wx + AQ)) in equation (6¢) will be the same as I', for real values of (.

Now, we take the expectation value in a product of a monochromatic coherent state [49] and make the
following transformation of variables

X;i () = 0 (t),
Xar() = o (D0,
X3 (1) = ot

such that equation (6) becomes

(i) = 2La{X20) + 1(Xa1) Ga — 1G{X12) + 205 (Xa3) + 1{xz) W — iW*(xy3), (7a)

(Gs) = 20 (Xa0) + 1(X23) Gb — iG:<X32> = 20 (x33) — 100G W+ iW (x33), (7b)

(1) = (60 — T — T (xa1) — 16 ((x22) — (xin) + 1G5 () — iW¥ (o), (7c)

(X32) = (=i — L) = Lo = Tp) (xa0) — i(xs3) — (X22)) Go — 1(x51) Ga + iIW¥(X12), (7d)

(X1) = (8 = &) = T (xa) — iG{x52) + 1(xa1) Gp — IWH((x35) — Oxa) — Tpxas) (7e)
where

Go = g (ca(0)), (8a)

Gy = g/ (c5(0)), (8b)

W = C (B,(0)). (8¢)

Note that in equations (7e), we are able to define spontaneous rates I, ;, , (equation (6)) and stimulated rates

G;, W (equation (8)) directly from the equations of motion equation (5) without having to add damping terms
unlike semi-classical approaches [50]. The spontaneous damping terms I, , , are defined as sum over all mode
contributions in both optical and phonon cases (equation (6)) while the coherent optical coupling terms G, ; are
defined for coupling to a specific mode «, 3 (equations (8a) and (8b)) and W for the specific phonon mode y
(equation (8¢)). A very important feature of our system is that we have now included the possibility for a coherent
phonon coupling of strength W that couples to the |3) — |1) transition instead of a pure phonon damping term,
and examining this feature will be the main theme of subsequent results and discussions. We would especially
like to point out the definition of Win equation (8¢) where ensemble average of the phonon annihilation
operator will only yield a non-zero value if the detected phonons are coherent [50]. This is because an incoherent
or thermal ensemble will yield a zero ensemble average [61]. Thus, our proposed technique offer a rigorous
detection of phonons rather than indirect evidence using thermal conductivity measurements.

Solving the steady state solution to equation (7) for (x;,)> (X,,)> {X33)> One obtains the population in each
level p,,, p,, and ps; in the long-time limit. We first consider CPT where the optical field for [2) — [1) transition
is tunable while transition |3) — |2)is fixed, and that both fields are of equal strength G, = G, = G.Under the
condition of no phonon damping I, = 0, unity optical damping I’, = I}, = I} and coupling W = 0, we can
obtain the expression of p,,, p,, and p;; as

1 8,(8° — 46,G?)
=—|1+ 4 , 9
i 2( 6% + 8G* + 26%(4 + G?) G
26%G
p— a y 9b
= 8%+ 8GH + 26%(4 + G?) %0)
1 5
=_]1 - 4 . 9
Pss 2( 53+8G4+25§(4+GZ)) %¢)

The dashed lines in figure 1(b) plots the population oflevel |1) (equation (9a)) and level |3) (equation (9¢)) which
are in the ground state manifold. There is a broad resonance that peaks at zero detuning where almost half of the
population is in each of the ground state. The excited state population of level |2) in equation (90) in figure 1(c) is
small for all detuning, where the dashed line also shows a broad resonance peak. However, there exist a sudden
dip at §, = 0 to zero population, a feature of complete two photon resonance in CPT [41, 43, 62]. Now, let us
add some phonon damping I, = 0.1I; but assume no phonon couplingi.e. W = 0. The solid lines in

figure 1(b) shows the population of level |1) and level |3) again where adding phonon damping reduces the
population transfer between |1) and |3) at §, = 0, leaving only 10% of population in level |3) on resonance.
Figure 1(c) show that two photon interference effect in the excited state |2) with (solid line) phonon damping is

reduced on resonance. This is physically expected as I, is a source of decoherence which reduces the ideal result
in CPT or EIT.
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Figure 2. (a) Two-dimensional plot of population in level |2) as a function of detuning ¢, and phonon coupling W for
G = I}, I, = T}, = Ii. The yellow region on both positive and negative detuning are the maximum positions while the dark blue
region at §, = 0 indicates the resonance dip just like in figures 1(c), (d). The variation of the positions of the maximum detuning &, max
are plotted as blue circles in (b) and (c) for negative and positive detuning respectively. The linear relation between maximum position
Oa,max for small W can be related to the linear term in equation S20 while higher order terms account for the variation in maximum
position and phonon coupling W. (d) Difference between negative and positive peak height as a function of phonon coupling W. The
linear term in equation S20 accounts for the trend for small phonon coupling W < 0.11;.

Next, we introduce coherent phonon coupling Wand ignore phonon damping I}, in equation (7) for the
excited state level |2) to obtain

26;G?

S+ 26 W + 86, W (W2 — G?) 4 262(4 + G* 4 3W?2) + 8(G* — 2(G* — )W2 + W'
(10)

P22 (6p, W) =

Figure 1(d) shows the excited state population p,, in equation (10) for different values of W. When Wis small,
there is no noticeable change between the lineshape versus that in figure 1(c) where W = 0. However, as we
increase W, then asymmetry starts to emerge. First, the position of the peak for positive and negative detuning 6,
are shifted further apart as Wincreases. Second, the difference between the maximum peak amplitude on the
positive and negative detunings becomes greater as Wincreases. Third, the original two photon resonance dip at
0, = O still remains at the same location and goes all the way to zero population for all values of W, implying the
preservation of a dark state that is characteristic of CPT [41]. These observations are very interesting so let us
understand them one at a time.

To understand the first and second observation, we map the variation of the excited state population p,, in
equation (10) as a function of Wand detuning 6, for alarger value of G = Ij in figure 2(a), with no phonon
damping (I, = 0) and unity photon damping (I, = I}, = I). A larger value of G compared to figure 1 allows us
explore a wider range of values for Win the range of W < G to W ~ G. As evident from figure 2(a), the two
yellow regions indicating the negative and positive detuning maxima vary with W. The blue circle in figures 2(b)
and (c) show that the negative detuning maxima and positive detuning maxima in figure 2(a) as a function of
increasing W, respectively. The trend in figures 2(b) and (c) can be explained analytically by looking at the
solution of the turning points for the steady-state solution of p,, (equation (10)). There are three turning points,
where oneisat §, = 0 which is the CPT resonance in figures 1(c), (d). The other two turning points can be
described by Taylor expansion of equation (10) for small W to the fourth power to obtain
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1/4 2 2 5

Op,max =~ £2°/4G — l(l + L)Wi 2746442 + G2 — 30V2G D2 4 841 G% s
2 V2 64G3 642 G*

- 27420372 ~ 152G + (66562 — 1792)G? — 4096042) | ,

, 11
16384G7 (1

where 8§, = +23/4G is the zeroth order solution which are symmetric about §, = 0 (as in figures 1(c), (d)). For

. 1(1 1
small W, the linear term — 5 (E + =

decreasing trend for W < 0.11; (shown in red solid line in figures 2(b), (c)). However, when Wis increased
further, then the higher order terms in equation (11) starts to dominate, increasing the positive maximum value
and decreasing the negative maximum, consistent with the observation of the shift in detuning as Wincreases in
figures 2(b), (¢).

Next, we examine how phonon coupling W creates asymmetry in the peak heights in figure 2(b). We
substitute the linear term in equation (11) into the steady state solution for p,, (equation S19) to obtain
difference between the positive and negative detuning as

- 242 — )GW
16 + 8G? + 16V2G* + 9G* + 42 G*

) W in equation (11) dominates and figures 1(c), (d) show both linearly

12)

Ap22,ma\x

Equation (12) is plotted as a function of Win figure 2(d) to show that the linear regime agrees well with the actual
data from figure 2(a) for small values of W. Experimentally, this linearity allows direct retrieval of the value of
phonon coupling W from experimental measurements of excited state population p,, if optical fields couplings
are much stronger than phonon coupling G > W.

The third observation is the preservation of the resonance dip to zero occupation in figure 2 for all W,
indicating that the dark state is preserved just like in the CPT case in figure 1(c). The dressed state picture allows
us to identify the eigenstates by diagonalizing the interaction Hamiltonian in equation (1d) with G, = G, = G
onresonance (i.e. 6, = ¢, = 0) [42] in matrix form as

0 G W
H=|G 0 G| (13)
W G 0

where the dressed states can be obtained by taking the eigenvector and eigenvalues of equation (13). In the

absence of phonon coupling where W = 0, we obtain the familiar dressed state result of a CPT system [42]
where the eigenvalues are (0, ++/2 G) and the eigenvectors are

lag) = 13) — [1), (14a)
jas) = 1) + I3) £ V212). (14b)

Equation (14a) is the dark state as it does not contain any excited state |2). Physically, this means that the ground
states are mixed with no population in the excited state when the system is in a dark state.

When Wis non-zero, the eigenvalues are modified to (— W, 1 / 2(W + /8G? + W?2))and the eigenvectors
become

lag) = 3) — |1) (15a)
2 2
las) = 1) + [3) = Y29 22’ =W, (15b)

Equation (15) shows that the dark state |a) is preserved even when Wis non-zero. This is consistent with the
observation of the preservation of the dip on resonance despite the presence of phonon coupling in figures 1 and
2. However, the eigenvalue of the dark state is now — W instead of 0, implying a different time evolution of the
eigenstates compared to the case in equation (14) where W = 0.

Now, we examine time dynamics of the electronic populations in levels |1), |2) and |3) on resonance (i.e.
0, = 0)in the presence of phonon coupling. The details on how to obtain the population time dynamics is given
in the SI. Under light optical damping I;; = I}, = 0.01[} and zero phonon coupling and damping W, I, = 0,
many optical oscillation persist as demonstrated in figure 3(a). The populations p,,(t), ps;(t) tend to 0.5 which
is the steady state value in figure 1, likewise for p,, (t) inafter t = 300/I;. The Fourier transform of p,, (¢) (blue
solid line in in figure 3(c)) shows a peak at ~0.28I}. The peak matches almost the value of /2 G where
G = 0.2Ij as expected in CPT [41] and from equation (14) [42]. However, with non zero phonon term
W = 0.01G,, p,,(t) and p;; both have a slower modulation on top of the faster optical oscillation as shown by
the blue and yellow lines of population in levels |1) and |3) in figure 3(b). If we take the Fourier transform of
py,(t) again, we obtain the red dashed spectrum in figure 3(c) where the first peak now shows a splitting of
frequency with respect to the undisturbed case. The splitting into two frequencies at w, ~ 0.271j and

wy ~ 0.2917 resembles the splitting in eigenvalues 1 / 2(W + /8G? + W?2) of eigenvectors in equation (15).
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Figure 3. (a) Time evolution of population in levels |1), |2) and |3) with no phonon coupling and no phonon damping. Optical
damping I, = I}, = 0.01I} is set smaller than in previous figures so as to showcase more oscillatory features of the evolution. The
optical coupling is the same as the CPT case in figure | where G = 0.2I;. All population tend to the steady state values predicted in
figure 1 for long evolution times. (b) Time evolution of population in levels |1), |2) and |3) with phonon coupling W = 0.01I; and no
phonon damping. The time oscillations are now modulated at a slower frequency especially for level |1) and level |3) shown in blue
and yellow respectively. (c) Fourier transform of population in level |1) for the case of no phonon coupling (a) and with phonon
coupling (b). The blue solid line shows that when there is no phonon coupling, there is a peak oscillation at v/2 G. However, when
phonon coupling is present, the red dashed line shows that the fundamental oscillation frequency is now split into two frequencies due
to the presence of phonon coupling.
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Figure 4. (a) Plot of real part of linear susceptibility X as a function of detuning ¢, for EIT where I}, = I}, = Iy and G, = 0.1I for
different values of W. When W = 0, the lineshape resembles a typical EIT lineshape [42] and increasing W decreases the sharpness of
the turning points similar to the effect of increased damping. (b) Plot of imaginary part of linear susceptibility X as a function of
detuning ¢, with the same conditions as (a). Increasing Wleads to a negative value of the imaginary susceptibility which is anomalous
compared to the case where W = 0 where the imaginary part just goes to zero.

Physically, phonon coupling W results in non-degenerate eigenvalue magnitudes such that |a, ) and |a_)
oscillate at different eigenfrequencies. This in turn modulates population p,,(¢) and p4;(t), causing a splitting of
the frequency compared to the case where phonon coupling W = 0.

Havinglooked at the CPT case, one wonders if we can use EIT technique to sense coherent phonons. In EIT,
the condition for the optical fields becomes G, < Gj, where the |2) — |1) optical field is a now a weak probe
with detuning §, compared to a strong resonant driving field for the |3) — |1) transition. The quantity of interest
in EIT is the susceptibility of the medium [42] under the incidence of the probe beam which is related to the
off-diagonal steady state solution to the density matrix term (x,,) in equation S14. Under the condition of no
phonon field and damping W = 0, I, = 0, we can obtain the linear susceptibility X by Taylor expansion of the
steady state solution for equation S17 for (), ,) for small G, to obtain

ba

X = . 16
G e, - Typ, — 2 (16

Figures 4(a), (b) plots the real and imaginary susceptibility for different values of W. The shape of the real and
imaginary susceptibility for W = 0in equation (16) are typical EIT susceptibility [42] showing a sharp inflection
at zero detuning 8§, = 0 for the real part and a sharp dip for the imaginary part. The dip to zero for the imaginary
part (blue solid line in figure 4(b)) physically indicates zero absorption where the transparency window in EIT
refers to.

When we have phonon coupling W > 0, we see changes in dispersion in figures 4(a), (b). The change in the
real part in figure 4(a) follows a decrease in the sharpness of the inflection which can also be due to effects of
damping. However the negative anomalous imaginary part on resonance in figure 4(a) cannot be caused by
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damping. Damping will only reduce the size of the dip similar to the result of excited state population |2) in
figure 1(c). Thus, the presence of anomalous imaginary susceptibility at resonance is another good measure for
the strength of phonon coupling W. Physically, negative anomalous imaginary susceptibility should indicate
gain rather than loss, which means that we not only have transparency, but possibly amplification. The details of
this possibility will be discussed in a future study.

Experimentally, this scheme offers a rigorous way to detect coherent phonons in the THz frequency range
which is responsible for heat condition. As mentioned earlier, these defect-based detection techniques have the
characteristic of being narrow band and yet tunable [38, 39] and has been employed successfully in
understanding many aspects of phonon transport in crystals [23] and interfaces [63]. These crystals can be
interfaced with other materials phonon detectors [64], making our proposed method directly applicable to
detecting coherent phonons in thermal transport.

To experimentally realize our proposal, four challenges need to be addressed. First, CPT or EIT have yet been
experimentally demonstrated with THz energy separation between the ground state manifold. However, we
believe that with the advent of frequency combs, locking two laser in the THz range is certainly possible [65] and
we may soon see such an experiment being performed. Second, phase fluctuation in any of the optical or phonon
fields will affect the quality of the photon—phonon interference. Experimental demonstrations of CPT and EIT
typically use the same laser source to generate two frequencies [41, 42], leading to the same phase fluctuations in
both optical fields. Dalton and Knight [66] specifically addressed this issue for two photon interference where A
will be spared of any decoherence but not in a ladder system. Here, our two-photon—phonon interference is a
composite of A and ladder systems and the net effect will be a reduced interference. Third, due to phase
fluctuation, the coherent phonon field must carry the same phase fluctuation as the optical field, so we must
generate the phonons in a coherent manner with the same laser field for the [2) — |1)and |3) — |1) transitions.
This is possible with the advent of coherent phonon sources in defect-based systems [25-27], material systems
[34-37] and nanofabricated systems [11, 13—19]. Last, our model only considered a single emitter to illustrate
the physics of the system but a model that considers an ensemble of such emitters is necessary for feasible
experimental realization [42].

Our work differs from the field optomechanics and nonlinear coherent phonon control [67].
Optomechanics primarily relies on coupling a mechanical mode to a designed optical cavity for coherent
phonon control. It is remarkable that quantum coherence of phonons has been predicted [68—70] and observed
[7, 71] in this field. Here, we are proposing a detection scheme with optical defects which couples to intrinsic
crystal lattice phonon modes in materials. Also, we only restrict our discussion here to coherent and thermal
state although it is possible to consider other quantum states such as Fock states and squeezed states [68—70] . For
the field of nonlinear coherent phonon generation, an optical field directly couples to optical phonons [67] or
zone-center acoustic phonons [72] and as a result of the phase matching, always results in coherent phonons
being observed. Our work actually detects high frequency acoustic phonons which are not capable of direct
coupling to light through phase matching. Furthermore, our technique can detect both coherent and incoherent
phonons through their ensemble distribution and no phase matching is required. Recent work that share some
similarity to ours include phonon mediated gate operations using defects in nitrogen vacancy centers [58] and
characterizing phonon coherence in thermal transport using correlation functions [31]. It is thus evident that
characterizing high frequency coherent acoustic phonons in materials using quantum mechanical description
are only starting to be explored.

Lastly, we would like to mention the relevance of our work not limited to phonon sensing, but also to three-
way interference problems [55, 56] and coupled oscillator systems [51, 52]. Our theory is not limited to just
phonon coupling of the ground state manifold but any bosonic field. Thus, the predicted asymmetry in the
excited state population, modulation in population time dynamics and the anomalous EIT dispersion will also
be observable in any of the above systems, paving way to understanding and engineering multiple interference
pathways in more complex multilevel systems.

In conclusion, we have proposed a scheme that utilized the existing two photon interference techniques to
rigorously test the presence of coherent phonons. Modifications to steady state population lineshape,
modulation in ground state time dynamics, and anomalous EIT signal with negative imaginary susceptibility all
provided a wealth of indicators for which coherent phonons can be sensed experimentally. Moreover, our
scheme can be applicable to understanding other multi-interference phenomena. The main advantages of our
scheme is the ability for atomic scale emitters to sense small-wavelength terahertz coherent phonons in materials
accurately and precisely, and that two-photon inference technique allows for a direct, sensitive and rigorous
conclusion to the presence of coherent phonons in materials.
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