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The traditional theory of magnetic moments for chiral phonons is based on the picture of the circular
motion of the Born effective charge, typically yielding a small fractional value of the nuclear magneton.
Here we investigate the adiabatic evolution of electronic states induced by the lattice vibration of a chiral
phonon and obtain an electronic orbital magnetization in the form of a topological second Chern form. We
find that the traditional theory needs to be refined by introducing a k resolved Born effective charge, and
identify another contribution from the phonon-modified electronic energy together with the momentum-
space Berry curvature. The second Chern form can diverge when there is a Yang’s monopole near the
parameter space of interest as illustrated by considering a phonon at the Brillouin zone corner in a gapped
graphene model. We also find large magnetic moments for the optical phonon in bulk topological materials
where nontopological contribution is also important. Our results agree with recent observations in
experiments.

DOI: 10.1103/PhysRevLett.127.186403

The phonon is commonly known to carry a well-defined
crystal momentum and energy quantum, and can couple to
lights through a time-varying electrical dipole moment
described by the Born effective charge Q� [1]. Recently,
phonon chirality has attracted much attention both theo-
retically [2–9] and experimentally [10–18]. It can interact
with the electronic valley degree of freedom and affect
valley excitons [10,11]. It can also couple strongly with
electron spins and can be employed to control magnetism in
magnetic materials [13,14]. In particular, the experiments
reveal the chirality of a phonon under a magnetic field
through thermal Hall effect in, e.g., the pseudogap phase of
cuprates [15–18].
One natural way to characterize the coupling of a phonon

to a magnetic field is through the phonon magnetic
moment, defined for example by the phonon energy shift
under a magnetic field [19,20]. For a phonon with nonzero
angular momentum L, one would expect a phonon mag-
netic moment in the order of ionic magneton ðQ�L=mIÞ
where Q� and L are generally in the order of electron
charge [21] and ℏ [2,8], respectively. The ion mass mI is
much larger than the electron mass [21–24]. However,
recent experiments suggest that the phonon magnetic
moment can be 3 to 4 orders of magnitude larger
[19,20], which calls for a deeper understanding of this
physical concept.
In this Letter, we formulate the phonon magnetic

moment as electronic magnetization in an adiabatic
response to the underlying ionic circular motion, focusing

on the orbital part. We find that the traditional theory needs
to be refined in terms of a momentum resolved Born
effective charge, and recognize an extra contribution due to
phonon-induced electron energy coupled to the electronic
Berry curvature in momentum space. These contributions
are captured by a topological second Chern form, which
can be very large when there is a Yang’s monopole near the
parameter space of interest as demonstrated by studying the
phonon at the Brillouin zone corner in a gapped graphene
model, where only the newly identified contribution is
nonzero. We also find a large magnetic moment for the
optical phonon in topological materials where nontopo-
logical electronic contributions are also important.
Adiabatic current pumping by phonon.—The phonon

magnetic moment refers to the variation of the total
magnetic moment when a phonon is created, which can
be contributed by the circular motion of the ions, phonon
pumped electronic magnetization from spin [25], and
orbital effect [21–24,26–29]. The orbital contribution can
be separated into a nontopological and a topological part
[29]. The former shows a form similar to that from spin
[24,25,30]. The latter however involves a gauge-dependent
Berry connection [29]. Here, we focus on the latter and
provide an explicitly gauge-independent form of the
topological magnetization induced by a phonon.
To have nonzero out-of-plane orbital magnetization, the

time-reversal invariance and the mirror symmetry about any
perpendicular mirror plane need to be broken in the
presence of a phonon. Phonons with chirality typically
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satisfy the criteria. We consider a phonon mode with a
known polarization vector. The ions’ motion is parame-
terized by u ¼ ½uxðt; rÞ; uyðt; rÞ� where ux;y can be the
displacement of one representative atom that is periodic
temporally. We assume ux;y to be slowly varying spatially
in the following derivations and take it to be uniform (e.g.,
optical phonon near the Γ point) in the final expression of
the phonon magnetic moment. When the electronic band
gap is larger than the phonon energy, the electronic state
evolves adiabatically following the ion governed by the
Hamiltonian Hðk; uÞ with k being the momentum.
We define the magnetization M by employing the

constituent equation j ¼ ∂tPþ∇ ×M where P is polari-
zation and j is bounded current density. By employing the
semiclassical theory of Bloch electrons, the topological
local current following Ref. [26] can be expressed as

jð2Þα ¼
X
δ

e _uδ

Z
dk

ð2πÞ2Ωkαkβrβuδ ð1Þ

where e is the elementary charge with a positive sign, and
kα, rα, and uα are the momentum, real space coordinate,
and the displacement along the αth direction. _uδ represents
the time derivative of uδ with δ being ðx; yÞ. By writing
the subscripts in a general form for simplicity, Ωαβγδ ¼
ΩαβΩγδ þΩβγΩαδ −ΩαγΩβδ. Ωαβ ¼ ∂αAβ − ∂βAα is the
Abelian Berry curvature of the corresponding indices
where Aα ¼ hφkji∂αjφki is the Berry connection with
jφki being the periodic part of the Bloch wave function.
Phonon magnetic moment.—In Eq. (1), the Berry cur-

vatures are evaluated at each k with finite u. As the
displacement u is extremely small compared with the
lattice constant, we thus can perform a Taylor expansion
at u ¼ 0, which is reasonable as long as u does not close the
band gap. To the first order of the expansion, the current
reads

jð2Þα ¼
X
δ

e _uδ

Z
dk

ð2πÞ2Ωkαkβrβuδ ju¼0

þ
X
δγ

e _uδuγ

Z
dk

ð2πÞ2 ∂uγΩkαkβrβuδ ju¼0 ð2Þ

where the Berry curvatures are evaluated at u ¼ 0, which is
the case for all the Berry curvatures hereafter. The first line
is a time derivative term that corresponds to the current
density from electrical polarization. In the second line, by
symmetrizing the summation with respect to ðδ; γÞ, one can
obtain a second-harmonic polarization current density that
is symmetric about exchanging ðδ; γÞ and a magnetization
current density that is antisymmetric. The latter gives rise to
the time-averaged out-of-plane magnetization [31]

Mz ¼
e

2mI
LI

Z
dk

ð2πÞ2 Ωkαkβuxuy ð3Þ

wheremI is the mass of the representative ion with averaged
angular momentum LI ¼ ðmI=TÞ

R
T
0 ðu × _uÞzdt over the

phonon period T. The integral of Mz over the sample size
gives rise to the phonon magnetic moment.
Equation (3) indicates that the linearly polarized phonon

with zero angular momentum shows zero magnetic
moments. The gauge invariant second Chern form
Ωkαkβuxuy is evaluated at u ¼ 0, which is thus an intrinsic
property of the electronic system. In contrast to Ωkxky ,
time-reversal symmetry guarantees that ΩkαkβuxuyðkÞ ¼
Ωkαkβuxuyð−kÞ. Thus, phonons in a nonmagnetic system
can also have magnetic moment.
Here we show an intuitive understanding of the phonon

magnetic moment. The second Chern form reads explicitly
Ωkxkyuxuy ¼ ΩkxuyΩkyux − ΩkxuxΩkyuy þΩkxkyΩuxuy . The first
two terms depend only on Ωkiuj , whose average gives rise
to the macroscopic Born effective charge tensor Q� with
element Q�

ij ¼ e
R ½dk=ðð2πÞ2Þ�Ωkiuj [36–39] that is related

to the macroscopic polarization P ¼ Q�u. The electric
dipole moment contributed from each wave packet is thus
eΩu. Therefore, we identify eΩ as the k-resolved Born
effective charge tensor with matrix element eΩkiuj . Such a
dipole moment suggests that the mass center of a wave
packet deflects its trajectory by d ¼ −Ωu, which form a
circular orbit as illustrated in Fig. 1(a). The corresponding
orbital magnetic moment from this orbit is ð−e=2Þðd × _dÞz
which equals the first two terms of Ωkxkyuxuy . In an atomic
crystal, this term cancels the magnetic moment from the
charged ion [31]. It is noteworthy that, near the gap closing
points the Berry curvature Ωkiuj can be large. In this case,
although the integration of Ωkiuj , i.e., Q

�, is usually in the
order of ionic charge, the integral of ΩkiujΩkjui can be
extremely large, which is different from the phonon
magnetic moment estimated by Q� [21,22].
The contribution shown above can find its position in the

modern theory of the orbital magnetization M of a two-
dimensional system [40–43]. At zero temperature,

M ¼
Z

dk
ð2πÞ2

�
mðkÞ þ e

ℏ
½μ − EðkÞ�Ωkxky

�
ð4Þ

)b()a(

FIG. 1. Physical picture of the phonon magnetic moment.
(a) With a phonon, the trajectory of the center of mass of a wave
packet (straight line on top panel) is superposed by a circular orbit
in the lower panel. (b) By modifying the electronic energy, the
phonon changes the boundary confinement potential V induced
current in the presence of the momentum-space Berry curvature.
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where EðkÞ identifies the energy bands below the chemical
potential μ and mðkÞ is the orbital magnetic moment from
the self-rotation of each wave packet. Our results suggest
that the mðkÞ term should be refined to include the
magnetic moment from the orbital motion of the center
of mass of each wave packet.
The second term in the magnetization M is topological,

which can be interpreted as the boundary current contri-
bution in the presence of boundary confinement potential V
and nonzero Ωkxky as illustrated in Fig. 1(b). A phonon can
also carry a magnetic moment from the boundary current
by modifying the electronic energy through the geometrical
phase. In a period of u, the electronic state will pick up a
phase factor e−iEðkÞT=ℏþiη composed of the dynamical phase
and the geometrical one η ¼ ΩuxuySu where Su ¼ 1

2

R
T
0 ðu ×

_uÞzdt represents the area swept by u in a period. The total
phase can be regarded as the dynamical phase from a
modified energy Eþ δE with the energy correction being
δE ¼ −ℏη=T ¼ −ℏΩuxuyðLI=2mIÞ. By changing the
energy EðkÞ in Eq. (4) to the corrected one, i.e.,
Eþ δE, one can obtain the term proportional toΩkxkyΩuxuy .
Non-Abelian formulas.—The above discussions are

restricted to the case of a single occupied band. When
multibands are occupied, the topological and nontopolog-
ical contributions from each band should be regrouped
to enforce UðNÞ gauge invariance within the occupied
N-dimensional Hilbert space [44]. As a result, the topo-
logical contribution becomes the non-Abelian one

Mz ¼
e

2mI
LI

Z
dk

ð2πÞ2 TrΩkαkβuxuy ð5Þ

with non-Abelian Berry curvatures Ωαβ ¼ ∂αAβ−
∂βAα − i½Aα; Aβ�. The Berry connection Aα is a matrix,
Amn
α ¼ hφmji∂αjφni, with ðm; nÞ being the indices of the

occupied bands. The nontopological contribution for a
single-occupied band case [24] should be generalized to

Mnt
z ¼ −

e
2mI

LIð∂uxFuy − ∂uyFuxÞFui

¼ Re
X

n∈occu

X
n0;m0∈unoc

Z
dk

ð2πÞ2

×
hnj∂uiHjn0i½ðvn0m0 þ vnnδn0m0 Þ × vm0n�z

ðEn − En0 Þ2ðEn − Em0 Þ ð6Þ

where vmn ¼ hmj∇kHjni is a matrix element of the velocity
operator, and Re means the real part. These results are
consistent with the theory in Ref. [29]. One can see this by
applying the latter to the phonon, expanding to the first
order of ux;y, and taking the antisymmetric part (the
symmetric part vanishes under time average) [45,46].
Comparing with the formulas in Ref. [29], the present

results are explicitly gauge invariant and are easier to be
adopted by first-principle calculations.
Divergence near Yang’s monopole.—The topological

nature of the second Chern form allows the presence of a
large phonon magnetic moment. By integrating the second
Chern form over a four-sphere around a Yang’s mono-
pole, one can obtain an integer [47]. The second Chern
form can thus become divergently large close to the
monopole similar to the Berry curvature near a Weyl point
[48]. Near the monopole, the effective Hamiltonian
reads H ¼ q · Γ where Γ are Dirac matrices with
Γ1∼5 ¼ ðσxτz; σyτz; σzτz; σ0τx; σ0τyÞ, σ and τ being Pauli
matrices. By taking q ¼ ðvFkx; vFky;Δ; ζuy;−ζuxÞ, this
Hamiltonian of H can be mapped to the effective model of
graphene with a chiral phonon at the Brillouin zone corner

Heff ¼ q · Γ ¼

2
666664

Δ vFπ† ζρ†

vFπ −Δ ζρ†

ζρ −Δ −vFπ†

ζρ −vFπ Δ

3
777775

ð7Þ

under the basis fjK;Bi; jK;Ai; jK0; Ai; jK0; Big in the spin-
up sector. Here, π ¼ kx þ iky, Δ stands for the sublattice
potential, and vF ¼ −3t0=2 is the Fermi velocity with t0
being the hopping energy between the nearest neighboring
sites at equilibrium. The hopping energy t ¼ t0e−λða−a0Þ=a0
depends on the bond length a that deviates from a0 in the
presence of a phonon. We set a0 ¼ 1 for simplicity. The
chiral phonon leads to the intervalley coupling with ρ ¼
uy þ iux and ζ ¼ −3t0λ=2. Here, u is the displacement of
the A atom at the top left corner as shown in the inset of
Fig. 2(b), and the displacements of the other atoms are
expressed as functions of ux;y. Due to the finite momentum
of the K-valley chiral phonon, the neighboring A atoms
show displacements with phase differences of e�2iπ=3

forming a
ffiffiffi
3

p
×

ffiffiffi
3

p
superlattice at nonzero u. Thus,

K=K0 valleys of graphene electronic bands are folded to
the zone center [49,50]. The energy bands are shown in
Fig. 2(b) where the bands are doubly degenerate and the
valley is still a good quantum number in the u ¼ 0 limit.
The nontopological contribution to the phonon magnetic

moment vanishes. In the topological contribution, the wave
packet Born effective charge eΩkiujðkÞ vanishes, whereas
the boundary current part is large. As shown in Fig. 2(c),
Ωkxky are nonzero with opposite signs for opposite valleys.
Meanwhile, the Berry curvature Ωuxuy is also nonzero and
valley polarized. The phonon magnetic moment is propor-
tional to signðΔÞð1=12πÞðζ2=Δ2Þwith signðΔÞ ¼ �1 being
the sign of the mass term. The magnetic moment thus
diverges asΔ goes to zero as plotted in Fig. 2(d) with λ ¼ 1.
It is noted that, as the adiabatic approximation is

employed, our results break down as the band gap becomes
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smaller than the phonon energy. Specific to graphene, the
chiral phonon energies range from 100–200 meV, which
corresponds to a Δ ¼ 0.02 ∼ 0.04t0 with t0 ¼ 2.6 eV. Our
results in Fig. 2(d) are shown down to the lower limit. By
considering the other spin sector, the phonon magnetic
moment doubles. When a more realistic λ ¼ 3 [51] for
graphene is employed, i.e., ζ ≃ 12 eV=Å, the result
increases further by 1 order. Thus, the magnetic moment
for a chiral phonon in graphene can reach 103 times larger
than the atomic magneton, which is in the (sub)order of the
electronic magneton.
Phonon magnetic moment in bulk materials.—Large

phonon magnetic moments have been observed in
Cd3As2 [19] and PbTe [20]. The former is a Dirac
semimetal whereas the latter is a narrow gap semiconductor
that is a close relative of SnTe, a topological crystalline
insulator [52]. We propose an effective model based on
Cd3As2 in the presence of atomic displacement, which can
also describe a trivial semiconductor at a different param-
eter. Under the basis fjP3

2
; 3
2
i; jS1

2
; 1
2
i; jS1

2
;− 1

2
i; jP3

2
;− 3

2
ig, the

effective Hamiltonian reads [31]

HSMðkÞ ¼ ε0 þ

2
666664

Δ vFπ† ζρ†

vFπ −Δ −ζρ†

ζρ −Δ −vFπ†

−ζρ −vFπ Δ

3
777775

ð8Þ

where ε0ðkÞ ¼ ϵ0 þ ϵ1k2z and Δ ¼ Δ0 − Δ1k2z . Different
from the gapped graphene model that is spinless, the
electron-phonon coupling term in Eq. (8) flips the spin
and thus is related to the spin-orbit coupling. The difference
between the constraints of the time-reversal symmetry on
the spinless and spinful systems leads to the difference
between Eqs. (7) and (8) [31]. Due to such difference,
the nontopological contribution here becomes nonzero and
is 3 times larger than the topological one. We thus include
both in the following discussion.
For simplicity, we first study the case of Δ0 < 0 that

corresponds to a semiconductor. The energy bands are
plotted in Fig. 3(a) with a band gap of about 40 meV,
which is much larger than the phonon energy in
those experiments (∼3 meV). The adiabatic approximation
is thus valid. The phonon-induced magnetization from
each kz is ðeLI=2mIÞðζ2=20πÞ½ð−4Þ=Δ2� as plotted in
Fig. 3(b). By summing these contributions and multi-
plying NVu (N and Vu are the number and volume of
the unit cell in a sample, respectively), the phonon
magnetic moment can be obtained, which is ðeNLI=2mIÞ
ðζ2=80πÞ½4=ðΔ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijΔ0Δ1j
p Þ�Vu. By taking ζ ≃ 10 eV=Å

and Vu ≃ 200 Å3, this phonon magnetic moment can reach
104 times the atomic magneton (ðeℏ=2mIÞ ∼ ðeNLI=2mIÞ).
We then turn to the semimetal case with band inversion

by setting Δ0 > 0. Two Dirac points appear whereΔðkzÞ ¼
0 as denoted by the dashed lines in Fig. 3(c). The
magnetization from different kz is plotted in Fig. 3(d),
which increases in the manner of f½signðΔÞ�=Δ2g as kz
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FIG. 3. (a) and (b) Electronic structure and contribution to the
phonon magnetic moment along Γ-Z direction with Δ0 ¼
−0.0205 eV. (c) and (d) Electronic structure and contribution
to the phonon magnetic moment along Γ-Z direction for Cd3As2
with Δ0 ¼ 0.0205 eV. Dashed vertical lines indicate the position
of the Dirac points. In the calculation, Δ1 ¼ 18.77 eVÅ2,
ϵ0 ¼ −0.0116 eV, ϵ1 ¼ 10.59 eVÅ2, and vF ¼ 0.889 eVÅ.

FIG. 2. (a) A sphere enclosing a Yang’s monopole (red penta-
gram) in the five-dimensional parameter space formed by
ðΔ; kx; ky; ux; uyÞ. (b) Energy band of a gapped graphene with
K=K0 valleys being folded to the zone center. Inset: the
polarization vector of the chiral phonon in the Brillouin zone
corner where B atoms stay still. (c) Berry curvature Ωkxky and
Ωuxuy along kx. (d) Contributions to the magnetization from
different terms in the second Chern form.
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approach the Dirac points. Such divergence is due to the
breakdown of the adiabatic approximation. Nevertheless,
for such kz that 2jΔðkzÞj > Ep with Ep being the phonon
energy, the adiabatic approximation is still valid. By
considering kz that satisfies the energy cutoff condition
2jΔj > Ep, one can find that the phonon magnetic moment
is larger than the above case by a factor of about
4 logð4Δ0=EpÞ with a sign change. By taking Ep ¼
3 meV and ζ ≃ 1–10 eV=Å, the magnetic moment is about
2 × 103–5 times larger than the atomic magneton ðeℏ=2mIÞ.
One can generalize the model to describe three-dimen-

sional strong and weak topological insulators [31]. In these
systems, one can also find a large phonon magnetic
moment, which experiences a sign change when a strong
topological insulator changes to a weak one.
Summary.—We have studied the phonon magnetic

moment from the electronic orbital magnetization. We
identified a topological contribution as a gauge-invariant
second Chern form, which calls for the concept of a
momentum-resolved Born effective charge and also con-
tains a term from the phonon-modified electronic energy
coupled to the momentum-space Berry curvature. For the
chiral phonon in gapped graphene model, the topological
contribution is the only source of the phonon magnetic
moment, which can be large as the second Chern form
corresponds to the gauge field near a Yang’s monopole in
this model. We also study the magnetic moment of optical
phonons in bulk materials. We find large phonon magnetic
moments in semimetal and narrow gap insulators, including
weak and strong topological insulators. The orders of the
phonon’s magnetic moments agree with recent experi-
ments. In these systems, both topological and nontopo-
logical contributions are important.
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