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ABSTRACT To reveal the dynamic features of cellular systems, such as the correlation
among phenotypes, a time or condition series set of samples is typically required. Here,
we propose intra-ramanome correlation analysis (IRCA) to achieve this goal from just
one snapshot of an isogenic population, via pairwise correlation among the cells of the
thousands of Raman peaks in single-cell Raman spectra (SCRS), i.e., by taking advantage
of the intrinsic metabolic heterogeneity among individual cells. For example, IRCA of
Chlamydomonas reinhardtii under nitrogen depletion revealed metabolite conversions at
each time point plus their temporal dynamics, such as protein-to-starch conversion fol-
lowed by starch-to-triacylglycerol (TAG) conversion, and conversion of membrane lipids
to TAG. Such among-cell correlations in SCRS vanished when the starch-biosyn-
thesis pathway was knocked out yet were fully restored by genetic complementa-
tion. Extension of IRCA to 64 microalgal, fungal, and bacterial ramanomes sug-
gests the IRCA-derived metabolite conversion network as an intrinsic metabolic
signature of isogenic cellular population that is reliable, species-resolved, and
state-sensitive. The high-throughput, low cost, excellent scalability, and general
extendibility of IRCA suggest its broad applications.

IMPORTANCE Each isogenic population of cells is characterized by many phenotypes,
which change with time and condition. Correlations among such phenotypes are
fundamental to system function, yet revelation of such links typically requires multi-
ple samples. Here, we showed that, by exploiting the intrinsic metabolic heterogene-
ity among individual cells, such interphenotype correlations can be unveiled via just
one snapshot of an isogenic cellular population. Specifically, a network of potential
metabolite conversions can be reconstructed using intra-ramanome correlation anal-
ysis (IRCA), by pairwise correlation of the thousands of Raman peaks or combination
of peaks among single-cell Raman spectra sampled from just one instance of the cel-
lular population. The ability to rapidly and noninvasively reveal intermetabolite con-
versions from just one snapshot of one sample should usher in many new opportu-
nities in functional profiling of cellular systems.

KEYWORDS ramanome, intra-ramanome correlation analysis (IRCA), intra-ramanome
correlation network (IRCN), single-cell Raman spectroscopy, phenotypic heterogeneity

Each isogenic population of cells is characterized by many phenotypes that change
with time and condition. Such phenotypes can be related to cellular metabolism,

such as the amount of a particular metabolite produced under a given time and condi-
tion. Links among such metabolism-related phenotypes are a fundamental property
that underlies proper functioning of cellular systems (1–3). For example, correlation in
abundance among metabolites can unravel, via metabolome-wide association studies
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(MWAS) of metabolomic data sets from high-resolution mass spectrometry (MS), the
links among target metabolites that characterize a certain disease (4–6). Therefore,
strategies and methods for rapidly and comprehensively detecting and profiling such
links are of interest.

To detect such links, variations in metabolism-related phenotypes are required. As a
result, typically, a time series or condition series set of samples is characterized for
metabolite contents first and then correlated across the samples, with the resolution of
detection generally dependent on sample size (7–9). For example, in order to under-
stand the mechanism of oil production in microalgae, the lipidomes of an industrial
microalga, Nannochloropsis oceanica, were measured in triplicate by electrospray ioni-
zation MS over eight time points (3, 4, 6, 12, 24, 48, 72, and 96 h) under nitrogen-
replete (N1) or nitrogen-depleted (N–) conditions; then the profiles were correlated
across the 48 samples, which revealed several temporal patterns among the triacylglyc-
erol (TAG) species that suggest distinct regulation mechanisms; e.g., TAGs with lower
degrees of desaturation were induced at the early stages of N–, while those containing
polyunsaturated fatty acids (PUFAs) increased considerably only at later stages (10).

However, within a single sample of an isogenic population of cells, at any given
time or condition, variations in metabolism-related phenotypes among individual cells
are inherent and universal, due to the stochasticity of gene expression in cells (11, 12).
Therefore, an intriguing question is, can such phenotypic variations among individual
cells, instead of those among multiple samples, be exploited to predict the links
among metabolism-related phenotypes? Specifically, there are three hypotheses: (i) ev-
ery cell can be quantitatively profiled for its various metabolism-related phenotypes as
an independent biological replicate; (ii) intercellular variations of the phenotypes can
be measured rapidly and simultaneously for many cells; (iii) intercellular correlation of
the phenotypes can unveil important functional features of the system.

To test these hypotheses, we employed single-cell Raman microspectrometry,
which captures the in vivo chemical profiles of a cell in a rapid, label-free, and nondes-
tructive manner (13–15). In a single-cell Raman spectrum (SCRS) (13–15), each of (or a
combination of) its thousands of Raman peaks potentially represents a specific metab-
olism-related phenotype, such as the presence and the concentration of a metabolite
synthesized by the cell (16). Therefore, just like a portrait can reveal multiple facial fea-
tures from a human individual, an SCRS can unveil cellular phenotypes (i.e., functions) in a
“landscape-like”manner, i.e., simultaneously revealing multiple metabolism-related pheno-
types of the cell at that particular state (16). For example, in a single microalgal cell (e.g.,
Chlamydomonas reinhardtii and N. oceanica), starch content can be quantified by the spe-
cific Raman peaks of 478 cm21 (C-C-C deformation) and 940 cm21 (C-O stretching; C-O-C
and C-O-H deformation; a-helix C-C backbone), while the content of triacylglycerol (TAG)
can be modeled by 1,441 cm21 (alkyl C-H2 bend) and 2,851 cm21 (C-H2; C-H3 asymmetric
and symmetric stretches) (17, 18). In addition, the degree of lipid unsaturation in a cell can
be measured by I1,658/I1,441, i.e., the ratio of 1,658 cm21 (allyl C=C stretches which are pro-
portional to the amount of unsaturated C=C bonds) and 1,441 cm21 (alkyl C-H2 bends
which are proportional to the amount of saturated C-C bonds) (18, 19). On the other hand,
based on the full spectra of SCRS, the contents of many compounds in a cell can be
derived, such as protein, starch, and TAG in C. reinhardtii (18) and astaxanthin, and b-caro-
tene and chlorophyll in Haematococcus pluviali (20), via chemometric multivariate methods
including partial least square regression (PLSR) and multivariate curve resolution (MCR).

We previously proposed the “ramanome” concept (16, 21). A ramanome is the col-
lection of SCRS (one from each cell) randomly sampled from a given instance of an iso-
genic cellular population and thus represents a single-cell-resolution metabolic snap-
shot of the population (16, 21). Here, by treating every SCRS in a ramanome as one
biological replicate and each of its peaks or combination of peaks as a metabolism-
related phenotype, we established a formal framework called intra-ramanome correla-
tion analysis (IRCA; Fig. 1). From just one single ramanome, by pairwise correlating all
the Raman peaks of SCRS among the individual cells, IRCA unveils a network of
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potential metabolite conversions. Based on a series of ramanome-profiling experi-
ments on C. reinhardtii mutants and additional microalgae, fungi, and bacteria, we
showed that IRCA is a rapid, low-cost, high-throughput, landscape-like, and universally
applicable method for unraveling metabolic features of cellular systems.

RESULTS
IRCA predicts the interconversion among starch, protein, and TAG from one

single instance of an isogenic microalgal population. To test the IRCA concept
(Fig. 1), we employed the unicellular microalga of C. reinhardtii CC124 as the first
model. Triplicate isogenic cultures of CC124 grown under nitrogen depletion (N–) were
sampled from 16 time points from 0 h to 8 days (i.e., 48 ramanomes in total; see
Fig. S1; Materials and Methods). For cellular protein, starch, and TAG contents, each
sample was analyzed via two strategies: (i) at the population level, via various conven-
tional techniques which all require metabolite extraction from cell lysates (bicincho-
ninic acid [BCA] protein assay kit, amyloglucosidase/a-amylase method and thin-layer
chromatography plus gas chromatography/mass spectrometry [TLC-GC-MS]; Fig. 2A to
C; also see Text S1) and (ii) at the single-cell level, via full-SCRS-based quantitative par-
tial least square regression (PLSR) models for metabolite contents, which are noninva-
sive and label-free (18) (;20 randomly selected cells per sample and thus 60 per time
point; Fig. 2D to F). The PLSR model for starch content, for example, was established
using the population-level measurements (i.e., via the amyloglucosidase/a-amylase
method; see Text S1) and the averaged SCRS of 20 cells in the corresponding biological
replicate (i.e., one ramanome). The correlation coefficients (R2) of protein, starch, and
TAG contents between the two strategies above are 0.9924, 0.9892, and 0.9686, respec-
tively, confirming high accuracy of simultaneous quantification of protein, starch, and
TAG for a C. reinhardtii cell via its full SCRS (18). Notably, for each phenotype, at any
instance of the population, the degree of intercellular heterogeneity is high, and can
vary greatly along the 8 days (see Fig. S1G to I). Specifically, for protein, both minimal
and maximal single-cell contents in the population were decreasing with time (see
Fig. S1G), while for starch, the trends are exactly the opposite (see Fig. S1H). As for
TAG, the maximal content was increasing, while the minimal content remained at the
baseline (i.e., a subpopulation of non-TAG-producing cells was always present), with
the degree of within-population heterogeneity continuing to grow (i.e., the “delta” in
Fig. S1I).

Notably, at the population level, significant correlation (defined by the Pearson cor-
relation coefficient, or r ) was observed in each of three phenotype pairs among the 48
populations—protein-starch (r = –0.926; Fig. 2A), starch-TAG (r = 0.639; Fig. 2B), and
protein-TAG (r = –0.848; Fig. 2C). This indicates protein-starch conversion, protein-TAG
conversion, and accordant change of starch and TAG contents (22, 23). Intriguingly, at
the single-cell level, correlation for the 960 cells collectively reached a consistent con-
clusion, albeit with lower correlation coefficients (r = –0.879, 0.286, and –0.229,

FIG 1 The principle and workflow of intra-ramanome correlation analysis (IRCA).
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respectively; Fig. 2D to F). Thus, the interphenotype correlation among pooled cells
from all populations can recapitulate that among the populations.

We then probed whether such interphenotype correlation can be detected via cells
from just one instance of a population, i.e., at each of the 16 time points (Fig. 2G to I).
Intriguingly, for protein-starch, negative correlation (NC) is phase-specific and shows a
temporal trend of gradual weakening, quite strong at each of the time points only
before 2 days (r # –0.6, P , 0.01; Fig. 2G) yet absent at 7 days or 8 days (Fig. 2J). Thus,
it is possible that the protein-starch conversion took place only at the early phase of
N–. In fact, this prediction is supported by the routing of hydrolytic release of carbon
skeletons from protein to the synthesis of starch granules during the first 2 days in C.
reinhardtii under N–, as previously observed (22, 23).

For starch-TAG, the situation is the opposite, as the trend of NC among cells within
a population intensified along time (Fig. 2H and K). Thus, in contrast to the positive
correlation (PC) between starch and TAG at the population level (r = 0.639, P , 0.01;
Fig. 2B), the within-population NC between starch and TAG was prominently present
at the late phase (i.e., starting from 3 days; Fig. 2K), which predicts conversion between
starch and TAG inside the cell. This single-cell-based prediction, which the population-

FIG 2 Correlation of starch and TAG contents of the wild-type C. reinhardtii CC124 at the population level and the single-cell level. (A to F) Correlation of
starch and total protein contents at the population level (A) and the single-cell level (D) was shown; so was that of starch and TAG contents at the
population level (B) and the single-cell level (E) and that of TAG and total protein contents at the population level (C) and the single-cell level (F). Each dot
in panels A, B, and C represent one sample. Each dot in panels D, E, and F represent one individual cell. (G to L) Correlation of starch and TAG contents
modeled by multiple pairs of singular Raman peaks among individual cells at each time point. Phenotypic correlation between starch (x) and protein (y)
contents (G and J), between starch (x) and TAG (y) contents (H and K), and between TAG (x) and protein (y) contents (I and L) are also shown. (M to P)
Phenotypic correlation between starch (x) and TAG (y) contents modeled by pair of Raman peaks of 940 cm21 and 2,851 cm21. Correlation of the starch
and TAG contents at the population level (M) and single-cell level (N) was compared. Phenotypic correlation between starch (x) and TAG (y) contents (O
and P) at each time point were shown. In the curves of temporal dynamics, r is the Pearson correlation coefficients of two phenotypes among single cells
(**, P , 0.01; *, P , 0.05), with value indicating the mean of triplicates and the error bar indicating the standard deviation. Absence of correlation (r = 0)
or presence of strong correlation (r $ 0.6 or r # –0.6) is highlighted by red horizontal lines.
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level analysis missed, is actually supported by two observations: (i) competition
between starch and lipid synthesis for their shared biosynthetic precursors intensifies
temporally (24–27), and (ii) early build-up of starch may serve as the carbon source for
lipid synthesis at a later subsequent phase (28–32).

For protein-TAG, unlike their very strong among-population NC (r = –0.848,
P , 0.01; Fig. 2C), no strong correlation was found for each population, although the
trend of NC gradually intensified (Fig. 2I and L). In particular, at 2 days and beyond, the
protein contents of individual cells were all already depleted to a very low level, de-
spite their relatively wide range of TAG contents, which indicates the decoupling of
protein-synthetic and TAG-synthetic pathways. This distinction in the temporal within-
population NC pattern between protein-starch (Fig. 2J) and protein-TAG (Fig. 2L) sug-
gests that (i) prior to 2 days, the majority of released carbon skeletons from proteins
were routed to starch rather than to lipids and (ii) when starch biosynthesis was satu-
rated at 2 days, substantial accumulation of TAG occurred which is converted partially
from proteins (23). Therefore, by correlating SCRS-derived phenotypes among cells,
IRCA can reveal intermetabolite conversions from just one instance of an isogenic
population.

Notably, besides the full SCRS (18), individual Raman peaks can also quantitatively
model single-cell starch, protein, and TAG contents. For example, 940 cm21 (C-O
stretching, C-O-C, C-O-H deformation, and a-helix C-C backbone) and 2,851 cm21 (C-H2,
C-H3 asymmetric and symmetric stretches) can model starch and TAG contents, respec-
tively (the correlation coefficient R2 between bulk-biomass-based conventional method
and SCRS-based method being 0.884 and 0.954, respectively; see Fig. S2A and B).
Moreover, correlations via just these two peaks among populations (Fig. 2M) or among
cells (Fig. 2N) are consistent with those based on the full SCRS (Fig. 2B and E). When using
only these two peaks to model single-cell starch and TAG, strong within-population
starch-TAG NC was absent at the early stage of N– (0 h to 1 day, 3 days) yet emerged at
the later stage of N– (2 days, 4 days to 8 days; Fig. 2O and P). These results from C. rein-
hardtii CC124, which are consistent with the full-SCRS-derived findings described above,
raise the possibility of reconstructing a network of potential correlations among metabo-
lites by (i) treating the intensity of each peak as the content of a potential metabolite (or
class of metabolites), and (ii) pairwise correlating all the ;1,600 peaks in an SCRS among
the cells in a ramanome.

Genetically validating IRCA by knockout and then complementation of starch
synthetic genes. To validate such IRCA-based prediction of intermetabolite conver-
sions, we employed a genetic approach (see Fig. S2C to K; Fig. 3; also see Table S1).
CC4325, a mutant directly derived from CC124 by X-ray mutagenesis, is deficient of
starch due to the knockout of sta1-1 (which contributes to starch synthesis by catalyz-
ing synthesis of the activated glycosyl donor, ADP-glucose, from Glc-1-P and ATP [33]),
and thus, the starch-TAG conversion (i.e., NC between starch and TAG peaks in IRCA)

FIG 3 Validation of the IRCA method via a genetic approach using a series of targeted mutants of C. reinhardtii. Correlation between starch (x) and TAG (y)
contents (modeled by 940 cm21 and 2,851 cm21, respectively) among cells within a ramanome for the mutant strains (Table S1)—CC4324 (A), CC4333 (B),
CC4326 (C), CC4565 (D), and CC4566 (E). The starch and TAG contents and their Pearson correlation coefficients are shown via heatmap (**, P , 0.01; *,
P , 0.05). Each dot in the scatterplots represents one cell.
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should attenuate in this mutant. As expected, IRCA of the time series CC4325 rama-
nomes revealed that the strong starch-TAG NC among single cells was no longer pres-
ent (0 to 96 h under N–; see Fig. S2D), in contrast to CC124 (Fig. 2O and P). To validate
the specificity of IRCA in revealing the starch-TAG conversion, we further collected the
time series ramanomes for CC406, a wall-less strain derived from CC124 (34). For
CC406, IRCA revealed strong NC (r # –0.6) starting at 6 h under N– and remained so
afterwards, suggesting starch-to-TAG conversion (see Fig. S2E). Therefore, the cell wall
does not interfere with the detection of starch-TAG conversion via IRCA.

Similarly, for CC4324 (i.e., cw15 arg7-7), a cell wall-deficient, arginine-requiring and
starch-producing strain derived from CC406, significant NC took place throughout the 96
h (especially at 24 h, 72 h, and 96 h; Fig. 3A). In contrast, for CC4333 (i.e., sta6-1; Fig. 3B) or
CC4334 (i.e., sta7-1; see Fig. S3I), which both are direct CC4324 derivatives yet produce no
starch due to disruption of sta6 (ADP-glucose pyrophosphorylase) (35) and sta7 (isoamy-
lase) (36), respectively (34), no strong starch-TAG correlation (r . –0.6) was reported by
IRCA over the full course (0 to 96 h under N–).

Interestingly, for CC4326 (i.e., sta1-2), another direct CC4324 derivative whose starch
synthesis pathway is only partially disrupted (34), the temporal correlation pattern in
IRCA is distinct from CC4333 and CC4334, which are fully starchless (under N–; Fig. 3C);
instead of the latter’s full ablation of starch-TAG NC throughout 96 h, CC4326 exhibited
strong starch-TAG NC, yet only at the middle phase of from 12 h to 48 h, consistent
with transient accumulation and conversion of a low level of starch to TAG, and then
ceased the conversion upon starch depletion. Notably, under N1, which serves as a
control condition (no TAG is accumulated in C. reinhardtii under abundant medium N
[34]), CC4326 did not exhibit the starch-TAG NC until at the very late phase (e.g., 96 h,
when the medium N was depleted by algal growth); in contrast, for CC4333 and
CC4334, no starch-TAG NC was apparent throughout the 96 h under N1, consistent
with their genotypes (i.e., complete disruption of the starch synthetic pathway; see
Fig. S3 [34]).

Importantly, for both CC4565 and CC4566, both genetically complemented strains
with fully restored starch synthetic capability (i.e., the sta6 gene was reintroduced into
CC4333 by overexpression via pSL18-STA6 [34]), the temporal patterns of starch-TAG
NC under N– are identical to those of CC4324, which is the direct progenitor of CC4333
and carries an intact starch synthetic pathway; they all exhibited significant NC
throughout the 96 h (under N–; Fig. 3D and E). Altogether, the starch-TAG NC in IRCA
that indicates starch being converted to TAG is directly correlated with starch-synthetic
genotypes. Therefore, IRCA can detect and model the interconversion between metab-
olites from a single instance of isogenic population.

IRCNs reveal novel product-product and substrate-product links from an isogenic
population. In a ramanome, the 1,581 Raman peaks in each of the many SCRS repre-
sent over one million pairwise correlations among individual cells. Such richness of in-
formation indicates an enormous number of possible between-phenotype links (and,
in particular, between-metabolite conversions). For example, for the CC124 N– 7-day
ramanome that consists of 60 cells (which exceeds the minimal sampling depth for
IRCA; see Text S1; also see Fig. S4), all pairwise among-cell correlations of peaks
unveiled, in total, 60,994 strong NC “links” (r # –0.6, P , 0.05) that formulate a 1,581-
node network (Fig. 4A; Materials and Methods). In such an intra-ramanome correlation
network (IRCN), a node represents a Raman peak in SCRS and thus a potential pheno-
type (e.g., a metabolite), while an edge indicates a tentative link between two pheno-
types (e.g., conversion between two metabolites).

An IRCN can reveal valuable features of the system. For example, in a 51-peak mod-
ule of the CC124 N– 7-day IRCN (Fig. 4B; also see Fig. S5A), besides 478 cm21 and
938 cm21 for starch and 1,658 cm21 and 2,853 cm21 for TAG, many peaks of known or
unknown assignments are present, suggesting additional between-metabolite conver-
sions. In particular, 526 cm21 (phosphatidylserine; PS) and 577 cm21 (phosphatidylino-
sitol; PI) exhibit strong NC with 968 cm21, 1,302 cm21, and 1,263 cm21, which are all
TAG markers (18) (Fig. 4B). As both PS and PI are main components of membrane
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lipids, these observations suggest the conversion between membrane lipids and TAG
under N– at 7 days (37, 38). These findings are supported by (i) the concomitant TAG
accumulation and membrane lipid degradation under stress for C. reinhardtii (39) and
(ii) the stable, modest rise of cellular FAME (fatty acid methyl ester) levels yet dramatic
fall of chloroplast membrane lipid level at the early stage of N– in C. reinhardtii (40).
Notably, comparison of the 16 time series IRCNs of CC124 under N– revealed a deepen-
ing trend of the PS-TAG correlation and of the PI-TAG correlation (see Fig. S5B to E),

FIG 4 Global and local IRCNs of the wild-type C. reinhardtii. (A) The global IRCN of 1,581 Raman peaks of CC124 under N– at 7 days (r # –0.6, P , 0.05).
(B) The local IRCN with 51 Raman peaks of CC124 under N– at 7 days. (C) The local IRCN (i.e., 17 characteristic Raman peaks) that includes the DU of CC124
under N– at 7 days (r # –0.6, P , 0.05). (D) The local IRCN that further includes the CD ratio of CC124 under 25% D2O and N– at 2 days. Edges represent
strong negative correlations (r # –0.6, P , 0.05). N–, nitrogen-depleted condition. (E) Key substrate-product or product-product links discovered by IRCNs.
Contents of starch and TAG were quantified by 940 cm21 and 2,851 cm21, respectively. Protein content was modeled via the full SRCS. The degree of DU
was quantified by the ratio between 1,658 cm21 (unsaturated C=C bonds) and 1,441 cm21 (saturated C-C bonds). The D2O incorporation rate was
quantified by the CD ratio, i.e., the ratio between the C-D bond area (2,040 to 2,300 cm21) and the area of C-D plus C-H bonds (2,040 to 2,300 cm21 and
2,800 to 3,050 cm21). Blue lines and blue arrows represent strong conversions.
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suggesting the increasing extent of such conversions with time. Moreover, the NC
between membrane lipids and TAG occurred as early as 8 h, much earlier than that
between starch and TAG (Fig. 2O and P; 2 days), indicating that the membrane-lipid-
TAG conversion precedes the starch-TAG conversion. On the other hand, in the N– 7-
day IRCN, the starch-TAG NC is present, an indication of the starch-TAG conversion
(Fig. 4B). Therefore, this local IRCN module detects multiple concomitant conversion
processes that all produce TAG and reveals their dynamic features.

Notably, the IRCN can be readily expanded to include nodes representing those
phenotypes that are underpinned by multiple Raman peaks. For example, the degree
of unsaturation (DU), a key feature that determines the application and value of lipids,
can be quantified by the ratio between the two Raman peaks of 1,658 cm21 (unsatu-
rated C=C bonds) and 1,441 cm21 (saturated C-H2 bonds) (18, 41, 42). Inclusion of DU
into the aforementioned time-series IRCNs revealed a local module of 17 peaks with
functional assignment, where DU is highly negatively correlated with two starch peaks
(938 cm21 and 1,125 cm21) and one protein peak (1,007 cm21) at the late phase of N–
(Fig. 4C; also see Fig. S6A and B; 2 days to 8 days). This suggests starch and proteins
are converted to unsaturated lipids at the late phase of N–, consistent with the con-
cordance between (i) degradation of proteins and starch and (ii) accumulation of un-
saturated lipids (23, 28–32).

Moreover, IRCN can reveal the link between substrate intake and metabolite pro-
duction of the cell. For example, cellular intake of D2O resulted in substitution of C-H
bonds in intracellular macromolecules by C-D bonds. Therefore, the CD ratio, i.e., the
ratio between the C-D bond area (2,040 to 2,300 cm21) and the area of C-D plus C-H
bonds (2,040 to 2,300 cm21 and 2,800 to 3,050 cm21), can measure cellular metabolic
activity (43, 44). In a separate time-resolved experiment, D2O was fed to CC124 imme-
diately after the removal of medium nitrogen (i.e., sampled for ramanomes in tripli-
cates at 0 h, 12 h, 1 day, 2 days, 3 days, and 4 days under N–; see Fig. S6C; Materials
and Methods). IRCA revealed that (i) specifically at 2 days, a module of 17 characteristic
peaks was formed, in which the CD ratio exhibited strong NC (r # –0.6, P , 0.05) with
5 TAG peaks (1,263, 1,443, 1,656, 2,855, and 3,011 cm21; Fig. 4D, also see Fig. S6C and
D), suggesting that at 2 days, higher TAG-content cells exhibit lower D2O-assimilating
activity (and visa versa). Thus, at 2 days, the algal population was at a most “diverse”
metabolic state, where both low-TAG, active-“drinking” cells and high-TAG, inactive-
drinking cells were abundant, while before 2 days the former dominated, and after 2
days the latter dominated. (ii) Between CD ratio and DU, no strong NC (r # –0.6,
P , 0.05) was observed at any of the time points (Fig. 4D, also see Fig. S6C and D),
except for weak correlation at 3 days (r = –0.50, P , 0.01), suggesting that the DU of
synthesized lipids increased with reducing C. reinhardtii vitality under the nitrogen-
depletion stress (this finding is supported by GC-MS data [18]). (iii) In contrast to the
TAG peaks, peaks of starch (the major carbon storage form of C. reinhardtii under N–)
showed no correlation with CD ratio at any of the time points. Thus, starch synthesis
appears to be mainly supported by endogenously derived H, while TAG synthesis
requires exogenously supplied H. Therefore, IRCA is a new strategy to track the cellular
destination of target substrate (in this case, the water).

Altogether, a choreography of interplay among water intake and major cellular
products was revealed (Fig. 4E). (i) At 0 h, only the protein-starch conversion took
place; (ii) at 12 h, both the protein-starch conversion and the D2O incorporation
occurred; (iii) at 2 days, besides the protein-starch conversion, TAG became the most
catabolically active component, and starch, PS, PI, and D2O all contributed to TAG syn-
thesis; (iv) at 4 days, the three conversions of starch-TAG, PS-TAG, and PI-TAG still took
place, but not the protein-starch and the D2O-TAG conversions. Therefore, IRCA can
unveil metabolite conversions from a single snapshot of an isogenic population (i.e.,
one ramanome), while revealing the dynamics of such conversions via a temporal se-
ries of ramanomes.

He et al. ®

July/August 2021 Volume 12 Issue 4 e01470-21 mbio.asm.org 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 3

1 
M

ar
ch

 2
02

2 
by

 1
47

.8
.2

30
.4

0.

https://mbio.asm.org


Global features of IRCNs reveal the degree of dynamics for metabolite conversions.
To probe the global features of IRCN, key network parameters were derived for the
time series IRCNs of CC124 under N– (r # –0.6, P , 0.05; Fig. 5; heatmap of r shown
in Fig. S7A). (i) The number of nodes (num_Node; Fig. 5A) increased (minimum [min] of
122 at 2 h and maximum [max] of 1,499 at 7 days), and so did the number of edges
(num_Edge; r # –0.6, P , 0.05; Fig. 5B). (ii) The number of modules (num_Module;
each module is a sub-IRCN that is not connected with any other nodes in the IRCN;
Fig. 5C) decreased (max of 11 at 4 h and min of 1 at 18 h, 2 days, 4 days, 6 days, and 7
days). However, the size of the largest module (size_largest_Module; number of nodes
in the largest module of each IRCN; Fig. 5D) increased greatly (min of 53 at 2 h and
max of 1,499 at 7 days). (iii) Both the density (Density, number of edges divided by

FIG 5 Intra-ramanome correlation network (IRCN) reveals global features of metabolite conversion dynamics. (A to G) Key network parameters derived
from the time series IRCNs (r # –0.6, P , 0.05) of CC124 under N–, including number of nodes (A) (num_Node), number of edges (B) (num_Edge), number
of modules (C) (num_Module; each module is a sub-IRCN not connected with any other nodes in the IRCN), size of the largest module (D)
(size_largest_Module; number of nodes in the largest module of each IRCN), density (E) (Density, ratio of the number of edges divided by the number of all
possible edges of the same nodes), average degree (F) (ave_Degree, average number of adjacent edges), and average PCC (G) (ave_PCC, sum of all
significant strong negative correlations divided by all nodes). (H to L) Correlations between the starch-TAG conversion (i.e., PCC of starch-TAG) and key
network parameters that include num_Node (H), num_Edge (I), Density (J), ave_Degree (K), and ave_PCC (L). (M and N) Also shown are clusters of IRCNs via
PCA (M) and HCA (N) based on the correlation matrix of IRCN (strong negative correlations; r # –0.6, P , 0.05).
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number of all possible edges for the same nodes; Fig. 5E) and the average degree
(ave_Degree, average number of adjacent edges; Fig. 5F), both depicting the degree of
network complexity, increased. In contrast, the average Pearson correlation coefficient
(ave_PCC; Fig. 5G) became more negative (from –0.000078 at 2 h to –0.0335 at 7 days),
indicating more frequent and more active conversions between the implicated
metabolites.

Across all time points, the dynamics of num_Node, num_Edge, Density, ave_Degree,
and ave_PCC of 16 IRCNs were significantly correlated with the starch-TAG conversion
(PCC of –0.653, –0.807, –0.807, –0.807. and 0.81, respectively; P , 0.05; Fig. 5H to L). In
addition, Raman peaks at the carbohydrate and lipid region were usually prominently
found in the nodes with the highest degree (see Fig. S7B). Moreover, the 1,457 cm21

region (the alkyl C–H2 bend of saturated lipids) dominated at the later phases under
N– (i.e., 4 days, 5 days, 7 days, and 8 days), consistent with the turnover between lipid
classes (saturated switching to unsaturated). Therefore, topological features of an IRCN
can reveal both metabolically active compounds and their interconversions.

Based on the matrix of r (r # –0.6, P , 0.05), the 16 CC124 IRCNs under N– can be
classified as clusters I and II (Fig. 5M and 6N); I consists of those time points before 24
h, which are characterized by the global features of low num_Edge and low intensity of
ave_PCC, and II includes those after 24 h, with global features of a sharp increase of
num_Edge and of ave_PCC. Thus, 24 h is the temporal transition point (consistent with
population-level measurement; see Fig. S1), when protein stopped degradation, starch
stopped accumulation, and the early build-up of starch began to contribute to other
cell activities, such as serving as the carbon source for lipid synthesis.

In addition, the global heatmap of Dr (the difference between max r and min r in
a ramanome series) reveals the dynamic change of the “hot spots” of metabolite con-
version. For example, in the 16-time point CC124 N– process (see Fig. S7C), the Dr

between 1,441 cm21 (alkyl C-H2 bend, CH2 scissoring, and CH3 bending; i.e., saturated
lipids) and 1,402 cm21 (bending modes of methyl groups; i.e., proteins) is one of the
most prominent hot spots (1.18; highlighted in Fig. S7C), with a max r of 0.619 at 2 h
(strong positive correlation) and min r of –0.557 at 7 days (strong NC). This suggests
the temporal switch, from the synergic degradation of lipids and protein at 2 h to the
protein-to-lipid conversion at 7 d, is a key dynamic feature of this process.

Furthermore, such heatmaps of r can measure the global similarity of metabolite
conversion modes among ramanomes from different strains (see Fig. S7D). For exam-
ple, at N– 72 h, comparison among IRCNs of CC4324 (wild-type), CC4333 (starchless
mutant), and CC4565 (genetically complemented strain) reveal much higher similarity
with CC4324 for CC4565 than for CC4333. Specifically, CC4333 is distinct due to the ab-
sence of several regions (dotted rectangle in Fig. S7D) found in both CC4324 and
CC4565, such as (i) 867 to 970 cm21 (conversion of starch to lipids) and (ii) 1,441 to
1,658 cm21, and 1,441 to 1,744 cm21 (conversions of saturated lipids to unsaturated
lipids; solid rectangles in Fig. S7D). These IRCN-derived phenotypes of the three strains
are consistent with their genotypes (Fig. 3).

IRCN is a new “state”-specific metabolic signature of an isogenic population for
diverse organisms. A ramanome is essentially a single-cell-resolution metabolic snap-
shot of the cellular population (16, 21). To maximally extract the metabolic features
from a ramanome (Fig. 1), three signatures are proposed, metabolite profile (MP;
derived via the mean SCRS of a ramanome; Fig. 6A and B), metabolite interaction (MI;
derived via the correlation matrix of a ramanome consisting of significant correlations
of all pairwise Raman peaks [P , 0.05]; Fig. 6C and D), and metabolite conversion (MC;
derived via a correlation matrix of a ramanome that consists of strong NC of all pair-
wise Raman peaks [r # 0.6, P , 0.05]; Fig. 6E and F). To test their general applicability
across organisms, MP, MI, and MC were derived for each of the 64 ramanomes from C. rein-
hardtii (wild type [WT] and the starchless mutant series), N. oceanica, Saccharomyces cerevi-
siae, and Escherichia coli (see Table S1; Materials and Methods). To facilitate interspecies
comparison, the temporal ramanome data set of CC124 under N– along 16 time points
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FIG 6 Clustering of ramanomes via the metabolite profiling (MP), metabolite interaction (MI), and metabolite conversion (MC) signatures. (A to F) The PCA
and HCA clusters of 64 ramanomes based on MP (A and B) (mean SCRS), MI (C and D) (P , 0.05), and MC (E and F) (r # –0.6, P , 0.05) are shown. Details
for each of the Chlamydomonas reinhardtii populations (WT and starchless mutant series, C. reinhardtii [Cr]), Nannochloropsis oceanica (No), Saccharomyces
cerevisiae (Sc), and Escherichia coli (Ec) are provided in Table S1. Details for the Raman barcodes and local IRCNs are also provided in Table S1. Global IRCNs
were derived from Raman peaks from 600 cm21 to 1,800 cm21. Clusters are colored based on HCA.

Intra-Ramanome Correlation Analysis ®

July/August 2021 Volume 12 Issue 4 e01470-21 mbio.asm.org 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 3

1 
M

ar
ch

 2
02

2 
by

 1
47

.8
.2

30
.4

0.

https://mbio.asm.org


was regarded as a standard “protein-starch-TAG” (PST) process, onto which the entire 64
ramanomes were “projected.”

Similarity-based clustering of MP reveals six modes (Fig. 6A and B). (i) MP-1 consists
of PST 0 h, 2 h, and 4 h, plus the early phases under N– of C. reinhardtii and N. oceanica,
indicative of high protein content but low content of starch or TAG. (ii) MP-2 includes
PST 6 h, 8 h, 10 h, 12 h, 18 h, 24 h, 48 h, and 72 h, i.e., starch-producing C. reinhardtii
strains (CC124, CC4324, and CC4565) at the middle phases (i.e., 6 h to 48 h) under N–,
indicating high carbohydrate content. (iii) MP-3 includes PST 96 h, 120 h, 144 h, 168 h,
and 192 h, i.e., mainly starch-producing C. reinhardtii strains (CC124, CC4324, and
CC4565) at the later phase (i.e., 48 h to 192 h) under N–, indicating high carbohydrate
content and the start of accumulating lipids (mainly neutral lipids such as TAG). (iv)
MP-4 includes both the middle and the later phases of N. oceanica under N– (36 h, 48 h,
72 h, 96 h, and 120 h) and the later phases of starchless C. reinhardtii strains (CC4333)
under N– (24 h, 48 h, 72 h, and 96 h), corresponding to high content of neutral lipids and
low levels of nucleic acids, protein, and carbohydrates. (v) MP-5 consists of S. cerevisiae (0 h
to 120 h), featuring high protein yet low carbohydrate and lipid amounts. (vi) MP-6 con-
sists of E. coli under kanamycin (0 h to 5 h), featuring larger amounts of proteins and
nucleic acid.

MI forms six clusters (Fig. 6C and D). (i) MI-1 consists of 0 h, 2 h, and 4 h of PST, i.e.,
the very early phases under N– of C. reinhardtii and N. oceanica strains, indicating that
proteins began to degrade and were converted to other metabolites, such as starch.
(ii) MI-2 consists of PST 6 h, 8 h, 10 h, 12 h, 18 h, and 24 h, i.e., the middle phase of
starch-producing C. reinhardtii strains (CC124, CC4324, and CC4565) under N–, corre-
sponding to high carbohydrate accumulation. (iii) MI-3 is composed of PST 48 h, 72 h,
96 h, 120 h, 144 h, 168 h, and 192 h, i.e., the later phase of starch-producing C. rein-
hardtii strains (CC124, CC4324, and CC4565) under N–, indicating the conversion of
accumulated carbohydrates to lipids. (iv) MI-4 consists of both the middle and the later
phases of N. oceanica under N– (24 h, 36 h, 48 h, 72 h, 96 h, and 120 h) and the later
phase of the starchless CC4333 under N– (24 h, 48 h, 72 h, and 96 h), indicative of a
state converting other metabolites such as nucleic acids, protein, and carbohydrates to
lipids. (v and vi) S. cerevisiae (0 h to 120 h) and E. coli (0 h to 5 h) form MI-5 and MI-6,
respectively, underscoring each species’ characteristic metabolite-interacting networks.

MC also formulates six modes (Fig. 6E and F). (i) MC-1 consists of 0 h and 2 h of PST,
i.e., the early phase of C. reinhardtii strains under N– and all E. coli states—no or few
strong pairwise NCs are found in these IRCNs. (ii) MC-2 consists of PST 4 h, 6 h, 8 h, 10
h, 12 h, 18 h, 24 h, 48 h, 72 h, and 96 h, plus the early and the middle stages of starch-
producing C. reinhardtii mutants under N–, when proteins are converted into starch
(see Fig. S1A). Notably, MC-2 showed more NC links between Raman peaks than MC-1,
indicating more extensive metabolite conversions in MC-2. (iii) MC-3 is composed of PST
120 h, 144 h, and 168 h, i.e., the late stages of starch-producing C. reinhardtii strains under
N–, when starch is converted into lipids (Fig. 2B). The NC links in IRCN of MC-3 are more
abundant and stronger than those of MC-2, suggesting even more extensive and active
metabolite conversions. (iv) MC-4 includes all the S. cerevisiae ramanome, which showed a
distinct pattern of conversion among nucleic acids, proteins, carbohydrates, and lipids. (v)
MC-5 mainly consists of the later phases of the starchless CC4333 and the early phase of N.
oceanica strains under N–, corresponding to the metabolite-conversion pattern of lipid
production. (vi) MC-6 mainly consists of the later phase of N. oceanica strains under N–,
where proteins are converted into a large amount of lipids.

The MP, MI, and MC signatures, although inherently linked, can be highly distinct
(see Fig. S8). Specifically, MP appears to show more species specificity, while MI and
MC exhibit more state-specificity. For example, E. coli ramanomes are clustered with
algae and yeast in MC-1; in contrast, E. coli ramanomes are solely clustered as MP-6.
However, MC can be more sensitive in detecting cellular state change than MP and MI.
For example, at 4 h under N–, the metabolite content of CC124 has yet to change (i.e.,

He et al. ®

July/August 2021 Volume 12 Issue 4 e01470-21 mbio.asm.org 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 3

1 
M

ar
ch

 2
02

2 
by

 1
47

.8
.2

30
.4

0.

https://mbio.asm.org


clustered with 0 h in MP-1; it did not switch to MP-2 until 6 h), yet the mode of metab-
olite conversion has already altered (i.e., clustered with 6 h to 96 h in MC-2).

DISCUSSION

Exploiting a fundamental and inherent property of all cellular systems, i.e., the het-
erogeneity in single-cell metabolism-related phenotypes (e.g., metabolite contents and
substrate intake) among individual cells, here, we proposed and then biochemically
and genetically validated the IRCA approach. IRCA is advantageous, as it unveils a com-
prehensive and landscape-like network of potential links among metabolic activities, in
this case metabolite conversions or links between substrates and products, from a sin-
gle instance of an isogenic population of living cells, rather than requiring a time or
condition series of samples. This ability is of particular importance for those phenotyp-
ing experiments where spatiotemporal or condition-resolved sampling is a hurdle or a
constraint.

Despite its need of just one snapshot of an isogenic population, an IRCN is informa-
tion rich. From an IRCN, a large number of hypotheses on potential links among me-
tabolism-related phenotypes can be generated simultaneously, based on the poten-
tially millions of pairwise correlations from the Raman peaks that each potentially
represents a phenotype or from the combinations of Raman peaks that model particu-
lar phenotypes, among the individual cells sampled for SCRS in a ramanome. The
scope of such phenotypes is broad (16, 45), including but not limited to substrate
intake (46), product synthesis (17, 18), and response to environmental stress (e.g., anti-
microbial susceptibility [21, 44]). Based on the long and expanding list of such SCRS-
derived phenotypes (16, 45), IRCNs can be constructed and then interpreted to mine
the ramanome data space for new interphenotype links without a priori hypotheses.
Moreover, since Raman microspectroscopy is label-free, noninvasive, and generally ap-
plicable to any cells, the strength of IRCA also includes high throughput, low cost,
excellent scalability, and broad applicability. For example, acquisition of SCRS can be
automated via flow-mode Raman cytometry or sorting (47, 48), suggesting the possi-
bility of ultrafast, robust yet low-cost acquisition of ramanomes for IRCA. Therefore,
IRCA presents a new dimension of “metabolism-related phenome” for cellular systems,
which serves as a highly species- and state-specific signature of metabolic activity that cap-
tures not just the profile of Raman-sensitive metabolites (as well as other SCRS-derived
phenotypes) but their dynamic links. This capacity of IRCA would enable a data-driven
research strategy for profiling cellular metabolism.

On the other hand, the potential of IRCA is limited by its frequent inability to unam-
biguously assign Raman peaks to specific metabolites. For example, in this study,
although ;1,600 spectral resonance features were detected in each SCRS, only inter-
conversion of macromolecules such as lipids, protein, and starch can be revealed,
because a large number of vibrational features were shared among metabolites and
cannot be assigned uniquely to individual metabolites. Even though the list of models
that link spectral resonance features to a metabolite (or other metabolism-related phe-
notypes) has been rapidly growing (16), only a small portion of Raman peaks in an
SCRS can be assigned to a defined metabolism-related phenotype at present. In addi-
tion, biological hypotheses for many of the edges, i.e., phenotype pairs showing signifi-
cant NC, in an IRCN remain difficult to interpret or confirm. Therefore, new experimen-
tal and computational methods, such as stable-isotope probed SCRS (to track the
assimilation of target substrate) and multivariate curve resolution-alternating least-
squares (MCR) algorithms (to deconvolute macromolecular components from overlap-
ping Raman peaks [49, 50]) should be developed to establish new assignments or to
improve their specificity for the Raman peaks, so as to enrich and expand the actual in-
formation content of an IRCN.

Despite these present limitations, as demonstrated here using a number of microal-
gal, fungal, and bacterial species as examples, IRCA can serve as a valuable tool to rap-
idly discover features of metabolic dynamics of cellular systems, such as metabolite
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conversions. The capability of revealing such features from just one snapshot of an iso-
genic population has profound implications for designing phenotyping experiments.

MATERIALS ANDMETHODS
Strains and growth conditions. For Chlamydomonas reinhardtii, a total of nine wild-type (WT), low-

starch mutant and starchless mutant strains were employed (see Table S1). Specifically, CC124, CC406,
and CC4324 were WT strains. The low-starch mutant CC4325 was derived by X-ray mutagenesis from
CC124. The low-starch mutant CC4326 and the starchless mutants CC4333 and CC4334 were derived
from CC4324 by random integration of cassette pARG7 into the nuclear genome (34, 35, 51). The starch-
less mutant CC4333 is deficient in the catalytic (small) subunit of ADP-glucose pyrophosphorylase, which
interrupts synthesis of the ADP-glucose, a substrate for starch biosynthesis. The CC4334 mutant contains
a disrupted isoamylase gene; thus, the level of starch is severely attenuated, but it accumulates a soluble
glycogen-like product. CC4565 and CC4566 were genetically complementary strains of CC4333, derived
by complementation with plasmid pSL18-STA6 (34). All these mutants can be obtained from the
Chlamydomonas Resource Center (http://www.chlamycollection.org).

The C. reinhardtii cells were inoculated into the TAP (Tris acetate phosphate) liquid medium with or
without arginine (100 mg ml21) supplement under one-side continuous light (approximate 150 mmol
photons m22 s21) at 25°C bubbled with air to ensure mixture and to prevent settling and were then
grown to the late log phase in the N-replete TAP medium. Then they were reinoculated at 1 � 106 cells/
ml in parallel into the nitrogen-replete TAP medium (N1), the nitrogen-depleted TAP medium (N–; in
which NH4Cl was omitted), or the 25% D2O nitrogen-depleted TAP medium (25% D2O N–), each in tripli-
cates. Cultures at each of a series of time points were sampled in triplicate (see Table S1A).

For the Nannochloropsis oceanica IMET1 strain, cells were cultured in a modified f/2 liquid medium
with 4 mM NO3

2 under continuous light (approximately 50 mmol photons m22 s21) at 25°C and then
induced in nitrogen-replete (N1) or nitrogen-depleted (N–) f/2 medium. The cultures were sampled at
multiple time points of 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, and 120 h. For E. coli DH5a, cells were cul-
tured in a glass tube with fresh LB medium (10g/liter NaCl, 10g/liter tryptone, 5g/liter yeast extract,
3.7 mg/ml kanamycin) at 37°C in a shaking incubator (130 rpm). Samples were collected at 0, 5, 10, 20,
30, 60, 180, and 300 min (21). For Saccharomyces cerevisiae Y50049, cells were cultured in a glass tube of
fresh yeast extract-peptone-dextrose (YPD) medium at 30°C in a shaking incubator (200 rpm). Samples
were collected at 0 h, 3 h, 6 h, 12 h, 24 h, 36 h, 48 h, 72 h, 96 h, and 120 h. All cultures and all sampling
for further analysis were in triplicate.

Acquisition of single-cell Raman spectra from an isogenic population of cells. Raman spectra of
individual cells were acquired using modified Raman microspectroscopy equipped with a confocal
microscope with a �50 PL magnifying dry objective (numerical aperture [NA] = 0.55, BX41; Olympus,
UK) and a 532-nm Nd:YAG laser (Ventus, Laser Quantum Ltd., UK). The scattered photons were collected
by a Newton electron multiplying charge coupled device (EMCCD) (Andor, UK) utilizing a 1,600 � 200
array of 16-mm pixels with thermoelectric cooling down to 270°C for negligible dark current. Before
measurement, each sample was washed three times and resuspended in double-distilled water (ddH2O)
to remove the culture medium. For algal and yeast samples, cells were loaded into a capillary tube
(50-mm length by 1-mm width by 0.1-mm height; Camlab, UK) for SCRS acquisition. The power out of
the objective was 100 mW. For each SCRS, the signal acquisition time was 2 s for C. reinhardtii and
N. oceanica and 3 s for yeast. For C. reinhardtii and N. oceanica, prior to Raman signal acquisition, the cell
was quenched with a 532-nm laser until the signal of fluorescent and resonantly enhanced biomolecules
was no longer detectable. For each individual cell, a background spectrum was generated as the aver-
age of four spectra acquired from the liquid around the cell. For E. coli samples, cells were loaded onto a
clean CaF2 slide and air dried before Raman measurement, and the SCRS of E. coli samples were col-
lected as described (21).

Notably, a eukaryotic cell is generally larger than the laser focal spot obtained with a lens objective.
In the case of a C. reinhardtii (;10 mm in diameter), N. oceanica (2 to ;3 mm in diameter), or S. cerevisiae
(2 to ;3 mm in diameter) cell, which was held in the single-beam gradient force trap under the aqueous
conditions, the cell was rolling in random orientation when undergoing SCRS acquisition. Therefore, the
SCRS acquired represents the overall metabolic state of the cell.

Intra-ramanome correlation analysis. The raw SCRS was first preprocessed with LabSpec 5 (Horiba
Scientific, France), including background subtraction and baseline correction by a polynomial algorithm
(with degree of 7). Then SCRS were normalized, followed by IRCA, which used a customized computa-
tional pipeline for data analysis and result visualization.

Due to potential technical variation (e.g., change of data collector, batch, etc.), SCRS from different
ramanomes may have distinct spectral ranges and resolution. Therefore, prior to computing the MP sig-
nature and the MI and MC networks, the 64 ramanomes were standardized in three steps: (i) for spectral
range, only the “fingerprint area” (600 to 1,800 cm21) was extracted; (ii) spectral resolution was simu-
lated to 1 cm21, via the interpolation algorithm; (iii) spectral normalization was performed by division by
its area.

For each IRCN, the correlation matrix of each ramanome was constructed by calculating the Pearson
correlation coefficient (PCC; r ) of all possible pairwise combinations of Raman peaks, among all the 60
cells sampled for the ramanome. Those pairs of Raman peaks with significant correlation were consid-
ered candidates that potentially indicate links between two metabolites (P , 0.05), while those with
strong negative correlations suggested potential conversions among two metabolites (r # –0.6,
P , 0.05). The igraph package in R (http://www.r-project.org) was used to derive the key network

He et al. ®

July/August 2021 Volume 12 Issue 4 e01470-21 mbio.asm.org 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 3

1 
M

ar
ch

 2
02

2 
by

 1
47

.8
.2

30
.4

0.

http://www.chlamycollection.org
http://www.r-project.org
https://mbio.asm.org


properties and visualize the IRCNs (either from specific subsets of Raman peaks or from all of the Raman
peaks). To probe the global features of an IRCN, key network parameters including number of nodes
(num_Node), number of edges (num_Edge), number of modules (num_Module; each module is a sub-
IRCN not connected with any other nodes in the IRCN), size of the largest module (size_largest_Module;
number of nodes in the largest module of each IRCN), density (Density, ratio of the number of edges di-
vided by the number of all possible edges of the same nodes) and average degree (ave_Degree, average
number of adjacent edges), and average Pearson correlation coefficient (ave_PCC, sum of all significant
strong negative correlations divided by all nodes), were derived. For global IRCNs, all Raman peaks were
used. For simplified versions of IRCN that facilitate visualization, characteristic marker Raman peaks were
used (669, 783, 814, and 1,481 cm21 for nucleic acids; 622, 643, 758, 1,003, 1,176, 1,211, 1,246, 1,584,
1,606, and 1,619 cm21 for proteins; 865, 940, 1,033, 1,045, and 1,127 cm21 for carbohydrates; and 725,
971, 1,083, 1,265, 1,305, 1,441, 1,450, 1,658, and 1,742 cm21 for lipids; see Table S1B).

To characterize, compare, and cluster ramanomes, the three signatures of MP, MI, and MC were
proposed. For MP, the mean SCRS of each ramanome was used. The MI network of a ramanome was
generated as follows: (i) a correlation matrix was constructed by calculating the PCC of all possible
pairwise Raman peaks; (ii) significant correlations (P , 0.05) were tabulated, while those with no sig-
nificant difference were counted as 0 (no correlation). The MC network of a ramanome was gener-
ated by including only those significant, strongly negative correlations (r # –0.6, P , 0.05). To mea-
sure the similarity, pairwise Euclidean distances were calculated. Then hierarchical cluster analysis
(HCA) was performed with Ward’s algorithm, and six clusters were produced (52, 53). Principal-com-
ponent analysis (PCA; the factoextra package in R) was used to visualize the MP, MI, and MC
signatures.

Data availability. The data that support the findings of this study are available from the correspond-
ing author, Jian Xu, upon reasonable request.
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