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FINITENESS THEOREMS FOR UNIVERSAL SUMS OF SQUARES OF

ALMOST PRIMES

SOUMYARUP BANERJEE AND BEN KANE

Abstract. In this paper we study quadratic forms which are universal when restricted to almost
prime inputs, establishing finiteness theorems akin to the Conway–Schneeberger 15 theorem.

1. Introduction And Statement Of Results

The Conway–Schneeberger Fifteen theorem (first proven by Conway–Schneeberger–Miller in un-
published work and then elegantly reproven and generalized by the escalator tree method of Bhar-
gava [1]) states that a given positive definite integral quadratic form is universal (i.e., represents
every positive integer with integer inputs) if and only if it represents the integers up to 15 (a smaller
subset of these numbers actually suffices). In particular, the sums of squares

Q(x) =

ℓ∑

j=1

ajx
2
j (1.1)

are universal if and only if they represent every integer up to 15. This classification of universal
quadratic forms can be considered a generalization of Lagrange’s Theorem, which states that every
integer may be written as the sum of 4 squares of integers (i.e., the choice aj = 1 with ℓ = 4 is
universal). Following work of Brüdern and Fouvry [3], many authors have considered generalizations
of Lagrange’s Theorem where the choice of x is sieved into natural subsets. Specifically, they
consider x ∈ P 4

r , where r is a fixed integer and Pr denotes the set of almost primes, i.e., those
integers whose prime factorizations

∏
p p

ap satisfy
∑

p ap ≤ r. In this paper, we allow 0 ∈ Pr for all
r throughout. Brüdern and Fouvry show that if r ≥ 34, then every sufficiently large integer n ≡ 4
(mod 24) may be written as the sum of squares of four Pr numbers. The bound on r has since been
reduced by a number of authors, including for example [5, 12, 22].

The goal of this paper is to combine these generalizations by asking for the infimum Nr such that
a diagonal form Q of the type (1.1) is universal with almost prime x ∈ P ℓr if and only if it represents
every n ≤ Nr with almost prime x ∈ P ℓr (one can consider analogous questions where the form is
not diagonal, but there are some issues which arise because the set Pr is not closed under addition,
and hence two equivalent quadratic forms will represent different integers when restricted to Pr
numbers, so we restrict ourselves here to the diagonal case); for ease of notation, we say that Q is
Pr-universal if it represents every positive integer with x ∈ P ℓr . We are interested in showing that
Nr is finite, which would be a finiteness theorem for Pr-universality. Moreover, since Pr ⊂ Pr+1,
one might expect that if Nr exists, then Nr ≥ Nr+1 and the Conway–Schneeberger 15 theorem
together with Z = P∞ :=

⋃∞
r=0 Pr hints that one might expect a uniform bound Nr = 15 for r
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sufficiently large (or in other words limr→∞Nr = N∞ = 15). However, a simple argument shows
that quite the opposite is true.

Theorem 1.1. We have Nr > 22r+2, and in particular limr→∞Nr = ∞. In other words, there is
no uniform bound for Pr-universality.

The problem that leads to Theorem 1.1 arises due to the same issue which led Brüdern and Fouvry
to assume that n ≡ 4 (mod 24). Namely, any representation of 2m as the sum of four squares must
necessarily have a large power of 2 dividing each xj. In trying to obtain Pr-universality of other
sums of the type (1.1), one also finds a similar obstruction when high powers of 3 divide n. Letting
S be a finite set of primes, we say that an integer x is nearly a Pr-number with respect to S (or
a nearly almost prime when the sets Pr and S are clear from context) if x =

∏
p∈P p

ap
∏
p/∈P p

bp

and
∏
p/∈P p

bp is a Pr-number. Let Pr,S be the set of nearly Pr-numbers with respect to S. We
next consider the question of Pr,S-representations. That is to say, we consider whether a quadratic

form is universal with x ∈ P ℓr,S. Let Nr,S be the infimum of integers such that if Q represents every
n ≤ Nr,S with x ∈ Pr,S , then Q is Pr,S-universal. We next see that the expected uniform bound of
15 is obtained when we exclude the primes 2 and 3 that cause the obstructions noted above.

Theorem 1.2. Let S := {2, 3, 5}. Then for r ≥ 694, we have Nr,S = 15. In other words,
for r ≥ 694, Q is Pr,S-universal if and only if it represents every m ≤ 15 with Pr,S-numbers.
Furthermore, for r ≥ 694, every quadratic form is Pr,S-universal if and only if it is universal.

Remark. The set S is optimal in the sense that for each p ∈ S there exists a sum of squares Q and
a family of natural numbers nℓ for which every solution Q(x) = nℓ has p

ℓ | xj for all j.
As an immediate corollary, one obtains the following explicit version of Lagrange’s sum of four

squares theorem.

Corollary 1.3. For S = {2, 3, 5}, every integer is a sum of four squares of P694,S numbers.

The paper is organized as follows. In Section 2, we give a number of bounds on a number of
elementary functions and introduce the preliminaries needed for the rest of the paper. In Section
3, we prove Theorem 1.1. In Section 4, we prove bounds on the coefficients of theta functions.
Finally, in Section 5, we apply sieving theory in order to prove Theorem 1.2.
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2. Preliminaries

2.1. Inequalities for some arithmetic functions. Throughout the paper, we require some well-
known inequalities for certain arithmetic functions. We begin with the following bound of Rosser
and Schoenfeld [17, Corollary of Theorem 8, i.e., (3.30), and Theorem 7, i.e., (3.26)].

Lemma 2.1. Letting γ denote the Euler–Mascheroni constant, we have

∏

p≤z

(
1− 1

p

)
>

e−γ

log(z)

(
1 +

1

log2(z)

)−1

We also have ∏

p≤z

(
1− 1

p

)
<

e−γ

log(z)

(
1 +

1

2 log2(z)

)
.

We require some additional well-known bounds for some other simple functions.
2



Lemma 2.2.

(1) Let δ > 0 be given and suppose that p0 is a prime for which p0 >
(
1 + p−10

) 1
δ . Then for m ∈ N

we have ∏

p|m

(
1 + p−1

)
≤ cδm

δ (2.1)

with cδ :=
∏
p<p0

1+p−1

pδ
. In particular, for δ = 10−6 we have

∏

p|m

(
1 + p−1

)
≤ 11.3 ×m10−6

. (2.2)

(2) We have
∏

p|m

(
1− p−1

)
≥ m−δ

ζ(2)cδ
.

In particular,
∏

p|m

(
1− p−1

)
≥ 1

20
m−10

−6
.

Proof. (1) Note that m−δ
∏
p|m
(
1 + p−1

)
is multiplicative, and hence for a fixed p0 we have

m−δ
∏

p|m

(
1 + p−1

)
≤
∏

pj‖m
p<p0

1 + p−1

pjδ

∏

pj‖m
p≥p0

1 + p−10

pjδ
≤ cδ

∏

pj‖m
p≥p0, pjδ≤1+p−1

0

1 + p−10

pjδ
.

Since p ≥ p0 and p0 > 1 + p−10 , the remaining product is empty, yielding the first claim.

For (2.2), we take δ = 10−6 and p0 = 87853. One easily verifies that (1 + 1/p0)
106 < 87800 < p0

and a quick computer check verifies that c10−6 < 11.3.
(2) Using part (1), for any δ > 0 we may bound

∏

p|m

(
1− 1

p

)
=
∏

p|m

1− 1
p2

1 + 1
p

≥
∏
p

(
1− 1

p2

)

∏
p|m

(
1 + 1

p

) =
1

ζ(2)
∏
p|m

(
1 + 1

p

) ≥ m−δ

ζ(2)cδ
.

For the second claim, we take δ = 10−6 and use (2.2). �

We use a trick of Ramanujan to obtain an explicit bound on σ0(n), where σk(n) :=
∑

d|n d
k is

the sum of powers of divisors function.

Lemma 2.3. For 5 ≤ n ∈ N and α > 0, we have

σ0(n) ≤ Cαnα

where Cα :=
∏
p<2

1
α
max

{
j+1
pjα

: j ≥ 1
}
. Specifically, we have

C 1
10
< 4.175 × 1010, C 1

14
< 2.634 × 1071, C 1

15
< 2.751 × 10120.

Proof. Writing
σ0(n)

nα
=
∏

pj‖n

j + 1

pjα
,

we see that if pα ≥ 2, then j+1
pjα

< j+1
2j

≤ 1. Thus we may take the product over those p < 2
1
α and

maximize over j. We compute Cα explicitly for α ∈
{

1
15 ,

1
14 ,

1
10

}
. �
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Lemma 2.4. For 5 ≤ n ∈ N and α > 0, we have

σ−1(n) ≤ Gαnα

where Gα :=
∏
pjα(p−1)<pmax

{
1−p−j−1

(1−p−1)pjα

}
. Specifically, we have

G 1
50
< 3.466, G 1

100
< 4.369.

Proof. Writing

σ−1(n)
nα

=
∏

pj‖n

∑j
ℓ=0 p

−ℓ

pjα
=
∏

pj‖n

1− p−j−1

(1− p−1) pjα
,

we see that if pjα ≥ p
p−1 (it always suffices for pα > 2), then

1− p−j−1

(1− p−1) pjα
≤ p

(p − 1)pjα
≤ 1.

Thus we may take the product over those p with pα(p− 1) < p and maximize over j. We compute
Gα explicitly for α ∈

{
1
50 ,

1
100

}
. �

Lemma 2.5. Let ω(n) denote the number of distinct prime divisors of n. Then we have

2ω(n) < Dαn
α, 3ω(n) ≤ Eαnα, where Dα :=

∏

p<2
1
α

2

pα
, Eα :=

∏

p<3
1
α

3

pα
.

Specifically, we have

D 1
10
< 1.110 × 109, D 1

15
< 6.556 × 10115, D 1

14
< 5.098 × 1067, E 1

2
< 1.614.

Proof. Writing (for r > 1)

rω(n)

nα
=
∏

pj‖n

r

pjα
,

we see that if pα ≥ r, then r
pjα

≤ r1−j ≤ 1 and the case j = 1 is clearly the worst case. Thus

we may take the product over those p < r
1
α with j = 1 assumed. We compute E 1

2
and also Dα

explicitly for α ∈
{

1
15 ,

1
14 ,

1
10

}
. �

Lemma 2.6. For any k ∈ N0 we have
∞∑

n=1

nke−
2πn
N ≤ k!

(
1− e−

2π
N

)k+1
.

Moreover, defining δ1 :=
1
4 , δ3 = δ2 := 1

2 and δN := 1 for N > 3, we have

∞∑

n=1

nke−
2πn
N ≤ k!

(δNπ)k+1
Nk+1.

Proof. We use the binomial series expansion (valid because e−
2π
N < 1) and the well-known identity

(−k − 1

n

)
= (−1)n

(
k + n

n

)
= (−1)n

(
k + n

k

)

to write

k!
(
1− e−

2π
N

)−k−1
= k!

∞∑

n=0

(
k + n

k

)
e−

2πn
N =

∞∑

n=0

e−
2πn
N

k∏

j=1

(n+ j) ≥
∞∑

n=0

nke−
2πn
N .

4



This gives the first claim. For the second claim, it remains to show that

k!
(
1− e−

2π
N

)k+1
≤ k!

(δNπ)k+1
Nk+1.

For 1 ≤ N ≤ 6 this follows by direct calculation. For N > 2π, this follows by expanding the Taylor

series for 1− e−
2π
N and noting that it is alternating and decreasing in absolute value, so it may be

bounded from below by the sum of the first 2J Taylor coefficients. �

2.2. Theta functions. We let Q be a quadratic form Q(x) =
∑

1≤i≤j≤ℓ aijxixj with aij ∈ Z (see

[15] for general information about quadratic forms). For S ⊂ Z, we let rQ,S(n) denote the number

of solutions to Q(x) = n for x ∈ Sℓ, and we abbreviate rQ(n) := rQ,Z(n). For τ ∈ H (with H
denoting the complex upper half-plane τ = u+ iv ∈ C with v > 0), we define the theta function

ΘQ(τ) :=
∑

n≥0
rQ(n)q

n.

It is well-known (for example, see [19, Proposition 2.1]) that θQ is a modular form of weight ℓ/2 on
a particular congruence subgroup Γ of SL2(Z) with a certain Nebentypus χ. As such, it naturally
decomposes as

ΘQ = EQ + fQ,

where EQ is in the space of Eisenstein series of weight ℓ/2 on Γ with Nebentypus χ and fQ is a
cusp form in the same space. If ℓ ≥ 5 (with a mild modification for ℓ = 4 and a more complicated
modification for ℓ = 3 that only works on a restricted set of n), then for those n for which the nth
coefficient aEQ

(n) of EQ is non-zero it turns out that the coefficients of EQ grow much faster than
the coefficients of fQ. Moreover, one can show that aEQ

(n) > 0 if and only if n is locally represented
(i.e., it is represented modulo every N ∈ N). One can hence think of EQ as the main term of ΘQ

and fQ as the error term, with rQ(n) > 0 for sufficiently large n that are locally represented. The
sieving arguments in [3] rely on a splitting into a main term and an error term; although their
arguments rely on the main term coming from the major arcs and the error term coming from the
minor arcs in the Hardy-Littlewood circle method, one may alternatively take the main term to be
the contribution from the Eisenstein series EQ and the error term to be a contribution from fQ.
Although our main term and error term in this splitting do not exactly match those from the major
and minor arcs, upon further refinement the main term may be identified as the singular series in
the Circle method and this indeed matches the contribution from EQ. We use the interpretation of
their work in terms of modular forms in order to use known results to obtain a quantitative version
of their theorem that is needed to prove our main theorems.

2.3. Uniform bounds on coefficients. We require the following quantitative version of the uni-
form bound from [2, Lemma 4.1] for rQ(n).

Lemma 2.7. Let ∆Q denote the determinant of the Gram matrix of a quadratic form Q with
rational coefficients and let

RQ(n) := #{x ∈ Zℓ : Q(x) ≤ n}.
Then

RQ(n) ≤
(3
√
n)
ℓ

√
∆Q

+ ℓ
(
3
√
n
)ℓ−1

.

Proof. Write

Q(x) =
∑

1≤i≤j≤ℓ
aijxixj.

5



Every quadratic form is isometric over Z to a unique Minkowski-reduced form Q. Hence without
loss of generality we may assume that Q is Minkowski-reduced with a11 ≤ a22 ≤ · · · ≤ aℓℓ. By the
definition of a Minkowski-reduced form, for any u ∈ Zℓ with gcd(ui, ui+1, . . . , uℓ) = 1, we have

Q(u) ≥ Q(ei), (2.3)

where ei is the canonical basis element with ei,j = δi=j . Taking u = ei ± ej yields |aij | ≤ aii for
all i and j.

We prove the claim by induction on ℓ. For ℓ = 1 we have Q(x) = ax2 for some a and ∆Q = a.

We see that Q(x) ≤ n if and only if |x| ≤
√

n
a =

√
n

∆Q
, so there are at most 2

√
n

∆Q
+ 1 solutions.

Now suppose that the claim is true for ℓ > 1. Consider

Q(x) = a11

(
x1 +

∑ℓ
j=2 a1jxj

2a11

)2

+
∑

2≤i≤j≤ℓ

(
aij −

δi 6=j
2a11

a1ia1j −
δi=j
4a11

a21j

)
xixj

=: a11

(
x1 +

∑ℓ
j=2 a1jxj

2a11

)2

+ Q̃(x2, . . . , xℓ) .

Set x̃ := (x2, . . . , xℓ) and x′1 = x′1(x̃) := x1 +
∑ℓ

j=2 a1jxj
2a11

. note that for each fixed x̃, there exists

0 ≤ m ≤ 2a11 such that x′1(x̃) ∈ m
2a11

+ Z. Thus for each x̃ there are at most 2
√

n
a11

+ 1 choices of

x′1 such that |x′1| ≤
√

n
a11

. Using elementary row operations to relate the determinants, we have

∆Q̃ =
∆Q

a11
. (2.4)

Using (2.4), by induction there are at most

3ℓ−1√
∆Q̃

n
ℓ−1
2 + (ℓ− 1)(3

√
n)ℓ−2 =

3ℓ−1
√
a11√

∆Q

n
ℓ−1
2 + (ℓ− 1)(3

√
n)ℓ−2

points x̃ with Q(x̃) ≤ n, and for each of these there are at most 2
√
n√

a11
+ 1 choices of x′1. After

simplifying, we conclude that the number of points is at most

(3
√
n)ℓ√
∆Q

+ ℓ(3
√
n)ℓ−1

(
ℓ− 1

3ℓ
√
n

(
1 +

2
√
n√
a11

)
+

1

ℓ
√

∆Q

(√
a11 −

√
n
)
)
.

For n ≥ a11, we have
√
a11 −

√
n ≤ 0 and hence the terms inside the parentheses in the second

term may be bounded by

ℓ− 1

3ℓ
√
n

(
1 +

2
√
n√
a11

)
+

1

ℓ
√
∆Q

(√
a11 −

√
n
)
≤ ℓ− 1

3ℓ
√
n

(
1 +

2
√
n√
a11

)
≤ ℓ− 1

3ℓ
√
n

(
3
√
n√
a11

)
≤ 1,

so we are done as long as n ≥ a11.
We claim that in the case n < a11 we have RQ(n) = 1 (i.e., only the zero vector 0 hasQ(x) < a11).

Suppose for contradiction that x 6= 0 exists with Q(x) < a11. First note that

Q

(
x

gcd(x)

)
=

Q(x)

gcd(x)2
≤ Q(x) < a11,

so without loss of generality we may assume that gcd(x) = 1. Using (2.3), we have Q(x) > a11,
which is a contradiction. Thus for n < a11 there are no x ∈ Zℓ \ {0} with Q(x) ≤ n and hence
RQ(n) = 1. �
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2.4. Sieving and theta functions. We begin by explaining how sieving is used to obtain results
about representations of integers as sums of squares of almost primes. For ease of notation, for
w ∈ R we set

Pw(z) :=
∏

w≤p<z
p

and denote P (z) := P2(z).
For an integer M , let

SM := {x ∈ Z : gcd(x,M) = 1}
denote the set of integers that are relatively prime to M . Note that if we set

M =
∏

p<z

p = P (z)

and z ∈ R, then for x ∈ SM we may write

x =
∏

p≥z
paj ,

where aj ∈ N0. If we have the additional restriction x ≤ √
n and set z = nθ, then we may conclude

that

nθ
∑

p|x aj ≤
∏

p≥nθ

paj = x ≤ n
1
2 ,

and thus ∑

p|x
aj ≤

1

2θ
.

Therefore we have x ∈ P⌊ 1
2θ ⌋ in particular. Thus if we let r :=

⌊
1
2θ

⌋
, then we have

{x ∈ SP (nθ) : x ≤
√
n} ⊆ Pr.

Similarly, if we replace P (nθ) with P (nθ)/
∏
p∈S p, then

{x ∈ SP (nθ)/
∏

p∈S p
: x ≤

√
n} ⊆ Pr,S .

Hence if every representation of n satisfies xj ≤
√
n (one sees easily that this is true for the sum of

four squares, for example), then

rQ,Pr(n) ≥ rQ,S
P (nθ)

(n),

rQ,Pr,S
(n) ≥ rQ,S

P (nθ)/
∏

p∈S p
(n),

and it suffices to show that rQ,SP (z)
(n) > 0 (resp. rQ,S

P (nθ)/
∏

p∈S p
(n) > 0). It is here that sieving

theory may be applied. For a vector d ∈ Nℓ and a quadratic form Q, we define

Qd2(x) := Q(d · x) = Q(d1x1, d2x2, . . . , dℓxℓ),

and in particular, the diagonal quadratic forms are denoted by (with a,d ∈ Nℓ)

Qa·d2(x) :=

ℓ∑

j=1

aj(djxj)
2.

Then by inclusion-exclusion we have

rQ,SP (z)
(n) =

∑

d∈Nℓ

dj |P (z)

µ(d)rQ,d·Zℓ(n) =
∑

d∈Nℓ

dj |P (z)

µ(d)rQd
(n). (2.5)

7



One then uses sieving theory techniques to bound the right-hand side of (2.5) from above and below
by replacing µ(d) with Rosser’s weights and then naturally splitting rQd

(n) into the contribution
from the Eisenstein series and the cuspidal part. In the next sections, we investigate the contribu-
tions from the Eisenstein series and the cusp form and revisit the details for using Rosser’s weights
and the vector sieve of Brudern and Fouvry [3] in the proofs of our main theorems.

2.5. Modular forms and congruence subgroups. We require some well-known identities and
relations involving congruence subgroups.

Lemma 2.8.

(1) For N ∈ N we have

[SL2(Z) : Γ0(N)] = N
∏

p|N

(
1 +

1

p

)
. (2.6)

(2) For N ∈ N we have

[SL2(Z) : Γ(N)] = N3
∏

p|N

(
1− 1

p2

)
. (2.7)

Lemma 2.9. Let N ∈ N be given. For every δ | N , there are ϕ
(
N
δ

)
ϕ(δ)Nδ cusps ρ = γ(i∞) with

γ =
(
a b
c d

)
∈ SL2(Z) for which (c,N) = δ.

Proof. Suppose that δ | c. Writing

ρ =
a

c
=

a

δc′
,

we have (c,N) = δ if and only if gcd(c′, N/δ) = 1. There are hence ϕ(N/δ) choices of c′. Writing
a = δm+r, we have gcd(r, δ) = 1 and there are N

δ choices of r modulo N . This gives the claim. �

2.6. Eisenstein series and the Siegel–Weil average. In this section, we fix a vector a ∈ N4

and consider the Eisenstein series part Ed := EQ
a·d2

of the theta function for the diagonal form

Qa·d2 , writing aEd
(n) as an explicit multiple of E1(n), where 1 is the vector of all ones.

Let G(Q) furthermore denote a set of representatives of the classes in the genus of Q and wQ
denote the number of automorphs of Q. The Siegel–Weil average is then given by (the first identity
is due to Siegel [20] and a generalization by Weil [24])

EQ =
1∑

Q′∈G(Q) w
−1
Q′

∑

Q′∈G(Q)

ΘQ′

wQ′
. (2.8)

3. An initial attempt at a finiteness theorem and the proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. In order to prove the theorem, we need to show that there exists a quadratic
form Q which represents every positive integer up to 22r+2 but is not universal over P ℓr . We choose

Lagrange’s quaternary formQ(x) =
∑4

j=1 x
2
j . Since the genus of Q only has one class, (2.8) becomes

a single term and a computation of the local densities (or their realization as coefficients of an
explicit Eisenstein series) imply that (cf. [4, Proposition 11]) that the number of representations
of n is precisely

8
∑

d|n
4∤d

d. (3.1)

Taking n = 22r+3, there are precisely 24 representations over Z and it is easy to see that the
solutions are xi = ±2r+1, xj = ±2r+1, and xi′ = xj′ = 0, where {i′, j′} is the complement of {i, j}
in the positive integers up to 4.

8



Since every integer which is not a Pr number is at least 2r+1, it is straightforward to see that
every integer up to 22r+2 is represented by Q with Pr numbers. �

4. Bounds on coefficients of theta functions

4.1. Cuspidal contribution. In this section, we fix a vector a ∈ Nℓ with ℓ ≥ 4 even and consider
the cuspidal part fa·d2 := fQ

a·d2
of the theta function for the diagonal form Qa·d2 in order to obtain

an explicit bound on its nth coefficient afd(n) depending only on n and d. We first require the

following useful lemma for bounding a cusp form in terms of the Petersson norm by ‖g‖ :=
√

〈g, g〉,
where we define the Petersson inner product between f, g ∈ Sk(Γ) with Γ ⊆ SL2(Z) via (recalling
that τ = u+ iv)

〈f, g〉 := 1

[SL2(Z) : Γ]

∫

Γ\H
f(τ)g(τ)vk

dudv

v2
.

Here we have normalized so that the inner product is independent of the choice of Γ.

Lemma 4.1. Suppose that f ∈ Sk(Γ0(N) ∩ Γ1(L), ψ) with L | N and ψ a character modulo N .
If f has the Fourier expansion f(τ) =

∑
n≥1 cf (n)q

n, then for α, δ > 0 and cδ and Cδ given as in

Lemmas 2.2 (1) and 2.5, we have

|cf (n)| ≤
√
πk

3
e2πζ(1 + 4δ)

1
2 c

5
2
δ σ0(n)n

k−1
2 ‖f‖N1+2δ

∏

p|N

(
1 +

1

p

) 1
2

ϕ(L). (4.1)

In particular, for k = 2, δ = 10−6, and α = 1
15 , α = 1

14 , or α = 1
10 , respectively, we have

|cf (n)| ≤ 4.58 · 10128 · n 17
30 ‖f‖N1+2·10−6

∏

p|N

(
1 +

1

p

) 1
2

ϕ(L), (4.2)

|cf (n)| ≤ 4.39 · 1079 · n 4
7 ‖f‖N1+2·10−6

∏

p|N

(
1 +

1

p

) 1
2

ϕ(L), (4.3)

|cf (n)| ≤ 6.95 · 1018 · n 3
5 ‖f‖N1+2.5×10−6

∏

p|N

(
1 +

1

p

) 1
2

ϕ(L). (4.4)

Proof. For M | N , let Hnew
k (M,χ) denote the set of normalized newforms of weight k and level

M with Nebentypus χ. Schulze-Pillot and Yenirce [18] constructed an explicit orthonormal basis
{Fg,m : g ∈ Hnew

k (M,χ),M | N,m | N
M } with respect to the Petersson inner product on Sk(N,χ)

such that (using a bound of Deligne [7])

∣∣aFg,m(n)
∣∣ ≤ σ0(n)n

k−1
2

‖g‖ m
1
2

∏

p|m

(
1 +

1

p

)2

.

Since this basis is orthonormal and [6, Theorem 2.5] implies that

Sk(Γ0(N) ∩ Γ1(L), ψ) =
⊕

χ (mod L)

Sk(Γ0(N), ψχ),

we have

f =
∑

χ (mod L)

∑

M |N

∑

g∈Hnew
k (M,ψχ)

∑

m|N
M

〈f, Fg,m〉Fg,m.

9



Thus, noting that

‖f‖2 =
∑

χ (mod L)

∑

M |N

∑

g∈Hnew
k (M,ψχ)

∑

m| N
M

|〈f, Fg,m〉|2 ,

we may use the Cauchy–Schwartz inequality to obtain

|cf (n)| ≤
∑

χ (mod L)

∑

M |N

∑

g∈Hnew
k (M,ψχ)

∑

m| N
M

|〈fQ,d, Fg,m〉|
∣∣cFg,m(n)

∣∣

≤ σ0(n)n
k−1
2 ‖f‖




∑

χ (mod L)

∑

M |N

∑

m| N
M

m
∏

p|m

(
1 +

1

p

)4 ∑

g∈Hnew
k (M,ψχ)

1

‖g‖2




1
2

.

We then use the bound of Fomenko [11]

‖g‖2 ≥ 1

4πe4π [SL2(Z) : Γ0(M)]

together with (2.6) to bound |cf (n)| from above by

σ0(n)n
k−1
2 ‖f‖

(4π)−
1
2 e−2π




∑

χ (mod L)

∑

M |N
M
∏

p|M

(
1 +

1

p

) ∑

m| N
M

m
∏

p|m

(
1 +

1

p

)4

#Hnew
k (M,ψχ)




1
2

. (4.5)

Plugging in Lemma 2.2 (1) and making the change of variables m→ N
Mm , we have

|cf (n)| ≤
√
4πe2πc

5
2
δ σ0(n)n

k−1
2 ‖f‖N 1

2
+2δ




∑

χ (mod L)

∑

M |N
M−3δ#Hnew

k (M,ψχ)
∑

m| N
M

m−1−4δ




1
2

≤
√
4πe2πc

5
2
δ σ0(n)n

k−1
2 ‖f‖N 1

2
+2δσ−1−4δ(N)

1
2




∑

χ (mod L)

∑

M |N
#Hnew

k (M,ψχ)




1
2

.

Since #Hnew
k (M,ψχ) equals the dimension of the new space, the valence formula, (2.6), and (2.1)

implies that

∑

M |N
#Hnew

k (M,ψχ) ≤ dimC (Sk(N,ψχ)) ≤
k

12
[SL2(Z) : Γ0(N)] =

k

12
N
∏

p|N

(
1 +

1

p

)
.

Since this bound is independent of χ, we may then bound the sum over χ by the number of
characters modulo L, which is ϕ(L). Bounding

σ−1−4δ(N) =
∑

m|N
m−1−4δ ≤

∑

m≥1
m−1−4δ = ζ(1 + 4δ),

we hence obtain (4.1).
Choosing k = 2, δ = 10−6, and α = 1

15 or α = 1
10 in particular and plugging in (2.2) together

with ζ(1+4 · 10−6) < 250000.6, the evaluations of cδ in Lemma 2.2 (1) and Cα in Lemma 2.3 imply
(4.2) and (4.4). �

Lemma 4.2. Suppose that the level of Qa·d2 is N = Na·d2 and abbreviate ∆ = ∆a·d2 := ∆Q
a·d2

.
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(1) We have

∣∣∣af
a·d2

(n)
∣∣∣ ≤

√
22ℓ−1πℓ

3
e2πζ(1 + 4δ)

1
2 c

5
2
δ Cαn

k−1
2

+αN
3
2
+2δ

3ℓ−1
√(

ℓ
2 − 2

)
!

2
ℓ
4
−2√π

σ−1(N)
1
2

×




ℓ
2
−2∑

m=0

(
2π
N

)−m
(
ℓ
2 − 2−m

)
!
(ℓ−m− 2)!

(
N

πδN

)ℓ−m−1(9πδN∆

N ℓ−1 (ℓ−m− 1) + ℓ2
)


1
2

. (4.6)

(2) In the special case that ℓ = 4, we have

∣∣∣af
a·d2

(n)
∣∣∣ ≤

√
512π

3
e2πζ(1 + 4 · 10−6) 1

2 c
5
2

10−6Cαn
1
2
+αN

3
2
+2·10−6

σ−1(N)
1
2
54
√
2

π2
(
27π∆+ 16N3

) 1
2

≤ 20591008784CαG
1
2
α′n

1
2
+αN

3
2
+2·10−6+α

2
(
27π∆+ 16N3

) 1
2 ,

∣∣∣af
a·d2

(n)
∣∣∣ ≤ 1.797 × 1021n

3
5N

3
2
+2·10−6+ 1

200

(
27π∆+ 16N3

) 1
2 ,

∣∣∣af
a·d2

(n)
∣∣∣ ≤ 1.134 × 1082n

4
7N

3
2
+2·10−6+ 1

200
(
27π∆+ 16N3

) 1
2 ,

∣∣∣af
a·d2

(n)
∣∣∣ ≤ 1.184 × 10131n

17
30N

3
2
+2·10−6+ 1

200
(
27π∆+ 16N3

) 1
2 .

Proof. (1) We consider a to be fixed and write fd for fa·d2 and Θd for ΘQ
a·d2

. Using Lemma 4.1,

it remains to bound ‖fd‖. By (2.8), we may write

fd = Ed −Θd =
1∑

Q∈G(Q
a·d2)

w−1Q

∑

Q∈G(Q
a·d2)

ΘQ −Θd

wQ
.

We set fQ,d := Θd − ΘQ and use an argument of Blomer [2] to bound ‖fQ,d‖ independent of Q.
Specifically, we need an explicit version of [2, Lemma 4.2]. For ease of notation, set

µ0(N) := [SL2(Z) : Γ0(N)] , µ(N) := [SL2(Z) : Γ(N)] ,

F0(N) := Γ0(N)\H F(N) := Γ(N)\H, F := SL2(Z)\H.
Letting {γ1, . . . , γµ(N)} denote a set of representatives of SL2(Z)/Γ(N), since fQ,d ∈ Sℓ/2(Γ(N)),

‖fQ,d‖2 =
1

µ(N)

∫

F(N)
|fQ,d(τ)|2v

ℓ
2
dudv

v2
=

1

µ(N)

µ(N)∑

j=1

∫

γjF
|fQ,d(τ)|2v

ℓ
2
dudv

v2

=
1

µ(N)

µ(N)∑

j=1

∫

F
|fQ,d(γjτ)|2Im(γjτ)

ℓ
2
dudv

v2
=

1

µ(N)

µ(N)∑

j=1

∫

F

∣∣∣fQ,d
∣∣
ℓ
2
γj(τ)

∣∣∣
2
v

ℓ
2
dudv

v2
. (4.7)

The cusp width at each cusp is precisely N , so we may write the cusps as ρ1, . . . , ρµ(N)/N . For the

cusp ρj = γj(i∞) and T := ( 1 1
0 1 ), the set

{γjT r : 0 ≤ N − 1}
gives a set of representatives of the cosets in SL2(Z)/Γ(N) which send i∞ to ρj . We may thus
rewrite the right-hand side of (4.7) as

1

µ(N)

µ(N)/N∑

j=1

N∑

r=1

∫

F

∣∣∣fQ,d
∣∣
ℓ
2
γjT

r(τ)
∣∣∣
2
v

ℓ
2
dudv

v2
=

1

µ(N)

µ(N)/N∑

j=1

∫
⋃N

r=1 T
rF

∣∣∣fQ,d
∣∣
ℓ
2
γj(τ)

∣∣∣
2
v

ℓ
2
dudv

v2
.
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Denoting the cusps with gcd(c,N) = δ by ρδ,j = γδ,j(i∞), Lemma 2.9 implies that we have

1

µ(N)

∑

δ|N

ϕ(N
δ )ϕ(δ)

N
δ∑

j=1

∫
⋃N

r=1 T
rF

∣∣∣fQ,d
∣∣
ℓ
2
γδ,j(τ)

∣∣∣
2
v

ℓ
2
dudv

v2
.

Letting (with q := e2πiτ )

fδ,j := fQ,d
∣∣
ℓ
2
γδ,j =

∞∑

n=1

aδ,j(n)q
n
N

and noting that
N⋃

r=1

T rF ⊆
{
τ : −1

2
≤ u ≤ N − 1

2
, v ≥ 1

2

}
,

we then bound the integral by

∫
⋃N

r=1 T
rF

∣∣fδj(τ)
∣∣2 v ℓ

2
dudv

v2
≤
∫ ∞

1
2

∫ N− 1
2

− 1
2

∣∣∣∣∣

∞∑

n=1

aδ,j(n)q
n
N

∣∣∣∣∣

2

v
ℓ
2
dudv

v2

=
∞∑

n=1

∞∑

m=1

aδ,j(n)aδ,j(m)

∫ ∞
1
2

e−
2π(n+m)v

N v
ℓ
2
−2dv

∫ N− 1
2

− 1
2

e2πi
(n−m)

N
udu

= N

∞∑

n=1

|aδ,j(n)|2
∫ ∞

1
2

e−
4πnv
N v

ℓ
2
−2dv = N

∞∑

n=1

|aδ,j(n)|2
(
N

4πn

) ℓ
2
−1

Γ

(
ℓ

2
− 1,

2πn

N

)
, (4.8)

where Γ(s, x) :=
∫∞
x ts−1e−tdt is the incomplete gamma function. We use [23, Lemma 12] to bound

aδ,j(n) = bQa,δ,j(n)− bQ,δ,j(n),

where bQ,δ,j(n) is the coefficient of the theta function ΘQ at the corresponding cusp. Trivially

bounding det(D) ≤ 2ℓ∆Q for the diagonal form defined before [23, Lemma 11], [23, Lemma 12]
implies that

|bQ,δ,j(n)| ≤ 2ℓrS(n),

where S is an integral ℓ-ary quadratic form of discriminant ∆Q and level ≤ NQ. Using Lemma 2.7,
we have

|aδ,j(n)|2 ≤ 4ℓ+1

(
(3
√
n)
ℓ

√
N ℓ/∆Q

+ ℓ
(
3
√
n
)ℓ−1

)2

≤ 22ℓ+332ℓ−2nℓ−1
(
9∆Q

N ℓ
n+ ℓ2

)
.

Here we have used the inequality (x+ y)2 ≤ 2x2 + 2y2 in the last step. Noting that ℓ ≥ 4 is even,
we have (for example, see [10, 8.4.8])

(
N

2πn

) ℓ
2
−2

Γ

(
ℓ

2
− 1,

2πn

N

)
=

(
ℓ
2 − 2

)
!

e
2πn
N

ℓ
2
−2∑

m=0

(
2πn
N

)m+2− ℓ
2

m!
=

(
ℓ
2 − 2

)
!

e
2πn
N

ℓ
2
−2∑

m=0

(
2πn
N

)−m
(
ℓ
2 − 2−m

)
!
.

Plugging back into (4.8) yields

‖fQ,d‖2 ≤ 32ℓ−22
3ℓ
2
+3
(
ℓ
2 − 2

)
!

π

N2

µ(N)

∑

δ|N

ϕ(N
δ )ϕ(δ)

N
δ∑

j=1

ℓ
2
−2∑

m=0

(
2π
N

)−m
(
ℓ
2 − 2−m

)
!

∞∑

n=1

nℓ−2−m

e
2πn
N

(
9∆Q

N ℓ
n+ ℓ2

)
.

Noting that the sum over j is now independent of j and plugging in Lemma 2.6 to bound the inner
sum, we obtain
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‖fQ,d‖2 ≤
32ℓ−22

3ℓ
2
+4
(
ℓ
2 − 2

)
!

2
ℓ
2
−4π

N2

µ(N)

ℓ
2
−2∑

m=0

(
2π
N

)−m
(
ℓ
2 − 2−m

)
!
(ℓ−m− 2)!

(
N

πδN

)ℓ−m−1

×
(
9πδN∆Q

N ℓ−1 (ℓ−m− 1) + ℓ2
)∑

δ|N

N

δ
ϕ

(
N

δ

)
ϕ(δ). (4.9)

Using the formula ϕ(M) =M
∏
p|M

(
1− 1

p

)
, the sum over δ may be rewritten as

∑

δ|N

N

δ
ϕ(δ)ϕ

(
N

δ

)
= N2

∏

p|N

(
1− 1

p

)∑

δ|N

1

δ

∏

p|gcd(δ,Nδ )

(
1− 1

p

)

= Nϕ(N)
∑

δ|N

1

δ

∏

p|gcd(δ,Nδ )

(
1− 1

p

)
≤ Nϕ(N)σ−1(N).

Thus (4.9) becomes

‖fQ,d‖2 ≤
32ℓ−22

3ℓ
2
+4
(
ℓ
2 − 2

)
!

π

N3ϕ(N)σ−1(N)

µ(N)

ℓ
2
−2∑

m=0

(
2π
N

)−m
(
ℓ
2 − 2−m

)
!
(ℓ−m− 2)!

(
N

πδN

)ℓ−m−1

×
(
9πδN∆Q

N ℓ−1 (ℓ−m− 1) + ℓ2
)
.

Plugging in (2.7), we obtain

‖fQ,d‖2 ≤
32ℓ−22

3ℓ
2
+4
(
ℓ
2 − 2

)
!

π

Nσ−1(N)
∏
p|N

(
1 + 1

p

)
ℓ
2
−2∑

m=0

(
2π
N

)−m
(
ℓ
2 − 2−m

)
!
(ℓ−m− 2)!

(
N

πδN

)ℓ−m−1

×
(
9πδN∆Q

N ℓ−1 (ℓ−m− 1) + ℓ2
)
. (4.10)

Plugging back into Lemma 4.1, we obtain (4.6), giving us part (1).
(2) In the special case that ℓ = 4 and 4 | N (so that δN = 1), the remaining sum over m is a single
term and we evaluate it as

√
2

(
N

π

) 3
2
(
27π∆Q

N3
+ 16

) 1
2

.

Thus in the case ℓ = 4 we obtain overall

∣∣afQ,d
(n)
∣∣ ≤

√
512π

3
e2πζ(1 + 4δ)

1
2 c

5
2
δ Cαn

k−1
2

+αN
3
2
+2δ 54

√
2

π2
σ−1(N)

1
2

(
27π∆Q + 16N3

) 1
2 .

The evaluations of Cα from Lemma 2.3 and Gα′ from Lemma 2.4 yields the explicit bounds. �

We next bound the determinant ∆a·d2 and the level Na·d2 for the quadratic forms of interest.
Let S denote the set of squarefree positive integers.

Lemma 4.3. Suppose that a is one of the choices [1, 1, 1, k] with 1 ≤ k ≤ 7, [1, 1, 2, k] with
2 ≤ k ≤ 8, [1, 1, 3, k] with 3 ≤ k ≤ 6, [1, 2, 2, k] with 2 ≤ k ≤ 7, [1, 2, 3, k] with 3 ≤ k ≤ 8, [1, 2, 4, k]
with 4 ≤ k ≤ 14, or [1, 2, 5, k] with 5 ≤ k ≤ 15. Then for any d ∈ S4 we have

∆a·d2 ≤ 2400

4∏

j=1

d2j , Na·d2 ≤ 520lcm(d)2.
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Proof. Since
∏4
j=1 aj ≤ 150 in each of cases, we have

∆a·d2 = 24
4∏

j=1

ajd
2
j ≤ 2400

4∏

j=1

d2j .

To bound Na·d2 we write Qa·d2(x) = 1
2x

TAx with A the diagonal matrix with entries 2ajd
2
j along

the diagonal. We then see that A−1 has diagonal entries 1
2ajd2j

, so lcm(a) ≤ 130 implies that

Na·d2 = 4lcm(ajd
2
j : 1 ≤ j ≤ 4) ≤ 4lcm(a)lcm(d)2 ≤ 520lcm(d)2. �

Plugging Lemma 4.3 into Lemma 4.2 (2) yields that for these choices of a we may bound∣∣∣af
a·d2

(n)
∣∣∣ less than or equal to the minimum of

1.797 × 1021n
3
5 (520lcm(d)2)1+2·10−6+ 1

200


64800π

4∏

j=1

d2j + 16(520lcm(d)2)3




1
2

, (4.11)

1.134 × 1082n
4
7 (520lcm(d)2)1+2·10−6+ 1

200


64800π

4∏

j=1

d2j + 16(520lcm(d)2)3




1
2

, (4.12)

1.184 × 10131n
17
30 (520lcm(d)2)1+2·10−6+ 1

200


64800π

4∏

j=1

d2j + 16(520lcm(d)2)3




1
2

. (4.13)

4.2. Eisenstein series contribution. We next consider the contribution from the Eisenstein
series. We suppose that a ∈ N4 is a fixed vector and consider the quadratic form Qa·d2 .

We first recall the local densities for a quadratic form. For an ℓ-ary quadratic form Q, set

βQ,p(m) := lim
U→{m}

volZℓ
p
(Q←(U))

volZp(U)
.

Here U ⊆ Zp runs over open subsets of Zp containing m and for p = ∞ we have open subsets of R.
Siegel has shown that

aEQ
(m) =

∏

p

βQ,p(m), (4.14)

where the product goes over all primes (including the infinite prime). We must therefore compute
a lower bound on the local densities in order to obtain a bound on aEQ

(m). We begin by writing
down an evaluation of βQ,p(m). To state this, for a multiplicative character χ and an additive
character ψ, both of modulus c, we set

τ(χ,ψ) :=
∑

x (mod c)

χ(x)ψ(x).

We particularly let χ = χa,b denote a character of modulus b induced from a character of conductor

a (we will always have either the principal character χ1,pk or the real Dirichlet character χp,pk =
(
·
p

)

coming from the Legendre symbol) and take ψ(x) = ψm,pk(x) := e
2πimx

pk .

Lemma 4.4. Let a,d ∈ Z4 be given and suppose that p 6= 2. We set αj := ordp

(
ajd

2
j

)
and choose

a′j , d
′
j so that ajd

2
j = pαja′jd

′2
j . Without loss of generality, we assume that α1 ≤ α2 ≤ α3 ≤ α4.

Note that the parity of αj is completely determined by the parity of βj := ordp(aj). We also denote
14



Aj :=
∑j

d=1 αd and for S ⊆ {1, 2, 3, 4} we define a′S :=
∏
j∈S a

′
j , and aS :=

∏
j∈S aj. Moreover,

for 1 ≤ ℓ ≤ 4 we write

ηA,op,ℓ = ηA,op,ℓ (a · d2) :=
∏

1≤j≤ℓ
Aℓ−βj odd

(
a′j
p

)
εp,

ηA,ep,ℓ = ηA,ep,ℓ (a · d2) :=
∏

1≤j≤ℓ
Aℓ−βj even

(
a′j
p

)
εp.

We often omit the dependence on a · d2 in the notation when it is clear. Let χAj ,pk be χ1,pk if Aj

is even and χp,pk otherwise.
We have

βQ
a·d2 ,p

(m) =

α1∑

k=0

τ
(
χ1,pk , ψ−m,pk

)
+ ηA,ep,1

α2∑

k=α1+1
k−A1 odd

p
α1−k

2 τ
(
χp,pk , ψ−m,pk

)

+ ηA,op,1

α2∑

k=α1+1
k−A1 even

p
α1−k

2 τ
(
χ1,pk , ψ−m,pk

)
+


η
A,o
p,2

α3∑

k=α2+1
k−A2 even

+ηA,ep,2

α3∑

k=α2+1
k−A2 odd


 p

A2
2
−kτ

(
χA2,pk , ψ−m,pk

)

+ ηA,op,3

α4∑

k=α3+1
k−A3 even

p
A3−3k

2 τ
(
χ1,pk , ψ−m,pk

)
+ ηA,ep,3

α4∑

k=α3+1
k−A3 odd

p
A3−3k

2 τ
(
χp,pk , ψ−m,pk

)

+


ηA,op,4

∞∑

k=α4+1
k even

+ηA,ep,4

∞∑

k=α4+1
k odd


 p

A4
2
−2kτ

(
χA4,pk , ψ−m,pk

)
. (4.15)

Remark. Note that the condition αj even or odd is entirely determined by βj = ordp(aj).

Proof. One computes the local densities as in [25]. The local density may be realized by choosing
U to be a ball of radius p−r around m, in which case we may write

βQ,p(m) = lim
r→∞

RQ,pr(m)

p(ℓ−1)r
with RQ,pr(m) := #

{
x ∈ (Z/prZ)ℓ : Q(x) ≡ m (mod pr)

}
.

Using the orthogonality of roots of unity, namely

1

pr

∑

n (mod pr)

e
2πinm

pr =

{
1 if pr | m,
0 otherwise,

we compute

RQ,pr(m) =
∑

x∈(Z/prZ)ℓ
Q(x)≡m (mod pr)

1 =
∑

x∈(Z/prZ)ℓ

1

pr

∑

n (mod pr)

e
2πin
pr

(Q(x)−m)

=
1

pr

∑

n (mod pr)

e−
2πinm

pr
∑

x∈(Z/prZ)ℓ
e

2πin
pr

Q(x).
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Plugging in Q = Qa·d2 with ℓ = 4, the right-hand side becomes

1

pr

∑

n (mod pr)

e
− 2πinm

pr

4∏

j=1

∑

xj∈Z/prZ
e

2πiajnd2j x
2
j

pr =
1

pr

∑

n (mod pr)

e
− 2πinm

pr

4∏

j=1

G2

(
najd

2
j , 0, p

r
)
,

where G2 is the quadratic Gauss sum

G2(A,B,C) :=
∑

x (mod c)

e
2πi(Ax2+Bx)

C .

We now split the sum over n by ordp(n), writing n = pkn′ with p ∤ n′ and then make the change of
variables k 7→ r − k. Using the fact that

G2(gA, gB, gC) = gG2(A,B,C), (4.16)

this yields

p3r
r∑

k=0

p−4k
∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk

4∏

j=1

G2

(
n′ajd

2
j , 0, p

k
)
.

Set rj := min{αj , k}, so that prj = gcd(n′ajd2j , p
k). Without loss of generality, we assume that

α1 ≤ α2 ≤ α3 ≤ α4. Then (4.16) implies that

G2

(
n′ajd

2
j , 0, p

k
)
= prjG2

(
n′ajd2j
prj

, 0, pk−rj

)
.

In particular, if k ≤ αj , then rj = k and

G2

(
n′ajd

2
j , 0, p

k
)
= pkG2

(
n′ajd2j
pk

, 0, 1

)
= pk,

while if k > αj we obtain

G2

(
n′ajd

2
j , 0, p

k
)
= pαjG2

(
n′a′jd

′2
j , 0, p

k−αj

)
= pαjG2

(
n′a′j, 0, p

k−αj

)
,

where in the last equality we used the fact that for gcd(t, C) = 1 we have G2(At
2, B,C) =

G2(A,Bt
−1, C) by the change of variables x 7→ t−1x in the sum. We therefore conclude that

p−3rRQ,pr(m) =

α1∑

k=0

∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk +

α2∑

k=α1+1

pα1−k
∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk G2

(
n′a′1, 0, p

k−α1

)

+

α3∑

k=α2+1

pα1+α2−2k
∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk

2∏

j=1

G2

(
n′a′j, 0, p

k−αj

)

+

α4∑

k=α3+1

pα1+α2+α3−3k
∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk

3∏

j=1

G2

(
n′a′j , 0, p

k−αj

)

+

r∑

k=α4+1

pα1+α2+α3+α4−4k
∑

n′∈(Z/pkZ)×
e
− 2πin′m

pk

4∏

j=1

G2

(
n′a′j , 0, p

k−αj

)
. (4.17)
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Setting

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4)

for d odd and letting
( ·
·
)
denote the Legendre–Jacobi–Kronecker symbol, recall next that for C odd

and gcd(A,C) = 1 we have

G2(A, 0, C) = εC
√
C

(
A

C

)
.

Hence for p 6= 2, we thus have

G2

(
n′a′j , 0, p

k−αj

)
=




p

k−αj
2 if k ≡ αj (mod 2),

εp

(
n′a′j
p

)
p

k−αj
2 if k 6≡ αj (mod 2).

(4.18)

We plug (4.18) back into (4.17) and then split the sum depending on which αj we have k ≡ αj
(mod 2). Noting that if αj 6≡ αi (mod 2) then k cannot simultaneously be congruent to both of
them excludes many possible combinations if we first restrict the parity of αj, a short calculation
yields the claim. �

We next evaluate τ(χ,ψ).

Lemma 4.5. For an odd prime p and k ∈ N0 we have

τ
(
χ1,pk , ψ−m,pk

)
=





1 if k = 0,

−pk−1 if gcd(m, pk) = pk−1,

pk − pk−1 if gcd(m, pk) = pk,

0 otherwise,

(4.19)

τ
(
χp,pk, ψ−m,pk

)
=

{
εpp

k− 1
2χp

(
− m
pk−1

)
if ordp(m) = k − 1

0 otherwise.
(4.20)

Proof. Letting χ∗ denote the primitive character of modulus m∗ associated to χ of modulus m and
abbreviating τ(χ∗) := τ(χ∗, ψ1,m∗), a corrected version of [13, Lemma 3.2] yields

τ(χ,ψa,m) = τ(χ∗)
∑

d|gcd(a, m
m∗ )

dχ∗
( m

m∗d

)
χ∗
(a
d

)
µ
( m

m∗d

)
.

Hence we have (noting that χp(n) = 0 if p | n)

τ
(
χ1,pk , ψ−m,pk

)
=

∑

d|gcd(m,pk)
dµ

(
pk

d

)
,

τ
(
χp,pk , ψ−m,pk

)
= τ(χp)

∑

d|gcd(m,pk−1)

dχp

(
pk−1

d

)
χp

(
−m
d

)
µ

(
pk−1

d

)
.

Note that χp

(
pk−1

d

)
χp
(
−m

d

)
vanishes for every d = pj except d = pk−1, which occurs in the sum

if and only if pk−1 | m. The claim then follows by Gauss’s evaluation τ(χp) = εp
√
p. �

We next evaluate the local densities with a small restriction on the αj. We abbreviate δR,α1;2 :=
δ2|(R−α1) and δR,α1;✁2

:= δ2∤(R−α1). Plugging (4.19) and (4.20) into Lemma 4.4, noting which sums

in (4.15) vanish, and simplifying yields the following lemma.
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Lemma 4.6. Let p be an odd prime and α ∈ N4
0 be given with 0 ≤ α1 ≤ α2 ≤ α3 ≤ α4 and either

α = (0, 0, 1, 1) or at most one αj is odd. Suppose that m ∈ N and choose R = ordp(m) so that m
is of the shape m = pRm′ with p ∤ m′. If αj = ordp(ajd

2
j ) with a,d ∈ N4, then the following hold.

(1) Suppose that all αj are even. Then the following hold.
(a) If R < α1, then

βQ
a·d2 ,p

(m) = 0.

(b) If α1 ≤ R < α2, then

βQ
a·d2 ,p

(m) = ηA,op,1 p
α1
2
+⌊R

2 ⌋ + ηA,ep,1 ε
3
pδR,α1,2p

α1+R
2 χp(m

′)− ηA,op,1 δR,α1,✁2
p

α1+R−1
2 .

(c) If α2 ≤ R < α3, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+
(
ηA,op,2

⌊
R−α2

2

⌋
+ ηA,ep,2

⌊
R+1−α2

2

⌋)
p
A2
2

(
1− 1

p

)

−
(
ηA,op,2 δ2∤R + ηA,ep,2 δ2|R

)
p
A2
2 −1.

(d) If α3 ≤ R < α4, then

βQ
a·d2 ,p

(m) = p
A2
2 +α3−α2

2

(
ηA,op,2 + ηA,ep,2

)
p
A2
2

(
1− 1

p

)
+ηA,op,3 p

A2
2 −1

(
1− p

α3
2 −

⌊
R
2

⌋)
−ηA,op,3 δ2∤Rp

A3−3−R
2

+ ηA,ep,3 δ2|Rp
A3−R

2
−1χp(−m′).

(e) If R ≥ α4, then

βQ
a·d2 ,p

(m) = p
A2
2 + α3−α2

2

(
1 +

(
a′1a
′
2

p

)
ε2p

)
p
A2
2

(
1− 1

p

)
+ p

A2
2 −1

(
1− p

α3−α4
2

)

+ p
A3−α4

2 −2

1+
1
p

(
1− p

α4−2
⌊
R
2

⌋

+

(
a′1234
p

)
p

(
1− p

α4−2
⌊
R+1
2

⌋))
−
(
δ2∤R +

(
a′1234
p

)
δ2|R

)
p

A4
2
−R−2.

(2) If α1 is odd, then the following hold.
(a) If R < α1, then

βQ
a·d2 ,p

(m) = 0.

(b) If α1 ≤ R < α2, then

βQ
a·d2 ,p

(m) =
(
1− ηA,op,1

)
pα1 + ηA,op,1 p

⌊
R+α1

2

⌋

+ ηA,ep,1 ε
3
pδR,α1,2p

α1+R

2 χp(m
′)− ηA,op,1 δR,α1,✁2

p
α1+R−1

2 .

(c) If α2 ≤ R < α3, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+ ε3pχp(m
′)
(
ηA,op,2 δ2∤R + ηA,ep,2 δ2|R

)
p
A2−1

2 .

(d) If α3 ≤ R < α4, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+ηA,op,3 p
A2−1

2

(
1− p

−
⌊
R−α3+1

2

⌋)
−ηA,op,3 δ2|Rp

A3−3−R
2 +ηA,ep,3 δ2∤Rp

A3−R
2
−1χp(−m′).

(e) If R ≥ α4, then

βQ
a·d2 ,p

(m) = p

⌊
A2
2

⌋

+ ηA,op,3 p
A2−1

2

(
1− p−

α4−α3
2

)

+ δ2|Rη
A,e
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′) + δ2∤Rη
A,o
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′).
(3) If α2 is odd, then the following hold.
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(a) If R < α1, then

βQ
a·d2 ,p

(m) = 0.

(b) If α1 ≤ R < α2, then

βQ
a·d2 ,p

(m) = ηA,op,1 p
α1
2
+⌊R

2 ⌋ + ηA,ep,1 ε
3
pδR,α1,2p

α1+R
2 χp(m

′)− ηA,op,1 δR,α1,✁2
p

α1+R−1
2 .

(c) If α2 ≤ R < α3, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+ ε3pχp(m
′)
(
ηA,op,2 δ2∤R + ηA,ep,2 δ2|R

)
p
A2−1

2 .

(d) If α3 ≤ R < α4, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+ηA,op,3 p
A2−1

2

(
1− p

−
⌊
R−α3+1

2

⌋)
−ηA,op,3 δ2|Rp

A3−3−R
2 +ηA,ep,3 δ2∤Rp

A3−R
2
−1χp(−m′).

(e) If R ≥ α4, then

βQ
a·d2 ,p

(m) = p

⌊
A2
2

⌋

+ ηA,op,3 p
A2−1

2

(
1− p−

α4−α3
2

)

+ δ2|Rη
A,e
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′) + δ2∤Rη
A,o
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′).
(4) If α3 is odd and α 6= (0, 0, 1, 1), then the following hold.

(a) If R < α1, then

βQ
a·d2 ,p

(m) = 0.

(b) If α1 ≤ R < α2, then

βQ
a·d2 ,p

(m) = ηA,op,1 p
α1
2
+⌊R

2 ⌋ + ηA,ep,1 ε
3
pδR,α1,2p

α1+R
2 χp(m

′)− ηA,op,1 δR,α1,✁2
p

α1+R−1
2 .

(c) If α2 ≤ R < α3, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+
(
ηA,op,2

⌊
R−α2

2

⌋
+ ηA,ep,2

⌊
R+1−α2

2

⌋)
p
A2
2

(
1− 1

p

)

−
(
ηA,op,2 δ2∤R + ηA,ep,2 δ2|R

)
p
A2
2 −1.

(d) If α3 ≤ R < α4, then

βQ
a·d2 ,p

(m) = p
A2
2 +

(
ηA,op,2

α3−α2−1
2 + ηA,ep,2

α3−α2+1
2

)
p
A2
2

(
1− 1

p

)

+ ηA,op,3 p
A2
2 −1

(
1− p

−
⌊
R−α3

2

⌋)
− ηA,op,3 δ2|Rp

A3−3−R
2 + ηA,ep,3 δ2∤Rp

A3−R
2
−1χp(−m′).

(e) If R ≥ α4, then

βQ
a·d2 ,p

(m) = p
A2
2 +

(
ηA,op,2

α3−α2−1
2 + ηA,ep,2

α3−α2+1
2

)
p
A2
2

(
1− 1

p

)
+ ηA,op,3 p

A2
2 −1

(
1− p−

α4−α3−1
2

)

+ δ2|Rη
A,e
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′) + δ2∤Rη
A,o
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′).
(5) If α4 is odd and α 6= (0, 0, 1, 1), then the following hold.

(a) If R < α1, then

βQ
a·d2 ,p

(m) = 0.

(b) If α1 ≤ R < α2, then

βQ
a·d2 ,p

(m) = ηA,op,1 p
α1
2
+⌊R

2 ⌋ + ηA,ep,1 ε
3
pδR,α1,2p

α1+R
2 χp(m

′)− ηA,op,1 δR,α1,✁2
p

α1+R−1
2 .
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(c) If α2 ≤ R < α3, then

βQ
a·d2 ,p

(m) = p

⌊A2
2

⌋

+
(
ηA,op,2

⌊
R−α2

2

⌋
+ ηA,ep,2

⌊
R+1−α2

2

⌋)
p
A2
2

(
1− 1

p

)

−
(
ηA,op,2 δ2∤R + ηA,ep,2 δ2|R

)
p
A2
2 −1.

(d) If α3 ≤ R < α4, then

βQ
a·d2 ,p

(m) = p
A2
2 +α3−α2

2

(
ηA,op,2 + ηA,ep,2

)
p
A2
2

(
1− 1

p

)
+ηA,op,3 p

A2
2 −1

(
1− p

α3
2 −

⌊
R
2

⌋)
−ηA,op,3 δ2∤Rp

A3−3−R
2

+ ηA,ep,3 δ2|Rp
A3−R

2
−1χp(−m′).

(e) If R ≥ α4, then

βQ
a·d2 ,p

(m) = p
A2
2 + α3−α2

2

(
ηA,op,2 + ηA,ep,2

)
p
A2
2

(
1− 1

p

)
+ ηA,op,3 p

A2
2 −1

(
1− p

α3
2 −⌊α4

2 ⌋)

+ δ2|Rη
A,e
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′) + δ2∤Rη
A,o
p,4 p

A4
2
−2(R+1)+R+ 1

2 εpχp(−m′).
(6) If α = (0, 0, 1, 1), then the following hold.

(a) If R = 0, then

βQ
a·d2 ,p

(m) = 1− ηA,ep,2 p
−1.

(b) If R ≥ 1, then

βQ
a·d2 ,p

(m) = 1+ηA,ep,2 p
−1(p−1)+ηA,op,4 (p−1)p−2

(
1− p−2⌊R

2 ⌋
1− p−2

)
+ηA,ep,4 (p−1)p−3

(
1− p−2⌊R−1

2 ⌋
1− p−2

)

−
(
δ2|Rη

A,e
p,4 + δ2∤Rη

A,o
p,4

)
p−R−1.

For ease of notation, we write pν‖d if pν‖
∏4
j=1 dj . For d ∈ S4 with pν‖d we define

ων(p) = ων,a·d2(p) :=
βQ

a·d2 ,p
(m)

βQa,p(m)
, ω(d,m) :=

∏

pν‖d
ων(p).

Lemma 4.7.

(1) Setting X := aEQa
(n), for any d ∈ S4 with gcd(dj , 30) = 1, we have

aEQ
a·d2

(m) =
X

d1d2d3d4
ω(d,m).

(2) Suppose that p is an odd prime and p ∤
∏4
j=1 aj . We have ω0(p) = 1 and for 1 ≤ ν ≤ 4 and

m = pRm′ with p ∤ m′ we may evaluate ων(p) as follows.
(a) For R = 0, we have

ων(p) =





1+ηA,e
p,3 (a·d2)εpχp(−m′)p−1

1−ηA,e
p,4 (a)p−2

if ν = 1,

1−ηA,e
p,2 (a·d2)p−1

1−ηA,e
p,4 (a)p−2

if ν = 2,

1+ηA,e
p,1 (a·d2)εpχp(−m′)

1−ηA,e
p,4 (a)p−2

if ν = 3,

0 if ν = 4.
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(b) For R = 1, we have

ων(p) =





1−p−2

1+ηA,e
p,4 (a)(p−1−p−2)−p−3

if ν = 1

1+ηA,e
p,2 (a·d2)(1−p−1)−p−1

1+ηA,e
p,4 (a)(p−1−p−2)−p−3

if ν = 2

0 if ν = 3

0 if ν = 4.

(c) For R ≥ 2 and R even, we have

ων(p) =





1+p−1(1−p−1)+ p−2

p+1
(1−p2−R)(1+ηA,e

p,4 (a·d2)p)−ηA,e
p,4 (a·d2)p−1−R

1+ p−1

p+1
(1−p−R)(1+ηA,e

p,4 (a)p)−ηA,e
p,4 (a)p−2−R

if ν = 1,

1+(1+ηA,e
p,2 (a·d2))(1−p−1)+ p−1

p+1
(1−p2−R)(1+ηA,e

p,4 (a·d2)p)−ηA,e
p,4 (a·d2)p−R

1+ p−1

p+1
(1−p−R)(1+ηA,e

p,4 (a)p)−ηA,e
p,4 (a)p−2−R

if ν = 2,

p+ 1
p+1

(1−p2−R)(1+ηA,e
p,4 (a·d2)p)−ηA,e

p,4 (a·d2)p1−R

1+ p−1

p+1
(1−p−R)(1+ηA,e

p,4 (a)p)−ηA,e
p,4 (a)p−2−R

if ν = 3,

p2+ p
p+1

(1−p2−R)(1+ηA,e
p,4 (a·d2)p)−ηA,e

p,4 (a·d2)p2−R

1+ p−1

p+1
(1−p−R)(1+ηA,e

p,4 (a)p)−ηA,e
p,4 (a)p−2−R

if ν = 4.

(d) For R ≥ 3 and R odd, we have

ων(p) =





1+p−1(1−p−1)+ p−2

p+1 (1−p
3−R+ηA,e

p,4 (a·d2)p(1−p1−R)) − p−1−R

1+ p−1

p+1 (1−p1−R+ηA,e
p,4 (a)p(1−p−1−R)) − p−2−R

if ν = 1,

1+(1+ηA,e
p,2 (a·d2))(1−p−1)+ p−1

p+1 (1−p
3−R+ηA,e

p,4 (a·d2)p(1−p1−R)) − p−R

1+ p−1

p+1 (1−p1−R+ηA,e
p,4 (a)p(1−p−1−R)) − p−2−R

if ν = 2,

p+ 1
p+1(1−p

3−R+ηA,e
p,4 (a·d2)p(1−p1−R)) − p1−R

1+ p−1

p+1 (1−p1−R+ηA,e
p,4 (a)p(1−p−1−R)) − p−2−R

if ν = 3,

p2+ p
p+1(1−p3−R+ηA,e

p,4 (a·d2)p(1−p1−R)) − p2−R

1+ p−1

p+1 (1−p1−R+ηA,e
p,4 (a)p(1−p−1−R)) − p−2−R

if ν = 4.

(3) Suppose that p‖∏4
j=1 aj and

α ∈ {(0, 0, 0, 3), (0, 0, 2, 3), (0, 2, 2, 3), (2, 2, 2, 3), (0, 0, 1, 2), (0, 1, 2, 2), (1, 2, 2, 2)}.
For 1 ≤ ν ≤ 4 and m = pRm′ with p ∤ m′ we may evaluate ων(p) as follows.
(a) For R = 0, we have

ων(p) =





1 if ν = 1 and α = (0, 0, 0, 3)

1−ηA,e
p,2 (a·d2)p−1

1+ηA,e
p,3 (a)χp(−m′)p−1

if ν = 1 and α = (0, 0, 1, 2),

1−ηA,e
p,2 (a·d2)p−1

1+ηA,e
p,3 (a)χp(−m′)p−1

if ν = 2 and α = (0, 0, 2, 3),

1+ηA,e
p,1 (a·d2)ε3pχp(m′)

1+ηA,e
p,3 (a)χp(−m′)p−1

if ν = 2 and α = (0, 1, 2, 2),

1+ηA,e
p,1 (a·d2)ε3pχp(m′)

1+ηA,e
p,3 (a)χp(−m′)p−1

if ν = 3 and α = (0, 2, 2, 3),

0 if ν = 3 and α = (1, 2, 2, 2),

0 if ν = 4.
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(b) For R = 1, we have

ων(p) =





1−p−2

1+ηA,o
p,4 (a)εpχp(−m′)p−2

if ν = 1 and α = (0, 0, 0, 3),

1+ηA,e
p,2 (a·d2)(1−p−1)

1+ηA,o
p,4 (a)εpχp(−m′)p−2

if ν = 1 and α = (0, 0, 1, 2),

1+ηA,e
p,2 (a·d2)(1−p−1)−p−1

1+ηA,o
p,4 (a)εpχp(−m′)p−2

if ν = 2 and α = (0, 0, 2, 3),

1+ε3pχp(m′)ηA,o
p,2 (a·d2)

1+ηA,o
p,4 (a)εpχp(−m′)p−2

if ν = 2 and α = (0, 1, 2, 2),

0 if ν = 3 and α = (0, 2, 2, 3),

1+ηA,e
p,1 (a·d2)η3pχp(m′)p

1+ηA,o
p,4 (a)εpχp(−m′)p−2

if ν = 3 and α = (1, 2, 2, 2),

0 if ν = 4.

(c) For R = 2 and α4 = 3, we have

ων(p) =





1+ηA,o
p,3 (a·d2)p−1(1−p−1)+ηA,e

p,3 (a·d2)χp(−m′)p−2

1+ηA,e
p,4 (a)εpχp(−m′)p−3

if ν = 1 (i.e., α = (0, 0, 0, 3)),

1+(ηA,o
p,2 (a·d2)+ηA,e

p,2 (a·d2))(1−p−1)+ηA,e
p,3 (a·d2)χp(−m′)p−1

1+ηA,e
p,4 (a)εpχp(−m′)p−3

if ν = 2 (i.e., α = (0, 0, 2, 3)),

p+ηA,e
p,3 (a·d2)χp(−m′)

1+ηA,e
p,4 (a)εpχp(−m′)p−3

if ν = 3 (i.e., α = (0, 2, 2, 3)),

p2+ηA,e
p,3 (a·d2)χp(−m′)p

1+ηA,e
p,4 (a)εpχp(−m′)p−3

if ν = 4 (i.e., α = (2, 2, 2, 3)).

(d) For R ≥ 2 and R ≥ α4 even, we have

ων(p) =





1+ηA,o
p,3 (a·d2)p−1(1−p−1)+ηA,e

p,4 p
−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 1 and α = (0, 0, 0, 3),

1+ηA,e
p,2 (a·d2)(1−p−1)+ηA,e

p,4 (a·d2)εpχp(−m′)p−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 1 and α = (0, 0, 1, 2),

1+(ηA,o
p,2 (a·d2)+ηA,e

p,2 (a·d2))
(
1− 1

p

)
+ηA,e

p,4 p
1−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 2 and α = (0, 0, 2, 3),

1+ηA,e
p,4 (a·d2)εpχp(−m′)p1−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 2 and α = (0, 1, 2, 2),

p+ηA,e
p,4 (a·d2)εpχp(−m′)p2−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 3 and α = (0, 2, 2, 3),

p+ηA,e
p,4 (a·d2)εpχp(−m′)p2−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 3 and α = (1, 2, 2, 2),

p2+ηA,e
p,4 (a·d2)εpχp(−m′)p3−R

1+ηA,e
p,4 (a)p−R−1εpχp(−m′)

if ν = 4.
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(e) For R ≥ 3 and R odd, we have

ων(p) =





1+ηA,o
p,3 (a·d2)p−1(1−p−1)+ηA,o

p,4 (a·d2)p−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 1 and α = (0, 0, 0, 3),

1+ηA,e
p,2 (a·d2)(1−p−1)+ηA,o

p,4 (a·d2)p−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 1 and α = (0, 0, 1, 2),

1+(ηA,o
p,2 (a·d2)+ηA,e

p,2 (a·d2))(1−p−1)+ηA,o
p,4 (a·d2)p1−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 2 and α = (0, 0, 2, 3),

1+ηA,o
p,4 (a)p1−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 2 and α = (0, 1, 2, 2),

p+ηA,o
p,4 (a)p2−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 3 and α = (0, 2, 2, 3),

p+ηA,o
p,4 (a)p2−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 3 and α = (1, 2, 2, 2),

p2+ηA,o
p,4 (a)p3−Rεpχp(−m′)

1+ηA,o
p,4 (a)p−R−1εpχp(−m′)

if ν = 4.

Proof. (1) The statement is trivial up the evaluation of the local density at infinity. To evaluate

this, we compute the volume of
{
x ∈ R4 :

∑4
j=1 ajd

2
jx

2
j ≤ m

}
. This is

vol (BQd,m) :=

∫ √
m

a1d
2
1

−
√

m

a1d
2
1

∫
√

m−a1d
2
1
x2
1

a2d
2
2

−
√

m−a1d
2
1x

2
1

a2d
2
2

∫
√

m−
∑2

j=1
ajd

2
j
x2
j

a3d
2
3

−
√

m−
∑2

j=1
ajd

2
j
x2
j

a3d
2
3

∫
√

m−
∑3

j=1
ajd

2
j
x2
j

a4d
2
4

−
√

m−
∑3

j=1
ajd

2
j
x2
j

a4d
2
4

dx4dx3dx2dx1. (4.21)

We then make the change of variables xj 7→ xj
dj

to yield

1
∏4
j=1 dj

∫ √
m
a1

−
√

m
a1

∫
√

m−a1x
2
1

a2

−
√

m−a1x
2
1

a2

∫
√

m−
∑2

j=1
ajx

2
j

a3

−
√

m−
∑2

j=1
ajx

2
j

a3

∫
√

m−
∑3

j=1
ajx

2
j

a4

−
√

m−
∑3

j=1
ajx

2
j

a4

dx4dx3dx2dx1 =
vol (BQ1,m)

d1d2d3d4
.

Thus

βQd,∞(m) =
βQ1,∞(m)

d1d2d3d4
.

We next plug everything into (4.14) to compare aEQd
(m) and aEQ1

(m). Noting that βQd,p(m) =

βQ1,p(m) for p ∤
∏4
j=1 dj (for finite primes), we evaluate

ω(d,m) :=
aEQ

a·d2
(m)

aEQa
(m)

=
∏

p

βQ
a·d2 ,p

(m)

βQa,p(m)
=

1

d1d2d3d4

∏

pj‖d1d2d3d4
j≥1

βQ
a·d2 ,p

(m)

βQa,p(m)
.

Rearranging and noting that aEQ1
(m) = rQa,1(m) because Qa has class number one, we obtain the

claim.

(2) These follows directly by plugging in Lemma 4.6 (1).

(3) These follows directly by plugging in Lemma 4.6 (2)–(5).
�

Set
Sk := {1 ≤ j ≤ k : a′j ≡ 1 (mod 4)}

For the prime p = 2, we use the following lemma.

Lemma 4.8.
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(1) Suppose that 0 ≤ α1 ≤ 1, α1 ≤ α2 ≤ 2, α2 ≤ α3 ≤ 3, and α3 ≤ α4 ≤ 4 and αj+1 − αj ≤ 2 for
1 ≤ j ≤ 2, while α4 − α3 ≤ 3. Then

βQa,2(m) = 1 + δα1=1(−1)m + δα2=2δα1=0 ×
{
1 if a1 ≡ m (mod 4) or 4 | m,
−1 if a1 ≡ −m (mod 4) or m ≡ 2 (mod 4),

+ δ(α1,α2)6=(0,1)δα3=α2+2δR≥α2δa′1 6≡a′2( mod 4)δ2|A2
2

A2
2 + δ(α1,α2,α3)=(0,1,3)δ2∤A2


(−1)

a′1+a′2
2 8

a′1m




+ 2
A2
2
−1δ2|A2

δα4≥α3+2

(
δR≥α3+2 − δR=α3+1(−1)δ3|#S3 + δR=α3(−1)#S3

(−4

m′

))

+ 2
A2−3

2 δ2∤A2
δα4=α3+3

(
δR≥α4 − δR=α4−1(−1)δ3|#S3 + δR=α4−2(−1)#S3

(−4

m′

))

+ δR≡A3( mod 2)δα3−1≤R≤α4−32
A3−R

2
+4

3∏

j=1

(
2

a′j

)(
−4
m′−1

2

)

− δ2|A4

R∑

k=α4+2

2
A4
2
−k+1

( −4

#S4 + 1

)
+ δ2|A4

2
A4
2
−RδR≥α4+1

( −4

#S4 + 1

)

− δ2|A4
δR≥α4δ2∤#S42

A4
2
−R−1(−1)

m′−#S4
2

− δR≥α4−1δ2∤A4
2

A4−1
2
−R−2

(
8

m′

) 4∏

j=1

(
8

a′j

)(( −4

#S4 + 1

)
+

( −4

m′#S4

))
.

(2) Suppose that α1 = 0,

(α2, α3, α4) ∈ {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 1, 3),
(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3)},

and 0 ≤ ord2(m) =: R ≤ 2. Then

βQa,2(m) ≥ 1

2
.

(3) Suppose that α1 = 0,

(α2, α3, α4) ∈ {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 1, 3),
(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3)},

and 0 ≤ ord2(m) =: R ≤ 2. Then

βQa,2(m) ≤ 3

2
.

Proof. We assume that 0 ≤ α1 ≤ 1, α1 ≤ α2 ≤ 2, α2 ≤ α3 ≤ 3, and α3 ≤ α4 ≤ 4 and αj+1−αj ≤ 2
for 1 ≤ j ≤ 2, while α4 − α3 ≤ 3. Noting that for a odd one has

G2(a, 0, 2) = 0

and 0 ≤ α1 ≤ 1, then (4.17) becomes

2−3rRQ,2r(m) = 1 + δα1=1(−1)m +

α2∑

k=α1+2

2α1−k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k G2

(
n′a′1, 0, 2

k−α1

)
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+

α3∑

k=α2+2

2A2−2k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

2∏

j=1

G2

(
n′a′j , 0, 2

k−αj

)

+

α4∑

k=α3+2

2A3−3k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

3∏

j=1

G2

(
n′a′j , 0, 2

k−αj

)

+

r∑

k=α4+2

2A4−4k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

4∏

j=1

G2

(
n′a′j , 0, 2

k−αj

)

= 1 + δα1=1(−1)m +
1

4
δα2=α1+2

∑

n′∈(Z/2α2Z)×

e−
2πin′m
2α2 G2

(
n′a′1, 0, 4

)

+ δα3=α2+22
A2−2α3

∑

n′∈(Z/2α3Z)×

e−
2πin′m
2α3

2∏

j=1

G2

(
n′a′j, 0, 2

α3−αj
)

+

α4∑

k=α3+2

2A3−3k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

3∏

j=1

G2

(
n′a′j , 0, 2

k−αj

)

+

r∑

k=α4+2

2A4−4k
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

4∏

j=1

G2

(
n′a′j , 0, 2

k−αj

)
. (4.22)

Note that due to our restrictions on αj , we have α2 = α1 + 2 if and only if α2 = 2 and α1 = 0. We
next use the formula (valid for 4 | c)

G2(a, 0, c) = (1 + i)ε−1a
√
c
( c
a

)

to simplify (4.22) as

1 + δα1=1(−1)m +
1 + i

2
δα2=2δα1=0

∑

n′∈(Z/4Z)×
e−

2πin′m
4 ε−1n′a′1

+ (1 + i)2δα3=α2+22
A2
2
−α3

(
2α2−α1

a′1

) ∑

n′∈(Z/2α3Z)×

e−
2πin′m
2α3

(
2α2−α1

n′

) 2∏

j=1

ε−1
n′a′j

+ (1 + i)3
α4∑

k=α3+2

2
A3−3k

2

3∏

j=1

(
2k−αj

a′j

)
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

3∏

j=1

ε−1
n′a′j

(
2k−αj

n′

)

+ (1 + i)4
r∑

k=α4+2

2
A4
2
−2k

4∏

j=1

(
2k−αj

a′j

)
∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

4∏

j=1

ε−1
n′a′j

(
2k−αj

n′

)
.

We then simplify the last Jacobi symbol with
(
24k−A4

n′

)
=

(
24k+A4

n′

)
=

(
2A4

n′

)
=

(
2

n′

)A4

=

(
8

n′

)A4

,

while the Jacobi symbol in the second-to-last term is simplified as
(
23k−A3

n′

)
=

(
23k+A3

n′

)
=

(
8

n′

)k ( 8

n′

)A3

.

This yields (plugging in (1 + i)2 = 2i, (1 + i)3 = 2(1 − i), and (1 + i)4 = −4,
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1 + δα1=1(−1)m +
1 + i

2
δα2=2δα1=0

∑

n′∈(Z/4Z)×
e−

2πin′m
4 ε−1

n′a′1

+ 2iδα3=α2+22
A2
2
−α3

(
8

a′1

)A2 ∑

n′∈(Z/2α3Z)×

e−
2πin′m
2α3

(
8

n′

)A2 2∏

j=1

ε−1
n′a′j

+ 2(i− 1)

α4∑

k=α3+2

2
A3−3k

2

(
8

a′j

)k+A3 ∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

3∏

j=1

ε−1n′a′j

(
8

n′

)k+A3

− 4
r∑

k=α4+2

2
A4
2
−2k

4∏

j=1

(
8

a′j

)A4 ∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

4∏

j=1

ε−1
n′a′j

(
8

n′

)A4

. (4.23)

We next evaluate the inner sum on n′ in each case. Using our restrictions on the αj , the sum over
n′ in the third, fourth, and fifth terms have length at most 8 and may be directly computed on a
case-by-case basis. The third term becomes (noting that a′1 = a1 if δα1=0 6= 0)

δα2=2δα1=0 ×
{
1 if a1 ≡ m (mod 4) or 4 | m,
−1 if a1 ≡ −m (mod 4) or m ≡ 2 (mod 4).

The fourth term in (4.23) simplifies as

δ(α1,α2)6=(0,1)δα3=α2+2δR≥α2δa′1 6≡a′2( mod 4)δ2|A2
2

A2
2 + δ(α1,α2,α3)=(0,1,3)δ2∤A2


(−1)

a′1+a′2
2 8

a′1m


 . (4.24)

After a long simplification, the fifth term in (4.23) becomes

2
A2
2
−1δ2|A2

δα4≥α3+2

(
δR≥α3+2 − δR=α3+1(−1)δ3|#S3 + δR=α3(−1)#S3

(−4

m′

))

+ 2
A2−3

2 δ2∤A2
δα4=α3+3

(
δR≥α4 − δR=α4−1(−1)δ3|#S3 + δR=α4−2(−1)#S3

(−4

m′

))

+ δR≡A3( mod 2)δα3−1≤R≤α4−32
A3−R

2
+4

3∏

j=1

(
2

a′j

)(
−4
m′−1

2

)
.

It remains to compute the sixth term. This is

−4
r∑

k=α4+2

2
A4
2
−2k

4∏

j=1

(
8

a′j

)A4 ∑

n′∈(Z/2kZ)×
e
− 2πin′m

2k

4∏

j=1

ε−1
n′a′j

(
8

n′

)A4

.

If A4 is even, then the above equals (making the change of variables n′ 7→ n0 + 4n′)

−4

r∑

k=α4+2

2
A4
2
−2k ∑

n0∈{±1}

4∏

j=1

ε−1
n0a′j

e
− 2πin0m

2k
∑

n′∈(Z/2k−2Z)×

e
− 2πin′m

2k−2 .

The inner sum vanishes unless R ≥ k − 2, giving

−
r∑

k=α4+2

δR≥k−22
A4
2
−k ∑

n0∈{±1}

4∏

j=1

ε−1
n0a′j

e
− 2πin0m

2k . (4.25)
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For k ≤ R we have e
− 2πin0m

2k = 1 and a short calculation (splitting depending on #S4) shows
that the inner sum in (4.25) evaluates as

2

( −4

#S4 + 1

)

Hence for r sufficiently large (4.25) equals

−
R∑

k=α4+2

2
A4
2
−k+1

( −4

#S4 + 1

)
−

R+2∑

k=R+1

δk≥α4+22
A4
2
−k ∑

n0∈{±1}

4∏

j=1

ε−1
n0a′j

e
− 2πin0m

2k . (4.26)

For k = R+ 1 (assuming that R ≥ α4 + 1) the exponential is −1 and simplifying we see that this
term equals

2
A4
2
−RδR≥α4+1

( −4

#S4 + 1

)
.

For k = R + 2 (assuming that R ≥ α4), we again split into cases depending on #S4 and evaluate
the inner sum as

(−1)
m′−#S4

2 δ2∤#S42.

We conclude that (4.26) becomes

−
R∑

k=α4+2

2
A4
2
−k+1

( −4

#S4 + 1

)
+ 2

A4
2
−RδR≥α4+1

( −4

#S4 + 1

)

− δR≥α4δ2∤#S42
A4
2
−R−1(−1)

m′−#S4
2 . (4.27)

Finally, for A4 odd, the sixth term in (4.23) equals (making the change of variables n′ 7→ n0 + 8n′

with n0 ∈ {±1,±3})

−4

4∏

j=1

(
8

a′j

)
r∑

k=α4+2

2
A4
2
−2k ∑

n0∈{±1,±3}
e
− 2πin0m

2k

4∏

j=1

ε−1n0a′j

(
8

n0

) ∑

n′∈(Z/2k−3Z)×

e
− 2πin′m

2k−3 .

The inner sum vanishes unless R ≥ k − 3, yielding (for r sufficiently large)

−
4∏

j=1

(
8

a′j

)
R+3∑

k=α4+2

2
A4
2
−k−1 ∑

n0∈{±1,±3}
e
− 2πin0m

2k

4∏

j=1

ε−1
n0a′j

(
8

n0

)
. (4.28)

For k ≤ R+ 2, the exponential only depends on n0 modulo 4, so the terms n0 and n0 + 4 (modulo

8) cancel due to
(

8
n0+4

)
= −

(
8
n0

)
. Hence the sum is zero in these cases.

Only the k = R+ 3 term remains. Therefore (4.28) equals

−
4∏

j=1

(
8

a′j

)
δR≥α4−12

A4
2
−R−4 ∑

n0∈{±1,±3}
e−

2πin0m
′

8

4∏

j=1

ε−1
n0a′j

(
8

n0

)
. (4.29)

Splitting depending on #S4 and evaluating the finite sum over n0 yields the claim.
Parts (2)–(3) directly follow by splitting into different cases depending on R, evaluating part (1)

on a case-by-case basis, and bounding all characters trivially. �

We define another function

Ω(p) :=
∑

d∈S4∏4
j=1 dj=p

ω1,a·d2(p)−
∑

d∈S4∏4
j=1 dj=p

2

ω2,a·d2(p)

p
+

∑

d∈S4∏4
j=1 dj=p

3

ω3,a·d2(p)

p2
− ω4,a·p2(p)

p3
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and

Ω(ℓ) :=
∏

p|ℓ
Ω(p).

In the sieve theory calculation, we will obtain the main term which contain the following term :

W (z0) =
∏

p<z0

(
1− Ω(p)

p

)
.

Hence we finally need the lower bound of W (z0) i.e, upper bound of Ω(p). In order to obtain such
a bound, we next prove bounds on ων(p).

Lemma 4.9. Let a ∈ N4 and a prime p 6= 2 be given.

(1) Suppose that p ∤
∏r
j=1 aj.

(a) For R = 0 we have

Ω(p) ≤ 4 +
−2p−1 + 18p−2

1− p−2
.

In particular, for p ≥ 11 we have Ω(p) ≤ 4, Ω(7) ≤ 33
8 , and Ω(5) ≤ 9

2 .
(b) For R = 1 we have

Ω(p) ≤ 4 + 4
p−1 − p−2

1 + p−2
≤ 24

5
.

(c) For R ≥ 2 with R even, we have

Ω(p) ≤
{
4.93 if p ≥ 7,
1265
273 if p = 5.

(d) For R ≥ 3 with R odd, we have

Ω(p) ≤
{
4.93 if p ≥ 7,
301
65 if p = 5.

(2) Suppose that p‖∏4
j=1 aj.

(a) For R = 0 we have

Ω(p) ≤ 4 + 3p−1 +
12p−2

1− p−1
.

In particular, for p ≥ 7 we have Ω(p) < 5.
(b) For R = 1 we have

Ω(p) ≤ 7− 2p−1 +
7p−2 + 2p−3

1− p−2
.

In particular, for p > 7 we have Ω(p) < 7 and Ω(7) ≤ 6.87.
(c) For R = 2 we have.

Ω(p) ≤ 7− 5p−1 + 14p−2 +
7p−3 − 5p−4 + 14p−5

1− p−3
.

In particular, for p ≥ 7 we have Ω(p) ≤ 7− 5p−1 + 14p−2 + 7p−3. Moreover, for p > 7 we
have Ω(p) < 7 and Ω(7) < 6.6.

(d) For R ≥ 3 with R odd we have

Ω(p) ≤ 7− 5p−1 − p−2 +
7p−R + 7p−R−1 − 5p−R−2 − p−R−3

1− p−R−1
.

For p ≥ 7 we have Ω(p) ≤ 7− 4p−1.
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(e) For R ≥ 4 with R even we have

Ω(p) ≤ 7− 5p−1 − p−2 +
15p−4 + 7p−5

1− p−5
.

For p ≥ 7 we have Ω(p) ≤ 7− 5p−1.

Proof. (1) We use Lemma 4.7 (2) to compute the ων(p). Noting that for each choice of R the
denominator is independent of d (and hence also ν), we may combine all of the terms in the
numerators. After combining and simplifying, we obtain the bounds listed in the statement.

(2) We use Lemma 4.7 (3) to compute the ων(p) and again combine the numerators together
and simplify trivially. A long but straightforward calculation yields the claim.

�

5. Representations of integers as sums of squares of nearly Pr-numbers

In this section, we prove Theorem 1.2.

5.1. Setup for sieving theory. We apply sieving theory to remove the representations that have
p | dj for p ≤ y with some y depending on n. For Q the quadratic form (or sum of squares) defined
in (1.1) with ℓ = 4, the set to be sieved is

A = Am := {x ∈ Z4 : Q(x) = m}.
For d ∈ S4 with gcd(dj , 30) = 1, we define

Ad := {x ∈ A : dj | xj}.
One has

rQ
a·d2

(n) = #Ad.

Defining
R(d,m) = Ra(d,m) := rQ

a·d2
(m)− aEQ

a·d2
(m)

to be the coefficient of the cuspidal part of the theta function, we have the following proposition,
which is a direct corollary of Lemma 4.7

Proposition 5.1. For d ∈ N4 with gcd(dj , 30) = 1 we have

#Ad =
X

d1d2d3d4
ω (d,m) +R(d,m).

We require the following bound on ω1(p).

Lemma 5.2. Suppose that a ∈ N4 is only divisible by primes ≤ 13 and for each prime 7 ≤ p ≤ 13
we have ordp

∏4
j=1 aj ≤ 1. Let Pa denote the primes dividing

∏4
j=1 aj. Then for w ≥ 5, we have

∏

w<p<z

(
1− ω1(p)

p

)−1
≤

∏
w<p<z

(
1− 1+ 2

p

p

)−1

∏
p∈Pa

(
1− ω1(p)

p

) ≤ 2
∏

w<p<z

(
1− 9

7p

)−1
≤ 2

∏

w<p<z

(
1− 1

p

)−2
.

Proof. First assume that p ∤
∏4
j=1 aj and we may use Lemma 4.7 (2).

Bounding case-by-case, we find that for R = 0 we have ω1(p) ≤ 1− p−1 and for R = 1 we have
ω1(p) ≤ (1 − p−1)−1. For R ≥ 2, we split into R even and R odd and plug in the two choices

ηA,ep,4 (a · d2) = ηA,ep,4 (a) = ±1 to obtain ω1(p) ≤ 1 + 2p−1. We conclude that for all choices of R and
p ≥ 7 we have

ω1(p) ≤ 1 +
2

p
.
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This gives the first inequality. We then bound 1 + 2p−1 ≤ 9
7 for p ≥ 7 and therefore, noting that

1− 7
5p < 1,

∏

w<p<z

(
1− ω1(p)

p

)−1
≤

∏

w<p<z

(
1− 9

7p

)−1 ∏

p∈Pa

(
1− ω1(p)

p

)−1
.

For the primes p ∈ Pa we have by assumption that 7 ≤ p ≤ 13 and we may use the bounds for
ω1(p) in Lemma 4.7 (3). A direct calculation for 7 ≤ p ≤ 13 then shows that

∏

p∈Pa

(
1− ω1(p)

p

)−1
< 2.

The final inequality holds by comparing 1− 9
7p with

(
1− 1

p

)2
. �

For a set S, we define χS(x) to be the characteristic function χS(x) := 1 if x ∈ S and χS(x) = 0
otherwise.

Lemma 5.3. For 1 < w ≤ z and S ⊆ N, we have

∏

max(w,7)≤p<z

(
1− χS(p)ω1(p)

p

)−1
≤ 2

(
log(z)

log(w)

)(
1 +

6

log(w)

)
.

Proof. Since (
1− χS(p)ω1(p)

p

)−1
≤
(
1− ω1(p)

p

)−1
,

it suffices to prove the claim for S = N.
Using Lemma 5.2, we bound

∏

max(w,7)≤p<z

(
1− ω1(p)

p

)−1
≤

∏

max(w,7)≤p<z

(
1−

1 + 2
p

p

)−1

≤
∏

max(w,7)≤p<z

p

p− 1

∏

max(w,7)≤p<z

(
1− 3

p2

)−1
.

We then bound

∏

max(w,7)≤p<z

(
1− 3

p2

)−1
≤

∏

p≥max(w,7)

(
1− 3

p2

)−1
= 1 +

∑

n>1
p|n =⇒ p≥max(w,7)

3ω(n)

n2
.

We then use Lemma 2.5 and bound the sum against the Riemann integral to obtain

1 +
∑

n>1
p|n =⇒ p≥max(w,7)

3ω(n)

n2
≤ 1 + 1.614

∑

n≥max(w,7)

1

n
3
2

≤ 1 +
3.228√

max(w, 7)
.

We next use Lemma 2.1 to obtain

∏

max(w,7)≤p<z

(
1− ω1(p)

p

)−1
≤
(
1 +

3.228√
max(w, 7)

)
∏

p<z

p

p− 1

∏

p≤max(w,7)

p− 1

p

≤
(
1 +

3.228√
max(w, 7)

)
log(z)

log(max(w, 7))

(
1 +

1

log2(z)

)(
1 +

1

2 log2(max(w, 7))

)
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≤
(
1 +

3.228√
max(w, 7)

)
log(z)

log(max(w, 7))

(
1 +

1

log2(max(w, 7))

)(
1 +

1

2 log2(max(w, 7))

)
.

We then obtain the claim by bounding
(
1 +

3.228√
max(w, 7)

)(
1 +

1

log2(max(w, 7))

)(
1 +

1

2 log2(max(w, 7))

)
≤
(
1 +

6

log(w)

)
. �

For β,D > 0 and d ∈ S of the form d = p1p2 · · · pr with p1 > p2 > · · · > pr, we next define the
Rosser weights λ±d = λ±d,D(β). Setting

ym = ym(D,β) :=

(
D

p1 · · · pm

) 1
β

,

these are defined by

λ+d = λ+d,D(β) :=

{
(−1)r if p2ℓ+1 < y2ℓ+1(D,β) ∀0 ≤ ℓ ≤ r−1

2 ,

0 otherwise,

λ−d = λ−d,D(β) :=

{
(−1)r if p2ℓ < y2ℓ(D,β) ∀0 ≤ ℓ ≤ r

2 ,

0 otherwise.

As is standard, we consider D and β to be fixed throughout and omit these in the notation. For

β > 1, we define a = aβ := e β
β−1 log

(
β
β−1

)
, r = rβ :=

log
(
1+ 6

log(7)

)

log
(

β
β−1

) , and

Cβ(s) := 2erβ−1
(
1 +

6

log(7)

)
a
⌊s−β⌋+1
β

1− aβ
.

We often simply write a for aβ and r for rβ.

Lemma 5.4. Suppose that for a ∈ N4 we have p ∤ aj for every p ≥ 17 and for 7 ≤ p ≤ 13 we have

ordp
∏4
j=1 aj ≤ 1. Let a subset P of primes be given and set S = SP to be the set of all squarefree

integers for which d ∈ S if and only if all prime divisors of d are in P . Let D > 0 and β ≥ 5 be

given and set s := log(D)
log(z) . Then for s ≥ β and z ≥ 7 the following hold:

∑

d|P7(z)

λ+d
χS(d)ω1(d)

d
≤

∏

7≤p≤z

(
1− χS(p)ω1(p)

p

)
(1 + Cβ(s)) ,

∑

d|P7(z)

λ−d
χS(d)ω1(d)

d
≥

∏

7≤p≤z

(
1− χS(p)ω1(p)

p

)
(1− Cβ(s)) .

Proof. We take zn := max
(
z

(
β−1
β

)n

, 7
)
in [13, (6.29) and (6.30)]. We define

V +
S (z) :=

∑

d|P7(z)

λ+d
ω1(d)

d
= VS(z) +

∑

n odd

VS,n(z),

V −S (z) :=
∑

d|P7(z)

λ−d
ω1(d)

d
= VS(z)−

∑

n even

VS,n(z),
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where VS(z) :=
∏

7≤p<z

(
1− χS(p)ω1(p)

p

)
and

VS,n(z) :=
∑

yn<pn<...p1<z
pm<ym, m<n, m≡n (mod 2)

ω1 (p1p2 · · · pn)
p1p2 · · · pn

VS (pn) .

By [13, p. 157], we have

VS,n(z) ≤
VS(zn)

n!

(
log

(
VS(zn)

VS(z)

))n
. (5.1)

We then write

VS(zn) =
∏

7≤p<zn

(
1− χS(p)ω1(p)

p

)
= VS(z)

∏

zn≤p<z

(
1− χS(p)ω1(p)

p

)−1
.

Hence we may now use Lemma 5.3 (noting that since zn ≥ 7 we have max(zn, 7) = zn and also

z ≥ z

(
β−1
β

)n

together with the assumption z ≥ 7 implies z ≥ zn) to bound

VS(zn) ≤ 2VS(z)
log(z)

log(zn)

(
1 +

6

log(zn)

)
.

Plugging this into (5.1) and then using zn ≥ 7, we therefore conclude that

VS,n(z) ≤ 2
VS(z)

n!

log(z)

log(zn)

(
1 +

6

log(7)

)(
log

(
log(z)

log(zn)

(
1 +

6

log(7)

)))n
.

By Stirling’s bound (using a more precise version by Robbins [16]), we have n! ≥
√
2πn

(
n
e

)n
, from

which we conclude that n! ≥ e
(
n
e

)n
. Thus we conclude that

VS,n(z) ≤ 2
VS(z)

e
(
n
e

)n
log(z)

log(zn)

(
1 +

6

log(7)

)(
log

(
log(z)

log(zn)

(
1 +

6

log(7)

)))n
.

Using zn ≥ z

(
β−1
β

)n

, we have log(z)
log(zn)

≤
(

β
β−1

)n
, and hence we conclude that

VS,n(z) ≤ 2
VS(z)

enn

(
e

β

β − 1

)n(
1 +

6

log(7)

)(
log

((
β

β − 1

)n(
1 +

6

log(7)

)))n

= 2
VS(z)

e

(
e

β

β − 1
log

(
β

β − 1

))n(
1 +

6

log(7)

)
1 +

log
(
1 + 6

log(7)

)

n log
(

β
β−1

)



n

= 2
VS(z)

e
an
(
1 +

6

log(7)

)(
1 +

r

n

)n
≤ 2VS(z)a

ner−1
(
1 +

6

log(7)

)
.

Note that Vn(z) = 0 for n ≤ s − β and a < 1 because β ≥ 5, so the geometric series converges to
give

∑

n≥1
VS,n(z) ≤ 2VS(z)e

r−1
(
1 +

6

log(7)

) ∑

n>s−β
an ≤ VS(z)Cβ(s).

Hence

V +
S (z) ≤ VS(z) (1 + Cβ(s)) and V −S (z) ≥ VS(z) (1− Cβ(s)) . �

We next prove bounds on sums of the type in Lemma 5.4 under the additional restriction that
we only sum over those d with δ | d (for fixed δ ∈ N).
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Lemma 5.5. Let D > 0 and β ≥ 5 be given and set s := log(D)
log(z) . Then for s ≥ β, z ≥ 7, and

squarefree δ ∈ N with gcd(δ, 30) = 1 the following hold:

∑

δ|d|P7(z)

λ+d
ω1(d)

d
≤ µ(δ)

∏

p|δ

ω1(p)

p− ω1(p)

∏

7≤p≤z

(
1− ω1(p)

p

)
(1 + Cβ(s)) ,

∑

δ|d|P7(z)

λ−d
ω1(d)

d
≥ µ(δ)

∏

p|δ

ω1(p)

p− ω1(p)

∏

7≤p≤z

(
1− ω1(p)

p

)
(1− Cβ(s)) .

Moreover, we have

µ(δ)
∏

p|δ

ω1(p)

p− ω1(p)
≤
(
5
3

)ω(δ)

δ
.

Proof. Setting

fδ(n) :=

{
1 if δ | n,
0 otherwise

and

f̃δ(n) :=

{
1 if gcd(n, δ) = 1,

0 otherwise
,

for a prime p we have fp(n) = 1− f̃p(n). Since δ is squarefree, we have

fδ(n) =
∏

p|δ
fp(n) =

∏

p|δ

(
1− f̃p(n)

)
=
∑

d|δ
µ(d)f̃d(n).

Hence we may rewrite

∑

δ|d|P7(z)

λ±d
ω1(d)

d
=
∑

d|P7(z)

fδ(d)λ
±
d

ω1(d)

d
=
∑

d|P7(z)

∑

u|δ
µ(u)f̃u(d)λ

±
d

ω1(d)

d

=
∑

u|δ
µ(u)

∑

d|P7(z)

f̃u(d)λ
±
d

ω1(d)

d
. (5.2)

Letting Su be the set of squarefree integers d with gcd(d, u) = 1 (i.e., Su = SP for P the set of all
primes not dividing u in Lemma 5.4), the inner sum may be written as

∑

d|P7(z)

f̃u(d)λ
±
d

ω1(d)

d
=

∑

d|P7(z)

χSu(d)λ
±
d

ω1(d)

d
.

We may therefore use Lemma 5.4 (and
∑

d|P7(z)
χSu(d)λ

−
d
ω1(d)
d ≤∑d|P7(z)

χSu(d)λ
+
d
ω1(d)
d ) to bound

∣∣∣∣∣∣

∑

d|P7(z)

χSu(d)λ
±
d

ω1(d)

d
− VSu(z)

∣∣∣∣∣∣
≤ VSu(z)Cβ(s).

Thus Lemma 5.4 and (5.2) imply that

∑

δ|d|P7(z)

λ+d
ω1(d)

d
≤
∑

u|δ
µ(u)VSu(z) (1 + Cβ(s)) , (5.3)

∑

δ|d|P7(z)

λ−d
ω1(d)

d
≥
∑

u|δ
µ(u)VSu(z) (1− Cβ(s)) . (5.4)
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We then evaluate (abbreviating V (z) := VN(z))

∑

u|δ
µ(u)VSu(z) =

∑

u|δ
µ(u)

∏

7≤p<z

(
1− χSu(p)ω1(p)

p

)
= V (z)

∑

u|δ

µ(u)
∏
p|u

(
1− ω1(p)

p

)

= V (z)
∏

p|δ

(
1− p

p− ω1(p)

)
= V (z)µ(δ)

∏

p|δ

ω1(p)

p− ω1(p)
,

where in the last step we used the fact that (−1)ω(δ) = µ(δ) because δ is squarefree. Plugging back
into (5.3) and (5.4) yields the claim. �

We have the following lower bound for X = aEQa
(m).

Lemma 5.6. Suppose that

a ∈ {(1, 1, 1, k) : 1 ≤ k ≤ 7} ∪ {(1, 1, 2, k) : 2 ≤ k ≤ 8} ∪ {(1, 1, 3, k) : 3 ≤ k ≤ 6}
∪ {(1, 2, 2, k) : 2 ≤ k ≤ 7} ∪ {(1, 2, 3, k) : 3 ≤ k ≤ 8} ∪ {(1, 2, 4, k) : 4 ≤ k ≤ 14}

∪ {(1, 2, 5, k) : 4 ≤ k ≤ 15}.
Then we have

X = aEQa,1
(m) ≥ 0.024m1−10−6

∏

p|gcd(30,∆m)

βQa,p(m)

(1− p−2) (1− p−1)
.

In particular, if 8 ∤ m, 27 ∤ m, and 25 ∤ m, then we have

aEQa,1
(m) ≥ 0.00083m1−10−6

.

Proof. Taking α = 0 in Lemma 4.6 (1)(e), for those primes p not dividing ∆ (in particular, for
p > 13 in every case considered in this lemma) we have (letting Rp := ordp(m))

βQa,p(m) = lim
r→∞

p−3rRQ,pr(m) = 1 +
p−2

1 + 1
p

(
1− p

−2
⌊
Rp
2

⌋

+ ηA,ep,4 (a)p

(
1− p

−2
⌊
Rp+1

2

⌋))

−
(
δ2∤Rp

+ ηA,ep,4 (a)δ2|Rp

)
p−Rp−2 ≥

{
1− p−2 if Rp = 0,(
1− p−1

) (
1− p−2

)
if Rp ≥ 1.

For the infinite prime, comparing (4.21) between a and 1 (making the change of variables xj 7→ xj√
aj
)

for U = (m− ε,m+ ε) we have

βQa,∞(m) =
π2

2
√
a1a2a3a4

lim
ε→0+

(m+ ε)2 − (m− ε)2

2ε
=

2π2√
∆

lim
ε→0+

4mε

2ε
=

4π2√
∆
m. (5.5)

Therefore, evaluating ζ(2) = π2

6 ,

aEQ
(m) ≥ 4π2√

∆

6

π2
m
∏

p|m
p∤∆

(
1− p−1

)∏

p|∆

βQa,p(m)

1− p−2
. (5.6)

For p ≥ 7 with p | ∆, we have α = (0, 0, 0, 1) and for p = 5 we have α = (0, 0, 0, 1) or α = (0, 0, 1, 1).
Suppose that α = (0, 0, 0, 1). If p | m, then Rp ≥ α4, while for p ∤ m we have α3 = Rp = 0 < α4 = 1.
For p | m we use Lemma 4.6 (5)(e) to bound

βQa,p(m) ≥ 1− p−Rp−1 ≥ 1− p−2 > 1− p−1. (5.7)
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For Rp = 0, we have α3 ≤ Rp < α4, so we may use Lemma 4.6 (5)(d) to bound

βQa,p(m) ≥ 1− p−1. (5.8)

Plugging back into (5.6), we have

aEQ
(m) ≥ 24√

∆
m
∏

p|∆m
p∤30

(
1− p−1

) ∏

p|gcd(30,∆m)

βQa,p(m)

1− p−2
.

Taking m 7→ m∆ in Lemma 2.2 (2), we obtain

∏

p|m∆
p∤30

(
1− p−1

)
=

∏
p|m∆

(
1− p−1

)
∏
p|gcd(m∆,30) (1− p−1)

≥
1
20(m∆)−10

−6

∏
p|gcd(m∆,30) (1− p−1)

,

so

aEQ
(m) ≥ 6

5
∆−

1
2
−10−6

m1−10−6
∏

p|gcd(30,∆m)

βQa,p(m)

(1− p−2) (1− p−1)
.

Since ∆ ≤ 2400, we have

aEQ
(m) ≥ 0.024m1−10−6

∏

p|gcd(30,∆m)

βQa,p(m)

(1− p−2) (1− p−1)
. (5.9)

This is the first claim.
Now assume that 8 ∤ m, 27 ∤ m, and 25 ∤ m. We compute a lower bound for βQa,2(m), βQa,3(m),

and βQa,5(m) under this assumption. Using Lemma 4.6 (1) and Lemma 4.6 (6), a case-by-case
analysis yields that

βQa,5(m)

(1− 5−2) (1− 5−1)

βQa,3(m)

(1− 3−2) (1− 3−1)
≥ 5

24
· 1
8
=

5

192
.

Plugging this into (5.9) and then using Lemma 4.8 (2) yields (note that 2 | ∆ in our case, so the
prime 2 always occurs)

aEQ
(m) ≥ 0.024m1−10−6

5
192βQa,2(m)

(1− 2−1) (1− 2−2)
≥ 0.024m1−10−6 5

144
> 0.00083m1−10−6

. �

For w ∈ R, define

S (A1, z) = Sw (A , z) := # {x ∈ A1 : gcd(xj , Pw(z)) = 1} =
∑

x∈A1

4∏

j=1

(µ ∗ 1) (gcd (xj, Pw(z))) .

As in [3], we now define Λ−d := 4λ−d − 3λ+d and

Σ (D, z) :=
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

Λ−d1λ
+
d2
λ+d3λ

+
d4

ω(d,m)

d1d2d3d4
. (5.10)

Combining this with the function

Σ′(D, z) :=
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

λ+d1λ
+
d2
λ+d3λ

+
d4

ω(d,m)

d1d2d3d4
, (5.11)

we next obtain an upper and lower bound for S(A , z).
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Lemma 5.7. For w ≥ 7 we have

XΣ(D, z) − 4
∑

d∈Z4

dj |Pw(z)

|dj |≤ D

11β−1

|R(d,m)| ≤ S (A , z) ≤ XΣ′(D, z) +
∑

d∈Z4

dj |Pw(z)

|dj |≤ D

11β−1

|R(d,m)| .

Proof. We claim first that

∑

d1|Pw(z)

∑

d2|Pw(z)

∑

d3|Pw(z)

∑

d4|Pw(z)

(
4λ−d1 − 3λ+d1

)
λ+d2λ

+
d3
λ+d4#Ad ≤ S (A , z)

≤
∑

d1|Pw(z)

∑

d2|Pw(z)

∑

d3|Pw(z)

∑

d4|Pw(z)

λ+d1λ
+
d2
λ+d3λ

+
d4
#Ad. (5.12)

To show (5.12), we first write (by inclusion-exclusion)

S (A , z) =
∑

d1|Pw(z)

∑

d2|Pw(z)

∑

d3|Pw(z)

∑

d4|Pw(z)

µ(d1)µ(d2)µ(d3)µ(d4)#Ad.

We then use the inequality (see [13, (6.19)])
∑

d|ℓ
λ−d ≤

∑

d|ℓ
µ(d) ≤

∑

d|ℓ
λ+d .

From this the second inequality immediately follows. For the first inequality, we argue as in [3,
Lemma 13].

We now plug Proposition 5.1 in for #Ad in (5.12) to obtain

∑

d1|Pw(z)

∑

d2|Pw(z)

∑

d3|Pw(z)

∑

d4|Pw(z)

(
4λ−d1 − 3λ+d1

)
λ+d2λ

+
d3
λ+d4

(
X

d1d2d3d4
ω(d,m) +R(d,m)

)

≤ S (A , z) ≤
∑

d1|Pw(z)

∑

d2|Pw(z)

∑

d3|Pw(z)

∑

d4|Pw(z)

λ+d1λ
+
d2
λ+d3λ

+
d4

(
X

d1d2d3d4
ω(d,m) +R(d,m)

)
.

We then use |λ±d | ≤ 1 and λ±d = 0 for d > D
11β−1 (by the definition of the Rosser weights and the fact

that the second-smallest prime dividing d is at least 11) and plug in the absolute value termwise
for the sum on R(d,m) to obtain the claim. �

5.2. Upper and lower bounds for the main term from sieving. We next bound Σ(D, z)
from below to obtain a lower bound for S(Ae, z) from Lemma 5.7. To state the result, we define

ΣMT :=
∏

7≤p≤z

(
1− ω1(p)

p

)4 ∑

d1,2|P7(z)

∑

d1,3|P7(z)

· · ·
∑

d3,4|P7(z)

g ((di,j))

×
∑

ℓi,j |P7(z)
di,j

µ (ℓ1,2) · · ·µ (ℓ3,4)
4∏

j=1

µ(ξj)
∏

p|ξj

ω1(p)

p− ω1(p)
.

Lemma 5.8. We have

Σ (D, z) ≥ (1− 7Cβ(s)) (1− Cβ(s))
3ΣMT.

Proof. As in [3, Lemma 12], there exists a 6-variable function g such that for di,j := gcd(di, dj)

ω(d,m) = ω1(d1)ω1(d2)ω1(d3)ω1(d4)g ((di,j)) .
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In other words, the ratio of ω(d,m) and the product of the ω1(dj) only depends on di,j . Therefore

Σ (D, z) =
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

Λ−d1λ
+
d2
λ+d3λ

+
d4

ω1(d1)ω1(d2)ω1(d3)ω1(d4)

d1d2d3d4
g ((di,j)) .

We then rewrite the sum by taking di,j to a series of 6 outer sums. This gives
∑

d1,2|P7(z)

∑

d1,3|P7(z)

· · ·
∑

d3,4|P7(z)

g ((di,j))S ((di,j)) , (5.13)

where

S ((di,j)) :=
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

gcd(di,dj)=di,j

Λ−d1λ
+
d2
λ+d3λ

+
d4

ω1(d1)ω1(d2)ω1(d3)ω1(d4)

d1d2d3d4
.

We then rewrite the condition gcd(di, dj) = di,j by assuming that lcm (di,j : 1 ≤ j ≤ 4, j 6= i) | di
and using inclusion-exclusion for divisibility by ℓi,j | P7(z)

di,j
. Setting ξi := lcm (ℓi,jdi,j : 1 ≤ j ≤ 4, j 6= i),

this yields that

S ((di,j)) =
∑

ℓi,j |P7(z)
di,j

µ (ℓ1,2) · · · µ (ℓ3,4)

×




∑

d1|P7(z)
ξ1|d1

Λ−d1ω1(d1)

d1







∑

d2|P7(z)
ξ2|d2

λ+d2ω1(d2)

d2







∑

d3|P7(z)
ξ3|d3

λ+d3ω1(d3)

d3







∑

d4|P7(z)
ξ4|d4

λ+d4ω1(d4)

d4


 .

By Lemma 5.5 we can bound

∑

d1|P7(z)
ξ1|d1

Λ−d1
ω1(d1)

d1
≥ 4µ(ξ1)

∏

p|ξ1

ω1(p)

p− ω1(p)

∏

7≤p≤z

(
1− ω1(p)

p

)
(1− Cβ(s))

− 3µ(ξ1)
∏

p|ξ1

ω1(p)

p− ω1(p)

∏

7≤p≤z

(
1− ω1(p)

p

)
(1 + Cβ(s)) .

and
∑

dj |P7(z)
ξj |dj

λ+dj
ω1(d1)

d1
≥ µ(ξ1)

∏

p|ξ1

ω1(p)

p− ω1(p)

∏

7≤p≤z

(
1− ω1(p)

p

)
(1− Cβ(s)) .

Putting this all together, we have

S ((di,j)) ≥ (1− 7Cβ(s)) (1− Cβ(s))
3
∏

7≤p≤z

(
1− ω1(p)

p

)4

×
∑

ℓi,j |P7(z)
di,j

µ (ℓ1,2) · · ·µ (ℓ3,4)
4∏

j=1

µ(ξj)
∏

p|ξj

ω1(p)

p− ω1(p)
.

Plugging this into (5.13) yields the claim. �

In order to obtain an upper bound for S(A , z), we now bound Σ′(D, z) from above.
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Lemma 5.9. We have

Σ′ (D, z) ≤ (1 + Cβ(s))
4 ΣMT.

Proof. As in the proof of Lemma 5.8, we first rewrite

Σ′ (D, z) =
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

λ+d1λ
+
d2
λ+d3λ

+
d4

ω1(d1)ω1(d2)ω1(d3)ω1(d4)

d1d2d3d4
g ((di,j)) .

We then rewrite the sum by taking di,j to a series of 6 outer sums. This gives
∑

d1,2|P7(z)

∑

d1,3|P7(z)

· · ·
∑

d3,4|P7(z)

g ((di,j))S
+ ((di,j)) , (5.14)

where

S+ ((di,j)) :=
∑

d1|P7(z)

∑

d2|P7(z)

∑

d3|P7(z)

∑

d4|P7(z)

gcd(di,dj)=di,j

λ+d1λ
+
d2
λ+d3λ

+
d4

ω1(d1)ω1(d2)ω1(d3)ω1(d4)

d1d2d3d4
.

Using Lemma 5.5, the proof follows precisely as in the proof of Lemma 5.8. �

Lemma 5.10. We have

ΣMT =
∏

7≤p≤z

(
1− Ω(p)

p

)
.

Proof. Combining Lemma 5.8 with Lemma 5.9, we have

(1− 7Cβ(s)) (1− Cβ(s))
3 ΣMT ≤ Σ(D, z) ≤ Σ′(D, z) ≤ (1− Cβ(s))

4 ΣMT.

We then take the limit D → ∞ and in the limit λ+d = λ−d = µ(d) so that by the definitions (5.10)
and (5.11) we have

lim
D→∞

Σ(D, z) = lim
D→∞

Σ′(D, z) =
∏

7≤p≤z

(
1− Ω(p)

p

)

and Cβ(s) → 0 as D → ∞. This gives the claim. �

Lemma 5.11. Suppose that a ∈ N4 has at most one prime p ≥ 7 dividing
∏4
j=1 aj and moreover

that p‖
∏4
j=1 aj and 7 ≤ p ≤ 13. If β = 10 and D ≥ z25, then

Σ(D, z) ≥ 5

8

∏

7≤p<z

(
1− Ω(p)

p

)
≥ 3

80

∏

7≤p<z

(
1− 4.93

p

)
≥ 12.6

∏

p<z

(
1− 1

p

)5

.

Proof. A direct calculation shows that

Cβ(s) ≤
3

80
,

from which we conclude the first inequality via Lemma 5.8 and Lemma 5.10. For the second
inequality, if p ∤

∏4
j=1 aj then we use Lemma 4.9 (1) to bound Ω(p) ≤ 4.93, while for p‖∏4

j=1 aj
with p ≥ 7 we have 7 ≤ p ≤ 13 (with at most one of them occurring) and we may use Lemma 4.9
(2) to bound

∏

7≤p≤13
p‖

∏4
j=1 aj

1− Ω(p)
p

1− 4.93
p

≥ min

(
1− 6.87

7

1− 4.93
7

,
1− 7

11

1− 4.93
11

,
1− 7

13

1− 4.93
13

)
≥ 0.0628.

this yields the second inequality.
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For the last inequality, we note that for p > 139 we have 1− 4.93
p ≥

(
1− 1

p

)5
and thus

5

8
ΣMT ≥ 3

80

∏

7≤p<z

(
1− 4.93

p

)
≥ 27.8

∏

7≤p≤139

(
1− 4.93

p

)

(
1− 1

p

)5
∏

p<z

(
1− 1

p

)5

≥ 12.6
∏

p<z

(
1− 1

p

)5

.

For the inequality with Σ′(D, z), we plug Cβ(s) ≤ 3
40 into Lemma 5.9 to get the first inequality.

The second inequality trivially holds because 0 < Ω(p) < p. �

5.3. Bounds of the error term from sieving. We next bound the cuspidal contribution to
obtain a bound for S(A , z).

Lemma 5.12. For β ≥ 10, we have
∑

d∈Z4

dj |Pw(z)

dj≤ D

11β−1

|R(d,m)| ≤ 3.07 × 10−92m
17
30D24.05.

Proof. Since R(d,m) = afQ,d
(m), we may plug in (4.13) to obtain

∑

d∈Z4

dj |Pw(z)

dj≤ D

11β−1

|R(d,m)| ≤ 1.184 × 10131m
17
30 (520)1+2·10−6+ 1

200

×
∑

d∈Z4

dj |Pw(z)

dj≤ D
119

lcm(d)2+4·10−6+ 1
100


27π · 2400

4∏

j=1

d2j + 16(520lcm(d)2)3




1
2

. (5.15)

Trivially bounding lcm(d) ≤∏4
j=1 dj , the inner sum may be bounded against

∑

d∈Z4

dj |Pw(z)

dj≤ D
119

4∏

j=1

d
3+4·10−6+ 1

100
j


27π · 2400 + 16(520)3

4∏

j=1

d4j




1
2

≤
(
27π · 2400 + 16(520)3

) 1
2
∑

d∈Z4

dj |Pw(z)

dj≤ D
119

4∏

j=1

d
5+4·10−6+ 1

100
j ≤ 47434

4∏

j=1

∑

dj |Pw(z)

dj≤ D
119

d
5+4·10−6+ 1

100
j .

We then trivially bound

4∏

j=1

∑

dj |Pw(z)

dj≤ D
119

d
5+4·10−6+ 1

100
j ≤

4∏

j=1

∑

dj≤ D
119

d
5+4·10−6+ 1

100
j ≤

(
D

119

)4(6+4·10−6+ 1
100)

.

Plugging back into (5.15) and simplifying yields the claim. �
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5.4. The proof of Theorem 1.2. Plugging Lemma 5.12 into Lemma 5.7 (plugging in β = 10)
yields

XΣ(D, z)− 1.23 × 10−91m
17
30D24.05 ≤ S (A , z) ≤ XΣ′(D, z) + 3.07 × 10−92m

17
30D24.05. (5.16)

Lemma 5.13. Suppose that 8 ∤ m, 27 ∤ m, 25 ∤ m, and

a ∈ {(1, 1, 1, k) : 1 ≤ k ≤ 7} ∪ {(1, 1, 2, k) : 2 ≤ k ≤ 8} ∪ {(1, 1, 3, k) : 3 ≤ k ≤ 6}
∪{(1, 2, 2, k) : 2 ≤ k ≤ 7}∪{(1, 2, 3, k) : 3 ≤ k ≤ 8}∪{(1, 2, 4, k) : 4 ≤ k ≤ 14}∪{(1, 2, 5, k) : 4 ≤ k ≤ 15}.
Then we have

S (A1, z) ≥ 0.063m1−10−6 e−5γ

log(z)5

(
1− 1

log2(z)

)5

− 1.23 × 10−91m
17
30D24.05.

Proof. We plug in the bound from Lemma 5.11 for Σ(D, z) and the bound from X = X1 from
Lemma 5.6 into (5.16). We then use Lemma 2.1 (expanding the alternating geometric series) to
bound

∏

p<z

(
1− 1

p

)5

≥ e−5γ

log(z)5

(
1− 1

log2(z)

)5

, (5.17)

giving the claim. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note first that
ℓ∑

j=1

ajx
2
j = m (5.18)

is solvable with xj ∈ Pr,S , then by multiplying xj by 2, 3, or 5 we obtain that

ℓ∑

j=1

aj(2xj)
2 = 4m,

ℓ∑

j=1

aj(3xj)
2 = 9m, and

ℓ∑

j=1

aj(5xj)
2 = 25m

are solvable with 2xj, 3xj , 5xj ∈ Pr,S. Hence if (5.18) is solvable with xj ∈ Pr,S for every m ∈ N

with 8 ∤ m, 27 ∤ m, and 25 ∤ m, then
∑ℓ

j=1 ajx
2
j is Pr,S-universal.

Any Pr,S-universal sum must also be universal, so by Bhargava’s escalation method the first 4
parameters in a must be one of

{(1, 1, 1, k) : 1 ≤ k ≤ 7} ∪ {(1, 1, 2, k) : 2 ≤ k ≤ 14} ∪ {(1, 1, 3, k) : 3 ≤ k ≤ 6}
∪ {(1, 2, 2, k) : 2 ≤ k ≤ 7} ∪ {(1, 2, 3, k) : 3 ≤ k ≤ 10}

∪ {(1, 2, 4, k) : 4 ≤ k ≤ 14} ∪ {(1, 2, 5, k) : 5 ≤ k ≤ 15}.
We may therefore assume that 8 ∤ m, 27 ∤ m, and 25 ∤ m and use Lemma 5.13 to obtain that the

number of representations
∑4

j=1 ajx
2
j = m of m with p | xj =⇒ p ∈ {2, 3, 5} or p ≥ z is

S (A1, z) ≥ 0.063m1−10−6 e−5γ

log(z)5

(
1− 1

log2(z)

)5

− 1.23 × 10−91m
17
30D24.05

with D ≥ z25. We therefore choose D = z25. Taking z = max(m
1

1388 , 7), we have

S (A1, z) ≥ 0.063m1−10−6 13885e−5γ

log(m)5

(
1− 1

log2(7)

)5

− 1.23 × 10−91m0.999844

≥ 3.91 × 1012m1−10−6
log(m)−5 − 1.23 × 10−91m0.999844.

40



We then use the bound

log(m) ≤ 1

r
mr (5.19)

with r = 10−6 to obtain

S (A , z) ≥ 3.91 × 10−18m1−10−6−5·10−6 − 1.23 × 10−91m0.999844.

This is positive as long as

m1.5·10−4 ≥ 3.15 × 10−74,

which holds trivially for all m ∈ N. Hence for every m with 8 ∤ m, 27 ∤ m, and 25 ∤ m, we have a

representation m =
∑4

j=1 ajx
2
j where p | xj implies that p ∈ {2, 3, 5} or p ≥ m

1
1388 . Since aj ≥ 1, if

the number of primes p /∈ {2, 3, 5} dividing xj0 for some 1 ≤ j0 ≤ 4 is ≥ L, then

m =
4∑

j=1

ajx
2
j ≥ x2j0 ≥ m

L
694 .

Therefore L ≤ 694, as claimed. �
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