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Abstract: Pluripotent stem cells (PSCs) hold great promise in cell-based therapy because of their
pluripotent property and the ability to proliferate indefinitely. Embryonic stem cells (ESCs) derived
from inner cell mass (ICM) possess unique cell cycle control with shortened G1 phase. In addition,
ESCs have high expression of homologous recombination (HR)-related proteins, which repair double-
strand breaks (DSBs) through HR or the non-homologous end joining (NHEJ) pathway. On the other
hand, the generation of induced pluripotent stem cells (iPSCs) by forced expression of transcription
factors (Oct4, Sox2, Klf4, c-Myc) is accompanied by oxidative stress and DNA damage. The DNA
repair mechanism of DSBs is therefore critical in determining the genomic stability and efficiency of
iPSCs generation. Maintaining genomic stability in PSCs plays a pivotal role in the proliferation and
pluripotency of PSCs. In terms of therapeutic application, genomic stability is the key to reducing the
risks of cancer development due to abnormal cell replication. Over the years, we and other groups
have identified important regulators of DNA damage response in PSCs, including FOXM1, SIRT1
and PUMA. They function through transcription regulation of downstream targets (P53, CDK1)
that are involved in cell cycle regulations. Here, we review the fundamental links between the
PSC-specific HR process and DNA damage response, with a focus on the roles of FOXM1 and SIRT1
on maintaining genomic integrity.
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1. Introduction

Embryonic stem cells (ESCs) of mice [1] or humans [2] are derived from the ICM of
blastocysts. They hold great promise in cell-based therapy because of their pluripotent
nature and the ability to proliferate indefinitely. Since the advent of ESCs decades ago,
a massive number of protocols were developed to drive them into different germ layers
(endoderm, mesoderm and ectoderm) through manipulation of cell signaling pathways.
For instance, we [3] and other research groups [4,5] have reported the differentiation of
human ESCs (hESCs) into pancreatic lineages. Extensive work was also done to drive
hESCs into trophoblast [6,7] and germ cell [8] lineages. Therefore, ESC is an excellent
in-vitro model for understanding early developmental events and their interactions with
external stimuli [3,9]. Notwithstanding the potential applications of ESCs in regenerative
medicine, tissue rejection in recipients could be a main concern. In 2006, Yamanaka and
his team reported the generation of induced pluripotent stem cells (iPSCs) from mouse
embryonic and adult fibroblasts through induction of transcription factors (Oct4, Sox2,
Klf4 and c-Myc) [10]. A year later, they also reported the generation of iPSCs from human
fibroblasts [11]. As patient-specific iPSCs can be derived, these ground-breaking iPSCs
solved the major hurdle of tissue rejection in cell-based therapy.
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Understanding the biological characteristics of pluripotent stem cells (PSCs) is imper-
ative for exploring their potential applications. In fact, both ESCs and iPSCs can proliferate
rapidly. The doubling time of PSCs ranges from 8–10 h, which is much faster than that in
somatic cells (around 20 h) [11–13]. Interestingly, the fast cell division is reminiscent of early
embryonic cells, with doubling time of 5–10 h before implantation [14]. Studies suggested
that the rapid proliferation of PSCs was due to their unique cell cycle regulations. For
instance, PSCs have a shortened G1 phase as a result of low expression of G1 phase-specific
cyclin D and cyclin-dependent kinases (CDK) 4 and 6. The interplay between cyclins, CDK
and cyclin-dependent kinase inhibitors (CDKN) is important for tight regulation of cell
cycle progression [15,16]. Cell cycle regulation is highly related to pluripotency in PSCs, as
the master pluripotent marker Oct4 controls the progression of cell cycle [17]. In addition,
the cell cycle regulators have important functions in DNA damage response (DDR) of
PSCs [18]. Replication stress and DNA damage were induced by the shortened G1 phase
in mouse ESCs (mESCs) [19]. More importantly, the expression levels of DNA damage
marker γH2AX increased during the reprogramming process into iPSCs [20]. Thus, the
DDR system in PSCs is essential for minimizing the accumulation of DNA mutations and
maintaining genomic integrity in the highly proliferating cells [21]. In this review, we
discuss the relationship between cell cycle regulation and DDR in PSCs and the recent
discoveries of important regulators, including FOXM1, SIRT1 and PUMA, in regulating
DDR in PSCs.

2. Cell Cycle Regulation in Pluripotent Stem Cells (PSCs)

The mitotic cell division is the most fundamental process for all cell types. It is tightly
regulated by the activation and deactivation of cyclin-dependent kinases (CDK) and the
oscillatory expression of cyclins at different stages of the cell cycle. The canonical cell cycle
in somatic cells consists of a DNA synthesis phase (S phase) and a cell division phase (M
phase). G1 (between M and S phase) and G2 (between S and M phase) are two gap phases
in between S and M phases. In each cell cycle, cyclin D and its CDK partner CDK4/6 are
highly expressed in the G1 phase. Cyclin E and its partner CDK2 are predominantly active
between the late G1 and S phase, while cyclin A/E with its partner CDK2 are mainly active
between the S and G2 phase. Lastly, cyclin B and its partner CDK1 mainly regulate the
G2 and M phase [22]. The oscillatory appearance of cyclins and CDKs are important for
ensuring the correct sequences of DNA synthesis prior to cell division, thus controlling
genomic integrity. Early studies in mouse blastomeres showed that their cell cycle closely
resembled that of the canonical model. Later, it was found that the mouse embryonic
cells have rapid cell divisions with doubling time of 5–10 h, owing to the shortened and
truncated G1 and G2 phases [23].

2.1. Cell Cycle Regulation in mESCs

The fast cell cycle of mESCs is accompanied by a shortened G1 phase. Interestingly,
the oscillatory expression and activities of the cyclin–CDK complexes in mESCs are quite
different from that in somatic cells [24,25]. First of all, since the G1 phase is significantly
shortened, the cyclin D (i.e., cyclin D1 and D3) is expressed at low levels. Throughout
the cell cycle, Cdk6 becomes the predominant partner at the G1 phase with an oscillatory
expression pattern. On the other hand, cyclin A/E and their partner Cdk2 are expressed at
high levels in mESCs. The high expression is cell cycle independent and without oscillation.
Lastly, the expression patterns of the mitotic cyclin B and its partner Cdk1 are similar to
those in somatic cells; they have oscillatory expression throughout the cell cycle and are
only expressed highly in the G2/M phase [24,25].

In addition to the tight regulations of the expression of the cyclin–CDK complexes,
another key cell cycle regulator is the retinoblastoma protein (RB). In somatic cells, RB
is unphosphorylated and active in the G1 phase. The active RB couples with E2F and
binds to the promoters of target genes expressed in the G1/S phase, such as components
of the cyclin A/E-Cdk2 complex. The binding of E2F at the promoters leads to histone
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deacetylation and repression of gene expression. When the cells are ready to enter the S
phase, the RB is phosphorylated and does not repress the cyclin A/E–Cdk2 complex when
entering the S phase [26]. The hypo-phosphorylation of RB at the G1 phase and the hyper-
phosphorylation of RB at the S phase add another level of cell cycle checkpoint to ensure
proper cell cycle progression. Interestingly, the inactive hyper-phosphorylated RB is found in
mESCs throughout different phases of the cell cycle. The reason is due to the high expression
and activities of the cyclin A/E–Cdk2 complex, which lead to phosphorylation of RB [27].

2.2. Cell Cycle Regulation in hESCs

Human ESCs, though derived from the ICM of human blastocysts, are considered
as being at a primed state similar to that of mouse epiblast stem cells (mEpiSCs). On
the other hand, mESCs are generally defined as being in a naïve state [28]. It is therefore
reasonable that there are major differences in cell cycle regulation between mESCs and
hESCs. Indeed, hESCs have a longer and more functional G1 phase compared with mESCs.
Therefore, the cyclin Ds (i.e., cyclin D1, D2 and D3) have intermediate expression in the
G1 phase in hESCs, though their expression is still lower than that in somatic cells. Unlike
the mESCs, the expression of cyclin D partner CDK4 is higher than CDK6 in hESCs [13,15].
Another major difference between mESCs and hESCs is that the expression pattern of the
cyclin A/E–CDK2 complex is cell cycle dependent in hESCs, but it is constant in mESCs.
Moreover, the functional RB checkpoint at the G1 phase guarding the correct entry into
S phase occurs in hESCs but not in mESCs [15]. On the other hand, there is similarity
between mESCs and hESCs; the oscillatory patterns with high expression of the mitotic
related cyclin B and its partner CDK1 are observed at the G2/M phase. The expression
patterns of cyclin, CDKs and RB in mESCs and hESCs are summarized in Table 1.

Table 1. Expression levels of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation status
of retinoblastoma protein (RB) in mESCs and hESCs during cell cycle progression.

mESCs hESCs

Cyclin expression levels

Cyclin A/E High, non-oscillatory High, oscillatory

Cyclin B High, oscillatory High, oscillatory

Cyclin D Low, oscillatory Intermediate, oscillatory

CDKs expression levels

CDK1 High, oscillatory High, oscillatory

CDK2 High, non-oscillatory High, oscillatory

CDK4 Low, oscillatory Medium, oscillatory

CDK6 Medium, oscillatory Low, oscillatory

RB phosphorylation

RB Hyper-phosphorylated Hypo-/Hyper-phosphorylated

2.3. Cell Cycle Regulation and Pluripotency

Octamer-binding transcription factor 3/4 (OCT4) or POU class 5 homeobox 1 (POU5F1)
is the most critical transcription factor for maintaining the pluripotency in both mESCs and
hESCs [1,2]. Knockout of OCT4 leads to loss of pluripotency [29–31]. In the past decade,
research on OCT4 focused on its role in cell cycle regulation. For instance, OCT4 downreg-
ulates the expression of cyclin D1 for shortening the G1 phase in hESCs. The mediation
is through transcriptional regulation of the mir-302 cluster by OCT4 and depletion of the
miR-302 cluster that extends the G1 phase in hESCs [32], highlighting the importance of
OCT4 in cell cycle regulation. In mESCs, on the other hand, Oct4 activates the expression
of E2f3a, which positively regulates the transcription of cyclin A and Cdk1 for the fast
proliferation of mESCs [33]. It should be noted that other pluripotent markers such as
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NANOG and SOX2 are also important in cell cycle regulation through interaction with
other modulators [34,35]. Collectively, the current evidence shows that pluripotency and
cell cycle regulation are highly connected in PSCs.

3. DNA Damage Response and Cell Cycle Regulation
3.1. Cell Cycle Checkpoints and DNA Damage Response

Apart from the cyclin–CDK complexes and the RB protein, the cyclin-dependent
kinase inhibitors (CDKN) are also important for cell cycle progression. Generally, there are
two major groups of CDKNs, including the CDK interacting protein/kinase inhibitory protein
(CIP/KIP) and the inhibitors of the CDK4/alternate reading frame (INK4/ARF) family. The
CIP/KIP family consists of subunits P21(CIP1), P27(KIP1) and P57(KIP2), while the INK4/ARF
family consists of P16(INK4A), P15(INK4B), P18(INK4C) and P19(INK4D/ARF) [25]. CDKNs
inhibit the activities of cyclins and CDKs. As the levels of CDKNs in PSCs are low [27],
the expression of cyclin–CDK complexes can be maintained at high levels for fast cell cycle
progression. A study even suggested that some CDKNs might not be functional in mESCs,
as the cyclin D3-Cdk6 expression was not affected by overexpression of its upstream CDKN
regulator p16 [36].

The CDKNs not only act as cell cycle checkpoints but also are heavily linked to
DNA damage response. For instance, P53 is a tumor suppressor gene and responsible
for regulating genome stability. In response to DNA double-strand breaks (DSB), P53 can
directly activate the ataxia-telangiectasia mutated (ATM) kinase through phosphorylation.
The ATM kinase is then recruited to the site of DNA damage for repairing, either through
homologous recombination (HR) or non-homologous end joining (NHEJ) [37]. More
importantly, P53 also activates P21, which in turn inhibits cyclin A/E–CDK2 activity,
leading to blockage of G1/S phase entry [38]. In PSCs, P53 is activated during DNA
damage. The induction of P53 in turn suppresses pluripotent marker (OCT4 and NANOG)
expression in mESCs and hESCs, leading to their differentiation [39].

3.2. DNA Repairing Mechanisms in PSCs

A precise DNA repair system is imperative in PSCs. The system allows the cells
to cope with DNA lesions and maintain their genomic integrity during rapid cell cycle
progression. In PSCs, the system is tightly controlled by DNA damage response (DDR)
signaling. Generally, PSCs respond to DNA damage or lesions through DDR, leading to cell
cycle arrest and increased expression of DNA repair genes [40]. Cell cycle arrest at either
the G1/S or the G2/M-phase allows incorporation of different DNA repair mechanisms,
including mismatch repair (MMR), base excision repair (BER), nucleotide excision repair
(NER), HR and NHEJ.

The PSCs have a short G1 phase that can help to minimize the induction of differentiation-
related signaling. Therefore, some of the DNA repair mechanisms occurring at the G1 phase
checkpoint in somatic cells are bypassed in PSCs. The prolonged S phase makes the PSCs
utilize HR preferentially over other DNA repair pathways during DDR [41]. The genes
involved in HR, including RAD51 and RAD52, are highly expressed in the S phase of
DNA repair. In addition to these genes, the MRE11- RAD50-NBS1 (MRN) complex is also
involved in DNA repair through HR and NHEJ. They serve as a DNA damage sensor and
generate single stranded DNA regions that activate the checkpoint responses. Following
the activation, the checkpoint transmits and amplifies the signal to downstream targets
such as the cyclin–CDK complex and other DNA repair-related genes [42,43].

4. Critical Regulators of DNA Damage Response in PSCs
4.1. FOXM1

Forkhead box (FOX) is a superfamily of transcription factors widely expressed in
many tissues. Members of the superfamily share an evolutionary conserved winged-helix
DNA-binding domain. To date, more than 50 FOX proteins are identified and are sub-
grouped from FOXA to FOXS based on their sequence homologies. They are involved
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in many cellular processes, including cell cycle progression, angiogenesis, apoptosis and
response to DNA damage [44].

Forkhead box M1 (FOXM1) is a member of the FOX superfamily consisting of a N-
terminal repressor domain and a C-terminal transactivation domain. Foxm1 is crucial for
embryogenesis in mice. Foxm1 is highly expressed in the epithelial and mesenchymal
cells during early embryo development. The patterned expression is important for further
development into organs such as liver, lung, intestine and urinary tract [45]. The expression
of Foxm1 in differentiated adult tissue is low, and increases in FOXM1 expression are
correlated with the initiation of cancer formation and tumor initiation [46,47]. We have
identified FOXM1 to be highly expressed in hESCs [48]. In the following sections, we
discuss the roles of FOXM1 in DDR and cell cycle regulation in PSCs.

4.1.1. FOXM1 and DNA Damage Response in PSCs

FOXM1 is one of the master regulators in initiating DDR. Foxm1-deficient mouse
embryonic fibroblasts (MEFs) have more DNA breaks than wildtype MEFs, as shown by
increased level of γH2AX. FOXM1 transcriptionally activates X-ray cross-complementing
group 1 (Xrcc1) and breast cancer-associated gene 2 (Brca2), which are involved in base
excision repair and HR repair, respectively, for DSBs [49]. Concerning the HR repair
pathway, FOXM1 upregulates the expression of NBS1 in human breast cancer cells [50].
NBS1 is a subunit in the MRN complex responsible for DSB repair through HR and NHEJ.
FOXM1 also enhances the recruitment of the ATM kinase at the sites of DNA damage [50].
The ATM kinase then promotes the phosphorylation of a number of proteins, including
P53, H2AX, BRCA1 and NBS1 that are involved in cell cycle arrest and DNA repair [51].
Conversely, depletion of FOXM1 and NBS1 through an si-RNA approach led to the loss
of HR repair ability in breast cancer cells, resulting in accumulation of γH2AX foci and
induction of cellular senescence [50].

FOXM1 also regulates HR repair through transcriptional activation of S-phase kinase-
associated protein 2 (SKP2) and cyclin-dependent kinases regulatory subunit 1 (CKS1).
In human cancer cells, FOXM1 binds to the promoters of SKP2 and CKS1 and activates
them [52]. Both SKP2 and CKS1 are important subunits of the Skp1-Cullin 1-F-box (SCF)
ubiquitin ligase complex that interacts with NBS1 and triggers its ubiquitination upon DNA
DSB. This process facilitates the recruitment of ATM ligase at the sites of DNA damage
and hence induces DNA repair through HR and NHEJ [53]. As most of the studies were
performed in human cancer cells, the exact roles of FOXM1 in DDR in ESCs or during
reprogramming to iPSCs are yet to be investigated. However, DNA damage is apparent
during acquisition of pluripotency from somatic cells such as MEFs [20]. It is believed that
FOXM1 should play similar roles in regulating DDR in ESCs, as described above. The
known interactions of FOXM1 with DDR-related genes are summarized in Figure 1.
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4.1.2. FOXM1 and CDKs in PSCs

DDR and cell cycle regulation are highly interconnected; therefore, FOXM1 also
interacts with a couple of cyclin-dependent kinases (CDK) (Figure 1). FOXM1 activates
SKP2 and CKS1 in human cancer cells. The elevated SKP2 and CKS1 downregulates the
expression of P27 and P21 that is mainly responsible for inhibiting the activity of cyclin
E/A–CDK2 and cyclin B–CDK1 complexes. As a result, the activities of the two cyclin
complexes are dramatically reduced in FOXM1-depleted human cancer cells and MEFs [53].
There is not much research focusing on the roles of FOXM1 in cell cycle regulation of PSCs.
FOXM1 binds to gene promoters that regulate cell cycle progression, including CDK12,
P21, CDC20, and CDC5 in hESC-derived retinal pigment epithelium (hESC-RPE) cells [54].
Since both CDKs and CDKNs are transcriptionally regulated by FOXM1, their combined
effects on the enhanced proliferation of hESC-RPE cells remain to be determined. We have
reported the roles of FOXM1 in hESCs [48]. FOXM1 is highly expressed in undifferentiated
hESCs, with a higher expression level in the G2/M phase than the G1 and S phase. Through
chromatin immunoprecipitation sequencing (ChIP-seq), we found for the first time that
FOXM1 bound to the promoters of cyclin B1 (CCNB1) and CDK1 in the undifferentiated
hESCs, and that depletion of FOXM1 led to impaired proliferation in hESCs. The study
provides direct evidence that FOXM1 regulates cell cycle progression through transcription
activation of the cyclin–CDK complex. The interactions of FOXM1 with various cell cycle
regulators are shown in Figure 1.

4.2. SIRT1

Sirtuin 1 (SIRT1) belongs to the sirtuin family. The human sirtuin family consists
of seven members (SIRT1 to SIRT7). They have highly conserved domain that acts as a
nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylase [55]. Among
the sirtuin members, SIRT1 is the most widely studied molecule. It is detected in the
nucleus and involved in many cellular events including transcriptional silencing, DNA
damage repair, cell cycle regulation, insulin regulation and longevity [56–60]. As a histone
deacetylase, SIRT1 is recruited to the chromatin and deacetylates histone 1 lysine 26
(H1K26), H3K9, H3K14 and H4K16 [61]. In addition, SIRT1 also deacetylates a number
of transcription factors, including P53, FOXO, p300 histone acetyltransferase and E2F
transcription factor 1 (E2F1) [62]. We and others have demonstrated that SIRT1 is highly
expressed in both mESCs and hESCs [56,57,63]. In the following section, we review the
importance of SIRT1 in regulating cell cycle progression and DDR.

4.2.1. SIRT1 and P53

P53 is important for cell cycle regulation and DDR. SIRT1 is an important regulator of
P53 in PSCs and highly expressed in undifferentiated hESCs. It inactivates P53 expression
through its protein deacetylase property. OCT4 regulates the activity of SIRT1. Down-
regulation of OCT4 reduces SIRT1 expression and upregulates P53 activity. Consistently,
depletion of SIRT1 in hESCs led to stabilization of the P53 protein and hence its activity
due to acetylation at the K120 and K164 sites [64]. It is noted that SIRT1 is important for
cell survival in undifferentiated but not in differentiated cells. The depletion of SIRT1
upregulates P53 activity in the undifferentiated hESCs but not in other cell types, leading
to programmed cell death related to decreased expression of DNA repair enzymes such as
MSH2, MSH6 and APEX1 in hESCs [65].

SIRT1 is also the upstream regulator of p53 in miPSCs [57]. A similar relationship between
SIRT1 and p53 is found during reprogramming of mouse MEFs into iPSCs. The expression of
SIRT1 level is increased during reprogramming of mouse MEFs. The deacetylation of p53 by
SIRT1 increases the expression of Nanog, which facilitates the reprogramming of MEF. On the
other hand, inhibition of SIRT1 by miR-34a reduces the reprogramming efficiency [57].
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4.2.2. SIRT1 and DNA Damage Response Genes

Given the importance of SIRT1 in efficient reprogramming of MEFs into miPSCs
and increased DNA damage markers such as γH2AX during the iPSC reprogramming
process [20], SIRT1 should have some roles in DDR during reprogramming. In fact, SIRT1
is responsible for deacetylation of NBS1 in the MRN complex, leading to phosphorylation
of NBS1 for recruiting ATM kinase to the site of DNA damage [66]. Either NBS1 depletion
or its hyperacetylation reduces DNA repair and cell survival [66]. In addition, SIRT1
also deacetylates another important DNA repair partner WRN protein and promotes its
translocation for DNA repair [67,68].

Recently, we found that miR-135a regulated SIRT1 expression during miPSCs repro-
gramming. By immunoprecipitation, SIRT1 was found to interact with Wrn and Ku70 to
form a protein complex in the initial phase of reprogramming [56]. The Wrn protein inter-
acts with the Ku70/80 heterodimer [69], indicating that Wrn has a direct role in NHEJ. Thus,
our results suggested direct involvement of SIRT1 in DSB repair during reprogramming.
The increase in DNA repair in turn improved the reprogramming efficiency. Apart from
Ku70 and Wrn, the MRN complex is important in HR-mediated DSB repair [70]. We found
that the MRN complex components Mre11 and Rad50 were included within the complex
of SIRT1 during reprogramming. Added together, the findings suggested that SIRT1 is an
important regulator interacting with different complexes for DNA repair in response to
DNA damage. The interactions of SIRT1 with various cell cycle and DNA damage response
regulators are illustrated in Figure 2.
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4.3. Interplay between FOMX1 and SIRT1

Though FOXM1 and SIRT1 regulate different downstream modulators during cell
cycle progression and DDR, these two modulators might be connected. In human breast
cancer tissues, FOXM1 protein expression level is highly correlated with that of SIRT1 [71].
It was reported that SIRT1 deacetylated and reduced expression of FOXO3. As FOXO3 neg-
atively regulates FOXM1, the reduced FOXO3 expression level in turn increased FOXM1
level, which suggested SIRT1 might indirectly induce FOXM1 expression [72]. However,
opposite findings that SIRT1 reduced FOXM1 expression were also reported. In breast
cancer cells, SIRT1 was found to deacetylase mitogen-activated protein kinase 1 (MAP2K1),
leading to inactivation of the MEK/ERK cell signaling pathway and reduction in FOXM1
protein. Consistently, the phenomenon was also observed in MEFs, indicating that the
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relationship was not restricted to cancer cells [73]. Another study even showed that SIRT1
directly bound to and deacetylated FOXM1 to suppress its expression [74].

FOXM1 was also reported to be the upstream regulator of SIRT1; FOXM1 regulated
the chromatin structure remodeling and induced transcriptional activation of SIRT1 [75].
In cancer glioma cells, downregulation of FOXM1 by siRNA reduces SIRT1 expression.
Critically, a FOXM1 binding site on the SIRT1 promoter has been identified [75]. The rela-
tionship between FOXM1 and SIRT1 in PSCs remains largely unknown. More mechanistic
studies are required to investigate whether a feedback loop exists between the two genes
and how their interplay affects DDR in PSCs.

4.4. PUMA

P53 upregulated modulator of apoptosis (PUMA) is another factor that recently
emerged to regulate cell cycle progression and inhibit DDR in PSCs. As the name im-
plies, PUMA is a direct target of P53. It has been implicated in causing cell apoptosis
following irradiation in intestinal progenitor cells [76] and hematopoietic stem cells [77].
PUMA knockout in human iPSCs enhances DNA repair abilities of the cells, as shown
by decreased γH2AX-positive cells when compared with the wildtype cells after irradi-
ation. Mechanistic analysis demonstrated that PUMA formed a protein complex with
early mitotic inhibitor 1 (EMI1) and RAD51 in the cytoplasm of PSCs and promoted the
ubiquitination and degradation of RAD51. The relationship was supported by an increase
in RAD51 nuclear translocation post-irradiation in the PUMA–/– PSCs [78]. Since RAD51 is
a DDR-related protein responsible for repairing through HR [79], the increased cell survival
following irradiation in the PUMA-deficient cells could be the result of enhanced DNA
repair. We have previously reported that P53 was a target of SIRT1 [57]. Coincidently,
SIRT1 inhibition upregulates PUMA through modulating P53 activity [65]. It is therefore
possible that SIRT1 could be the upstream regulator of PUMA in PSCs for mediating DDR.

5. Concluding Remarks

In this article, we reviewed the unique features of cell cycle regulation and DDR in
PSCs. The observations showed that the regulatory mechanisms are tightly related to
the maintenance of pluripotency. We also summarized research on how FOXM1, SIRT1
and PUMA regulated cell cycle and DDR in PSCs. Further research on the mechanisms
in preserving genome integrity of PSCs could possibly provide new insights into PSCs
application in cell-based therapy and a better understanding of the longevity of cells.
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