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Abstract The diagnosis of medulloblastoma likely

encompasses several distinct entities, with recent evidence

for the existence of at least four unique molecular subgroups

that exhibit distinct genetic, transcriptional, demographic,

and clinical features. Assignment of molecular subgroup

through routine profiling of high-quality RNA on expression

microarrays is likely impractical in the clinical setting. The

planning and execution of medulloblastoma clinical trials

that stratify by subgroup, or which are targeted to a specific

subgroup requires technologies that can be economically,

rapidly, reliably, and reproducibly applied to formalin-fixed

paraffin embedded (FFPE) specimens. In the current study,

we have developed an assay that accurately measures the

expression level of 22 medulloblastoma subgroup-specific

signature genes (CodeSet) using nanoString nCounter

Technology. Comparison of the nanoString assay with

Affymetrix expression array data on a training series of 101
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medulloblastomas of known subgroup demonstrated a high

concordance (Pearson correlation r = 0.86). The assay was

validated on a second set of 130 non-overlapping medullo-

blastomas of known subgroup, correctly assigning 98%

(127/130) of tumors to the appropriate subgroup. Repro-

ducibility was demonstrated by repeating the assay in three

independent laboratories in Canada, the United States, and

Switzerland. Finally, the nanoString assay could confidently

predict subgroup in 88% of recent FFPE cases, of which

100% had accurate subgroup assignment. We present an

assay based on nanoString technology that is capable of

rapidly, reliably, and reproducibly assigning clinical FFPE

medulloblastoma samples to their molecular subgroup, and

which is highly suited for future medulloblastoma clinical

trials.

Keywords Medulloblastoma � Molecular classification �
Clinical trials � NanoString

Introduction

Currently, patients enrolled on clinical trials for medullo-

blastoma are stratified on the basis of clinical variables

such as age, extent of resection, presence of metastases,

and histology. Recently, several publications have reported

that the histological entity known as medulloblastoma

comprises several distinct molecular variants or subgroups

[1, 6, 12, 17]. Despite variation in the number and

nomenclature of the subgroups identified, the current

consensus is that medulloblastoma comprises four core

subgroups (i.e., WNT, SHH, Group C, and Group D), with

mounting evidence for clinically relevant substructure

(subtypes within the subgroups) [1, 11]. Each subgroup

exhibits distinct demographics, transcriptomics, genomics,

and clinical outcomes [1, 12]. While some subgroups are

well treated, or debatably even over-treated using current

protocols (i.e., WNT medulloblastomas), others have a

very poor outcome (i.e., Group C medulloblastomas).

Additionally, as the subgroups have very different molec-

ular genetic profiles, any successful strategies for targeted

therapy will likely be subgroup specific (i.e., SMO inhib-

itors for SHH subgroup tumors). Although the retrospective

classification of various medulloblastoma cohorts into

molecular subgroups has been scientifically insightful,

medulloblastoma sub-grouping has not yet been applied in

the setting of a prospective clinical trial for either patient

stratification or patient selection for targeted therapy.

There is currently no well-accepted gold standard test

for medulloblastoma subgroup assignment. The method-

ology used in most of the published literature on

medulloblastoma subgroups has been the analysis of high-

quality RNA from flash-frozen samples that were analyzed

using genome-wide transcriptional microarrays. Although

an excellent tool for retrospective research studies, gene

expression microarray profiling is likely inappropriate and

inadequate for routine clinical use or for clinical trials due

to the need for large amounts of high-quality RNA (from

frozen tumor tissue), lot-to-lot variability of microarrays,

bioinformatic complexity, and relatively high cost. Spe-

cifically, RNA isolated from formalin-fixed paraffin

embedded (FFPE) medulloblastoma samples is frag-

mented, and not suitable for hybridization to expression

microarrays. In both routine clinical settings and clinical

trials, a rapid test completion time is critical, making

microarray platforms an inefficient diagnostic tool.

In contrast, medulloblastoma subgroup assignment

using immunohistochemistry (IHC) performed on FFPE

cases has shown recent promise. We recently reported a

four-antibody protocol for classification of medulloblasto-

mas, and applied this method to a large series (n = 294) of

FFPE medulloblastomas on tissue microarrays (TMAs),

effectively classifying *98% of samples [12]. Ellison

et al. [3] recently reported an IHC-based assay for classi-

fying medulloblastomas into WNT, SHH, and non-WNT/

SHH subgroups using a distinct set of antibodies. Chal-

lenges in bringing IHC to the clinic for subgroup

assignment remain due to lot-to-lot variability of antibod-

ies, inter-institutional differences in tissue fixation and

embedding, technical variations of IHC, and inter and

intra-observer variability in image interpretation. The

inclusion of IHC markers for subgroup ascertainment in

future clinical trials would likely be complimented by

another orthogonal technology, to confirm subgroup affil-

iation as identified by IHC, and provide treating clinicians

with confidence that the correct subgroup has been

assigned. By its very nature, IHC is likely limited to one or
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two markers per subgroup, and these markers must be

proteins excluding the use of non-coding RNAs as markers.

While some of the described antibodies will likely become

widely used as clinical tests, complimentary and confir-

matory technologies may be required in the setting of a

clinical trial.

To develop and optimize a more rapid, reliable, repro-

ducible, and economical method for medulloblastoma

classification, we have taken advantage of the recently

described nanoString nCounter System, a non-enzymatic

multiplexed assay that uses sequence-specific probes to

digitally measure target abundance (i.e., mRNA) within a

given sample [5, 7, 9]. Based on nanoString technology,

and using information from existing gene expression array

data [12], we designed a custom CodeSet (i.e., probe

library) consisting of interrogating probes against 22

medulloblastoma subgroup-specific signature genes. We

tested our nanoString assay on our own medulloblastoma

series of known subgroup affiliation prior to validation of

the assay on three non-overlapping medulloblastoma

cohorts with known subgroup affiliation. Finally, the assay

was applied to a large series of FFPE medulloblastomas to

establish its applicability in the classification of routine

clinical samples as would be encountered in the setting of a

prospective clinical trial.

Patients and methods

Patient samples

All samples were obtained in accordance with the Research

Ethics Board at the Hospital for Sick Children (Toronto,

Canada). Primary medulloblastomas comprising the train-

ing series for nanoString (n = 101) have been previously

described [10, 12, 13]. Samples contributing to the vali-

dation series (n = 130) have been previously described and

were obtained as total RNA extracted from fresh-frozen

tissue from the DKFZ (Heidelberg, Germany; Remke ser-

ies, n = 55), the Dana-Farber Cancer Institute (Boston,

USA; Cho series, n = 39) [1], and the Academic Medical

Center (Amsterdam, the Netherlands; Kool series, n = 36)

[6]. Formalin-fixed paraffin embedded (FFPE) cases

(n = 84) were obtained as paraffin sections from the

Hospital for Sick Children (Toronto, Canada; n = 34),

Johns Hopkins University (Baltimore, USA; n = 25), and

the DKFZ (Heidelberg, Germany; n = 25).

NanoString CodeSet design and expression

quantification

Signature genes for each medulloblastoma subgroup were

included in the CodeSet on the basis of their observed

subgroup-specific expression, as previously determined by

Affymetrix exon array analysis [10, 12]. Specifically,

conventional t test statistics restricted on the proportion of

false discoveries (FDR) were employed to compare each

subgroup to the remaining three subgroups in order to

identify the most highly significant, differentially expres-

sed genes. The CodeSet was designed to consist of a total

of 25 genes with 5–6 signature genes included for each

subgroup: WNT (WIF1, TNC, GAD1, DKK2, EMX2), SHH

(PDLIM3, EYA1, HHIP, ATOH1, SFRP1), Group C

(IMPG2, GABRA5, EGFL11, NRL, MAB21L2, NPR3),

Group D (KCNA1, EOMES, KHDRBS2, RBM24, UNC5D,

OAS1). Three housekeeping genes (ACTB, GAPDH, and

LDHA) were also included in the CodeSet for biological

normalization purposes. Probe sets for each gene in the

CodeSet were designed and synthesized at nanoString

Technologies.

Total RNA (100 ng) from fresh-frozen tissue and FFPE

material was analyzed using the nanoString nCounter

Analysis System at the University Health Network

Microarray Centre (Toronto, Canada), the Oncogenomics

Core Facility at the University of Miami (Miami, USA),

and the Frontiers in Genetics Facility at the University of

Geneva (Geneva, Switzerland). All procedures related to

mRNA quantification including sample preparation,

hybridization, detection, and scanning were carried out as

recommended by nanoString Technologies.

Sample processing

Total RNA was extracted from fresh-frozen tissue using the

Trizol method (Invitrogen) according to the manufacturer’s

instructions. For FFPE samples, *3–5 paraffin sections per

sample were first deparaffinized with xylene prior to RNA

extraction using the RNeasy FFPE kit (Qiagen) as directed

by the manufacturer. RNA concentration was measured

using a Nanodrop 1000 instrument (Nanodrop) and RNA

integrity was assessed using an Agilent 2100 bioanalyzer at

The Centre for Applied Genomics at the Hospital for Sick

Children (Toronto, Canada).

NanoString data processing and class prediction

analysis

Raw nanoString counts for each gene within each experi-

ment were subjected to a technical normalization using the

counts obtained for positive control probe sets prior to a

biological normalization using the three housekeeping

genes included in the CodeSet. Normalized data was log2-

transformed and then used as input for class prediction

analysis.

A series of medulloblastomas with known subgroup

affiliation (n = 101) were used to establish a training
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dataset for subsequent class prediction analysis of inde-

pendent cohorts utilized in the study. Various class

prediction algorithms were assessed by a tenfold cross-

validation scheme, using a set of scoring indices to estab-

lish a pipeline for prediction of medulloblastoma

subgroups using nanoString data derived from the training

series. Based on superior performance in cross-validation

analysis, the PAM method [18] was selected for all

downstream class prediction analyses.

All class prediction analyses were performed in the R

statistical programming environment (v2.13). Implemen-

tations of the class prediction algorithms were imported

from the following R packages: MASS v7.3 (linear dis-

criminant analysis; LDA), class v7.3 (k-nearest neighbor;

KNN), e1071 v1.5 (support vector machine; SVM), nnet

v7.3 (multinomial log-linear model; MULT), and pamr

v1.51 (prediction analysis for microarrays; PAM) [18].

During cross-validation, the training set of 101 samples

was randomly split into 10 partitions. Each class predictor

was trained on nine of the partitions, and the performance

of the predictor was subsequently tested on the one

remaining partition. Each of the 10 partitions was used as

the testing set in turn for a round of cross-validation, for a

total of 10,000 rounds of cross-validation, which was

repeated three times with reproducible results.

The scoring indices used during testing were accuracy,

Jaccard similarity index, Rand index, adjusted Rand index,

and Fowlkes–Mallows index. The latter four indices are

different indices for determining the similarity between

two groupings, which are the known and predicted classi-

fications of samples in the current analysis. These indices

serve as more stringent measures of accuracy in multi-class

prediction. Aside from the accuracy measures (validity),

the reliabilities of the predictors were also determined

using Shannon entropy as a measure of uncertainty. Pre-

dictors with varying predicted classes for the same sample

across the cross-validation rounds have higher entropy

values, and are hence less reliable.

Since the model parameters for SVM can affect the

prediction performance, these parameters were optimized

by a grid search in a separate round of cross-validation.

The ranges of searched parameter values were: [2-5, 215]

for C; [2-15, 23] for gamma; [2, 8] for degree; [-1, 1] for

coef0. Further, SVM using different kernels (linear, radial

basis, polynomial, and sigmoid) were assessed, and the

kernel with the best performance was selected. Similarly

for KNN, the best model was selected from models with

different k.

Regression analysis of prediction accuracy

Cumulative prediction accuracy was modeled as a function

of FFPE sample age. The prediction accuracies were first

calculated for each sample age year-group. The cumulative

accuracies were then determined by calculating the

cumulative sum of the accuracies, weighted by the size of

each year-group. The data were fitted using a 5-parameter

logistic regression model, as implemented in the drc v2.1 R

package. The maximum asymptote parameter (D) was

constrained at 1 in order to reflect the high accuracy the

predictor achieved with recent FFPE samples.

RNA integrity assessment

RNA derived from FFPE material was subjected to Agilent

Bioanalyzer analysis to determine RNA integrity. Smear

analysis was performed using the Agilent 2100 expert

software to determine the proportion of RNA C300

nucleotides (nt) within a given sample.

Results

Establishment of a nanoString assay

for medulloblastoma subgroup identification

To identify a set of genes that would facilitate the pro-

spective classification of medulloblastomas into the four

core subgroups of the disease, we re-analyzed gene

expression array data from a large series of primary cases

of known subgroup [10, 12]. Supervised analysis identified

signature genes that demonstrate subgroup-specific

expression patterns across the four molecular subgroups

(Table 1). From this data, we selected 5–6 highly signifi-

cant signature genes per subgroup for inclusion in a custom

nanoString CodeSet (probe library) for downstream clas-

sification analysis (Supplementary Figure 1). As an initial

evaluation of our nanoString CodeSet’s capacity to mea-

sure the gene expression level of medulloblastoma

signature genes, we first profiled a series of 101 primary

cases (training series) for which we also had matching

Affymetrix exon array data [10, 12]. Comparison of the

newly generated nanoString data with the published exon

array data for this training series showed remarkable sim-

ilarity between the two datasets (Fig. 1a; Supplementary

Figure 2). Pearson correlation analysis confirmed a high

degree of concordance (r = 0.86) between the two plat-

forms (Fig. 1b; Supplementary Figure 3). Using a series of

well-described class prediction algorithms, we evaluated

the capacity of our custom CodeSet to accurately classify

samples within the training series into the correct subgroup.

Following 10,000 iterations in cross-validation analysis,

the PAM algorithm [18] exhibited the most accurate class

prediction results, reliably assigning 98/101 (*97%) cases

in the training series (Fig. 1c, d; Supplementary Figure 4).

In this cross-validation exercise, PAM outperformed other
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commonly used class prediction methods such as Support

Vector Machine (SVM) and K-Nearest Neighbor (KNN).

Isolation of tumor RNA, performance of the nanoString

assay, and bioinformatic analysis required 3–4 days for

completion, at a cost of approximately $60 USD per

sample. These data suggest that we have generated an

assay capable of predicting medulloblastoma subgroup

affiliation with high accuracy that is additionally both rapid

and economical.

Validation of the nanoString classifier on multiple

published medulloblastoma cohorts

To validate our nanoString CodeSet approach to medullo-

blastoma subgroup prediction, we obtained three independent

validation cohorts (n = 130) with well-documented molec-

ular profiles including subgroup affiliation as determined in

recently published gene expression array studies [1, 6].

NanoString profiling of the 130 cases comprising this vali-

dation series followed by implementation of PAM resulted in

an impressively high concordance between known and pre-

dicted molecular subgroup affiliations across the three

independent cohorts (Fig. 2a–d; Supplementary Table 1;

concordance = 127/130, *98%). There was only a single

subgroup misclassification in the Cho series (1/39), two

misclassified cases in the Kool series (2/36), and none in the

Remke series (0/55). Distribution of validation cases

appeared to faithfully represent the relative subgroup fre-

quencies that have been reported by multiple studies in the

literature (Fig. 2d) [1, 6, 12]. For sample misclassifications,

there was no apparent bias towards one particular subgroup,

although it is important to note that all Group C medullo-

blastomas in this series (n = 28) were accurately classified

using our assay (Fig. 2d). As Group C medulloblastomas have

Table 1

Gene symbol Accession Gene description Cytoband Subgroup-specific

fold-change

WNT

WIF1 NM_007191 WNT inhibitory factor 1 12q14.3 236.4

TNC NM_002160 tenascin C 9q33 65.9

GAD1 NM_000817 glutamate decarboxylase 1 (brain, 67 kDa) 2q31 63.2

DKK2 NM_014421 dickkopf homolog 2 (Xenopus laevis) 4q25 55.9

EMX2 NM_004098 empty spiracles homeobox 2 10q26.1 44.7

SHH

PDLIM3 NM_014476 PDZ and LIM domain 3 4q35 32.1

EYA1 NM_172059 eyes absent homolog 1 (Drosophila) 8q13.3 20.8

HHIP NM_022475 hedgehog interacting protein 4q28–q32 19.9

ATOH1 NM_005172 atonal homolog 1 (Drosophila) 4q22 15.6

SFRP1 NM_003012 secreted frizzled-related protein 1 8p12–p11.1 15.5

Group C

IMPG2 NM_016247 interphotoreceptor matrix proteoglycan 2 3q12.2–q12.3 15.1

GABRA5 NM_000810 gamma-aminobutyric acid (GABA) A receptor, alpha 5 15q11.2–q12 14.6

EGFL11 NM_198283 eyes shut homolog (Drosophila) 6q12 13.4

NRL NM_006177 neural retina leucine zipper 14q11.1–q11.2 11.5

MAB21L2 NM_006439 mab-21-like 2 (C. elegans) 4q31 10.9

NPR3 NM_000908 natriuretic peptide receptor C/guanylate cyclase C

(atrionatriuretic peptide receptor C)

5p14–p13 8.2

Group D

KCNA1 NM_000217 potassium voltage-gated channel, shaker-related

subfamily, member 1 (episodic ataxia with

myokymia)

12p13.32 16.4

EOMES NM_005442 eomesodermin 3p21.3–p21.2 13

KHDRBS2 NM_152688 KH domain containing, RNA binding,

signal transduction associated 2

6q11.1 10.8

RBM24 NM_153020 RNA binding motif protein 24 6p22.3 10.7

UNC5D NM_080872 unc-5 homolog D (C. elegans) 8p12 10.7

OAS1 NM_016816 20,50-oligoadenylate synthetase 1, 40/46 kDa 12q24.1 10.5
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an inferior prognosis [1, 12], it is encouraging that cases of this

affiliation were classified with high accuracy. Although there

is no true gold standard for subgroup assignment as discussed

above, we conclude that our nanoString assay is highly reli-

able for determination of subgroup affiliation.

Reproducibility and cross-site validation

of the nanoString CodeSet

An ideal clinical test should be consistent and reproducible

across different geographic locales and in different labo-

ratories. To determine whether our custom nanoString

assay could reliably produce comparable data when

performed at different technical sites, we shipped 48

samples from our training series to two additional nano-

String-equipped genomic facilities at the University of

Miami (USA) and the University of Geneva (Switzerland).

Randomization of samples and masking of their associated

subgroup status allowed us to perform class prediction

analysis on the data generated in Miami and Geneva. All

cases analyzed at these two international facilities were

assigned to the correct molecular subgroup (Fig. 3a–c;

Supplementary Table 2). Inspection of expression heatm-

aps from data generated at the independent nanoString

facilities shows that the results are virtually indistinguish-

able (Fig. 3a–c). Scatterplot analysis of the Toronto data
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Fig. 1 A nanoString CodeSet for medulloblastoma subgroup assign-

ment. a Expression heatmaps for 22 medulloblastoma signature genes

in a series of 101 primary medulloblastomas (training series) profiled

by both the nanoString nCounter System (upper panel) and by

Affymetrix exon array (lower panel). The 22 signature genes

comprise the nanoString CodeSet used throughout the study. b Pear-

son correlation analysis of nanoString expression data versus

Affymetrix expression data for the 22 signature genes shown in

a across the training series of 101 medulloblastomas. r = Pearson

correlation. c Virtual heatmap depicting results of cross-validation

analysis for multiple class prediction algorithms evaluated on the

training series for medulloblastoma subgroup prediction accuracy.

Samples are ordered horizontally according to their known subgroup

affiliation (‘Actual’). Results represent the consensus subgroup

assignment following 10,000 iterations and discordant cases are

labeled according to the subgroup in which they were erroneously

classified. Samples labeled in grey represent those in which a single

subgroup could not be reliably assigned. d Centroid plot for the

nanoString CodeSet as determined by the PAM algorithm. Genes are

grouped according to the subgroup for which they exhibit a positive

centroid value
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versus the data from the two validation sites established an

extremely high degree of correlation (Toronto/Miami,

r = 0.97; Toronto/Geneva, r = 0.98). We conclude that

our nanoString approach to medulloblastoma subgroup

assignment is highly reproducible across different centers,

making it highly suitable in the context of a clinical trial.

Accurate classification of archival formalin-fixed

paraffin embedded (FFPE) medulloblastomas

Most conventional technologies employed for quantifica-

tion of mRNA abundance (i.e., gene expression arrays,

q-RT-PCR, RNA-Seq) require high-quality RNA that

exhibits little to no degradation. Nucleic acid (including

RNA) extracted from tissue stored as FFPE material is

typically highly degraded and fragmented, and therefore

not suitable for most molecular profiling platforms. As

nanoString relies on relatively short pairs of 50mer probes

[5], it exhibits robust performance on RNA extracted from

FFPE material with results comparable to those obtained

with RNA from fresh-frozen tissue [15].

We applied our nanoString assay to a series of 84 FFPE

cases obtained from three independent institutions in three

different countries: Hospital for Sick Children (Toronto,

Canada), Johns Hopkins University (Baltimore, USA) and

the DKFZ (Heidelberg, Germany). For each of these cohorts,

molecular subgroup affiliation had been previously deter-

mined using either gene expression array profiling of

matched frozen tissue, or IHC-based classification. Bioana-

lyzer analysis of FFPE-derived RNA confirmed all samples

had highly degraded RNA (Supplementary Table 3, median

RNA Integrity Number (RIN) value = 2.4). NanoString

profiling followed by PAM class prediction resulted in

accurate classification of 57/84 (*68%) FFPE cases (Sup-

plementary Table 3), a success rate significantly lower than

that achieved for fresh-frozen cases (*98%). In order to
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Fig. 2 Validation of nanoString assay on multiple published medul-

loblastoma cohorts with known subgroup affiliation. a–c Expression

heatmaps of nanoString class-predicted medulloblastomas of known

subgroup status as published by Remke et al. (a), Cho et al. [1] (b),

and Kool et al. [6] (c). Samples were sorted according to subgroup

prediction as determined by nanoString. nanoString predicted

subgroup, known expression subgroup affiliation, and erroneously

classified cases are marked above the heatmap. d Left chart Pie chart

showing the known subgroup distribution of medulloblastomas from

the three independent cohorts analyzed in a–c (n = 130) and the

class-predicted subgroup assignments as determined by nanoString

profiling. Misclassified cases are marked within each pie segment

according to the subgroup in which they were erroneously classified.

Right chart Pie chart showing the class prediction success rate

(*98%, 127/130) for the validation series
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identify cases in which RNA extracted from FFPE was not of

sufficient quality for nanoString to confidently assign sub-

group, we established a minimal PAM probability threshold,

proceeding only with those FFPE samples where PAM

provided a high confidence subgroup assignment. Class

prediction accuracy of validation samples decreases with the

PAM probability score at two distinct stages (Fig. 4a). The

initial decline in accuracy can be explained by inclusion of

poor-quality samples, whereas the second decline can be

attributed to deterioration of class prediction performance by

PAM (Supplementary Figure 5a). The initial probability

threshold was therefore set at the point just prior to the sec-

ond decline in accuracy (PAM probability = 0.75). After

filtering based on this probability threshold, the effect of

FFPE sample age on class prediction performance was

assessed in order to determine an age cut-off for FFPE

samples. After limiting our analysis to FFPE cases from the

last 8 years, PAM accurately classified C95% of cases

(Fig. 4b; Supplementary Table 3).

As the threshold for accurate subgroup assignment

varied by subgroup, probability thresholds were re-estab-

lished in a subgroup-specific manner using cases from the

last 8 years (Supplementary Figure 5b). The new proba-

bility thresholds were chosen to maintain a near 100% class

prediction accuracy in high-quality samples (WNT = 0.7,

SHH = 0.5, Group C = 0.5, Group D = 0.5). In recent

FFPE samples (B8 years, n = 32), PAM confidently pre-

dicted subgroups for 28/32 cases (87.5%) (Fig. 4c, d). In

4/32 (12.5%) cases PAM was unable to provide a high

confidence subgroup assignment, suggesting that our cur-

rent nanoString assay is incapable of sub-grouping them,

and that alternative methods would be necessary (Fig. 4d).
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Fig. 3 Cross-site validation of medulloblastoma classification using

the nanoString CodeSet. a–c Forty-eight primary medulloblastomas

of known subgroup affiliation were analyzed using the nanoString

CodeSet at three independent facilities: Toronto, Canada (a), Miami,

USA (b), and Geneva, Switzerland (c). Class prediction analysis of

the data generated at the three independent nanoString facilities

resulted in 100% sample classification accuracy. Heatmaps of the

normalized nanoString data for the 48 cases are shown. d Scatterplot

showing correlation of nanoString expression data generated in

Toronto versus that generated at the two international validation sites

(Miami, USA and Geneva, Switzerland). r = Pearson correlation
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Notably, 2/4 cases that failed to meet the PAM threshold

were in fact accurately classified by our nanoString assay

(Supplementary Table 3). For those FFPE cases in which

the PAM threshold was exceeded, 28/28 (100%) were

assigned to the correct subgroup (Fig. 4c). Multiple logistic

regression analysis established that sample age was a more

reliable predictor of class prediction accuracy than mea-

sures of RNA integrity (i.e., RIN and RNA size)

(Supplementary Figure 6). These results confirm the com-

patibility of our custom nanoString CodeSet with recent
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Fig. 4 Compatibility of nanoString classification assay with forma-

lin-fixed paraffin embedded (FFPE) material from archival samples.

a Plot of nanoString class prediction accuracy for all 280 validation

samples according to PAM probability score. Vertical red line
denotes threshold at which PAM classification becomes unreliable.

b Plot of nanoString class prediction accuracy according to sample

age of archival medulloblastomas stored as FFPE material (n = 84).

Samples obtained within the past 8 years exhibit an accuracy of

C95%, as demarcated by the red vertical line on the plot. Sample age

range for the FFPE series was 1–33 years, with a median sample age

of 10 years. c Heatmap of nanoString data showing class prediction

results for FFPE cases B8 years of age confidently predicted by PAM

(n = 28). 28/28 cases (100%) meeting the threshold were assigned to

the correct subgroup. Samples were sorted according to subgroup

prediction as determined by nanoString. d NanoString data for FFPE

cases B8 years of age that failed to meet the PAM probability

threshold for subgroup assignment (n = 4). 2/4 cases that failed to

meet the PAM threshold, and were not assigned to the correct

subgroup
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FFPE-derived material, and strongly suggest that our

nanoString assay for medulloblastoma classification is well

suited to the clinical trial setting in which recent FFPE

samples are readily available.

Discussion

Current criteria for risk stratification of medulloblastoma

patients include patient age, metastatic status, and extent of

surgical resection. Patients over the age of three with non-

metastatic disease that is gross totally resected are consid-

ered average-risk, and all others deemed high-risk. This

current stratification scheme fails to account for the exten-

sive prognostic variability that exists between molecular

subgroups. Therefore, the next generation of prospective

clinical trials for medulloblastoma will almost certainly

include molecular subgroup assignment for both patient

stratification, and patient selection for targeted therapies. In

particular, modulation of the intensity of therapy in a sub-

group-specific manner is a very attractive approach in order

to improve outcomes for patients. For example, WNT

subgroup medulloblastomas are rarely metastatic and have

progression-free and overall survival rates of[90% [1, 2, 4,

12, 14]; in contrast, patients with Group C medulloblastoma

have a dismal prognosis [1, 12]. Molecular subgroup-based

risk stratification will permit a more rational and person-

alized approach to patient treatment. Furthermore, targeted

therapies against activated signaling pathways such as those

that attenuate SHH pathway activation currently being

evaluated in clinical trials [8] will benefit from subgroup-

based stratification as they will likely only be effective in

one of the four subgroups.

We describe a novel molecular classification method for

medulloblastoma that relies on the nanoString nCounter

System. This technology requires minimal RNA input

(*100 ng), does not involve any enzymatic amplification,

and produces expression data that are highly correlative

with data generated by expression arrays. The nanoString-

mediated subgroup assay described in this report was sig-

nificantly more cost effective than performing the

equivalent classification using an array-based approach,

averaging *$60 USD per sample for our nanoString

assay compared to *$425 USD per sample for a modern

Affymetrix expression array. Using the expression pattern

of only 22 medulloblastoma subgroup-specific signature

genes we have established an assay that effectively assigns

fresh-frozen medulloblastomas to the correct subgroup

with *98% accuracy as confirmed using three independent

validation cohorts. Schwalbe et al. [16] recently described

a 13-gene multiplex qPCR-based expression assay to

classify medulloblastomas into either WNT, SHH, or non-

WNT/SHH subgroups. Unsupervised analyses were used in

this study to establish the ability of the 13-gene signature to

recapitulate subgroup data previously determined in mul-

tiple published gene expression cohorts. Although this

method proved capable of placing samples into WNT,

SHH, and non-WNT/SHH categories, the technique was

not directly evaluated on samples belonging to the pub-

lished cohorts, nor did the assay attempt to make the

important distinction between Group C and Group D

medulloblastomas, confirmed in multiple recent studies to

be both genetically and clinically distinct [1, 6, 12]. In the

current study, we have obtained a subset of the same fresh-

frozen RNA samples that were used in three independent

microarray-based medulloblastoma sub-grouping studies

and validated our nanoString assay directly on these tem-

plates (n = 130). Class prediction analysis confirmed the

accuracy of our assay in *98% of cases establishing the

validity of our protocol. For samples that were misclassi-

fied, it is difficult to verify the source of the discrepancy

regarding subgroup assignment, although possible expla-

nations could be related to erroneous results of our

nanoString assay, potential sample mix-ups, or erroneous

classification in the original gene expression array

profiling.

We previously introduced an IHC-based classification

scheme for sub-grouping medulloblastoma using only four

commercially available antibodies [12]. This IHC-based

method is very robust in our laboratory; although challenges

remain in making the technique generalizable, including

variability in antibody batches, sample preparation meth-

ods, staining procedures, and inter-observer reliability. We

would suggest that in the future, IHC-based methods could

be used in concert with a nanoString-based assay to provide

clinicians with a high confidence assignment of subgroup

for clinical medulloblastoma samples. The two methods are

orthogonal, and highly complimentary.

To test the reproducibility of our nanoString-based

classification assay across different centers, we analyzed a

series of 48 cases at nanoString facilities in Toronto, Miami,

and Geneva. The expression data generated at the three

international sites were virtually indistinguishable, and

produced correlation coefficients of C0.97. This impressive

level of reproducibility achieved using the nanoString

technology suggests that our assay could produce identical

results at any institute equipped with the nanoString

nCounter System, or that RNA samples from centers around

the world could be studied at a central location.

Pathologists have long stored tumor biopsies as FFPE

material in order to preserve as much cellular and structural

integrity of the original tumor specimen as possible,

making samples amenable to study for decades. A signifi-

cant drawback associated with this preservation technique

is that DNA and RNA extracted from FFPE material is

typically highly degraded, and therefore of limited use in
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molecular studies. The nanoString technology has known

compatibility with degraded RNA isolated from FFPE

cases [15], largely due to the usage of relatively short

50mer probes [5]. In a large series of 84 FFPE medullo-

blastomas from three independent pathology labs, our

nanoString assay could assign subgroup with high confi-

dence in 87.5% of cases from the last 8 years. Of those

FFPE cases with a high confidence subgroup assignment,

100% were accurately classified as compared to the gold

standard of expression profiling. Although 2/4 FFPE cases

that failed to meet the PAM threshold were assigned to the

correct subgroup, we suggest that higher specificity at the

expense of sensitivity is necessary for a biomarker in the

setting of a clinical trial.

In conclusion, we have developed, optimized, and val-

idated a novel assay for medulloblastoma sub-grouping

that is compatible with conditions common to current

clinical trial settings. Future incorporation of this or similar

molecular classification pipelines into prospective clinical

trials will enhance our current understanding of the bio-

logical and prognostic significance of medulloblastoma

subgroups, and we anticipate that this information will lead

to improved care and outcomes for our patients.
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