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Dissecting the genomic complexity underlying
medulloblastoma
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Medulloblastoma is an aggressively growing tumour, arising in
the cerebellum or medulla/brain stem. It is the most common
malignant brain tumour in children, and shows tremendous bio-
logical and clinical heterogeneity1. Despite recent treatment
advances, approximately 40% of children experience tumour
recurrence, and 30% will die from their disease. Those who survive
often have a significantly reduced quality of life. Four tumour
subgroups with distinct clinical, biological and genetic profiles
are currently identified2,3. WNT tumours, showing activated
wingless pathway signalling, carry a favourable prognosis under
current treatment regimens4. SHH tumours show hedgehog
pathway activation, and have an intermediate prognosis2. Group 3
and 4 tumours are molecularly less well characterized, and also
present the greatest clinical challenges2,3,5. The full repertoire of
genetic events driving this distinction, however, remains unclear.
Here we describe an integrative deep-sequencing analysis of 125
tumour–normal pairs, conducted as part of the International
Cancer Genome Consortium (ICGC) PedBrain Tumor Project.
Tetraploidy was identified as a frequent early event in Group 3
and 4 tumours, and a positive correlation between patient age
and mutation rate was observed. Several recurrent mutations
were identified, both in known medulloblastoma-related genes
(CTNNB1, PTCH1,MLL2, SMARCA4) and in genes not previously
linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1),
often in subgroup-specific patterns. RNA sequencing confirmed
these alterations, and revealed the expression of what are, to our
knowledge, the first medulloblastoma fusion genes identified.
Chromatin modifiers were frequently altered across all subgroups.
These findings enhance our understanding of the genomic
complexity and heterogeneity underlying medulloblastoma, and
provide several potential targets for new therapeutics, especially
for Group 3 and 4 patients.
As a first phase of the International Cancer Genome Consortium

(ICGC) PedBrain Tumor Project (http://www.pedbraintumor.org),
we have collected matched tumour and germline samples from 125
medulloblastoma patients aged from 0 to 17 years (Supplementary
Table 1). Whole-genome sequencing (WGS, n5 39) and whole-exome
sequencing (WES, n5 21) were applied to a ‘discovery’ set, with a
custom-capture approach used to sequence 2,734 genes in an additional
‘replication’ set (n5 65). All tumour samples were obtained at primary
diagnosis, before adjuvant therapy, and the distribution of molecular
subgroups was similar across cohorts (Supplementary Fig. 1).
Investigation of genome-wide somatic mutation allele frequencies

identified several cases with a clear peak at approximately 25%, rather
than the expected approximately 50% allele frequency for early,
heterozygous events (Fig. 1a). Analysis of coverage depth and allele
frequencies in regions of copy-number change ruled out stromal con-
tamination, but rather indicated a tetraploid baseline in the tumour
genome (Fig. 1b). Predicted ploidy status was confirmed by fluor-
escence in situ hybridization (FISH) using multiple centromeric
probes in 17 out of 18 cases analysed (Fig. 1a). The extremely low
fraction of mutations at approximately 50% allele frequency indicates
that genome duplication occurred very early during tumorigenesis.

Some cases probably went through even higher polyploidy states
before reaching an approximately 4n baseline (for example
ICGC_MB45, displaying 4n chromosomes with 4:0 or 3:1 allele ratios;
Supplementary Fig. 2). Across the discovery set, tetraploidy was most
commonly observed in Group 3 (7 out of 13, 54%) and Group 4
tumours (8 out of 20, 40%), followed by SHH (4 out of 14, 29%) and
WNT tumours (1 out of 7, 14%). Interestingly, the four tetraploid SHH
tumours all harboured TP53 mutations and also displayed chromo-
thripsis6. Tetraploid Group 3 and 4 tumours showed significantly
more large-scale copy number alterations comparedwith diploid cases
(median 10 changes per tumour in tetraploid versus 4 per tumour in
diploid cases, P5 0.008, two-tailedMann–WhitneyU-test; Supplemen-
tary Fig. 3). Thus, tetraploidy followed by genomic instability may be
an early driving event in a large proportion of Group 3 and 4medullo-
blastomas, which pose a significant clinical challenge due to their
dismal prognosis and lack of targeted treatment options. Novel classes
of drugs such asmitotic checkpoint kinase or kinesin inhibitors, which
target themaintenance of tetraploidy through successive cell divisions,
may therefore represent a rational therapeutic strategy in these
cases7,8. The value of tetraploidy as a prognostic marker also requires
further investigation.
The average somatic mutation rate in the WGS cohort was 0.52 per

megabase (Mb), with an average of 10.3 non-synonymous coding
single-nucleotide variants (SNVs) in the discovery cohort (Supplemen-
tary Table 2). This is slightly higher than previously reported for
medulloblastoma9, possibly due to improved coverage and technical
sensitivity, but considerably lower than in deep-sequenced adult
tumours, for example10,11. There were significantly fewer transitions
in the somatic alterations compared with germline variation
(P5 4.63 1027, Wilcoxon rank-sum test; Supplementary Fig. 4). All
coding somatic SNVs identified in the combined cohort are listed in
Supplementary Table 3.
We identified a positive correlation between genome-widemutation

rate and patient age, as previously reported for coding mutations9

(r25 0.35, P5 7.83 1025 Pearson’s product–moment correlation;
Fig. 1c). Intriguingly, this association wasmore pronounced in diploid
tumours (r25 0.52, P5 33 1025), and virtually absent in tetraploid
cases (r25 0.04, P5 0.5) (Supplementary Fig. 5a, b). A similar trend
was observed for non-synonymous mutations across the discovery
cohort (Supplementary Fig. 5c). Coverage level did not correlate with
mutation rate (Supplementary Fig. 5d). One explanation may be that
all medulloblastomas originate during embryogenesis, with some
tumours needing to accumulate more genetic ‘hits’ before becoming
symptomatic. Alternatively, tumours arising in older patients may
derive from more differentiated cells that require a greater number
of alterations to undergo malignant transformation. Investigation of
additional tumours from older patients may help to clarify this.
Five SHH tumours harbouring TP53 mutations, including three

previously described Li–Fraumeni syndrome (LFS)-associated tumours
with germlinemutations6, one newly identified LFS case (ICGC_MB23),
and one somatically mutated tumour (ICGC_MB34), had significantly
more mutations than the remaining cases, both genome wide (mean 1.1
per Mb versus 0.43 per Mb, P5 4.53 1026; two-tailed t-test) and for

1 0 0 | N A T U R E | V O L 4 8 8 | 2 A U G U S T 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

www.nature.com/doifinder/10.1038/nature11284
http://www.pedbraintumor.org


non-synonymous changes (mean 23 versus 8.8, P5 2.63 1026).
Interestingly, the WNT subgroup, which typically shows a good pro-
gnosis and few copy-number changes, had the next highest mutation
rate (Fig. 1d).
Forty-one somatic, coding, small insertions/deletions (Indels) were

identified across the cohort, with an average of 0.4 coding Indels per
case in the discovery set (range 0–2; Supplementary Table 4). Some
genes, however, were more commonly affected by Indels than SNVs.
For example, frameshift Indels in PTCH1were detected in 6 out of 125
cases, whereas only 2 SNVs were observed. Recurrent Indels were also
seen in the chromatin modifiers MLL2, KDM6A (3 cases each) and
BCOR (2 cases).
In contrast to another paediatric brain tumour, glioblastoma, in

which we recently identified frequently recurrent hotspot mutations12,
themajority ofmutated genes in this study were unique to a single case
(587 out of 760 non-synonymous SNVs in the 125 cases, 77%),
demonstrating the pronounced genetic heterogeneity of medulloblas-
toma. Twenty-five of these singleton mutations, and 53 SNVs in total,
were at positions listed in the COSMIC database of somatic alterations
in tumours (available at http://www.sanger.ac.uk/genetics/CGP/
cosmic/), suggesting a rare but important contribution ofmany known
cancer genes in medulloblastoma (Supplementary Table 5). Only 8
genes were somatically altered in more than 3% of the whole series:
CTNNB1 (15 cases, 12%);DDX3X (10 cases, 8%);PTCH1 (8 cases, 6%),
SMARCA4 (6 cases, 5%), MLL2 (6 cases, 5%), TP53 (somatically

mutated in 5 cases, 4%),KDM6A (5 cases, 4%) andCTDNEP1 (4 cases,
3%) (Fig. 2). These were also the only genes found to be significantly
altered upon analysis of the combined cohort with MutSig, an algo-
rithm testing whether the observed mutations in a gene are not simply
a consequence of random background mutation processes. It takes
into account gene length and composition, silent to non-silent muta-
tion ratios, and other factors (see https://confluence.broadinstitute.
org/display/CGATools/MutSig; Supplementary Table 6). Large-scale
copy-number changes known to be associated with medulloblastoma,
such as formation of an isodicentric 17q and losses of 10q/9q/X13–15,
weremore frequently recurrent than SNVs (Supplementary Fig. 6a–e).
Many alterations were enriched in specific medulloblastoma sub-

groups. For example, all of theWNT tumours (15 out of 15) harboured
a mutation in CTNNB1, and 13 out of 15 displayed loss of one copy of
chromosome 6 (or acquired uniparental disomy in one case), altera-
tions which have previously been associated with this subgroup4,13,15.
Mutations in DDX3X were also clearly enriched in WNT tumours
(adjusted P5 7.063 1026, two-tailed Fisher’s exact test with a
Bonferroni correction), and these mutations were clustered within
the helicase domain (Supplementary Fig. 7a). Three were localized at
the RNA-binding surface of the protein and three were predicted to
disrupt the closed (RNA-binding) conformation (Supplementary
Fig. 7b). The remainder were predicted to disrupt indirectly either
the positive charge on the RNA-binding surface (n5 2) or the folding
of the closed form (n5 2). No truncating mutations were found,
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Figure 1 | Tetraploidy is a frequent early event in medulloblastoma
tumorigenesis, and mutation rates vary with age and subgroup.
a, Distributions of genome-wide somatic mutation allele frequencies (the
proportion of sequence reads supporting amutation) for diploid tumours (with
a peak at ,50% for heterozygous events, n5 7) and tetraploid cases (with a
peak at,25%, n5 7). Insets show centromeric FISH for chromosomes 1 (red)
and 11 (green), confirming the predicted ploidy status. b, Top left, rescaled
tumour:germline coverage ratio, indicating copy-number gains (red) or losses
(green). Bottom left, B-allele frequency (BAF) in the tumour at SNP positions

which are heterozygous in the germ line. Right, genome alteration print (GAP)
of segmented copy number and allele frequency profiles. Chromosomes with
predicted 3:0/2:1/3:2 allele ratios show a BAF of approximately 0/0.33/0.4 and
coverage ratios of approximately 0.75/0.75/1.25. Owing to random sampling,
the 2:2 allele ratio is slightly below 0.5. c, Genome-wide somatic mutation rates
are positively correlated with patient age (n5 39). Grp, Group. d, Distribution
of somaticmutation rates by tumour subgroup (n5 39). P values are according
to a Wilcoxon rank-sum test with Bonferroni correction. SHH-p53, SHH-
subgroup tumours harbouring a somatic or germline TP53 mutation.
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indicating an alteration rather than simply a loss of function. DDX3X
has recently been proposed to have an oncogenic role10,11, although its
exact function in tumorigenesis remains to be determined.
As anticipated from previous studies13,16, SHH tumours frequently

showed loss of the whole of chromosome arm 9q, as well as alterations
in key hedgehog-pathway signalling molecules (for example, PTCH1,
altered in 8 cases;MYCN, amplified in 5 cases; and SMO, mutated in
ICGC_MB12).
The most frequently mutated gene in Group 3 tumours was

SMARCA4 (3 out of 26 cases). As with DDX3X, these mutations were
clustered in the helicase domain (Supplementary Fig. 7a). As noted
above, tetraploidy was also a common event in this subgroup and in
Group 4 tumours. Recurrent truncating mutations in KDM6A (on
chromosome X, which frequently shows copy-number loss in female
Group 3 and 4medulloblastoma patients; also known asUTX), encod-
ing a histone 3 lysine 27 (H3K27) demethylase, were also seen in
Group 4 (4 out of 40, 10%), indicating a tumour-suppressive role in
this subgroup, as previously described for other cancers17. CTDNEP1
(a homologue of the Xenopus gene dullard), was also affected by trun-
cating alterations in four tumours. In three of these cases, themutation
was accompanied by loss of the wild-type allele through isodicentric
17q formation. This gene, encoding a nuclear envelope phosphatase,
was shown in Xenopus to have roles in BMP signalling and neural
development18. Inmammalian cells it is involved in the lipin activation
pathway, regulating nuclear membrane biogenesis and production of
diacylglycerol19,20. Given the high frequency of isodicentric 17q in
medulloblastoma, genetic targets on this chromosome have long been
sought after.CTDNEP1may be a good candidate for one of themedul-
loblastoma tumour suppressors on 17p.
Aside from these subgroup-enriched events, a commonly recurring

theme across all medulloblastomas is alterations in genes involved in
chromatin modification. Some point mutations and DNA copy num-
ber alterations in this pathway have previously been implicated in
medulloblastoma9,21. Overall, 45 out of 125 cases (36%) harboured a
mutation in a gene categorized under the Gene Ontology term
‘Chromatin Modification’ (GO:0015168, Supplementary Fig. 6f, g).
We recently described an enrichment of catastrophic DNA rearran-

gements (‘chromothripsis’) in TP53-mutated SHH medulloblasto-
mas6. Three new TP53-mutant SHH tumours were identified in this
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CTDNEP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

WNT SHH Group 3 Group 4 ND

Histology: Ploidy: Alterations:

M
B

R
e
p

_
T

2
8

IC
G

C
_
M

B
3

1
M

B
_
E

x
m

5
9

9
M

B
R

e
p

_
T

3
5

IC
G

C
_
M

B
5

1
8

M
B

R
e
p

_
T

5
6

M
B

R
e
p

_
T

6
3

M
B

R
e
p

_
T

6
8

IC
G

C
_
M

B
2

0
IC

G
C

_
M

B
1

4
M

B
_
E

x
m

9
8

7
IC

G
C

_
M

B
4

6
M

B
R

e
p

_
T

6
4

M
B

R
e
p

_
T

9
2

M
B

R
e
p

_
T

3
7

IC
G

C
_
M

B
1

M
B

R
e
p

_
T

2
5

IC
G

C
_
M

B
2

8

M
B

_
E

x
m

2
5

0

M
B

R
e
p

_
T

5
9

IC
G

C
_
M

B
3

5

IC
G

C
_
M

B
2

1

M
B

R
e
p

_
T

9
1

IC
G

C
_
M

B
1

2

M
B

R
e
p

_
T

3
0

M
B

_
E

x
m

5
2

8

M
B

R
e
p

_
T

1
0

IC
G

C
_
M

B
3

7

M
B

R
e
p

_
T

1

M
B

R
e
p

_
T

8
9

M
B

R
e
p

_
T

9
4

M
B

R
e
p

_
T

3
3

M
B

R
e
p

_
T

6

M
B

R
e
p

_
T

3
2

M
B

R
e
p

_
T

8
3

M
B

R
e
p

_
T

8
6

M
B

R
e
p

_
T

7
8

M
B

R
e
p

_
T

5
3

IC
G

C
_
M

B
3

4

M
B

R
e
p

_
T

2
9

L
F

S
_
M

B
4

L
F

S
_
M

B
1

L
F

S
_
M

B
3

L
F

S
_
M

B
2

IC
G

C
_
M

B
2

3

IC
G

C
_
M

B
8

0
0

IC
G

C
_
M

B
9

IC
G

C
_
M

B
3

9

IC
G

C
_
M

B
3

6

M
B

R
e
p

_
T

4
8

M
B

R
e
p

_
T

5

M
B

R
e
p

_
T

7
9

IC
G

C
_
M

B
5

0

IC
G

C
_
M

B
5

M
B

R
e
p

_
T

4
0

M
B

R
e
p

_
T

5
4

M
B

R
e
p

_
T

6
9

M
B

R
e
p

_
T

7
3

M
B

R
e
p

_
T

2
7

IC
G

C
_
M

B
1

8

M
B

_
E

x
m

5
5

7

M
B

R
e
p

_
T

4
9

IC
G

C
_
M

B
1

6

M
B

R
e
p

_
T

2
3

M
B

R
e
p

_
T

4
3

M
B

R
e
p

_
T

6
7

IC
G

C
_
M

B
1

7

IC
G

C
_
M

B
3

2

IC
G

C
_
M

B
4

5

M
B

_
E

x
m

1
0

M
B

R
e
p

_
T

4
7

IC
G

C
_
M

B
7

IC
G

C
_
M

B
4

9

M
B

R
e
p

_
T

7
2

M
B

R
e
p

_
T

4
1

M
B

R
e
p

_
T

2
4

IC
G

C
_
M

B
1

9

M
B

R
e
p

_
T

2

IC
G

C
_
M

B
6

IC
G

C
_
M

B
3

8

M
B

R
e
p

_
T

4
6

M
B

R
e
p

_
T

8
7

IC
G

C
_
M

B
1

5

M
B

_
E

x
m

1
0

1
7

M
B

R
e
p

_
T

3
8

M
B

R
e
p

_
T

7
1

IC
G

C
_
M

B
2

IC
G

C
_
M

B
2

4

IC
G

C
_
M

B
5

1

IC
G

C
_
M

B
6

1
2

M
B

_
E

x
m

8
7

9

M
B

R
e
p

_
T

2
6

M
B

R
e
p

_
T

3
6

M
B

R
e
p

_
T

3
9

M
B

R
e
p

_
T

5
1

M
B

R
e
p

_
T

6
1

M
B

R
e
p

_
T

9
0

M
B

R
e
p

_
T

8
8

M
B

R
e
p

_
T

9
3

M
B

_
E

x
m

9
9

9

M
B

R
e
p

_
T

7
0

M
B

_
E

x
m

2
3

M
B

_
E

x
m

5
1

6

IC
G

C
_
M

B
2

6

M
B

R
e
p

_
T

4
5

M
B

_
E

x
m

6
6

7

IC
G

C
_
M

B
4

0

M
B

_
E

x
m

1
7

M
B

_
E

x
m

1
0

0
1

M
B

R
e
p

_
T

6
0

M
B

R
e
p

_
T

6
2

M
B

_
E

x
m

5
7

5

M
B

R
e
p

_
T

1
2

M
B

R
e
p

_
T

6
6

M
B

R
e
p

_
T

1
3

M
B

_
E

x
m

2
4

6

M
B

_
E

x
m

7
0

4

M
B

R
e
p

_
T

4

M
B

R
e
p

_
T

1
1

M
B

R
e
p

_
T

8
5

M
B

_
E

x
m

6
4

5

M
B

_
E

x
m

5
6

4

M
B

_
E

x
m

7
0

2

M
B

R
e
p

_
T

3

M
B

R
e
p

_
T

2
2

Classic

Desmoplastic

Large cell/anaplastic Diploid

Tetraploid

U

D

Acquired UPD

Homozygous deletion
Alteration present

Partial loss or monosomy

Germline mutation

Figure 2 | Subgroup specificity of common genetic alterations. Summary of
clinical data and recurrent alterations in the combined cohort (n5 125). Genes
whichwere found to be significantlymutated byMutSig analysis were included.

UPD, uniparental disomy; ND, no material available for conclusive molecular
subgroup assignment.

a

DNAJB6

SHH

chr7(+)

72 reads on fusion

103 spanning mate pairs

[

Truncated SHH:

(aa 114–462)

DNAJB6 (exon 1) SHH (exons 2–3)

                         M  N  Q  W  P  G  V  K  L  R  V ...

c

b

–
2

0
2

4

Chromosomal coordinates (megabases)

L
o

g
2
 r

a
ti
o

0 50 100 150

ICGC_MB34 chromosome 7

1
5

5
.0

7
1
5
5
.6

4

1
5
6
.6

6

1
5
7
.1

8

D
N

A
J
B

6

R
B
M

33

UBE3C

CNPY1

IN
S

IG
1

N
O

M
1

M
NX1

S
H

H

EN2

chr7 (2) chr7 (1)

8

0

MB34, RNA-seq, reads per million

20

0

MB34, RNA-seq, reads per million chr7(–)

Figure 3 | Identification of novel fusion genes inmedulloblastoma. a, Read-
depth plot with log2 tumour:germline coverage ratio showing alterations on
chromosome 7 in ICGC_MB34. Lines indicate connected segments.b, Schematic
of the rearrangement. c, Details of the SHH fusion gene structure and support for
its expression, derived from RNA sequencing data. aa, amino acids.

RESEARCH LETTER

1 0 2 | N A T U R E | V O L 4 8 8 | 2 A U G U S T 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



study: ICGC_MB23 (germline mutation), MBRep_T29 and
MBRep_T53 (somatic mutations). Two of these, ICGC_MB23 and
MBRep_T53, showed complex genomic rearrangements indicative
of the chromothripsis model (Supplementary Fig. 8)22.
Deep sequencing also allowed fine mapping of two amplicons on

chromosome 7 in ICGC_MB34 (a SHH tumour with a somatic TP53
mutation, relating to MB2034 in ref. 6). One amplicon included the
entire SHH gene, whereas the second disrupted DNAJB6, such that its
first exon was juxtaposed to SHH (Fig. 3a, b). RNA sequencing further
revealed a novel fusion transcript, not expected from the DNA data,
containing the first exon of DNAJB6 and exons 2 and 3 of SHH. The
first exonof SHHwas skipped, resulting in a predicted amino-terminally
truncated SHHprotein (Fig. 3c). Expression of SHHwas extremely high
in this case, although virtually absent in 301 other medulloblastomas
(Supplementary Fig. 9a). Predicted DNA and RNA junctions were
validated by PCR (Supplementary Fig. 9b).
Several additional in-frame gene fusions were identified by large

insert mate-pair sequencing, which gives better resolution for struc-
tural variant detection. ICGC_MB18, for example, carried an intra-
chromosomal translocation resulting in a fusion between LCLAT1 and
ERBB4, the latter of which has previously been associated with medul-
loblastoma oncogenesis23 (Supplementary Fig. 9c–f). In ICGC_MB6, a
complex rearrangement of fragments from chromosomes 1 and 17
produced a fusion between MLLT6 and MRPL45, a mitochondrial
ribosomal protein, resulting in strong overexpression of the latter
(Supplementary Fig. 10a–c). These findings indicate that gene fusions

involving well-established medulloblastoma oncogenes may have a
more important role in medulloblastoma than previously recognized,
and warrant further investigation.
High-coverage, strand-specific RNA sequencing of 28 cases allowed

us to determine the proportion of DNA SNVs that were observable in
the transcriptome (Supplementary Tables 3 and 4). Overall, 129 out of
268 (48%) non-synonymous mutations in the DNA were also detect-
able at the RNA level. A further 38% (101 out of 268) resided in genes
expressed at extremely low abundance (reads per kilobase of exon
model per million mapped reads (RPKM), 1). Thus, the fraction of
expressed mutations is even smaller than the already low number of
DNA alterations, supporting the hypothesis that very few driving hits
are needed to generate this paediatric tumour. It may also be the case
that some mutations required for tumour initiation are not essential
for later tumour cell maintenance.
RNA sequencing further revealed monoallelic expression of a

heterozygous mutation in TBR1, producing a p.G275C change, which
was also seen in a previous study9 (Supplementary Fig. 11a). TBR1
encodes a T-box transcription factor involved in brain development24.
This gene, and a second family member, EOMES (or TBR2), clearly
showed subgroup-specific differential expression (Fig. 4a). Sequencing
of TBR1 exon 2 in a further 85 medulloblastomas revealed one addi-
tional case with an identicalmutation. All threemutated tumours were
in Group 4. Gene expression was also strongly correlated with DNA
methylation for both TBR1 and EOMES (Fig. 4b, c and Supplementary
Fig. 11b, c), and expression ofTBR1 and EOMES is inversely correlated
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in Group 4 tumours (Fig. 4d), giving subsets that are either TBR1-
methylated and EOMEShi or EOMES-methylated and TBR1hi

(Supplementary Fig. 11d, e). These two genes are markers for different
stages of neuronal lineage commitment, suggesting possible differences
in cell-of-origin or differentiation within Group 4 subpopulations25.
This large, integrative genomics study has provided a detailed insight

into new mechanisms contributing to medulloblastoma tumorigenesis
and disclose novel targets for therapeutic approaches, especially for
Group 3 and 4 patients. The molecular subgroup-related enrichment
of many alterations highlights the importance of considering this dis-
tinguishing factor in research, trial design and clinical practice.

METHODS SUMMARY
All patient material was collected after receiving informed consent according to
ICGC guidelines and as approved by the institutional review board of contributing
centres. Tumour subgrouping was based on gene expression profiling or immuno-
histochemical analysis as described in ref. 5.
Next generation sequencing was performed using Illumina technologies. Mean

DNA sequence coverage was 35-fold for whole-genome cases (range 26–563),
whereas mean on-target coverage in the whole-exome and replication cohorts was
68-fold (74% of targets above 203 for whole exome, 66% for the replication
cohort). Exome capture was carried out with Agilent SureSelect (Human All
Exon 50Mb and XT Custom Library) in-solution reagents. Sequence data were
aligned to the hg19 human reference genome assembly; duplicate and non-
uniquely mapping reads were excluded. Tumour ploidy was predicted from
sequencing data by a novel approach integrating copy number aberrations with
allele frequencies. A subset of sequence variants were validated using PCR and
Sanger sequencing. Verification rates were 95% (128 out of 135) for SNVs and
100% (14 out of 14) for Indels (Supplementary Tables 3 and 4). A complete
description of the materials and methods is provided in the Supplementary
Information.
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Germany. 30Department of Neurosurgery, University Hospital, Hoppe-Seyler Strasse 3,
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