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Creating large-scale entanglement lies at the heart of many quantum information processing protocols
and the investigation of fundamental physics. For multipartite quantum systems, it is crucial to identify not
only the presence of entanglement but also its detailed structure. This is because in a generic experimental
situation with sufficiently many subsystems involved, the production of so-called genuine multipartite
entanglement remains a formidable challenge. Consequently, focusing exclusively on the identification of
this strongest type of entanglement may result in an all or nothing situation where some inherently quantum
aspects of the resource are overlooked. On the contrary, even if the system is not genuinely multipartite
entangled, there may still be many-body entanglement present in the system. An identification of the
entanglement structure may thus provide us with a hint about where imperfections in the setup may occur,
as well as where we can identify groups of subsystems that can still exhibit strong quantum-information-
processing capabilities. However, there is no known efficient methods to identify the underlying
entanglement structure. Here, we propose two complementary families of witnesses for the identification
of such structures. They are based, respectively, on the detection of entanglement intactness and
entanglement depth, each applicable to an arbitrary number of subsystems and whose evaluation requires
only the implementation of solely two local measurements. Our method is also robust against noises
and other imperfections, as reflected by our experimental implementation of these tools to verify the
entanglement structure of five different eight-photon entangled states. In particular, we demonstrate how
their entanglement structure can be precisely and systematically inferred from the experimental
measurement of these witnesses. In achieving this goal, we also illustrate how the same set of data
can be classically postprocessed to learn the most about the measured system.
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I. INTRODUCTION

Entanglement [1], one of the defining features offered by
quantum theory, is known to be an essential resource inmany
quantum information processing tasks, including quantum
computing [2], quantum cryptography [3,4], quantum

teleportation [5], and the reduction of communication com-
plexity [6] via Bell nonlocality [7]. In the last decade,
tremendous progress has been achieved in the experimental
manipulation of small-scale multipartite entanglement using
various physical systems [8–12]. Indeed, a long-term goal of
quantum technology is to generate medium- and eventually
large-scale quantum entanglement that realizes various
quantum information processing tasks.
Along this spirit, several experiments have investigated

entanglement in large-scale quantum systems involving
hundreds (or more) atoms [10,13–15] or trapped ions [16].
However, experimentally producing large-scale genuine
multipartite entanglement remains a formidable cha-
llenge owing to inevitable couplings to the environment.
Consequently, an experimentally prepared n-partite state
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(for large enough n) typically contains only fewer-body
entanglements that are segregated. To benchmark our
technological progress towards the generation of large-
scale genuine multipartite entanglement, it is thus essential
to determine the corresponding entanglement depth [17],
i.e., the extent to which the prepared state is many-body
entangled. Likewise, to overcome imperfections in the
preparation procedure, it would be crucial to identify the
extent to which the entanglements produced are segregated,
as captured by the nonseparability [1] of the state.
The identification of such entanglement structures

is generally challenging, especially when full state
reconstruction is infeasible. Still, the experimental prepa-
ration of a quantum resource generally follows some well-
defined procedure with a well-defined target quantum state
in mind. Moreover, even in the presence of experimental
imperfections, such a priori knowledge of what to expect
from the setup generally remains relevant. In this case,
generalized entanglement witnesses (EW) [18,19] serve as
powerful alternatives for retrieving information about the
underlying entanglement structure. In general, the exper-
imental evaluation of an EW may require the measurement
of local observables that depends on the number of
subsystems involved. Nevertheless, entanglement can be
witnessed by a constant number of local observables
[20,21], with two being the minimum since it is impossible
to distinguish entangled states from fully separable states
with only one local observable. Also worth noting is the
fact that the majority of the theoretical tools developed for
multipartite entanglement detection [22] have focused
exclusively on the identification of genuine multipartite
entanglement, thus rendering them irrelevant in identifying
the subtle entanglement structure mentioned above.
In this work, we propose two families of EWs that can

respectively certify the maximum number of segregations
and the minimal extent of many-body entanglement present
in an n-qubit system, each by the measurement of solely
two local observables, i.e., the minimal possible in order to
make any nontrivial conclusion. Importantly, each family
of witnesses involves the same local measurement regard-
less of the number of subsystems present. They also do not
depend on the extent of nonseparability or entanglement
depth to be certified—this follows directly from the extent
to which the respective witnesses are violated. As an
illustration of how these witnesses fare in practice,
we experimentally prepare several eight-photon quantum
states and demonstrate how the measurement of these two
families of EWs—which involves altogether the measure-
ment of four distinct local observables—enable us to infer
nontrivial information about the underlying entanglement
structure.

II. ENTANGLEMENT STRUCTURE

Let jϕi ¼⊗m
i¼1 jψGi

i be a quantum state of n parties
(subsystems) divided into m disjoint subsets fGigi¼1;…;m,

each of which is described by the genuinely multipartite
entangled state jψGi

i. We say that fGigi¼1;…;m fully
specifies the entanglement structure of jϕi as it identifies
exactly all the entangled subsystems in the composite
system. A partial specification of the entanglement struc-
ture can be achieved via its separability. Specifically, jϕi is
said to be m separable [1] (2 ≤ m ≤ n) as it can be written
as the tensor product of a pure state jψGi

i from m disjoint
subsets. The m-separability of a quantum state captures the
notion of segregation; i.e., no physical interaction between
any two subsystems from disjoint subsets is needed for
the generation of jϕi. The larger the value of m, the more
segregated jϕi is. Conversely, the certification that a state is
non–m-separable implies that jϕi cannot be generated by
segregating the subsystems into m disjoint subsets and
allowing arbitrary manipulations within each subset.
While the ðnon−Þm-separability of jϕi already provides

us with important information about the entanglement
structure of jϕi, it is not specifically meant to indicate
the extent of many-body entanglement present in the
system. To see this, note, for example, that the four-
qubit states jχiABC ⊗ jζiD and jηiAB ⊗ jτiCD are both
2-separable, but the generation of the former may require
three-body entanglement while the latter only require up to
two-body entanglement. To this end, let us denote by ni the
number of subsystems involved in the subset Gi (note thatP

m
i¼1 ni ¼ n). Then jϕi is said to be k-producible [23] if

the largest constituent of jϕi involves at most k parties, i.e.,
if maxini ≤ k. In other words, a k-producible state requires
at most k-body entanglement in its generation. Thus, the
certification that a state is not k producible implies that a
higher level of many-body entanglement is required in its
generation.
The m-separability and k-producibility of a general

mixed state ρ can be defined analogously: ρ is m-separable
(or k-producible) if it admits a convex decomposition in
terms of m-separable (k-producible) pure states. Following
Ref. [17], we say that ρ has an entanglement depth of k if it
is k-producible but not (k − 1)-producible. On the other
hand, we say that a quantum state ρ has an entanglement
intactness of m if it is m-separable but not (mþ 1)-
separable. A genuinely n-partite entangled state has an
entanglement intactness (depth) of 1 (n), whereas a fully
separable n-partite state has an entanglement intactness
(depth) of n (1). In particular, any quantum state that has an
entanglement depth greater than 2 is conventionally said to
contain multipartite (many-body) entanglement.
We are now in the position to introduce our witnesses

for entanglement intactness. To certify the nonseparability
and hence an upper bound on the entanglement intactness
of a given quantum state, we introduce the following two-
parameter family of two-observable witnesses:

Wn
seðαÞ ¼ αMZ þMX ≤

m-sep
In max

�
α;

α

2m−1 þ 1

�
; ð1Þ
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where α ∈ ð0; 2� is a free parameter, MZ ¼ ðj0ih0jÞ⊗n þ
ðj1ih1jÞ⊗n and MX ¼ σ⊗n

x are n-qubit observables, σx ¼
j0ih1j þ j1ih0j is the Pauli x matrix, fj0i; j1ig are the
computational basis states, In is the 2n × 2n identity matrix,
and m-sep in Eq. (1) signifies that the inequality holds true
at the level of the expectation value for all m-separable
states. In other words, for an arbitrary n-partite state ρ, if
hWn

seðαÞiρ > maxfα; ðα=2m−1Þ þ 1g, one certifies that ρ
has an entanglement intactness of m − 1 or lower. To ease
notation, we abbreviate Wn

seðα ¼ 2Þ as Wn.
For witnessing entanglement depth, inspired by

Ref. [24], we introduce the following family of witnesses,
which also involve only two local measurements [but
(possibly) in a basis different from those of Wn

seðαÞ]:

Wn
deðγÞ ¼ γκnA −A0 ≤

k-prod
Inβn;kðγÞ; ð2Þ

where γ∈ ð0;2� is a free parameter,A ¼ ½A− þAþÞ=2κ�⊗n

andA0 ¼ ðAþÞ⊗n are n-partite�1-valued observables,A�
is a single-partite �1-valued observable, κ ≠ 0 (which
holds for Aþ ≠ A−) is a normalization constant, and
βn;kðγÞ is the k-producible bound of the n-partite version
of the witness Wn

deðγÞ. In Eq. (2), k-prod signifies that the
inequality holds true at the level of the expectation value
for all n-partite k-producible states. In other words, for
an arbitrary n-partite state ρ, if hWn

deðγÞiρ > βn;kðγÞ, one
certifies that ρ has an entanglement depth of at least
kþ 1. For γ ¼ 2 and if no further assumption (including
the underlying Hilbert space dimension) is made on A�,
it follows from Ref. [24] that βn;1 ¼ 1; βn;2 ¼

ffiffiffi
2

p
;… for all

n ≥ 2. For specific choices of qubit observables A�, these
bounds can be tightened to provide better noise robustness
(see Sec. III). Despite their simplistic form, the derivation
of the bounds for the two families of witnesses is highly
nontrivial and may serve as a basis for the derivation of
other entanglement witnesses. For details, see Appendix A.
A few other remarks are now in order. First, in contrast

with ordinary entanglement witnesses, we see from Eqs. (1)
and (2) that the measured value for these witnesses is
precisely the information that we need to provide further
details about the underlying entanglement structure.
Moreover, both families of witnesses involve a free positive
parameter that may be optimized a posteriori to identify the
best possible upper (lower) bound on the entanglement
intactness (depth) of ρ. Finally, it is worth noting that these
witnesses can be easily adapted to an arbitrary choice of
local basis; i.e., even after applying an arbitrary local
unitary transformation on each qubit, the m-separable
bounds and the k-producible bounds of the transformed
witnesses evidently remain unchanged. For example,
via the local unitary transformation I⊗n−1

2 ⊗ σz, the wit-
ness Wn

seðαÞ gets transformed to Wn0
seðαÞ ¼ αMZ −MX,

which complements Wn
seðαÞ in detecting the many-body

entanglement present in a larger set of quantum states (see
Appendix A 1 for details) [25].

III. EXPERIMENTAL REALIZATION

Experimentally, we use the polarization degree of free-
dom to encode the qubit state jHðVÞi ¼ j0ð1Þi, where
HðVÞ denotes the horizontal (vertical) polarization. The
experimental setup used to generate various entangled
states is shown in Fig. 1(a). We first generate four pairs
of maximally entangled states 1=

ffiffiffi
2

p ðjHiHji þ jViVjiÞ by
shining a UV pulse successively on four BiB3O6 crystals
[as shown in Fig. 1(b)] with i, j denoting the path modes
(more details are shown in Fig. 6 of Appendix B). Photons
in path modes 2, 3, 6, and 7 are then injected into an
interferometric network (IN), which consists of three
polarization beam splitters (PBSs) with four input and
output ports (as shown in Fig. 2). Each PBS is controlled by
an individual lifting platform that can be set to either the up
or down state. When a PBS is in the up state, it facilitates
the interference of the two photons arriving at its two input
ports. On the contrary, there is no interference between the
incoming photons when the PBS is in the down state. With
three independently controlled PBSs, one can construct
eight interferometric geometries, which correspondingly
lead to eight possible photonic entangled states that fall
under five distinct entanglement structures.
Let jGHZni ¼ ð1= ffiffiffi

2
p ÞðjHi⊗n þ jVi⊗nÞ denote an

n-photon Greenberger-Horne-Zeilinger (GHZ) state.
Then, in the absence of imperfection, the interferometer
can thus be used to produce the five different entangled
states (one from each entanglement structure): jG8i; jG62i;
jG44i; jG422i; jG2222i, where the subscripts i1…im of
jGi1…imi ¼⊗m

j¼1 jGHZiji are used to label the entangle-
ment structure. For example, when the states of PBS1,
PBS2, and PBS3 are set, respectively, to up, up, and down,
the corresponding interferometric geometry is depicted in
Fig. 2(d). The interaction of photons 2 and 3 with PBS2
leads to the state jGHZ4i ¼ ð1= ffiffiffi

2
p ÞðjHi⊗4 þ jVi⊗4Þ120304.

On the other hand, since PBS3 plays no role in the path of
photon 6 and photon 7, the outgoing state of photons
5-60-70-8 is a tensor product of jGHZ2i560 and jGHZ2i708.
Finally, the interaction at PBS1 by the incoming photon at
modes 20 and 70 leads to an entanglement in the form of
jG62i ¼ 1

2
ðjHi⊗6 þ jVi⊗6Þ120304708 ⊗ ðjHi⊗2 þ jVi⊗2Þ560 .

More details of the state preparation procedure are shown in
Appendix B.
Note that the geometries depicted in Figs. 2(c) and 2(d)

produce essentially the same entangled state as jG62i
but differ in their path mode. Similarly, the entanglement
produced in Figs. 2(f)–2(h) is essentially the same as that of
jG422i. In our experiment, we choose the geometries
in Figs. 2(a)–2(c), 2(e), and 2(g) for the preparation of
five different entangled states. The generated eight-photon
entanglement is detected and analyzed by eight witness
analyzers in paths 1, 20, 30, 4, 5, 60, 70, and 8. As shown in
Fig. 1(c), a witness analyzer consists of a quarter-wave
plate (QWP), a half-wave plate (HWP), a PBS, and two
single-photon detectors.
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In reality, there are always imperfections in the setup, and
the entangled state produced is thus more aptly described by
a density matrix ρ. For ease of comparison, in a setup used
to produce the quantum state jGii, we denote the actual
quantum state produced by ρi. To determine the entangle-
ment structure of ρi, we thus begin by measuring the
expectation value of the observables MX ¼ σx

⊗8 and
MZ ¼ ðjHihHjÞ⊗8 þ ðjVihVjÞ⊗8. Whenever the observed
hMZi and hMXi violate the inequality [corresponding to
Eq. (1) with α ¼ 2]

2hMZi þ hMXi ≤
2-sep

2; ð3Þ
we can thus conclude that ρi exhibits genuine eight-photon
entanglement. As shown in Fig. 3(a), we observe that
(hMZi; hMXiÞ ¼ ð0.80ð2Þ; 0.63ð4Þ) on ρ8, which violates
Eq. (3), while the corresponding expectation values for
ρ8, ρ62, ρ44, ρ422, ρ2222, as summarized in Table I, satisfy
Eq. (3). The results indicate that ρ8 is genuinely eight-photon
entangled, but the entanglement structure of the rest cannot
be concluded from the witness of Eq. (3).

Note, however, that Eq. (3) only represents a specific
case (α ¼ m ¼ 2) of the family of witnesses considered
in Eq. (1). Further nontrivial information on the entan-
glement structure, specifically the m-separability of ρi,
can also be deduced from the measured value of MZ and
MX. Specifically, by varying α ∈ ð0; 2�, one can identify
the smallest value of m ¼ 2; 3;…; 8 whereby the wit-
nesses of Eq. (1) are violated [26]; this minimum value of
m then provides an upper bound of m − 1 on the
entanglement intactness of the measure system. To this
end, it is worth noting that both W8

seðαÞ, W80
seðαÞ and

their m-separable bounds are linear in α. For any given
value of m, the optimal choice of the free parameter α in
Eq. (1) is obtained by setting α ¼ ðα=2m−1Þ þ 1, thereby
giving α ¼ 2m−1=ð2m−1 − 1Þ, e.g., α ¼ 2; 4

3
; 8
7
, and 16

15
,

respectively, for m ¼ 2, 3, 4, and 5. Note that in each
of these cases, the value of α is precisely the
m-separable bound given in Eq. (1). A direct compari-
son between the measured value of W8

seðαÞ and the
various m-separable bounds then allows us to determine

(a)

(b)
(c) Witness analyzer

Entangled 
photon pair

1 2 3 4 5 6 7 8

3 6

7 2

BiBO

PBS

LBO
Laser

T Coupler

HWP

R Coupler

QWP

FIG. 1. Schematic showing the experimental setup. (a) A global view of the experimental setup used to generate different eight-photon
entangled states. A pulse from a pulsed Ti-sapphire laser (with a central wavelength of 780 nm, a duration of 130 fs, and an average
power of 3.8 W) passes through a frequency doubler, by which it is changed to an UV pulse with a central wavelength of 390 nm and an
average power of 1.6 W. Then, the UV pulse is directed by reflective mirrors to shine on four BiBO crystals successively. Shining a UV
pulse on a BiBO crystal will generate (probabilistically) a photon pair maximally entangled in the polarization degree of freedom via
spontaneous parametric down-conversion (SPDC). Photons in path modes 2, 3, 6, and 7 are then injected into an interferometric network
to generate jG8i, jG62i, jG44i, jG422i, and jG2222i by the corresponding interferometric geometry settings. Finally, eight photons are
analyzed by witness analyzers via single-photon detectors. To suppress the higher-order emission in SPDC, we attenuate the average
power of the UV pulse to 500 mW. The eight-fold coincidences we observed in creating jG8i, jG62i, jG44i, jG422i, and jG2222i are
8=h, 20=h, 20=h, 36=h, and 70=h, respectively, due to different postselection probabilities (see Fig. 2 for further explanation and
Appendix B 1 for the actual number of eight-fold coincidences registered in each case). (b) The experimental setup used to generate
maximally entangled photon pairs. More details concerning the generation of entangled photons can be found in Appendix B 1. (c) The
witness analyzer. An arbitrary observableO can be represented asO ¼ jiþ1ihiþ1j − ji−1ihi−1j, where ji�1i is the eigenstate ofOwith an
eigenvalue of�1. The combination of QWP and HWP, as well as a PBS, makes jiþ1i click on the transmissive detector and ji−1i click on
the reflective detector.

HE LU et al. PHYS. REV. X 8, 021072 (2018)

021072-4



an upper bound on the entanglement intactness of the
measured system.
A graphical illustration of these fine-tuned m-separability

witnesses [corresponding to the blue region in Fig. 3(a)] is

shown in Fig. 3(b). Once the observed expectation values
ðhMZi; hMXiÞ of ρi are found to lie in the (m − 1)-
separable region, it violates the witness of Eq. (1) for
m-separability, thereby certifying that ρi has an

0 0.2 0.4 0.6 0.8 1
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0.4
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Inconclusive
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2 separable
3 separable
4 separable

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a) (b) (c)
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2-prod
3-prod
4-prod
5-prod
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FIG. 3. Experimental results for witnesses certifying genuine multipartite entanglement (GME), entanglement intactness, and
entanglement depth. (a) GME revealed by the measurement of the witness of Eq. (3) via hMZi and hMXi. (b) Entanglement intactness
revealed by the measurement of hWse

8 ðαÞi via hMZi and hMXi for a judicious choice of α. (c) Entanglement depth revealed by the
measurement of hWde

8 ðγÞi via A and A0 for a judicious choice of γ. For comparison, we have also included here with the red (blue) dot
the theoretical value of the witness for an ideal jG53i (jG71i) assuming the same set of measurements.
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(d)

(e)

(f)

(g)

(h)

FIG. 2. Interferometric geometries leadings to different entanglements. Here, jGHZni is an example of a graph state and can be
represented by a star graph. Such a representation makes its preparation procedure evident: Each node represents a photon prepared in
the state jþi ¼ ð1= ffiffiffi

2
p ÞðjHi þ jViÞ, and each edge joining two nodes represents a controlled-Z operation performed between the

corresponding photons. The number inscribed in each node labels the path mode of the photons prepared in our experiment. The PBS is
fixed on a lifting platform. By adjusting the lift height, we can switch the state of the PBS between up and down. For each PBS set to up,
since we postselect the cases where photons exit from both output ports of the PBS, the count rate reduces approximately by half
compared with the case when the PBS is set to down.
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entanglement intactness of m − 1 or lower. Equivalently, we
see from Table I that the entanglement intactness of ρ62, ρ44,
ρ422, and ρ2222 is upper bounded, respectively, by 2, 2, 3, and
4, which matches exactly with that of jG62i, jG44i, jG422i,
and jG2222i.
While these bounds on entanglement intactness already

shed some light on the underlying entanglement structure,
they are not yet informative enough to suggest any specific
entanglement structure associated with the measured system.
To this end, we also measure the witnesses for entanglement
depth given in Eq. (2) by measuring the expectation value
of A and A0 for each of the prepared states. Specifically,
based on the data that we have collected in measuring hMZi
and hMXi and the ansatz A� ¼ cos θ�σx þ sin θ�σy
(see Appendix A 2), a reasonably good choice of qubit
observables appears to be those corresponding to θ� ¼
½3ð1� 8Þ=80� (thereby giving κ ¼ cos 3

10
), where σy ¼

−ij0ih1j þ ij1ih0j is the Pauli y matrix.
The corresponding tightened k-producible bound β8;kðγÞ

as a function of k and γ is given in Appendix A 2. Our
experimental results shown in Fig. 3(c), and summarized in
Table II, allow us to conclude a lower bound on entangle-
ment depth of 4, 4, 3, 4, and 2, respectively, for the state ρ8,
ρ62, ρ44, ρ422, and ρ2222. Evidently, only the measurements
of hW8

dei for ρ422 and ρ2222 reveal the expected entangle-
ment depth, while the lower bound on entanglement depth
obtained for the other states is clearly suboptimal. Our
separate analysis shows that this is caused by the undesired
noises in our experiment, specifically the higher-order
emissions in SPDC and the mode mismatch of the

interference. We analyze the decoherence induced by these
two noises in Appendix B 2.
Nevertheless, as we demonstrate below, the measure-

ment results obtained from both witnesses are useful and
complement each other nicely—at least in our setup—to
suggest some minimal entanglement structure of the
measured system. By minimal, we mean that the corre-
sponding entanglement structure is compatible with all the
empirical observation, and it is also not more entangled
nor more complicated than necessary to explain these
empirical observations. Thus, despite the fact that a general
mixed state does not have a unique convex decomposition,
we are only concerned with identifying a compatible
entanglement structure that is not a convex mixture of
different entanglement structures.
Coming back to the identification of a minimal entan-

glement structure associated with our setup, suppose that
the IN is controlled by three binary random number
generators, each of which determines the state of one of
the PBSs. Thus, the IN is randomly set to be one of the
geometries depicted in Fig. 2, thereby resulting in one
of the corresponding entanglement structures. In the next
two paragraphs, we show how to deduce the structure
corresponding to jG422i and jG2222i. The corresponding
analysis for jG62i and jG44i is shown in Appendix B 4. To
this end, we use a circular chart to schematically represent
the entanglement structure of the underlying state (see
Fig. 4). A priori, the chart is split into eight equal
pieces, where each piece represents one of the sub-
systems (a photon) labeled uniquely by their path:
f1; 20; 30; 4; 5; 60; 70; 8g. Our goal is to determine a minimal
entanglement structure compatible with the empirical

TABLE I. Summary of our experimental results for determining
the entanglement intactness of the prepared state ρi. The second
and the third column give our choice of the free parameters m, α
for the witness described in Eq. (3). The experimentally measured
expectation values hMZi, hMXi, and hW8

seðαÞi ¼ αhMZi þ
hMXi are given in the next three columns. The last column gives
our best upper bound on the entanglement intactness of ρi based
on the measured value ofW8

seðαÞ. An entanglement intactness of
m means that the state cannot be produced by segregating the
subsystems into mþ 1 or more groups. The errors are deduced
from propagated Poissonian counting statistics of the raw photon
detection events (see Appendix B 1 for raw data). For compari-
son, we have also included here the theoretical values of the
witness for an ideal jG53i and jG71i assuming the same set of
measurements.

State m α hMZi hMXi hW8
seðαÞi

Entanglement
intactness

ρ8 2 2 0.80(2) 0.63(4) 2.23 (3) 1
ρ62 3 4=3 0.63(3) 0.60(5) 1.43(7) ≤ 2
ρ44 3 4=3 0.43(4) 0.89(3) 1.46(6) ≤ 2
ρ422 4 8=7 0.27(3) 0.86(3) 1.17(5) ≤ 3
ρ2222 5 16=15 0.18(2) 0.91(2) 1.09(3) ≤ 4

jG71i 3 4=3 0.5 1 5=3 ≤ 2
jG53i 3 4=3 0.5 1 5=3 ≤ 2

TABLE II. Summary of our experimental results for determin-
ing the entanglement depth of the prepared state ρi. The second
and the third column give our choice of the free parameters k
and γ in Eq. (2). The fourth column gives the value of the
corresponding k-producible bound. The experimentally measured
expectation values hAi, hA0i, and hW8

deðγÞi ¼ γκ8hAi − hA0i are
given in columns 5–7. The last column gives our best lower
bound on the entanglement depth of ρi based on the measured
value ofW8

deðγÞ. An entanglement depth of kmeans that the state
requires at least k-body entanglement for its preparation. For
comparison, we have also included here the theoretical values of
the witness for an ideal jG53i and jG71i assuming the same set of
measurements.

State k γ β8;kðγÞ hAi hA0i hW8
deðγÞi

Entanglement
depth

ρ8 3 2 1.1699 0.54(9) −0.57ð9Þ 1.32(15) ≥ 4
ρ62 3 2 1.1699 0.73(5) −0.27ð8Þ 1.29(8) ≥ 4
ρ44 2 8=5 0.7904 0.76(3) −0.07ð5Þ 0.91(7) ≥ 3
ρ422 3 8=5 0.9137 0.84(3) −0.02ð6Þ 0.95(7) ≥ 4
ρ2222 1 2 0.8365 0.83(3) 0.19(5) 0.96(5) ≥ 2

jG71i 6 2 1.8858 0.9651 −0.6714 2.0106 ≥ 7
jG53i 4 2 1.3856 0.9763 −0.0617 1.4164 ≥ 5
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observation. If any of the subsystems is found to be
genuinely multipartite entangled, we combine the respec-
tive pieces and color them the same way.
For example, since our measurement of hW8

deðγÞi on
ρ422 witnesses an entanglement depth of 4 or more, at least
four of the photons exhibit GME. Importantly, our meas-
urement results of hW8

seðαÞi also allow us to evaluate
hWk

seðαÞi among any k-partite subset of the eight photons.
Indeed, from the measured expectation values of the four-
partite witness W4

seðα ¼ 2Þ [see Fig. 4(a)], only the four
photons with path modes f5; 60; 70; 8g seem to be genuinely
four-photon entangled. On the other hand, our measure-
ment of hW8

seðα ¼ 8=7Þi concludes that ρ422 is at most
triseparable. Combining this with the above observation
suggests that ρ120304 is a biseparable state. Thus, ρ120304 can
be either a tensor product of a genuinely three-photon
entangled state and a single-photon state, or a tensor
product of two two-photon entangled states. Our evaluation
of W2

seðα ¼ 2Þ for all possible combinations of two
photons from path modes 1; 20; 30, and 4 [see Fig. 4(b)]
clearly reveals that the two photons from path 1; 20, as well
as those from path 30, 4, are entangled. At the same time,
our measurement of hW3

seðα ¼ 2Þi among all possible
three-photon combinations from 1; 20; 30, and 4 does not
reveal any three-photon entanglement. The above obser-
vations, together with the assumptions stated above, lead us
to conclude that ρ422 shares the same (minimal) entangle-
ment structure as jGHZ4i560708 ⊗ jGHZ2i120 ⊗ jGHZ2i304.
Similarly, for ρ2222, our measurement of hW8

deðγÞi and
hW8

seðαÞi leads to the conclusion that ρ2222 involves at
least two-body entanglement while not being 5-separable.

Various entanglement structures are compatible with these
observations. However, from the observed values of
hW2

seðα ¼ 2Þi for all possible two-photon combinations
[see Fig. 4(c)], we see that the photon pairs from path
modes f1; 20g, f30; 4g, f5; 60g, and f70; 8g are clearly
entangled. Thus, with the assumptions stated above, the
only entanglement structure compatible with these obser-
vations is that of jGHZ2i120 ⊗ jGHZ2i304 ⊗ jGHZ2i560 ⊗
jGHZ2i708.
At this point, one may wonder whether our experimental

setup is capable of generating eight-photon entangled states
with other entanglement structures (such as those involving
odd-party entangled states) and how our witnesses fare in
those cases. Let us remark that our experimental setup is
not limited to generating only the even-party-entangled
state depicted in Fig. 2—it can, in principle, be used to
produce all quantum states of the form jGi1…imi (such
as those containing only odd-party-entangled states).
However, we did not experimentally prepare these other
states, as their generation (using our setup) involves
heralding and thus a significantly lower count rate. As
an example, to create an eight-photon entangled state
jG71i that is only seven-photon entangled, we can set
two polarizers in paths 1 and 2 at 45°, which project
jGHZ2i12 on state j þ þi12. Then, by raising all three
PBSs, the state jG71i¼ 1

2
ðjHi⊗7þjVi⊗7Þ20304560708⊗ ðjHiþ

jViÞ1 can be obtained. Likewise, to generate jG53i, we can
set a polarizer between PBS1 and PBS3 at 45° in the
geometry shown in Fig. 2(a). Then, the state jG53i ¼
1
2
ðjHi⊗5 þ jVi⊗5Þ12030470 ⊗ ððjHi⊗3 þ jVi⊗3Þ5608 can be

generated.
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FIG. 4. Experimental results leading to the determination of entanglement structure. (a) Expectation value of the four-partite GME
witness W4 ¼ 2½ðjHihHjÞ⊗4 þ ðjVihVjÞ⊗4� þ σ⊗4

X for all four-party subsystems of ρ422. (b) Expectation value of the two-party GME
witness W2 ¼ 2½ðjHihHjÞ⊗2 þ ðjVihVjÞ⊗2� þ σ⊗2

X for all two-party subsystems among the path modes f1; 20; 30; 4g of ρ422.
(c) Expectation value of the two-party GME witness W2 for all two-party subsystems of ρ2222.
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To illustrate that our theoretical methods also work well
in these cases, we have calculated hMZi, hMXi and hAi,
hA0i for jG53i and jG71i, respectively. The results are
given in Tables I and II and shown as blue and red dots in
Figs. 3(b) and 3(c). Together, they confirm that jG53i is at
most a biseparable state with an entanglement depth of at
least 5, and jG71i is at most a biseparable state with an
entanglement depth of at least 7. By systematically evalu-
ating the value of the witnesses for the right number of
parties over all possible choices of parties—as we did
above—and finding out which subset of photons is genu-
inely multipartite entangled, we obtain a compatible
entanglement structure, which coincides with that of the
given state.

IV. CONCLUSION

In this work, we introduce the notion of an entanglement
structure, which details not only the extent of many-body
entanglement present but also their segregation among the
various subsystems. Identifying the entanglement structure
of an arbitrary multipartite quantum state, as with the
certification of genuine multipartite entanglement, gener-
ally requires an exponential number of local measurements.
Nonetheless, the retrieval of any partial information on
the entanglement structure of an experimentally prepared
system is always welcome, as it provides diagnostic
information on where imperfections in the setup may lie.
Importantly, such information is often already available in
the data collected for the measurement of entanglement
witnesses, even if the measured value does not reveal
genuine multipartite entanglement. Here, we propose two
complementary families of witnesses capable of bounding,
respectively, the entanglement intactness (i.e., nonsepar-
ability) and the entanglement depth of the measured
system, thereby providing nontrivial information about
the underlying entanglement structure.
Our scheme works for any number of parties and can be

generalized to arbitrary dimensions [27]. In contrast with
conventional entanglement verification schemes, our wit-
nesses involve free parameters that can be varied a poster-
ori, thereby allowing us to optimize—in a similar spirit to
Ref. [28]—the data collected to arrive at the strongest
possible conclusion. Note also that the possibility to
perform such an a posteriori optimization is not unique
to our witnesses. Rather, by introducing some auxiliary free
parameters, one can, in principle, always optimize the
choice of the witness depending on the measured data, as
we illustrate in Sec. III (see also Appendix A 2).
Evidently, from the measurement of the local observ-

ables considered, it is possible to evaluate many other
expectation values (including those involving only a subset
of parties) that we have not considered. The challenge then
is to determine the m-separable bound, or the k-producible
bound of the corresponding witness operator. Our work can
thus be seen as one of the first steps towards this general

problem of finding the optimal linear entanglement witness
directly from the measurement results. Even then, a linear
entanglement witness generically works well only for a
specific target state or for quantum states that do not differ
too much from it. Another line of research thus consists of
employing a nonlinear entanglement witness for the detec-
tion of entanglement structure. Solving any of these
problems in full generality is nonetheless clearly beyond
the scope of the current research.
Experimentally, we have demonstrated how the entan-

glement structure of the tensor products of GHZ-type states
can be inferred—with the help of some auxiliary assump-
tions—by systematically combining the results obtained
during the measurement of our witnesses. More precisely,
we have shown that the minimal entanglement structure
deduced from these experimental results is exactly the
entanglement structure that we expected from our exper-
imental setup. The usefulness of the algorithmic procedures
that we have introduced here in a more general setting, of
course, remains to be investigated.
Finally, it is worth noting that the entanglement intact-

ness witnesses introduced in the current work have very
recently been generalized [29] to the case of one-dimen-
sional cluster states. Since these states and GHZ states are
both specific cases of a graph state, an open question that
follows is whether these witnesses can be further general-
ized to cover a general graph state while maintaining their
appealing feature of involving only two local observables
(see also Ref. [20] in this regard). Given the importance of
such states for one-way quantum computation [30], such a
generalization may then be used to benchmark our progress
towards the ultimate goal of demonstrating quantum
supremacy.
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APPENDIX A: THEORY

The structure of multipartite entanglement is much richer
than the bipartite case. An n-partite pure state jϕi is said to
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be m-separable (2 ≤ m ≤ n) if the n parties can be divided
into m disjoint subsets fGigi¼1;…;m such that jϕi is the
tensor product of a pure state jψGi

i from each of these
subsets, i.e.,

jϕi ¼ ⊗
m

i¼1
jψGi

i: ðA1Þ

The m-separability of a quantum state describes the
extent of segregation. The larger the value of m, the more
segregated jϕi is. If m ¼ n, we refer to it as a fully
separable state. Conversely, a non–m-separable state
implies that it cannot be generated by segregating the
subsystems into m disjoint subsets and allowing arbitrary
local manipulations within each subset.
Though ðnon−Þm-separability of jϕi already provides us

with important information about the entanglement struc-
ture of jϕi, it is still not enough. How many parties each
disjoint subset contains is also part of the specification of its
entanglement structure. Let us denote ni as the number of
subsystems involved in the subset Gi (note thatP

m
i¼1 ni ¼ n); then, jϕi is said to be k-producible if the

largest constituent of jϕi involves at most k parties, i.e., if
maxini ¼ k. Generating a k-producible state requires at
most k-body entanglement; on the other hand, more than k-
body entanglement is required in generating a state that is
not k-producible.
For mixed state ρ, the m-separability and k-producibility

can be defined analogously: ρ is m-separable (or
k-producible) if it admits a convex decomposition in terms
of m-separable (k-producible) pure states. If a quantum
state ρ is k-producible but not (k − 1)-producible, we say it
has an entanglement depth of k [17]. On the other hand, we
say that a quantum state ρ has an entanglement intactness of
m if it is m-separable but not (mþ 1)-separable. A
genuinely n-partite entangled state has an entanglement
intactness (depth) of 1 (n), whereas a fully separable
n-partite state has an entanglement intactness (depth) of
n (1). In particular, any quantum state that has an
entanglement depth greater than 2 is conventionally said
to contain multipartite (many-body) entanglement.

1. A family of witnesses for non–m-separability
with two local measurement settings

In this section, we introduce the following two-
parameter family of two-observable witnesses:

Wn
seðαÞ¼αMZþMX ≤

m-sep
Inmax

�
α;

α

2m−1þ1

�
; α∈ð0;2�;

ðA2Þ

where MZ ¼ ðj0ih0jÞ⊗n þ ðj1ih1jÞ⊗n, MX ¼ σ⊗n
x , σx

is the Pauli x matrix, fj0i; j1ig are the computational
basis states, In is the 2n × 2n identity matrix, and m-sep
signifies that the inequality holds true at the level of the

expectation value for all m-separable n-qubit states.
In other words, for an arbitrary n-partite state ρ, if
hWn

seðαÞiρ > maxfα; ðα=2m−1Þ þ 1g, one certifies that ρ
has an entanglement intactness of m − 1 or lower. Here,
α is a free positive parameter that may be varied to
identify the best possible upper bound on the entanglement
intactness of ρ.

a. Family of genuine n-qubit entanglement witnesses

For the specific case of m ¼ 2, the witness of Eq. (A2)
reduces to one that can be used to certify genuine n-qubit
entanglement.
Theorem 1. Let ρ be an arbitrary n-qubit biseparable

state; then, its expectation value for MZ and MX [and
hence hWn

seðαÞi] satisfies

αhMZiρ � hMXiρ ≤
2-sep α

2
þ 1; α ∈ ð0; 2�: ðA3Þ

To prove the theorem, let us denote by n⃗ ¼ fn1gfn2g a
partition of the n parties into a subset of n1 parties and the
complementary subset of n2 ¼ n − n1 parties. The invari-
ance of Wn

seðαÞ with respect to an arbitrary permutation
of subsystem Hilbert spaces implies that in determining
the biseparable bound, i.e., the maximal quantum value of
hWn

seðαÞi over all biseparable n-qubit states, the actual
members of each subset G1 and G2 are irrelevant.
Without loss of generality, let us thus imagine that the

first n1 parties belong to G1, and denote by Sn⃗ the set of
all n-qubit pure states that are biseparable with respect to
this partitioning specified by n⃗. We may then write the
biseparable bound, i.e., the maximal value of the right-hand
side of Eq. (A3), as

max
bisep ρ

hWn
seðαÞiρ ¼ max

n⃗
fn⃗ ¼ max

fn1gfn2g
ffn1gfn2g; ðA4Þ

where

fn⃗ ≔ max
jϕi∈Sn⃗

hWn
seðαÞijϕi ¼ max

jϕi∈Sn⃗
Tr½ðαMZ þMXÞjϕihϕj�:

ðA5Þ

As noted above,Wn
seðαÞ is permutational invariant; we thus

have

ffn1gfn2g ¼ ffn2gfn1g: ðA6Þ

Next, we present a key observation that allows one to
simplify the maximization of Eq. (A4) over an arbitrary
ðn1 þ n2Þ-qubit biseparable pure state to a maximization
over an arbitrary ðn1 þ 1Þ-qubit biseparable pure state.
Lemma. The value of fn⃗ for the bipartition of n ¼

n1 þ n2 parties specified by n⃗ ¼ fn1gfn2g is identical to
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the value of f
n⃗0 for the bipartition of n0 ¼ n1 þ 1 parties

into n⃗0 ¼ fn1gf1g.
Proof.—Let jϕai and jϕbi, respectively, be arbitrary

n1-qubit and n2-qubit pure states. From the definition of
fn⃗ given in Eq. (A5), one finds that

ffn1gfn2g
¼ max

jϕai;jϕbi
Tr½ðαMZ þMXÞjϕaihϕaj ⊗ jϕbihϕbj�;

¼ max
jϕai

eigmaxfTra½ðαMZ þMXÞjϕaihϕaj ⊗ In2g

¼ max
jϕai

eigmaxMb; ðA7Þ

where Mb is an observable defined on the remaining
n2-qubit space,

Mb ¼ αxðj0ih0jÞ⊗n2 þ αyðj1ih1jÞ⊗n2 þ zðσxÞ⊗n2 ; ðA8Þ

and it depends on jϕai via x ¼ hϕajðj0ih0jÞ⊗n1 jϕai,
y ¼ hϕajðj1ih1jÞ⊗n1 jϕai, and z ¼ hϕajðσxÞ⊗n1 jϕai.
For any integer n2 ≥ 1, Mb has the following generic

(sparse) matrix representation:

Mb ¼

0
B@

αx z

⋰
z αy

1
CA: ðA9Þ

Moreover, it can be verified that Mb has two ð2n2−1 − 1Þ-
fold degenerate eigenvalues �z and two nondegenerate
eigenvalues λ� ¼ ½αðxþ yÞ=2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ½α2ðx − yÞ2�=4

p
.

Since x, y are non-negative, it follows that jzj ≤
½αðxþ yÞ=2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ½α2ðx − yÞ2=2�

p
. Hence, the largest

eigenvalue of Mb is necessarily λmax ¼ λþ.
Importantly, as long as n2 ≥ 1, the same conclusion

holds regardless of the actual number of qubits involved in
the definition of Mb. In other words, while the size of Mb
depend on n2, its largest eigenvalue λmax, and hence fn⃗,
only depends on jϕai via x, y, and z. Consequently, the very
same argument can be repeated in the computation of f

n⃗0

with n⃗0 ¼ fn1gf1g to arrive at the conclusion that the
largest eigenvalue of the matrix corresponding to Eq. (A8)
is again λþ. Therefore, fn⃗ for the bipartition specified by
n⃗ ¼ fn1gfn2g coincides with f

n⃗0 for the bipartition speci-

fied by n⃗0 ¼ fn1gf1g. □

Now, we are in the position to prove Theorem 1 by
combining Lemma 1 and Eq. (A6) and explicitly calculat-
ing the maximal eigenvalue of the resulting 2 × 2 matrix.
Proof.—From Lemma 1, we note that for arbitrary n1, n2

such that n ¼ n1 þ n2, we have fn⃗ ¼ ffn1gfn2g ¼ ffn1gf1g.
Using Eq. (A6), ffn1gf1g can be rewritten as ff1gfn1g.
Applying Lemma 1 again to ff1gfn1g, we thus find that
maxbisepρhWn

seðαÞiρ ¼ maxn⃗fn⃗ ¼ ff1gf1g. Computation of

the biseparable bound thus amounts to computing the
maximal eigenvalue of Mb ¼ ðαxz z

αyÞ. Let us adopt the

parametrization jϕai ¼ cos θj0i þ eiφ sin θj1i; then, x ¼
cos2 θ, y ¼ sin2 θ, z ¼ cosφ sin 2θ, and ff1gf1g ¼
ðα=2Þ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2cos22θ þ 4sin22θcos2φ

p
. For α ∈ ð0; 2�, the

term in the square root is clearly maximized by setting
θ ¼ ðπ=4Þ, φ ¼ 0, thereby giving a biseparable bound
of ff1gf1g ¼ ðα=2Þ þ 1. □

We thus prove the result of Theorem 1. Note that the
witnesses of Ref. [20] are a special case of our witnesses
corresponding to α ¼ 2.

b. Family of (non–)m-separability witnesses

For the more general family of witnesses for detecting
non–m-separability (and hence an entanglement intactness
of m − 1 or lower), we follow a very similar procedure
as that adopted in the last section. Specifically, we first
iteratively apply Lemma 1 and Eq. (A6) to show that
determining the m-separable bound amounts to computing
fn⃗, where

n⃗ ¼ f1g � � � f1g
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{m times of f1g

: ðA10Þ

Next, if we adopt the generic parametrization of setting
jϕii ¼ cos θij0i þ eiφi sin θij1i, then the computation of fn⃗
is equivalent to maximizing the largest eigenvalue of the
qubit observable Mb, i.e.,

ff1g×m ¼ 1

2

�
αðxþ yÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðx − yÞ2 þ 4z2

q �
; ðA11Þ

where

x¼
Ym−1

i¼1

cos2θi; y¼
Ym−1

i¼1

sin2θi; z¼
Ym−1

i¼1

cosφi sin2θi:

ðA12Þ

As is evident in Eq. (A11), we may, without loss of
generality, set φi ¼ 0 for all i in our maximization of
ff1g×m .
When α ≥ 2m−1=ð2m−1 − 1Þ, it can be shown that

ff1g×m ≤ α; ðA13Þ

whereas for 0 < α < 2m−1=ð2m−1 − 1Þ, one has

ff1g×m ≤
α

2m−1 þ 1: ðA14Þ

Consequently, the m-separable bound is upper bounded
by ff1g×m ≤ maxfα; ðα=2m−1Þ þ 1g.
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To see that inequality (A13) holds, note from Eq. (A11)
that this inequality is equivalent to

1

2

�
αðxþ yÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðx − yÞ2 þ 4z2

q �
≤ α;

⇔z2 ≤ α2ð1 − xÞð1 − yÞ: ðA15Þ

From the non-negativity of 1 − x, 1 − y, the relationship
between x, y, z given in Eq. (A12), and the assumption that
α ≥ 2m−1=ð2m−1 − 1Þ, we see that proving Eq. (A13) for
this interval of α amounts to proving

z2 ≤
�

2m−1

2m−1 − 1

	
2

ð1 − xÞð1 − yÞ;

⇔2m−1ð2m−1 − 2Þxy ≤ 1 − x − y: ðA16Þ

For the convenience of subsequent discussions, let us
define

xi ≔ cos2θi; yi ≔ sin2θi: ðA17Þ
Using the mathematical identity

Q
m−1
i¼1 ðxi þ yiÞ ¼ 1, we

can now make both sides of the above inequality a
degree 2ðm − 1Þ homogeneous polynomial in the variables
fxi; yigm−1

i¼1 , namely,

2m−1ð2m−1 − 2Þ
Ym−1

i¼1

xiyi

≤
Ym−1

i¼1

ðxi þ yiÞ
�Ym−1

j¼1

ðxj þ yjÞ −
Ym−1

k¼1

xk −
Ym−1

k¼1

yk

�
:

ðA18Þ

Evidently, the polynomial on the rhs of inequality (A18)
consists of 2m−1ð2m−1 − 2Þ monomials, each of degree
2ðm − 1Þ, while the lhs consists of 2m−1ð2m−1 − 2Þ times
the same monomial. The key observation leading to the
bound given in Eq. (A13) is that when a complementary
pair of monomials from the rhs are combined with two of
the monomials from the lhs, one obtains a square of some
polynomial. Consequently, after subtracting the lhs from
the rhs of Eq. (A18), we end up with a sum of squares
(SOS) of polynomials, which are necessarily non-negative,
thereby showing that the rhs is greater than or equal to
the lhs.
To this end, let N ¼ f1; 2;…; m − 1g denote the set of

indices ranging from 1 to m − 1. Then, it is not difficult to
see that all monomials appearing in Eq. (A18) take the form

g ¼
Y
i∈H

xiyi
Y
j∈H∁

ξ2j ; ðA19Þ

where ξi either equals xi or yi for each i,H is a subset ofN
such that for all i ∈ H, g is linear in both xi and yi, whileH∁

is the complement ofH inN , i.e., the subset ofN such that
g is either quadratic in xi or yi. For example, when using
Eq. (A19) to express the monomials appearing in the lhs of
Eq. (A18), we have H ¼ N , or equivalently H∁ being the
empty set.
Let us further define the monomial complementary to g

as ḡ ≔
Q

i∈Hxiyi
Q

m−1
j∈H∁ ξ̄2j , where x̄i ¼ yi and ȳi ¼ xi;

i.e., ḡ is obtained from g by changing each xi to yi and
vice versa. Subtracting from g any of the monomials
appearing in the lhs of Eq. (A18) gives g −

Q
m−1
i¼1 xiyi ¼Q

i∈Hxiyi
Q

j∈H∁ξjðξj − ξ̄jÞ. Similarly, subtracting from ḡ
any of the monomials appearing in the lhs of Eq. (A18)
gives ḡ−

Q
m−1
i¼1 xiyi¼−

Q
i∈Hxiyi

Q
j∈H∁ ξ̄jðξj− ξ̄jÞ. Combi-

ning these expressions while recalling from Eq. (A17) the
non-negativity of xi, yi, we then have

gþ ḡ − 2
Ym−1

i¼1

xiyi ¼
Y
i∈H

xiyi
Y
j∈H∁

ðξj − ξ̄jÞ2 ≥ 0; ðA20Þ

where the non-negativity of the overall expression follows
from it being the square of some polynomial. To complete
the proof, it suffices to note that for all g appearing in
the rhs of Eq. (A18), ḡ also appears on the rhs as one
of the 2m−1ð2m−1 − 2Þ monomials. Thus, it follows from
Eq. (A20) that the rhs-lhs of Eq. (A18) is indeed a SOS
and thereby shows the validity of inequality (A18), as well
as that of Eq. (A13). The proof of Eq. (A14) proceeds
analogously to that given above.
Finally, to see that the m-separable bound given in

Eq. (A13) is tight, it suffices to note that inequality (A13)
is saturated when sin2 θi ¼ 1; cos2 θi ¼ 0 (or sin2 θi ¼ 0;
cos2 θi ¼ 1) for every i. Similarly, the m-separable bound
given in Eq. (A14) is tight, as the corresponding bound is
saturated when sin2 θi ¼ cos2 θi ¼ 1=2 for every i.
Note that the non–m-separability of a state also gives

nontrivial information about its entanglement depth.
For example, if a state ρ is 3-separable, then ρ is at least
⌈n=3⌉-producible. Likewise, anm-separable state is at least
⌈n=m⌉-producible. Thus, if the measured value of s ¼
hMZ þMXi for a state is such that 3

2
≥ s > 5

4
, then the

measured state is not 3-separable but is biseparable; its
entanglement depth is thus at least ⌈n=2⌉.

c. White-noise robustness of the non–m-separability
witnesses for GHZ states

In general, one may hope to apply our non–m-
separability witnesses of Eq. (A2) to deduce some non-
trivial lower bound on the entanglement intactness of any
n-qubit (entangled) state prepared in the laboratory. In
practice, however, as with any other entanglement wit-
nesses, they are not without their limitations. For example,
it is easy to verify that the entanglement present in the n-
qubit W state cannot be certified at all by an evaluation of
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our witness hWn
seðαÞi. Rather, our witness hWn

sei seems to
be better suited for certain classes of states, such as the
n-partite GHZ state jGHZni ¼ ð1= ffiffiffi

2
p Þðj0i⊗n þ j1i⊗nÞ,

and their generalization (more on this below). In fact,
the proposed witness with any parameter α ∈ ð0; 2� can
detect the genuine n-partite entanglement present in these
states.
To see how our witnesses fare in the presence of (white)

noise, let us consider the mixed state [31]

ρ ¼ ð1 − pnoiseÞjGHZnihGHZnj þ pnoise
In
2n

: ðA21Þ

Evaluating hWn
seðαÞi against this state gives

αhMZi þ hMXi ¼ ðαþ 1Þð1 − pnoiseÞ þ α
pnoise

2n−1
: ðA22Þ

Comparing this with the maximal value of hWn
seðαÞi

attainable by a biseparable state, i.e., ðα=2Þ þ 1, leads to
the identification of

pnoise <
α

2þ ð2 − 22−nÞα ðA23Þ

as a genuine multipartite-entangled ρ. Evidently, to maxi-
mize the right-hand side of Eq. (A23), the optimal choice of
α ∈ ð0; 2� is given by α ¼ 2. This leads to

pnoise <
1

3 − 22−n
; ðA24Þ

which tends to 1
3
, i.e., less than 1

2
—the maximal noise

tolerance achievable with the more well-known witness
tailored for the GHZ state, W ¼ 1

2
− jGHZnihGHZnj.

When the noise parameter pnoise of ρ in Eq. (A21)
increases, the state becomes more segregated, thus showing
larger values of entanglement intactness. For the detection
of the non–m-separability of these states, we compare
instead the expectation value of Eq. (A22) with the
m-separable bound of maxfðα=2m−1Þ þ 1; αg. Because of
the linearity of these expressions in α, the optimal choice of
α takes place when they are equal, i.e., when
α ¼ 1=ð1 − 21−mÞ, thereby giving an m-separable bound
of 2m−1=ð2m−1 − 1Þ. Solving for the corresponding thresh-
old noise parameter shows that our witnesses reveal an
upper bound on the entanglement intactness of m − 1
for ρ whenever

pnoise <
2m − 2

2ð2m − 2m−n − 1Þ : ðA25Þ

d. White-noise robustness of the non–m-separability
witnesses for GHZ-like states

Having understood how our witnesses for non–
m-separability work for GHZ states and their mixture with

white noise, we now perform a similar analysis for the
generalized GHZ state involving an arbitrary coherent
superposition between j0i⊗n and j1i⊗n. Specifically, let
jGHZnðθ;ϕÞi ≔ cos θj0i⊗n þ eiϕ sin θj1i⊗n, where θ ∈
ð0; ðπ=4Þ� while ϕ ∈ ð0; 2π�. For simplicity, our discussion
here will focus mainly on the detection of genuine n-partite
entanglement present in (the noisy version of) such states.
To this end, note that for jGHZnðθ;ϕÞi, the linear

combination of expectation values [appearing in hWn
seðαÞi

and hWn0
seðαÞi, see the last paragraph of Sec. II] gives

αhMZi � hMXi ¼ α� sin 2θ cosϕ: ðA26Þ
Clearly, if we take α ¼ 2, then independent of the value of
θ ∈ ð0; ðπ=4Þ� and except when ϕ ¼ ðπ=2Þ; ð3π=2Þ, the
right-hand side of the above expression—after maximizing
over both signs �—always exceeds the biseparable bound
of α ¼ 2. Thus, the genuine multipartite entanglement of
almost all jGHZnðθ;ϕÞi, except when ϕ ¼ ðπ=2Þ; ð3π=2Þ,
can be certified via our nonseparability witnesses given in
Eq. (A2). In fact, even the genuine multipartite entanglement
present in the two remaining cases can be taken care of
analogously by applying an appropriate local unitary trans-
formation toWn

seðαÞ. Specifically, for ϕ ¼ ðπ=2Þ; ð3π=2Þ, it
suffices to apply the unitary transformation I⊗n−1

2 ⊗ ð1
0

0
�iÞ

to Wn
seðαÞ; an evaluation of the resulting witness for

jGHZn½θ;ϕ ¼ ðπ=2Þ�i then gives αþ sin 2θ, which always
exceeds the biseparable bound of α.
To determine the white-noise robustness of our witnesses

against these generalized GHZ states, we consider

ρ ¼ ð1 − pnoiseÞjGHZnðθ;ϕÞihGHZnðθ;ϕÞj þ pnoise
In
2n

:

ðA27Þ
By a calculation similar to that presented in the last section
[but now considering both hWn

seðαÞi and hWn0
seðαÞi], one

finds that the genuine n-partite entanglement present
in these noisy versions of jGHZnðθ;ϕÞi can always be
certified as long as

pnoise <
sin 2θj cosϕj

2þ sin 2θj cosϕj − 22−n
: ðA28Þ

Likewise, it can be shown that as long as

pnoise <
2nð2m − 2Þ sin 2θj cosϕj

2nð2m − 2Þ sin 2θj cosϕj þ 2mð2n − 2Þ ; ðA29Þ

one could certify that the ρ given in Eq. (A27) has an
entanglement intactness upper bounded by m − 1.

2. A family of witnesses for non–k-producibility
with two local measurement settings

Our witnesses for entanglement depth have their origin
in the family of device-independent (DI) witnesses for
entanglement depth given in Ref. [24]:
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Ik
nðγÞ∶

γ

2n

X
x⃗∈f0;1gn

Enðx⃗Þ − Enð1⃗nÞ ≤
states

k-producible

SQ;�
k ðγÞ; ðA30Þ

where x⃗ ¼ ðx1; x2;…; xnÞ is an n-component vector
describing the combination of measurement settings,
xi ∈ f0; 1g, Enðx⃗Þ is the n-partite full correlator (the
expectation value of an n-partite �1-valued outcome
observable), and SQ;�

k ðγÞ is the maximal quantum value
of Ik

nðγÞ attainable by any k-producible state. Some explicit
values of these DI k-producible bounds (which hold for
arbitrary dimensional k-producible states and arbitrary
local �1-valued observables) for the case of γ ¼ 2 are
[24] SQ;�

1 ¼ 1, SQ;�
2 ¼ ffiffiffi

2
p

, SQ;�
3 ¼ 5

3
, SQ;�

4 ¼ 1.8428, etc.
For an n-partite GHZ state, a good choice of local

observables inspired by those of Ref. [24] is given by
setting A� ¼ cos θ�σx þ sin θ�σy, where θ� ∈ R, while
A− and Aþ are, respectively, the local observables for
xi ¼ 0 and xi ¼ 1 (for all i). In particular, for the eight-
partite states that we managed to produce experimentally,
based on the measured values of hMZi and hMXi,
our offline numerical optimizations suggest that θ� ¼
½3ð1� 8Þ=80� is a reasonably robust choice for witnessing
the entanglement depth. Substituting these into the left-
hand side of Eq. (A30) and denoting the global Hermitian
observables as Wn

de, i.e., I
k
n ¼ trðρWn

deÞ, we then see that

Wn
deðγÞ¼ γ

�
A−þAþ

2

	
⊗n

−A⊗n
þ ¼ γκnA−A⊗n

þ ; ðA31Þ

where A ¼ ½ðA− þAþÞ=2κ�⊗n is a �1-valued Hermitian
observable and κ ¼ cos 3

10
is a normalization constant.

As Eq. (A30) holds for an arbitrary choice of local

observables, we thus see that hWn
deðγÞi ≤

states
k-producible

SQ;�
k ðγÞ

already represents a family of witnesses for entanglement
depth. For the specific choice of observables given above,
however, these k-producible bounds can be considerably
tightened via numerical optimizations.
Specifically, our goal is to compute

β8;kðγÞ ¼ max
k-prod ρ

tr½ρW8
deðγÞ�; ðA32Þ

i.e., to optimize the expectation value of W8
de over all

possible eight-qubit k-producible states. A few simplifica-
tions can immediately be made. First, since the objective
function tr½ρW8

deðγÞ� is linear in ρ, there is no need to
consider convex mixtures of k-producible eight-qubit states
in the optimization. In other words, it suffices to consider
ρ ¼⊗m

i¼1 ρi, where each ρi ¼ jψ iihψ ij is at most k partite.
Second, as W8

de is invariant under arbitrary permutation of
parties, it suffices to consider one particular partitioning
separating the eight parties into b8=kc groups of k parties
(possibly plus a remaining group of 8 mod k parties).

Even with these simplifications, there is no straightfor-
ward way to determine the values of β8;k, as the charac-
terization of separable states—and, more generally,
k-producible quantum states—is a computationally diffi-
cult problem. Instead, we numerically determine some
(matching) upper bound for the k-producible bound β8;k
by employing (and generalizing) the idea of symmetric
extension proposed in Ref. [32] to the present problem.
For example, in order to determine (an upper bound

on) the 3-producible bound β8;3, it suffices to consider
ρ ¼ ρA ⊗ ρB ⊗ ρC, where both ρA and ρB are three-qubit
states and ρC is a two-qubit state. Clearly, for all such states,
there exists an ðn1; n2; n3Þ-copy symmetric extension ρ̃
(e.g., ρ̃ ¼ ρ⊗n1

A ⊗ ρ⊗n2
B ⊗ ρ⊗n3

C ) such that πρ̃π ¼ ρ̃ and
trfA⊗n1−1B⊗n2−1C⊗n3−1gρ̃ ¼ ρ, where π is the projector onto
the symmetric subspace of n1 copies of A’s Hilbert space,
n2 copies of B’s Hilbert space, and n3 copies of C’s Hilbert
space, while trfA⊗n1−1gρ means a partial trace over n1 − 1

copies of A’s Hilbert space, etc. Therefore, a legitimate
upper bound on β8;3 can be obtained by solving the
following semidefinite program:

max tr½ρWn
deðγÞ�;

s:t: ρ ≽ 0; trðρÞ ¼ 1;

ρ̃ ≽ 0; trðρ̃Þ ¼ 1; πρ̃π ¼ ρ̃

ρ̃Tj ≽ 0 ∀ j ∈ I ; ðA33Þ
where O ≽ 0 represents the positive-semidefinite require-
ment of O, ρ̃Tj represents the partial transposition [33] of ρ̃
with respect to subsystem j, and I is the set of indices
representing all possible combinations of varying numbers
of copies of A, B, and C Hilbert spaces. Therefore, if
n1 ¼ n2 ¼ 1 and n3 ¼ 2, the last line of Eq. (A33) repre-
sents the following set of constraints:

ρ̃TA ; ρ̃TB ; ρ̃TCC; ρ̃TC ; ρ̃TAC ; ρ̃TBC : ðA34Þ

TABLE III. Summary of numerically determined k-producible
bounds β8;kðγÞ for k ¼ 1; 2;…; 7 and some specific values of γ.
The last two columns give, respectively, the number of copies
considered for each group and the Hilbert space dimension of
each group in our computation of the (matching) upper bound
on β8;kðγÞ.
k γ β8;kðγÞ Copies Dimension

1 2 0.8365 (1,1,2,2,2,2,2) (2,…,2)
2 2 1.0450 (1,1,1,2) (4,4,4,4)
2 1.6 0.7904 (1,1,1,2) (4,4,4,4)
3 2 1.1699 (1,1,2) (8,8,4)
3 1.6 0.9137 (1,1,2) (8,8,4)
4 2 1.3856 (1,1) (16,16)
5 2 1.6357 (1,1) (32,8)
6 2 1.8858 (1,1) (64,4)
7 2 2.0578 (1,1) (128,2)
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In this particular case, the upper bound on β8;3ðγ ¼ 2Þ that
we obtained is 1.1699.
In general, the upper bounds that we obtained by solving

Eq. (A33) are not necessarily tight, as the set of ρ that we
optimized over is generally a superset of the set of
k-producible states. In our case, however, we could certify
the tightness of these bounds by explicitly parametrizing a

general eight-qubit k-producible pure state and a general
dichotomic qubit observable (three parameters for every
such observable) and applying standard (but heuristic)
algorithms to optimize Eq. (A32) over all these parameters
1000 times for each value of k. Our results for these
optimizations are summarized in Table III and in Fig. 5.

APPENDIX B: MORE EXPERIMENTAL
DETAILS AND DATA PROCESSING

1. Entanglement preparation

The detailed experimental setup is shown in Fig. 6. A
femtosecond pulse—which has a duration of 130 fs, a
central wavelength of 780 nm, a repetition rate of 80 MHz,
and power intensity of 3.8W—is focused to an LBO crystal
with a waist of 50 μm by a biconvex lens with focal length
of 50 mm. As the instantaneous intensity of the focused
pulse on LBO is extremely high, we add a Y-direction
transition stage under the LBO, which moves 50 μm every
30 seconds to avoid destroying the LBO crystal. With
such a device, we can observe a stable second harmonic
generation (SHG) with an efficiency of 42.1%, i.e.,
generating ultraviolet pulses with an average power of
1.6 W. The optical mode of the generated ultraviolet pulse
disperses differently in the x direction and the y direction.
To get a good Gaussian mode, we use two cylindrical
lenses—one works for the x direction, and the other works

FIG. 5. Numerically determined k-producible bounds β8;kðγÞ
for k ¼ 1; 2;…; 7 and for all γ ∈ ð0; 2�.
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FIG. 6. The detailed experimental setup.
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for the y direction—to reform the beam. After the
reforming, the ultraviolet pulse is a Gaussian-like beam
focused onto the first BiBO crystal with a beam waist of
170 μm. We use 0.6-mm BiB3O6 (BiBO) crystals cut at
(111.4°, 55.1°) to generate entangled-photon pairs [11],
in which case the two cones overlap along two lines
separated by an angle of 6.9°. Compared to the traditional
Beta barium borate (BBO) crystals [34], BiBO crystals
with these cutting angles are expected to have a smaller
spatial walk-off angle and a higher type-II second-order
nonlinear coefficient [35]. Then, the entangled-photon pairs
can be generated with a higher probability and collected
with a higher efficiency. The ultraviolet pulse is directed
to the second BiBO crystal (BiBO2) and refocused on the
second BiBO2 by a biconvex lens (f ¼ 100 mm) with a
beam waist of 170 μm. The same operations are performed
successively on the ultraviolet pulse to make it shine on
BiBO3 and BiBO4 with the same beam waist of 170 μm.
With this choice of beam waist and under such a pumping
condition, SPDC on BiBO crystal takes place with a
considerable generation rate and good collective efficiency.
During our experiment, to suppress the higher-order
emission rate in SPDC, we attenuated the average power
of the ultraviolet pulse to 500 mW, under which we
observed 3 × 105 two-fold coincidences in four entangled
photon pairs. The average collection efficiency in modes
1–8 is 39% with maximal 42% and minimal 37%.
In our experiment, there are four active interferometers

at minimum, and seven at most. To make sure that the
interfered photons arrive at the polarization beamsplitter
simultaneously, we add a motor-controlled prism in one
arm of each interferometer [as shown in Fig. 6(b)]. The
stepping motor moves the prism with a minimum step size
of 1 μm, which is good enough to find the biggest visibility
in the interference (the coherence length in our case is
200 μm). The seven motor-controlled prisms need to be
controlled by a strict sequence. We divide them into three
layers: The first layer contains four prisms, which are
embedded in the four interferometer-generating entangled
photon pairs; the second layer contains two prisms, which
are employed in the interferometer to generate four-photon
entanglement; the last layer contains one prism in the
interferometer to generate eight-photon entanglement.
There is no order in controlling the prisms in the same
layer, but the controlling order between different layers
must follow layer 1 → layer 2 → layer 3. When collecting
data, all seven stepping motors need to be stable for dozens
of hours simultaneously.
The three PBSs embedded in the interferometric geom-

etry are attached in a lifting platform shown in Fig. 6(c).
The lifting platform is a z-direction transition stage with
maximal tuning range of 25 mm, which is larger than our
cube (12.7 mm). We emphasize that the prisms in the
second and third layers should be adjusted accordingly
when generating different entanglement structures.

The generated photon pairs have correlated polarization.
In the ideal scenario, the polarization of these photon pairs
is described by the maximally entangled two-qubit state
jΨþ

iji ¼ ð1= ffiffiffi
2

p ÞðjHoVei þ jVeHoiÞij, where the subscript
oðeÞ represents the ordinary (extraordinary) component
and i, j denote the path label. Then, jΨþ

iji is overlapped on

PBS and becomes jΦþ
iji ¼ ð1= ffiffiffi

2
p ÞðjHoHei þ jVoVeiÞij.

In order to get a better indistinguishability, we filter
the photons with proper full width at half of the trans-
mittance maximum (FWHM) depending on whether it is an
o-component or an e-component light.
Specifically, in our experiment, the photons in path

modes 1, 4, 6, 8 are o-component light and filtered by a
narrow band filter with ΔFWHM ¼ 4.6 nm. The photons in
path modes 20, 30, 50, 70, on the other hand, are e-component
light and are filtered by a narrow band filter with ΔFWHM ¼
2.8 nm. With such filter settings, we observe an eight-fold
coincidence of 70=h in creating jG2222i. Each interference
on PBS1, PBS2, or PBS3 will reduce half of the eight-fold
coincidence due to postselecting probability. We experi-
mentally observe that the eight-fold coincidences in creat-
ing jG422i, jG44i, jG62i, and jG8i are 36=h, 20=h, 20=h,
and 8=h, respectively. The total eight-fold coincidences we
collected in measuring hMZiÞ, hMXi, hAi, and hA0i are
shown in Table IV.

2. Imperfections and noise model

The experimental imperfections are (mainly) caused by
the higher-order emissions in SPDC and the mode mis-
match of the interference when superposing photons on
PBS to connect entangled photon pairs. The influence of
these imperfections can be reflected by the interference
visibility. We define the visibility for an experimentally
generated state as

v ¼ Target state − Noisy terms
Target stateþ Noisy terms

: ðB1Þ

For the entangled photon pair, the state can be written as

ρ2 ¼
1þ v1

2
jGHZ2ihGHZ2j þ

1þ v1
2

I2
22

; ðB2Þ

TABLE IV. Eight-fold coincidences in observingMZ,MX, A,
andA0 on ρ8, ρ62, ρ44, ρ422, and ρ2222, respectively. The results of
the calculated hMZi, hMZi, hAi, and hA0i are shown in the main
text.

State NðMZÞ NðMXÞ NðAÞ NðA0Þ
ρ8 658 650 92 83
ρ62 260 240 260 176
ρ44 168 208 415 385
ρ422 196 232 320 290
ρ2222 253 315 464 412
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where v1 represents the visibility of the entangled photon
pair. The imperfections mainly come from the higher-order
emission in SPDC. Similarly, the four-photon GHZ state
can be written as

ρ4 ¼
1þ v2

2

�
1þ v1

2

	
2

jGHZ4ihGHZ4j

þ
�
1 −

1þ v2
2

�
1þ v1

2

	
2
�
I4
24

; ðB3Þ

where v2 represents the visibility of interference on PBS.
As two entangled photon pairs are involved when generat-
ing ρ4, the factor ½ð1þ v1Þ=2�2 is added. Generating an n-
photon GHZ state requires n=2 entangled photon pairs and
n=2 − 1 PBSs to connect them. Thus, an n-photon GHZ
state, where n is an even number, can be written as

ρn ¼
�
1þ v2

2

	
n=2−1

�
1þ v1

2

	
n=2

jGHZnihGHZnj

þ
�
1 −

�
1þ v2

2

	
n=2−1

�
1þ v1

2

	
n=2

�
In
2n

: ðB4Þ

With this model, we calculate how the visibilities are
related to our two witnesses. The calculations are shown
in Fig. 7.
The imperfections can also be modeled by noises. Our

experimentally prepared n-photon state ρnðn > 2Þ can be
represented as follows:

ρn ¼ ð1 − γðnÞd − γðnÞw ÞjGHZnihGHZnj

þ γðnÞd

2
½ðjHihHjÞ⊗n þ ðjVihVjÞ⊗n� þ γðnÞw

In
2n

: ðB5Þ

In Eq. (B5), the first term describes the contribution from
a genuine n-photon GHZ entangled state. The second term
accounts for the imperfection of interference, which occurs

with a probability of γðnÞd , where the polarization beam
splitter does not superpose the photons from its two inputs.
Experimentally, this is caused by the mode mismatch,
including the mismatch of a narrow-band filter, the mis-
alignment of the beams’ direction, and other imperfections.
The last term in Eq. (B5) represents the higher-order
emissions in SPDC processing, which is modeled by the

white noise with corresponding probability γðnÞw . The model
we propose here is consistent with the observation that the
expectation value of M8

Z is considerably better than that of
M8

X, which is common in the witness of a genuine
multiphoton GHZ state based on the SPDC and photonic
interferometer.
According to the model described in Eq. (B5), we can

determine the amount of noise that our measurement of the
witnesses hW8

seðα ¼ 2Þi and hW8
deðγ ¼ 2Þi may tolerate

with respect to the states ρ8, ρ62 ¼ ρ6 ⊗ ρ2, ρ44 ¼ ρ4 ⊗ ρ4,
ρ422 ¼ ρ4 ⊗ ρ2 ⊗ ρ2, and ρ2222 ¼ ρ2 ⊗ ρ2 ⊗ ρ2 ⊗ ρ2.
Note that in the calculation of ρ62 and ρ422, the contribu-

tions γð2Þd and γð2Þw from ρ2 are negligible (and hence

ignored) compared to the main contributions γð6ÞdðwÞ and

γð4ÞdðwÞ from ρ6 and ρ4. The calculated results are shown

in Fig. 8.
From Fig. 8, we observe that Wse can tolerate much

more noise than Wde, so experimentally, Wse witnesses

more precisely than Wde. We also estimate γðnÞd and γðnÞw of
ρn by the measurements of hMZi and hMXi and mark
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FIG. 7. Calculation of the influence of the visibilities for our measurements of hW8
seðα ¼ 2Þi (top four plots) and hW8

deðγ ¼ 2Þi
(bottom four plots) with respect to ρ8, ρ62, ρ44, and ρ422 (from left to right). The straight white line represents combinations of v1 and v2,
where the values of the witnesses for m-separability and k-producibility (for appropriate values of m and k, respectively) are saturated
[see Eq. (B4)]. The black circle marks the visibilities observed in our experiment, v1 ¼ 0.967 and v2 ¼ 0.867.

HE LU et al. PHYS. REV. X 8, 021072 (2018)

021072-16



them in Fig. 8 by a black circle. Note that γðnÞd and γðnÞw are
related to hMZi and hMXi by

hMZi ¼ trðMZρnÞ ¼ 1 −
2n−1 − 1

2n−1
γðnÞw ;

hMXi ¼ trðMXρnÞ ¼ 1 − γðnÞw − γðnÞd : ðB6Þ

By measuring hMZi, hMXi and using Eq. (B6), we can

calculate the values of γðnÞd and γðnÞw .
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FIG. 8. Calculation of the noise tolerance for our measurement of hW8
seðα ¼ 2Þi (top four plots) and hW8

deðγ ¼ 2Þi (bottom four plots)
with respect to ρ8, ρ62, ρ44, and ρ422 (from left to right). The straight line represents combinations of noise parameters where the values of
the witnesses for m-separability and k-producibility (for appropriate values of m and k, respectively) are saturated [see Eq. (B5)]. Here,

γð8Þw ðγð8Þd Þ, γð6Þw ðγð6Þd Þ, γð4Þw ðγð4Þd Þ denote the probability of white noise (decoherence noise) in preparing jGHZ8i, jGHZ6i, and jGHZ4i.
The γð2Þw are negligible compare to γð4Þw and γð6Þw , so we do not consider them in the calculation on ρ422, ρ44, and ρ62. For example, in the

rightmost plots (for ρ422), the straight line corresponds to the combination of γð4Þd and γð4Þw such that the 4-separable bound (upper plot)
and the 3-producible (lower plot) bound are saturated. The black circle marks the noise parameters estimated from our measured value of
hMXi and hMZi.
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For the state ρ2222, the white noise model fits ρ2 very
well, and there is no interference between independent
SPDC processes; thus, we simplify the noise model of
Eq. (B5) to consider solely the effect of white noise as

ρ2 ¼ ð1 − γð2Þw ÞjGHZ2ihGHZ2j þ γð2Þw I2=4. The calculation
results are shown in Fig. 9. Experimentally, a more accurate

estimate of γð2Þw ¼ 0.02 is obtained by performing tomo-
graphic measurements on ρ2 [36]. Unlike the case of ρ8,

ρ62, ρ44, and ρ422, W8
de could tolerate a little bit more noise

than W8
se on ρ2222. All the calculations hold under the

assumption that the collection efficiencies in every mode
are the same. The calculations need to be modified when
the collection efficiencies are different.

3. Algorithmic procedure to deduce a minimal
entanglement structure

In this section, we give a procedure to systematically
deduce a minimal entanglement structure by using the
results of hWsei and hWdei. As shown in Fig. 10, we need
to follow three steps to systematically deduce the under-
lying entanglement structure.
Step 1: For a given n-partite state ρ, we check whether it

is genuinely n-partite entangled or not by measuring the
witness WseðαÞ. If it is, the task is completed; otherwise,
we proceed to step 2.
Step 2: The extent to which the state is (not)m-separable

for m > 1 can be analyzed by using the measured value
obtained in step 1 and considering the differentm-separable
bounds given in Eq. (A2). Concurrently, we perform the
measurement needed to evaluate hWdeðγÞi. As with the
case of separability, a lower bound on the entanglement
depth can be obtained by analyzing the measured value
against the various k-producible bounds.
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FIG. 12. Results pertinent to the entanglement structure deduction for ρ62.
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Step 3: Based on the results from step 2, we can conclude
that the entanglement intactness and entanglement depth
are, respectively, upper and lower bounded by m ≤ M and
k ≥ K. From here, based on the data obtained during the
measurement of hW8

seðαÞi [and hW8
deðγÞi], we may evalu-

ate hWn0
seðαÞi for all combinations of n0 ≥ K parties to

determine which among the n parties exhibit genuine
K-photon (or more-partite) entanglement and which exhibit
less-partite entanglement.

4. More experimental results for the deduction
of a minimal entanglement structure

The entanglement structure can be deduced by employ-
ing the procedure described in Appendix B 3. We show the
results for ρ422 and ρ2222 in the main text. For state ρ422, we
show that photons in path mode f5; 60; 70; 8g are four-
photon entangled [Fig. 4(a) in the main text]. We omit the
results of searching three-partite GMEs in f1; 20; 30; 4g.
Below, we show that our measurement of hW3

seðα ¼ 2Þi
does not reveal any three-photon entanglement for any
possible three-photon combination in f1; 20; 30; 4g. The
results are shown in Fig. 11. We then search for two-
partite entanglement. The results are shown in Fig. 4(b)
in the main text.
For state ρ62, the measurement result hW8

deðγÞi ¼ 1.29�
0.08 indicates that there is at least four-photon entanglement
in ρ62. So, we first try to identify the parties that exhibit this
four-photon entanglement in ρ62. As shown in Fig. 12(a),
there are seven four-photon combinations that violate the
biseparable bound of hW4

deðγ ¼ 2Þi, therefore indicating the
presence of four-photon entanglement among these parties.
However, the measured value of hW4

deðγ ¼ 2Þi for the
complementary set of parties does not reveal any four-
photon entanglement. As hW8

seðα ¼ 4=3Þi ¼ 1.43� 0.07

indicates that m ≤ 2 for ρ62, these results suggest that ρ62
does not have the entanglement structure of jG44i. Similarly,
the results in Fig. 12(b) suggest that ρ62 does not have the
entanglement structure of jG53i either. Rather, an entangle-
ment structure of ρ62 that is compatible with our measure-
ment results is that of jG62i [Fig. 12(c)].
With the same procedure, according to the resultsm ≤ 2,

k ≥ 3 (shown in the main text), we find that ρ44 may not
have the entanglement structure of jG35i. Instead,
our results shown in Fig. 13 suggest that one possible
entanglement structure of ρ44 is that given by jG44i.
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