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Quantum computers can efficiently simulate many-body systems. As a widely used Hamiltonian simulation
tool, the Trotter-Suzuki scheme splits the evolution into the number of Trotter steps N and approximates the
evolution of each step by a product of exponentials of each individual term of the total Hamiltonian. The
algorithmic error due to the approximation can be reduced by increasing N , which however requires a longer
circuit and hence inevitably introduces more physical errors. In this work, we first study such a trade-off and
numerically find the optimal number of Trotter steps Nopt given a physical error model in a near-term quantum
hardware. Practically, physical errors can be suppressed using recently proposed error mitigation methods. We
then extend physical error mitigation methods to suppress the algorithmic error in Hamiltonian simulation.
By exploiting the simulation results with different numbers of Trotter steps N � Nopt, we can infer the exact
simulation result within a higher accuracy and hence mitigate algorithmic errors. We numerically test our scheme
with a five-qubit system and show significant improvements in the simulation accuracy by applying both physical
and algorithmic error mitigations.
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I. INTRODUCTION

It is hard to simulate quantum systems using a classical
computer, as the computational cost increases exponentially
with the system size. Such a problem can be resolved by
quantum simulation, as proposed by Feynman in 1982 [1],
saying “let the computer itself be built of quantum me-
chanical elements which obey quantum mechanical laws.”
Quantum simulation of many-body systems has become one
of the most promising applications of quantum computing.
Given the Hamiltonian H of a system, a vital step is to
realize the time-evolution operator U (t ) = e−iH t , which can
be used for studying both its dynamic [2] and its static [3]
properties.

Several methods have been proposed to efficiently approx-
imate the time evolution operator U (t ) [4–9]. Although the
latest methods [6,7,9] have been significantly improved, the
simulation accuracy is still limited by finite resources, such as
short circuit depth, finite system runtime, and large physical
errors in the system. To study such a limitation, we focus on
the the Trotterization method [10], introduced for quantum
simulation by Lloyd [2]. Suppose the system Hamiltonian
H can be decomposed into a sum of Hamiltonians, Hk , that
only involves few-body interactions, i.e., H = ∑

k Hk . Then,
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the Trotterization method approximates the time-evolution
unitary operator U (t ) = e−i

∑
k Hkt by decomposing it into a

product form,

U (t ) =
(∏

k

e−iHkt/N

)N

+ O(t2/N ). (1)

Here, N is the number of Trotter steps and O(t2/N ) is the
algorithmic error due to a finite value of N . As Hk only
has local interactions, each term e−iHkt/N can be efficiently
realized on a quantum computer. However, as Hk terms gen-
erally do not commute with each other, Trotterization only
approximates the time-evolution operator U (t ). By increas-
ing the number of Trotter steps N , the algorithmic error
O(t2/N ) can be arbitrarily suppressed. However, the circuit
depth increases linearly with the number of Trotter steps. A
deep circuit introduces more physical errors, which corrupt
quantum simulations in noisy intermediate-scale devices [11].
Consequently, we can only use a small number of Trotter steps
for systems without quantum error correction [12].

Recently, several error mitigation methods have been intro-
duced to suppress physical errors in shallow circuits [13–20].
One of the methods relies on extrapolation [14–16], which
works by deliberately increasing the error rate of the quantum
hardware, and using the expectation values of several points
with higher error rates to infer the error-free value. The extrap-
olation method can be applied to suppress general physical er-
rors that can be well controlled in shallow circuits. However, it
fails to work when the circuit depth is too long, which is when
many errors happens. As such, even with error mitigation, we
cannot choose too large a number of Trotter steps. As a result,
even if physical errors can be mitigated, the accuracy of the
simulations will still be limited by algorithmic errors.
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In our work, we study algorithmic and physical errors
resulting from implementing Trotterization on near-term de-
vices. Following Ref. [12], in Sec. II we first find the optimal
number of Trotter steps Nopt for error-prone quantum simula-
tions. In Sec. III, we review recently proposed error mitigation
methods and show how physical errors can be suppressed.
In Sec. IV, we then extend the physical error extrapolation
method to suppress the algorithmic error in Trotterization.
We use expectation values obtained from different numbers
of Trotter steps N1 and N2 (Nopt � N1, N2) and extrapolate
the results to estimate a more accurate expectation value than
can be obtained using only the optimal number of Trotter steps
Nopt. In Sec. V, we numerically test our result by considering
a five-qubit Hamiltonian. We numerically show the optimal
number of Trotter steps Nopt under an inhomogeneous Pauli
error model and apply both physical and algorithmic error
mitigation methods to significantly increase the simulation
accuracy. In Sec. VI, we conclude our work and discuss its
possible extension in general quantum information process-
ing.

II. THE OPTIMAL NUMBER OF TROTTER STEPS FOR
NOISY QUANTUM SIMULATION

In this section, we first review the theoretical analysis [12]
about the optimal number of Trotter steps in a Hamiltonian
simulation with physical noise. Denote the channel of the
Trotter decomposition e−iHkt/N as Vk and the physical noise
as an extra channel, Ek , then the noisy stroboscopic channel
for the ith Trotter step is

E strobo
i = EL ◦ VL ◦ EL−1 ◦ VL−1 ◦ · · · ◦ E1 ◦ V1, (2)

where L is the number of the local Hamiltonians. With the
number of Trotter steps N , the entire noisy channel of the
Trotter decomposition is

EnoisyTrotter = E strobo
N ◦ E strobo

N−1 ◦ · · · ◦ E strobo
1 . (3)

The distance between the two channels E1 and E2 is defined
by the trace distance or distinguishability between the output
states of the two channels [21,22],

D(E1, E2) = max
ρ

‖E1(ρ) − E2(ρ)‖, (4)

where the maximization is over a properly chosen state set
and ‖M‖ = Tr[

√
M†M] for matrix M . The distance between

the ideal channel U ideal for the evolution e−iH t and the noisy
implementation EnoisyTrotter is

D(U ideal, EnoisyTrotter ) �
N∑

i=1

D
( N
√
U ideal, E strobo

i

)
,

�
N∑

i=1

D(
N
√
U ideal,

N
√
Vnonoise )

+D
(
E strobo

i ,
N
√
Vnonoise

)
, (5)

where the second line follows from the chaining property
D(E1 ◦ E2, E ′

1 ◦ E ′
2) � D(E1, E ′

1) + D(E2, E ′
2), the third line

follows from the triangle inequality D(E1, E2) � D(E1, E3) +
D(E2, E3), and N

√
Vnonoise is the channel of the noise-free

stroboscopic evolution
∏

k e−iHkt/N of each Trotter decompo-
sition. Now, we define the algorithmic and physical errors εalg

and εphys as

εalg =
N∑

i=1

D(
N
√
U ideal,

N
√
Vnonoise ) = α

N
,

εphys =
N∑

i=1

D(E strobo
i ,

N
√
Vnonoise ) = βN, (6)

where α = D( N
√
U ideal,

N
√
Vnonoise )N2 and β =

D(E strobo,
N
√
Vnonoise ). Here, for simplicity, we assume that

the noise model is the same for each stroboscopic sequence;
that is, E strobo

i is the same for different i. Note that εalg ∝ 1/N

is because the algorithmic error can be linearly suppressed
with an increasing number of Trotter steps; while εphys ∝ N

is because errors linearly accumulate with a larger number
of Trotter steps and hence longer circuits. By optimizing the
distance

D(U ideal, EnoisyTrotter ) = α

N
+ βN, (7)

we can get the optimized number of Trotter steps as

Nopt =
√

α/β, (8)

with the corresponding trace distance D = 2
√

αβ. Therefore,
due to the existence of physical errors, we cannot choose an
infinitely large number of Trotter steps to suppress the algo-
rithmic error. Although it is not easy to analytically calculate
α and β for a general physical Hamiltonian and noise models,
we numerically show the optimal number of Trotter steps in
Sec. V. In the following, we first show how to suppress the
physical errors εphys with the recently proposed physical error
mitigation methods. Then, we extend the methods to suppress
the algorithmic error εalg.

III. ERROR MITIGATION AND
EXTRAPOLATION TECHNIQUE

Now, we show how to suppress physical errors with the re-
cently proposed error mitigation methods [13–20]. Especially,
we focus on the Richardson and exponential extrapolation
error mitigation methods [14–16]. Due to imperfections of
gate operations, such as decoherence, errors can accumulate
in the quantum circuit, so that the noisy output state ρnoise

becomes

ρnoise = NNtot ◦ GNtot ◦ · · · ◦ N1 ◦ G1(ρinit ), (9)

where the ideal operation can be expressed as GN ◦
GN−1 · · ·G1(ρinit ). Here, Nk is the noise channel accompa-
nying the kth ideal gate operation Gk , Ntot is the number of
gates, and ρinit is the initial input state for the quantum circuit.
The noisy output state can be corrected with fault-tolerant
error correction that utilizes extra qubits to detect errors and
correct the state. However, fault-tolerant error correction is
considerably costly and is hard to realize with current quan-
tum hardware. For noisy intermediate-scale quantum devices
with a restricted number of qubits, error mitigation methods
require no extra qubit and can suppress errors with simple
postprocessing of different runs of the quantum circuits.
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Here we focus on the quantum computation tasks of which
the final goal is to calculate the expectation value of a certain
observable, Â. Suppose the error-free circuit output state ρ

and the noiseless expectation value is 〈Â〉 = Tr(Âρ). For a
noisy circuit with error strength ε, the noisy output state
ρε deviates from the ideal noiseless state. For example, for
stochastic errors

Nk = (1 − p)I + pN ′
k, (10)

we can set ε ∝ p, where I is the identity map, N ′
k is a noise

map, and p ∈ [0, 1] denotes the strength of the noise. The
noisy expectation value 〈Â〉 (ε) can be regarded as a function
of ε and it can be expanded according to different orders of ε,

〈Â〉 (ε) = 〈Â〉 (0) +
n∑

j=1

Ajε
j + O(εn+1), (11)

where Aj is the j th derivative of 〈Â〉 (ε) in the Taylor ex-
pansion and 〈Â〉 (0) is the noiseless expectation value. For a
considerably small ε, we have 〈Â〉 (ε) ≈ 〈Â〉 (0). With several
different noisy expectations 〈Â〉 (ε) for different ε, error mit-
igation is to infer the noiseless expectation value 〈Â〉 (0) to a
higher accuracy.

A. Richardson extrapolation

Suppose the expectation value of the observable 〈Â〉 (ε)
is measured for several rescaled noise rates aj ε with a0 =
1 < a1 < a2 < · · · < an, which can be achieved by increas-
ing the physical noise [23]. Then we can estimate 〈Â〉 (0)
by the Richardson extrapolation method [24] discussed in
Refs. [14,15]:

〈Â〉est (0) =
n∑

i=0

γi 〈Â〉 (aiε),

=
n∑

i=0

γi 〈Â〉 (0) +
n∑

j=1

Ajε
j

n∑
i=0

γia
j

i + O(εn+1)

= 〈Â〉 (0) + O(εn+1), (12)

where γi is chosen such that
∑n

i=0 γi = 1 and
∑n

i=0 γia
j

i = 0
for j = 1, 2, . . . , n. By extrapolating n points with different
error strengths, we can accurately estimate 〈Â〉 (0) and sup-
press the error to O(εn+1). When n = 1, we call it linear or
two-point extrapolation; when n = 2, we call it second-order
Richardson or three-point extrapolation. The variance of the
estimation 〈Â〉est (0) is

Var[〈Â〉est (0)] =
n∑

i=0

γ 2
i Var[〈Â〉est (aiε)]2. (13)

Suppose the variance Var[〈Â〉est (aiε)]2 values are similar
for different error strengths, the variance of the estimation
〈Â〉est (0) is

∑n
i=1 γ 2

i times larger than the variance of each
measurement Â(ε). Therefore, to achieve the same shot noise
of each measurement Â(ε), we need to run the circuit

∑n
i=1 γ 2

i

more times and we denote

�phys =
n∑

i=1

γ 2
i (14)

as the cost of physical error mitigation. Note that, �phys

generally increases exponentially to n [25]. We can thus only
choose a small constant value of n in practice in order to avoid
such an exponentially increasing cost.

For example, the cost of linear extrapolation with error
rates ε and rε (r > 1) under the assumption Var[〈Â〉 (ε)] =
Var[〈Â〉 (rε)] is

�phys = 1 + r2

(1 − r )2
, (15)

which is a monotonically decreasing function of r . The re-
source cost can be reduced with a larger r , however with
an increase of the estimation error. Therefore, one needs to
optimize r by taking into account the shot noise due to finite
samples and the error due to the extrapolation method.

B. Exponential extrapolation

The extrapolation method in the previous section is equiv-
alent to using a polynomial function to fit the values with
different error strengths. The optimal fitting function is not
necessarily a polynomial function. In Ref. [16], exponential
extrapolation was introduced by fitting an exponential func-
tion and was shown to be able to suppress more errors than
the Richardson extrapolation. When two error rates, ε and
rε (r > 1), are used, the estimation value via exponential
extrapolation is

〈Â〉est (0) = 〈Â〉 (ε)
r

r−1 〈Â〉 (rε)
1

1−r . (16)

As the performance of two-point exponential extrapolation
has been shown to be adequate in Ref. [16] and in our sim-
ulation results in Sec. V, we only use two-point exponential
extrapolation here. The intuitive reason that the exponential
function is a suitable function for extrapolation is as follows.
Following the stochastic model in Eq. (10) and considering a
circuit with identity gates, the noise process of the quantum
circuit can be written as

Ntot∏
k=1

Nk =
Ntot∏
k=1

{(1 − p)[I ] + pN ′
k} (17)

=
Ntot∑
m=0

qmKm, (18)

where Ntot is the number of the gate in the quantum circuit,
qm = (

Ntot

m

)
(1 − p)Ntot−mpm, and Km is the average of the

terms that have m errors. In the limit of Ntot → ∞ and
Ntotp → const, the binomial distribution qm can be approx-
imated by the Poisson distribution qm ≈ e−Ntotp(Ntotp)m/m!,
and the channel is

Ntot∏
k=1

Nk ≈ e−Ntotp

Ntot∑
m=0

(Ntotp)m

m!
Km. (19)

As the channel is proportional to e−Ntotp, the exponential
function may be a better function for extrapolation.

By assuming that 〈Â〉 (ε) ∝ e−Ntotε , and Var[〈Â〉 (ε)] =
Var[〈Â〉 (rε)], we can get the variance of the estimation:

Var[〈Â〉est (0)] = (r2e2Ntotε + e2Ntotrε )

(r − 1)2
Var[Â(ε)]2. (20)
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Thus the cost for the exponential extrapolation is

�phys = (r2e2Ntotε + e2Ntotrε )

(r − 1)2
. (21)

Due to the exponential dependence of r and Ntotε, the sam-
pling cost of exponential extrapolation can be much larger
than that of linear extrapolation for large r and Ntotε. How-
ever, error mitigation generally works in the regime where
Ntotε � 1, and therefore the cost of linear and exponential
extrapolations are similar when r ≈ 1. In practice, exponential
extrapolation has been shown to outperform linear extrapola-
tion in a 19-qubit numerical simulation under inhomogeneous
and leakage errors [16].

IV. ERROR MITIGATION FOR ALGORITHMIC ERRORS

In this section, we discuss how the algorithmic error in
Trotterization can be regarded as an analogy of the physical
error and how to extend the extrapolation error mitigation
method to suppress the algorithmic error. Given a Hamiltonian
H that has decomposition H = ∑

k Hk , the first-order Trotter
formula approximates the time-evolution operator U (t ) =
e−i

∑
k Hkt by decomposing it into a product form,

U (t ) =
(∏

k

e−iHkt/N

)N

+
∑
i<j

[Hi,Hj ]t2/2N +
∞∑

m=3

E(m),

(22)

where the higher-order terms E(m) can be upper bounded by
‖E(m)‖ � N‖Ht/N‖m/m!, and ‖ · ‖ denotes the maximal
eigenvalue of the matrix. Denote εN = 1/N and UεN

(t ) as

UεN
(t ) ≡

(∏
k

e−iHktεN

)1/εN

, (23)

then we can straightforwardly see how UεN
(t ) approximates

U (t ) = e−i
∑

k Hkt , i.e.,

lim
εN →0+

UεN
(t ) = U (t ) = e−i

∑
k Hkt . (24)

Suppose the time-evolution operator UεN
(t ) is applied to an

initial state |ψ0〉, then the output state is UεN
(t ) |ψ0〉. When we

measure the observable A of the final output state, the average
value is

〈Â(t )〉 (εN ) = 〈ψ0| UεN
(t )†ÂUεN

(t ) |ψ0〉 , (25)

while the error-free expectation value for the observable is
〈Â(t )〉 (0) = 〈ψ |0 eiHt Âe−iH t (t ) |ψ〉0. Regarding 〈Â(t )〉 (εN )
as a function of εN , we can expand 〈Â(t )〉 (εN ) as a function
of εN by using the Taylor expansion

〈Â(t )〉 (εN ) = 〈Â(t )〉 (0) +
n∑

j=1

ε
j

NÂ(t )j + O
(
ε

j+1
N

)
, (26)

where 〈Â(t )〉 (0) and Â(t )j are independent of εN .
Therefore, the extrapolation error mitigation method can

be applied to suppress the algorithmic error. In the original
error mitigation scheme, we need to boost the error rate ε

to several different error rates ajε, which can be realized by
intensionally adding more noise to the circuit. Here, as the

error rate εN is 1/N , we can straightforwardly increase the
algorithmic error εN with a smaller number of Trotter steps.
For example, by taking N ′ = N/2, we can effectively double
the algorithmic error εN ′ = 2εN . With n different numbers of
Trotter steps Nn � · · · � N1 � N0 = Nopt and Nj = N0/aj ,
we can therefore suppress the algorithmic error by a linear
combination of the results:

〈Â(t )〉est (0)

=
n∑

i=0

γ ′
i 〈Â(t )〉 (εNi

)

=
n∑

i=0

γ ′
i 〈Â(t )〉 (0) +

n∑
j=1

Â(t )j ε
j

Nopt

n∑
i=0

γ ′
i a

j

i + O
(
εn+1
Nopt

)
= 〈Â(t )〉 (0) + O

(
εn+1
Nopt

)
. (27)

Here, γ ′
i is chosen such that

∑n
i=0 γ ′

i = 1 and
∑n

i=0 γ ′
i a

j

i = 0
for j = 1, 2, . . . , n. Therefore, we can suppress the algorith-
mic error to an order of O((εNopt )

n+1) = O((1/Nopt)n+1). The
details of the upper bound for the algorithmic error are shown
in the Appendix.

The variance of the estimation 〈Â〉est (0) is

Var[〈Â〉est (0)] =
n∑

i=0

γ ′2
i Var[〈Â〉est (εNi

)]2. (28)

Thus, by assuming that the variance is the same for different
〈Â〉est (εNi

), the variance of the estimation Var[ 〈Â〉est (0)] is∑n
i=0 γ ′2

i times larger than the variance of 〈Â〉est (εNi
). We de-

note the cost of the extrapolation for the algorithmic error by

�alg ≡
n∑

i=0

γ ′2
i . (29)

Moreover, we can combine the extrapolation for physical
errors with the extrapolation for algorithmic errors, and the
total cost is

�alg+phys ≡ �alg�phys. (30)

Note that the only requirement for the extrapolation
method is that UεN

(t ) can be expressed as an explicit func-
tion of εN , and limεN →0+ UεN

(t ) = U (t ). Therefore, the same
argument can be applied to the higher-order Trotterization [4].
Furthermore, this method can still be applied even if the ex-
pectation value cannot be efficiently expanded as a function of
1/N . The method also works as long as 〈Â〉 can be expanded
with ε, which is a function f (Nt ) of the tunable parameter Nt .

V. NUMERICAL SIMULATION

In this section, we consider a five-qubit system and numer-
ically test our algorithmic error mitigation method for simu-
lating real time evolution. As shown in Fig. 1, the Hamiltonian
only has local and near-neighborhood interactions,

H = J

5∑
i=1

Z3Zi + B

5∑
i=1

Xi, (31)

where Xi (Zi ) denotes the spin- 1
2 Pauli x (z) operator act-

ing on the ith qubit, J = 3, and B = 2. In our numerical
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1 2

3

54

FIG. 1. Schematic of the five-qubit Hamiltonian.

simulation, we start with initial state |ψ0〉 = |0, 0, 0, 0, 0〉,
evolve it with time t , and measure Â = X1. We consider both
algorithmic error from the finite number of Trotter steps and
physical error from gate noises. We consider inhomogeneous
Pauli error for both single- and two-qubit gates,

E (ρ) = (1 − p)ρ + pxXρX + pyYρY + pzZρZ, (32)

where p = px + py + pz. For a single-qubit gate, we set
px = py = 2.0 × 10−5 and pz = 6.0 × 10−5; for a two-qubit
gate, we take the error channel E2 = E ⊗ E and set px =
py = 1.0 × 10−4 and pz = 3.0 × 10−4 for each E . Note that
such a noise rate corresponds to the current state-of-the-art
experiment system [26,27].

Without considering gate error and shot noise to the mea-
surement, one should use the infinite large number of Trotter
steps to increase the simulation accuracy. With gate errors,
the optimal number of Trotter steps is limited as show in
Fig. 2(a). Here, we fix the total evolution time as t = 0.5 and
numerically find the optimal number of Trotter steps to be 25.

To suppress the algorithmic error, we use two or three
different numbers of Trotter steps to infer the value cor-
responding to the infinite number of Trotter steps. For a
given number of Trotter steps N , the runtime of the circuit
is related to the circuit depth, which is proportional to N ,
and the circuit repetition time m, which is used to get an
accurate estimation of the measurement. We denote the total
runtime resource cost M as M = mN . To compare different
simulation scenarios, we thus consider the same total cost M

for a fair comparison. For three- and two-point extrapolation,
we divide M equally to different numbers of Trotter steps.
For example, for three-Trotter-step extrapolation, N

(3)
1 , N

(3)
2 ,

and N
(3)
3 , we have m

(3)
i = M/(3N

(3)
i ) for i = 1, 2, and 3; for

two-Trotter-step extrapolation, N
(2)
1 , N

(2)
2 , m

(2)
i = M/(2N

(2)
i )

for i = 1 and 2; and for one number of Trotter steps N
(1)
1 ,

m
(1)
1 = M/N

(1)
1 .

In our simulation, we compare the three cases for suppress-
ing algorithmic errors: no error mitigation, linear extrapola-
tion, and three-point extrapolation. In order to quantify the
performance of our simulation method, we evaluate the error
of the estimation value 〈Â(t )〉 (0)est by

δ2 = [〈Â(t )〉 (0) − 〈Â(t )〉 (0)est]
2, (33)

where 〈Â(t )〉 (0) is the error-free average value.
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FIG. 2. The optimal number of Trotter steps N and the continuity
of the measurement as a function of the inverse of the number of
Trotter steps εN = 1/N . (a) The trace distance between the ideal
state and the simulated state in the presence of noise. The blue
curve denotes the trace distance without physical error, which goes
to zero with an infinite large number of Trotter steps. The black
curve denotes the trace distance with the inhomogeneous Pauli error
after each gate and the optimal number of Trotter steps is 25.
(b) The expectation value of the observable versus εN = 1/N . Here
N is the number of Trotter steps. The horizontal axis corresponds to
the number of Trotter steps 10–200. From the simulation result, we
can confirm the continuity of the function.

Now, we show that physical and algorithmic errors can
be suppressed with the error mitigation methods. To begin
with, we check the continuity of 〈Â(t )〉 as a function of εN =
1/N , to show that 〈Â(t )〉 can be Taylor expanded by εN . We
consider the case with and without physical error mitigation.
We measure the expectation values with the original error
probability p and the twice-boosted error probability 2p.
Then by applying the linear and exponential extrapolation
methods, we can suppress the physical errors. As shown in
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FIG. 3. The error δ2 against the total runtime resource M for different cases with no algorithmic error mitigation, linear algorithmic error
extrapolation, and three-point algorithmic error extrapolation. We consider physical errors to the circuit and set the total evolution time as
t = 0.5. The number of Trotter steps N = 25, 20, and 15; N = 25 and 15; and N = 25 are used for the three-point, linear extrapolation, and
no error mitigation cases, respectively. The blue line denotes the no error mitigation case, the black line denotes the linear algorithmic error
extrapolation case, and the red line denotes the three-point algorithmic error extrapolation case. (a) No physical error mitigation is applied.
(b) Linear extrapolation is applied to suppress physical errors. (c) Exponential extrapolation is applied to suppress physical errors. Here, we
set the ratio r of the two error rates to be 2 for both linear and exponential extrapolation.

Fig. 2(b), we can see that 〈Â(t )〉 is indeed a continuous
function of εN , which confirms the possibility of algorithmic
error mitigation. Furthermore, the best accuracies achieved
by linear and exponential extrapolation methods are δ2 =
2 × 10−4 and 2.79 × 10−5, with the number of Trotter steps
being N = 43 and 109, respectively. This clearly shows that
we cannot increase the number of Trotter steps infinitely even
when the extrapolation method is applied.

To show the effect of algorithmic error mitigation, we also
consider three cases for physical errors: no error mitigation,
linear extrapolation, and exponential extrapolation. First, we
consider the case where no error mitigation is employed
for the physical error. In such a case, physical errors still
dominate and we find that algorithmic error extrapolation
cannot improve the simulation accuracy, as shown in Fig. 3(a).
This is because, although we suppress the algorithmic error
by linearly combining the results from different numbers of
Trotter steps, the large deviation due to physical errors makes
the estimation worse. As the total resource M increases, the
shot noise is suppressed and the accuracy converges. The
accuracy δ2 at the converged point without algorithmic and
physical error mitigations is 2.67 × 10−3.

Next, we consider the cases where linear extrapolation is
applied to suppress physical errors. Subsequently, we apply
the algorithmic error extrapolation to suppress algorithmic
errors due to Trotterization. As shown in Fig. 3(b), we find
that the algorithmic linear extrapolation outperforms the no
error mitigation and three-point extrapolation cases for large
M . The converged accuracy with sufficiently large M � 108

is δ2 = 3.72 × 10−6 under linear extrapolation of algorithmic
errors. The improvement of the accuracy is 717 times, com-
pared with the case where no error mitigation is applied for
both physical and algorithmic errors.

Finally, in Fig. 3(c), we plot the result for the case where
exponential extrapolation is used for suppressing physical
errors. It can be seen that the physical error is success-
fully reduced, and three-point extrapolation works properly,
surpassing the performance of linear extrapolation for large
M � 1013. The converged accuracy δ2 for sufficiently large

M is 6.95 × 10−8. This accuracy corresponds to 3.8 × 104

times improvement, compared with the case where no error
mitigation is applied for both physical and algorithmic errors.

VI. DISCUSSION

In this work, we propose an error mitigation method for
suppressing algorithmic errors in Trotterization of Hamilto-
nian simulation. We first show that the optimal number of
Trotter steps is finite due to physical errors. Then, we show
how the recently proposed physical error mitigation methods
can be extended to suppress algorithmic errors in Trotteri-
zation. We numerically test our algorithmic error mitigation
method in a five-qubit Hamiltonian and show how it can
improve simulation accuracy by combining it with physical
error mitigation. Although we only focus on the first-order
Trotterization, our scheme can also be extended to other
Trotterization schemes, such as higher-order Trotterization [4]
and randomization Trotterization [5]. This is because the
expectation values obtained from these methods can also be
written as a function of the number of Trotter steps. Although,
in the presence of physical errors, higher-order Trotter decom-
positions may not reduce the overall error [14], we leave these
extensions in future works. Moreover, the other recently pro-
posed Hamiltonian simulation methods, e.g., Taylor series [6]
and quantum signal processing [7,8], offer alternative methods
of Hamiltonian simulation instead of Trotterization. These
methods divide the simulation time t into N segments and
simulate the evolution for each time t/N . Considering 1/N

as an error, our extrapolation method can also be applied by
modifying N and extrapolating the results with different N to
improve the estimation accuracy.

The extrapolation method has broad applications in di-
verse fields, including error mitigation, computational chem-
istry, linear optics simulation, etc. In classical computational
chemistry, extrapolation is widely used in solving molecular
structure problems and in Monto Carlo simulation of dy-
namics [28,29]. In linear optics simulation, the extrapolation
method is used to simulate single photons with imperfect
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photon sources such as coherent states from lasers [25]. We
can also apply this formalism for mitigating the algorithmic
error to other schemes, such as variational quantum eigen-
solver (VQE) [13,17,30–34]. The result obtained from VQE
can be regarded as a function of the depth of the quantum
circuit, and the extrapolation method can be applied. For ex-
ample, considering the hardware efficient ansatz [32] with dif-
ferent circuit depths, one can get simulation results with
different accuracy. Therefore, by running experiments with
different small depths, the extrapolation method can be ap-
plied to infer results with a much larger depth. However, when
the algorithm gets trapped in local minima, the error mitiga-
tion method will fail to work. We leave the discussion about
the practical performance to future works. A similar argument
can also be applied to other types of variational algorithms,
for simulating real or imaginary time evolutions [14,35,36].
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APPENDIX: ERROR BOUND FOR
RICHARDSON EXTRAPOLATION

Suppose a Hamiltonian H can be decomposed into the sum
of local Hamiltonians, Hk , as H = ∑

k Hk . Then, by using
the first-order Trotter formula, we can approximate the time-
evolution unitary operators as

U (t ) = exp(−iH t ) =
[∏

i

exp(−iHit/N )

]N

(A1)

+
∑
i<j

[Hi,Hj ]t2/2N +
∞∑

m=3

E(m), (A2)

where E(m) can be upper bounded by ‖E(m)‖ �
N‖Ht/N‖m/m!, and ‖ · ‖ denotes the maximal eigenvalue.
We denote UN as [

∏
i exp(−iHit/N )]N , εN = 1/N , and

UεN
(t ) ≡ (

∏
k e−iHktεN )

1/εN , which converges to U (t ) with
εN → 0+. The difference between U (t ) and UεN

(t ) can be

rewritten as

U (t ) = UεN
(t ) + a/N + EN, (A3)

where a = ∑
i<j [Hi,Hj ]t2/2 and EN = ∑∞

m=3 E(m), which
can be bounded by

‖EN‖ � N

∞∑
m=3

‖Ht/N‖m/m! <
‖H‖3t3

6N2
e‖H‖t/N . (A4)

Suppose the time-evolution operator UεN
(t ) is applied to an

initial state |ψ0〉, then the output state is UεN
(t ) |ψ0〉. When we

measure the observable Â of the final output state, the average
value is

〈Â(t )〉 (εN ) = 〈ψ0| UεN
(t )†ÂUεN

(t ) |ψ0〉 , (A5)

and the average value for evolution U (t ) is
〈ψ0| eiHt Âe−iH t |ψ0〉. The relationship between them can
be expressed as

〈Â(t )〉 (εN ) = 〈Â(t )〉 (0) − 1/N

× [〈ψ0| U †Âa |ψ0〉 + 〈ψ0| a†ÂU |ψ0〉]
+ 〈ψ0| (a/N + EN )†Â(a/N + EN ) |ψ0〉
− [〈�| U †ÂEN |�〉 + 〈�| (EN )†ÂU |�〉]

= 〈Â(t )〉 (0) + b/N + RN, (A6)

where b = −[〈ψ0| U †Âa |ψ0〉 + 〈ψ0| a†ÂU |ψ0〉] is
independent of N , and RN = 〈ψ0| (a/N + EN )†Â(a/N +
EN ) |ψ0〉 − [〈ψ0| U †ÂEN |ψ0〉 + 〈ψ0| (EN )†ÂU |ψ0〉] is
bound by

RN �
[(‖a‖

N
+ ‖H‖3t3

6N2
e‖H‖t/N

)2

+ ‖H‖3t3

3N2
e‖H‖t/N

]
‖Â‖.

(A7)

It is not hard to see that RN = O(1/N2).
Now we use the linear combination of 〈Â(t )〉 (εN1 ) and

〈Â(t )〉 (εN2 ) to estimate 〈Â(t )〉 (0) by

〈Â(t )〉est (0) = β1 〈Â(t )〉 (εN1 ) + β2 〈Â(t )〉 (εN2 ). (A8)

We choose the parameters β1 and β2 satisfying β1/N1 +
β2/N2 = 0 and β1 + β2 = 1, so that the difference between
〈Â(t )〉est (0) and 〈Â(t )〉 (0) is

| 〈Â(t )〉est (0) − 〈Â(t )〉 (0)| � RN1β1 + RN2β2. (A9)

Based on the two-point extrapolation method, we use the
simulation results with Trotter steps N1 and N2, which both
are O(N ) to reduce the algorithmic error from O(1/N ) to
O(1/N2). Similarly, by applying extrapolation with m differ-
ent points, we can suppress the Trotter algorithmic error to an
order of O(1/Nm).
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